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ABSTRACT 
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive 
literature. The majority of safety prediction models are estimated using roadway segment and intersection 
(microscale) data, while more recently efforts have been undertaken to predict safety at the planning level 
(macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors 
known to affect safety in fundamental ways.  Environmental variables, in particular variables attempting to capture 
the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather 
variables have been included, historical averages rather than actual weather conditions during which crashes are 
observed have been used. Without the inclusion of weather related variables, researchers have had difficulty 
explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, 
highways, etc.) 
 
As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction 
models. These models make use of socio-economic, demographic, and roadway variables for predicting planning 
level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been 
problematic during the development of planning level safety prediction models. More specifically, without weather 
related variables there is an insufficient set of variables for explaining safety differences across regions and states. 
Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the 
coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy.   
 
This paper summarizes the results of an effort to include weather related variables, particularly various measures of 
rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of 
severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall 
goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and 
identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets 
from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be 
statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these 
variables reduced the portion of the model explained by the constant in the base models without weather variables. 
Rain tends to affect and diminish safety, as expected, in fairly complex ways, depending on rain frequency and 
intensity.  
 

BACKGROUND 

The literature on safety prediction is extensive, as road safety professionals routinely use predicted safety to aid in 
the identification of sites with promise and to gain insights into the role of various factors on safety. As a small 
sampling of the extent of this literature, two-lane rural roads has been examined by Harwood et al (1), Council and 
Stewart (2); rural intersections by Maze, Henderson and Sankar (3), Vogt (4), Gibby et al (5), Poch and Mannering 
(6); suburban roads has been examined by Harwood (7); and low volume roads by Zegeer et al (8).  
 
This section describes recent developments in the field of planning level safety prediction models, provides a 
discussion of the effect of weather on safety, and background on how weather data has been included in previous 
safety related research. 
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Planning Level Safety Prediction Models 

Recent developments in planning level safety prediction models now enable professionals to predict safety at a 
planning level. However, during the development of these models, also known as PLANSAFE, the researchers 
found substantial differences between models for different regions. These models have included roadway and 
population based variables. This paper explores the inclusion of weather related variables, rain in particular, into 
planning level safety prediction models. It is hypothesized that these weather related variables may provide 
explanatory power in terms of regional differences found in these models and that the inclusion of weather variables 
will improve the prediction power of planning level safety prediction models. 

Weather and Safety Prediction 

It is recognized that weather can be a contributing factor to crash occurrence, in particular rain. Rain can reduce 
visibility, reduces friction between tires and the road, changes the perception of risk of the driver, and may turn to 
ice or sleet further impacting the friction coefficient. Rain may also induce a subset of motorists to drive at different 
times, thus altering demand during the rain event. For these reasons and others, rain is thought to impact safety in 
sometimes difficult to quantify ways and is thought to be critical for inclusion in predictive models of safety.  
 
Rain-related weather influences, among others:  
• wet pavement and friction 
• combined conditions of wet pavement and lower visibility resulting from cloudiness 
• rain and visibility 
• vehicle stability during rainy and windy conditions 
• risk perception and driver demand during different levels of rain intensity. 
 
When rain makes contact with the pavement, a water film starts building up on the macro and microstructure of the 
pavement. When a vehicle wheel traverses the pavement, water on the pavement surface is displaced. The remaining 
film of water, if it exists, is what reduces skid resistance of the pavement (9). Stopping distance, for example, is 
much larger at lower skid resistance levels while oil and fine debris on the pavement surface can further interact 
with the water to further reduce skid resistance.  
 
It is hypothesized that rainy weather doesn’t only affect safety as a result of skid reduction but that periods prior, and 
after rain also affects safety and travel behavior. Cloudiness can reduce visibility and reduce contrast in the road 
environment. During rainy conditions, heavy rain can reduce visibility of the driver through the interaction between 
the rain and the windshield. Wet pavement surfaces can become reflective, reducing the visibility of road markings 
and roadway features such as speed humps. When windy conditions accompany the rain, the wind can affect vehicle 
stability.  
 
A possible effect of rain that is much more difficult to quantify is driver behavior resulting from decisions whether 
or not to make a trip, decisions regarding route of travel, and decisions made during the driving task. It is generally 
accepted that older drivers, for example, reduces their travel during rainy conditions. In a similar manner, a driver 
may decide not to make a trip or to use a different route to avoid adverse weather; rain could therefore potentially 
affect trip generation and/or trip distribution. During rainy conditions drivers are advised to reduce vehicular speed 
to accommodate the longer stopping distances resulting from the reduced skid resistance levels. However, driver 
behavior may be more complex as hypothesized by risk compensation theory. According to this theory the driver 
maximizes benefits by balancing perceived risk. It may be reasoned that a driver will only reduce speed voluntarily 
if the risk is perceived to be high enough to warrant increased travel time due to the higher perceived risk.  
 
Boyle and Mannering (10) studied travel advisory speed systems for adverse weather, among others. They found 
localized speed reduction in the area of adverse conditions but higher speeds downstream, possibly suggesting driver 
compensation. One may then reason that rainy conditions at one location may affect the safety of downstream 
facilities not physically affected by the wet pavement conditions.  

Approaches to Include Weather Variables 

While many papers have discussed and analyzed weather as part of their research (11), few studies have used 
weather as part of safety prediction modeling research. In the cases where these studies included weather as a 
variable, one of the following approaches was followed: 
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1. Analysis of accidents and the weather conditions during the accident as reported in the accident report. In other 
words, only weather at the time of the accident are considered and not an annual weather. 

2. Inclusion of average annual weather characteristics, i.e. historical averages rather than weather characteristics 
for the period over which crashes are observed. 

 
Several studies focused on estimating microscopic safety prediction models have revealed evidence supporting 
relationships between crashes and weather. These include a recent study by Shankar and Chayanan (12), which 
evaluated segments using average annual precipitation rather than the actual weather for the analysis period. 
Multivariate models developed for Washington State by Milton and Mannering (13) clearly showed regional 
differences between models for Eastern and Western Washington. These two regions have very different associated 
weather, with heavier and longer duration of rainfall in the east and dryer weather in the west. Satterthwatte (14) 
evaluated seasonal and weather effects on crash frequency in California and found that once extreme weather events 
were removed, the highest accident frequencies occurred during sunny days and on wet days during the winter 
season. He hypothesized that the low frequencies observed on cloudy but dry days were the result of drivers 
reducing travel (and therefore exposure) while the absence of wet pavement provided higher levels of pavement 
friction compared to wet conditions.  
 
Other studies have observed differences between regions in the absence of weather variables to explain them. A 
study by Oh et al. (15) found that variables were not available to explain differences across states for various rural 
intersection crash models. A more complete accounting of statewide differences can be found in Washington et al. 
(16). Other studies conducted at the regional level have included indicator variables for state-level effects (e.g. (17)), 
which are likely to capture, at least at some level, the effects of weather related variables. Other studies that have 
failed to account fully for regional or state-level difference in safety performance are likely to suffer from the 
omission of weather related variables.  
 
This paper presents the results of an evaluation that incorporates weather related variables to account for regional 
differences in PLANSAFE models. The work constitutes a continuation of work on PLANSAFE, planning level 
safety prediction models that were developed as part of NCHRP 8-44: Incorporating Safety Into Long-Range 
Transportation Planning. 
 

DATASET DEVELOPMENT 

Researchers developed planning level datasets by Traffic Analysis Zone (TAZ) for Michigan, Pima County (AZ), 
and Maricopa County (AZ) for 2001 and 2002. These datasets include crash statistics, various population based 
variables using block group level data from the Summary File 1 and Summary File 3 datasets from the 2000 US 
Census, road network summary statistics, and weather using Geographic Information System (GIS) geoprocessing. 
 
Road network related summary statistics that include miles of different functional classes of roads, vehicle miles 
traveled, and bicycle facilities were calculated by intersecting the TAZ boundaries for these various layers of 
information in the GIS environment. Data by census block group were assumed to be homogeneous and were 
assigned proportionally to the TAZs. Daily weather was downloaded from the National Oceanic and Atmospheric 
Administration (NOAA) National Weather Service for the analysis period and assigned using the near analysis 
method.  
 
Although hours of sunlight, cloudiness, temperature, precipitation and snow fall for various weather stations are 
included in the data that NOAA provides, some factors such as sunlight hours, cloudiness hours, were recorded for 
about 50% of the weather stations. Snowfall and sunlight hour variables therefore can be expected to be less 
accurate but nevertheless may provide information indicative of variation between TAZs. 

Rainfall 

It is generally accepted that the major contributing factor of rainy conditions to crashes is the reduction in pavement 
friction resulting from a water film on the pavement, as discussed previously. It was therefore necessary to develop a 
variable that would be indicate the likely presence of this water film – whether it exists and its’ extent.   
 
A detailed literature review of pavement friction and wet weather indicated that a precipitation of 0.1 mm over a one 
hour period will cause wet pavement (9). Andrey and Knapper (11) also used this threshold as criteria in the 
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comparison of risks during precipitation relative to normal seasonal weather. If the average intensity of rainfall 
(calculated as an average per hour) on a particular day was equal to or higher than this value, it was classified as a 
wet pavement day with wet pavement hours. It is recognized that this assumption does not account for the effect of 
sunshine or wind on pavement wetness, two factors that can reduce the wetness of the pavement.  
 
Given the knowledge of rain and its expected impact on safety, the possible complex relationships between 
pavement surface and safety, and the nature of the available weather data, five rain related variables were developed 
for use in this study: 
• Total precipitation for 2001 and 2002 in inches, 
• Number of rainy days in 2001 and 2002,  
• Number of wet pavement days in 2001 and 2002 (as defined above), 
• Hours of wet pavement in 2001 and 2002 (as defined above), and 
• Average rainfall intensity defined as the total precipitation (as defined previously) divided by the number of 

rainy days (as defined previously). 
 
Total Precipitation 
The total precipitation variable indicates differences between low precipitation and high precipitation areas. 
However, it is reasoned that this variable is not sufficient to account for the amount of exposure to wet conditions 
because it does not provide information regarding intensities or frequencies of rainfall events. It may, however, 
capture to some extent how familiar or ‘experiened’ local drivers are when it comes to wet weather driving.  

Number of Rainy Days 

While total precipitation is likely to indicate wet and dry regions, the number of rainy days provides a measure of 
the frequency of days in which the driver is exposed to rainy weather. This variable may capture the effect of the 
driver experience with rainy conditions, perhaps even better than Total Precipitation.  

Number of Wet Pavement Days 

This variable is distinctly different from the number of rainy days as it only captures the number of days in which 
the hourly rainfall intensity exceeded a threshold that would indicate reduction in skid resistance. It is hypothesized 
that this variable may capture the frequency of days in which a driver is exposed to lower skid resistance conditions. 

Hours of Wet Pavement 

The hours of wet pavement represents the average number of hours in which a driver is exposed to lower skid 
resistance conditions, i.e. the average rainfall intensity measured during one day is sufficient to reduce skid 
resistance of the pavement. This variable is reasoned to be an exposure measure that is indicative of the number of 
hours in a day that a driver is exposed to lower skid resistance levels. 

Average Rainfall Intensity 

While the exposure measures listed previously indicate the frequency of rainfall events, this measure captures the 
average intensity of rainfall events. For example, if two regions are compared and they share similar annual rainfall, 
higher average rainfall intensity in one region would be indicative of more infrequent and intense events. Following 
the work by Satterthwatte (14) these event types would be more influential on safety than the frequent and less 
intense events. It may also be indicative of the likelihood that a driver would avoid driving in such conditions due to 
the perceived risk associated with the planned trip. Also, high intensity may be associated with flooding, high winds, 
and more hazardous driving conditions.  
 

Assignment of Weather Variables to TAZs 

Values of the weather variables were assigned to the centroids of the TAZs using the weather of the nearest weather 
station (known as the near station method). It is recognized that this approach has limitations, mainly because 
weather may not be homogeneous across an area. It was expected, however, that this method would provide an 
indication of inter-TAZ differences, especially between TAZs that are sufficiently far apart (e.g. different states). 
Alternative geoprocessing methods include methods in which surfaces are developed using the weather station 
observations as point values, interpolating between stations, and incorporating elevation differences into estimates. 
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It was decided that these more sophisticated methods would be too labor intensive to justify exploratory analysis on 
a planning level.  

PLANNING LEVEL SAFETY PREDICTION MODELS (PLANSAFE) 

Researchers involved in NCHRP 8-44 developed a planning level safety prediction model, dubbed PLANSAFE. 
This model is intended to facilitate regional safety planning. The approach uses socio-economic, demographic, and 
transportation related data to predict the safety of TAZs or larger sub-areas of a jurisdiction. The intent of the 
approach is to facilitate the use of travel demand model output and planning level data to allow for the incorporation 
of safety into planning level decision-making. The intended uses of the model include: 
 
1. Setting Safety Targets: Safety targets serve as milestones for accomplishment. For example, a region may want 

to achieve a measurable decrease in pedestrian involved crashes. The PLANSAF models are suitable for 
establishing the expected number of crashes in some future time period in the absence of targeted safety 
countermeasures. PLANSAF is useful because crashes in the future are expected to change as a result of 
population growth, new road mileage, new schools, changing of the driving population, etc. 

2. Understand the safety impacts of large scale projects (corridor level or higher): Large scale projects that may 
affect VMT, future growth, and other planning related factors will impact safety. The PLANSAF model is 
appropriate for forecasting the future expected safety performance of these projects in the absence of targeted 
safety countermeasures. 

3. Compare and contrast growth scenarios: Growth scenarios are often compared looking 5, 10, and 20 years into 
the future. PLANSAF is suitable for predicting the safety performance of the region under different growth 
scenarios (e.g. infill development, sprawl, interstate vs. highway, population and demographic shifts, etc.) in the 
absence of targeted safety countermeasures. 

 
Planning level models, in contrast, are not suitable for selecting land/use transportation investments (as say the sole 
criterion), for evaluating the impact of safety countermeasures, or for selecting safety countermeasures.  
 
The PLANSAFE models are fundamentally different in nature to corridor or site specific safety prediction models 
that dominate the literature because the input data are aggregate and not site or project specific. Predictions are not 
location specific, as would be obtained from microscopic models of safety. Instead, predictions of safety are at the 
TAZ level. Macroscopic or planning level models are justified using the following three principles: 
 
1. Crashes are largely random events. Much research has shown that crashes are largely caused by human errors, 

with estimates ranging between 60% and 90% of crashes being caused by human errors. Thus, many crashes are 
more a function of human related factors rather than roadway related factors. As simple examples, crashes that 
result from of a driver tuning a radio, answering a cell phone, following another vehicle too closely, speeding, 
and running a red light are events that occur somewhat randomly on a network. It is easy to understand, then, 
that modelling crashes at the segment or intersection level is challenging, because there is a large random 
component to crashes that is not explained by local road characteristics. At a more aggregate level, in contrast, 
crashes are related to aggregate predictors, such as population demographics, ‘high risk’ driving populations, 
the general classes of road facilities, etc., and assigning crashes to specific links or segments is not necessary. 
Thus, by aggregating the transportation system at the TAZ level, some of the difficulties caused by ‘lumpiness’ 
of random events that we see across intersections or across road segments are reduced.  

2. Aggregate safety differences are substantiated by research. Much research supports ‘aggregate’ or average 
safety differences across groups. Older drivers suffer from reduced reaction and perception times, as well as 
reduced vision and flexibility. Younger drivers suffer from inexperience and aggressiveness. Minorities have 
been shown to wear safety restraints less than whites, and restraint use in rural areas is less than in urban areas. 
Interstates are associated with relatively low crash rates, while rural roads with high speeds are associated with 
more serious injury crashes. Crashes in urban areas are attended by emergency medical services more quickly 
than crashes in rural areas. Intersections are locations of complex traffic movements and thus are associated 
with greater numbers of crashes than road segments. Increasing traffic congestion tends to reduce crash 
severity. School zones are associated with bicycle and pedestrian crashes. These well supported aggregate 
relationships, and others not listed here, are the relationships captured in aggregate level prediction models. The 
aggregate relationships described above form the basis for the statistical modelling at the TAZ level. It is the 
reliance on these ‘average’ relationships, and characteristics measured at the TAZ level, on which model 
predictions are based. 
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3. Models for predicting have fewer restrictions than models for explaining.  Intersection and road-segment level 
accident prediction models are usually held to a high standard, as they are often used both to predict the 
expected performance of such facilities but also to explain relationships between variables. Often, and 
sometimes wrongly, these microscopic models are used to infer the effects of countermeasures, such as the 
safety effect of the presence of a left-turn lane on angle crashes. When a model is used simply for prediction, 
however, and not inference, there is greater flexibility in model estimation and variable selection choices. The 
PLANSAF model is intended only for prediction, and not explanation. Thus, for example, if a population 
variable is used to predict fatal crashes per TAZ, its estimated coefficient is used solely in the prediction 
equation but is not interpreted to have specific explanatory marginal effects.  

 
These three arguments, or justifications, form the basis for the development of aggregate level accident prediction 
models. A consequence of these arguments, however, is that the models cannot be used for explanation of crash 
causation or for the assessment of roadway-specific countermeasures. The aggregate relationships modeled are 
suitable for predicting a hypothetical or future outcome should the set of predictors be changed. This restriction is 
not too dissimilar from the restriction placed on travel demand models, whose primary purpose is to predict demand 
for roadway space of motor vehicles in hypothetical or future scenarios. 
  

MODELLING METHODOLOGY 

Linear regression models with a logarithmic transformation of the dependent variable were developed in the study. 
This modelling framework was chosen because the log transform of crashes at the TAZ level are approximately 
normally distributed and because the linear regression framework is quite flexible with respect to functional forms.  
 
A common dataset was developed for three regions by TAZ: Michigan State, Pima County (from hereon referred to 
as PAG), Arizona, and Maricopa County (from hereon referred to as MAG), Arizona. Indicator variables were 
created for each region and LIMDEP was used to perform the modeling. The base model variables for the accident 
frequency prediction model were: 
• POP_PAC: the total population in the TAZ per acre. It was calculated using the population frequency as 

provided as variable P001001 in the US Census Summary File 1 dataset. 
• POP16_64: the total population ages 16 to 64. It was calculated by adding the following variables the US 

Census Summary File 1 dataset together: P012007…P012019 + P012031..P012043 + P014019 + P014020 + 
P014040+ P014041. 

• TOT_MILE: the total miles of roadway in the TAZ. This includes the total mileage of roadways as contained in 
the GIS layers and also those provided by the respective roadway agencies. These include all the different 
functional classes of roads. 

 
This set of variables surfaced as a ‘common set’ of explanatory variables that were found to be significant in 
accident frequency models across regions. While other variables were available, such as lane miles of specific 
functional classes and other age categories, these variables did not offer improved fit across the three regions. 
Although PLANSAFE models are not meant to be explanatory in nature, the abovelisted variables do represent 
reasonable variables affecting safety. While the total miles of roadway in the area (TOT_MILE) provides 
information regarding the exposure of individuals to accident risk, the portion of the population ages 16 to 64 
represents the number of individuals that experiences the largest exposure to accident risk because it represents a 
group of individuals that are generally economic active, engages in increased travel resulting from trips in addition 
to work and retail related travel such as taking children to school etc.  The population density variable (POP_PAC) 
is thought to represent the frequency of expected conflicts as larger densities is likely to increase the number of 
conflicts resulting from increased levels in travel compared to lower density areas. It may also be indicative of 
residential areas that generate relatively consistent daily work related travel patterns.  
 
The base models for the prediction of crashes with a fatal and/or injury severity is more complex as the base models 
varies substantially between regions. An example of the variables included in such a model was included in Table 6.  
 
Correlation between variables and the rain-related weather variables under consideration were evaluated. The 
following rain-related variables were considered for inclusion in the base accident frequency and the base injury + 
fatality accident frequency models: 
• TOTPREC: Total precipitation for 2001 and 2002 
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• RAINDAYS: Number of rainy days in 2001 and 2002 
• WETPVDAY: Number of wet pavement days in 2001 and 2002 (as defined above) 
• HRWETPAV: Hours of wet pavement in 2001 and 2002 (as defined above). 
• AVERINT: Average rainfall intensity = Total Precipitation (as defined above)/ Number of rainy days (as 

defined above). 
 
It is hypothesized that the variation in weather is relatively large between TAZs in Michigan and those in the two 
regions in Arizona (PAG, and MAG). It is also hypothesized that the effect of rain or weather in general is relatively 
more influential for the TAZs in Michigan compared to the two regions in Arizona (PAG, and MAG). 
 

FINDINGS 

The study evaluated the inclusion of weather related variables into existing PLANSAFE (planning level safety 
prediction) models for overall crash frequency and frequency of crashes with a degree of severity of injury and 
higher. The evaluation also included the consideration of regional indicators instead of or in combination with the 
weather variables. This section first describes the findings related to models predicting crash frequency, then models 
predicting the frequency of injury + fatal degree crashes, and lastly discusses the findings related to the 
consideration of inclusion of regional variables into PLANSAFE models. 
 
In both model types models were valuated for different regions. These regions include one or a combination of the 
following regions: Michigan State, PAG, and MAG. 
 

Predicting Crash Frequency 

Planning level models for predicting crash frequency per TAZ were developed for the combined dataset, i.e. the 
dataset consisting of Michigan, MAG, and PAG; and also for the individual regions. The model form is shown 
below. 
 
Log(Accident Frequency +1) = constant + b1*POP_PAC + b2 * POP16_64 + b3 * TOT_MILE  
 
Table 1 summarizes the variable statistics for a region that consists of a combination of Michigan State; Michigan 
State only; MAG only; PAG only; and a combination the MAG and PAG regions. Table 2 summarizes the 
coefficients and t values for the base accident frequency models by region.  
 
The base model for accident frequency performs relatively well for the combination of all the regions in the dataset. 
However, the model performance for the two regions in Arizona are poorer with a lower goodness of fit than that 
associated with the model for Michigan State and the combination of all the regions used for the evaluation. It is 
indicative of omitted variables and the necessity to introduce variables that vary sufficiently between the regions and 
that would improve overall model performance. 
 
Table 3 summarizes the characteristics of the rain related variables that were developed to evaluate the value of rain 
related variables in planning level accident frequency prediction models. Table 4 summarizes the t-values for the 
base accident frequency model for each region and then also the significance of the variables and overall goodness 
of fit of the models when adding rain-related variables.  
 
In all cases shown in Table 4 the rain-related variables were statistically significant and improved overall goodness 
of fit. The t values and coefficients associated with the weather variables, suggest that these variables provide better 
explanatory power than models without the weather variables.  
 
The largest improvements were found for two regions: the models developed for the combination of the three 
regions and also for Michigan State alone. It is hypothesized that these regions provide adequate levels of variation 
in the weather variables while regions such as PAG and MAG shows relatively low variation and thereby reducing 
the effect of the variables in the model. 
 
Interaction between the weather variables and the variables in the base model differed between models for different 
regions. This may indicate that the effect of the rain-related variables is not likely to be consistent between regions. 
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Another possible explanation may be that the combination of rain-related variables may be indicative as a group of 
regional differences.  
 
An interesting observation is the observed effect of average intensity (AVERINT). This variable generally 
performed well in the models and consistently acted as a variable that reduces the baseline accident frequency 
estimated. While this seem to be contradicting the general hypothesis that rain reduces safety, it can be argued that 
this variable in fact provides information beyond skid resistance reduction but provides information related to driver 
behavior and travel choices. For example, if driver A lives in Phoenix, Arizona, rainfall events are relatively scarce 
but the average intensity of these events are high. Driver A who lives in a wetter region in Michigan may experience 
more frequent but less intense rainfall events. It can be reasoned that driver A would be more likely to postpone the 
trip to a later time to avoid the wet pavement (reduced skid resistance) conditions and therefore reduce exposure 
rates and therefore reduce the expected accident frequency. In other words, interpretation of rain intensity may be 
indicative of risk compensation whereby a driver perceives light rain as slightly more risky compared to intense rain 
where significantly greater risk is perceived and where the driver then compensates accordingly. This risk 
compensation interpretation is a post-hoc observation that warrants further investigation. It may be indicative of 
more complex phenomenon not captured by the total precipitation variables that are most often used in studies that 
incorporates weather into the analysis.  
 
When comparing the modelling results for Michigan State, only with accident frequency models for the other 
regions and combinations of Michigan State with these regions, another interesting aspect is noted. Coefficients for 
the wet pavement hours (HRWETPAV) and wet pavement days (WETPVDAY) were consistently negative, in other 
words, these variables consistently reduced accident frequency in the Michigan state but increased accident 
frequency for models for the other regions and for combinations of regions that included Michigan State. It is 
hypothesized that these two variables are indicative of exposure to actual lower skid resistance conditions, i.e 
conditions where stopping distances are increased and where the driver is required to reduce travel speed to achieve 
the same level of risk. It is hypothesized that this may be indicative of differences in driver behavior between 
regions where rainfall is a common event, such as Michigan State, and those in which rainfall is a relatively rare 
event, such as in Pima or Maricopa county in Arizona. The expected reduction in accident frequency suggested by 
these variables for Michigan State may indicate that drivers that are more used to rainy conditions may be more 
likely to adjust travel speeds to allow for adequate stopping distances while drivers in areas where rainfall is 
relatively rare are less likely to reduce their travel speed and therefore increase crash risk.  
 
The total precipitation variable (TOTPREC) also behaved differently between models for Michigan State and those 
for PAG and MAG. In the case of Michigan it increased the baseline crash frequency while in PAG and MAG it was 
more likely to reduce the baseline frequency levels. This seems to support the theory that rain events would be more 
likely to affect travel behavior in areas where rainfall are less common events.  
 
Table 5 summarizes modelling efforts to evaluate the effect of using regional indicators rather than weather related 
variables, using regional indicator variables compared to selected rain-related variables, and models with rain-
related variables but without regional indicators. This analysis was completed as part of the study to allow the 
researchers to compare benefits achieved through the use of a regional indicator rather than using a combination of 
rain-related variables that would be more labor intensive and complex. The regional variable for the models using 
the combined dataset (Michigan State, MAG, and PAG) did improve the overall model fit and in some cases 
reduced the significance of rain-related variables that were quite significant in previous modelling efforts. This 
improvement may indicate that the rain related variables do not provide sufficient information to explain the 
regional differences. However, in the cases where models were developed for a particular region, i.e. only Michigan 
State, or MAG, or PAG, the use of a regional indicator is not available alternative modeling approach and in those 
cases the rain-related variables improved model fit (as shown in Table 4), thereby providing opportunity for the 
development of models that has improved explanatory power. However, the fact that the regional indicator do offer 
model improvement for models across regions suggests that further investigation of other weather variables and 
other variables for the PLANSAFE models are warranted.  
 

Predicting Frequency of Fatal and Injury Crashes 

Generally authorities are more concerned about crashes with injuries and/or fatalities. It is also generally accepted 
that property damage only crashes are more likely to be underreported than those with injuries and/or fatalities. 
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Researchers therefore decided to evaluate models for crashes that would be more stable, i.e. would be more suitable 
for safety prediction, and would meet a particular need of expected users of the models.  
 
The PLANSAFE models for the prediction of crashes with a fatal and/or injury severity is more complex because 
the base models varies substantially between regions, i.e. there wasn’t a common base model that performed 
adequately across regions and for each of the regions separately. Weather variables were found to be statistically 
significant in most cases, and the inclusion of one or more of these rain-related variables models improved overall 
goodness of fit. Table 6 provides a summary of one base model, with associated variables, for the combined dataset 
(combination of Michigan State, MAG, and PAG) and the subsequent improved model when incorporating one or 
more rain-related variables. The total precipitation (TOTPREC) and average intensity (AVERINT) variables 
behaved consistent with the behavior found for the accident frequency models, i.e. base line accident frequency were 
increased with an increase in total precipitation and reduced for an increase in average intensity.  
 
When evaluating the extent of improvement of goodness of fit between models across regions, researchers found 
that the extent of this improvement is the largest for regions that includes all the regions (combination of Michigan 
State, MAG, and PAG) and models for Michigan State only. This seem to indicate that regions with higher degrees 
of variation in weather would benefit more from the inclusion of weather related variables to account for the portion 
of unexplained phenomenon in the base model. 
 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the results of this study, the following conclusions are drawn: 
1. The inclusion of rain related variables in general improves the overall fit of planning level safety prediction 

models (PLANSAFE models) for both the models that predict total accident frequency and the frequency of 
crashes with a fatal and/or injury.  

2. Weather variables in PLANSAFE models are generally statistically significant. 
3. Combinations of rain-related variables in accident frequency and frequencies of accidents with injury + fatal 

injury models are generally more efficient than models that incorporates only one of the rain-related variables. 
This seem to suggest that the different rain-related variables that were evaluated in this study explains different 
aspects of factors accounting for differences between regions. 

4. The difference found in the behavior of the total precipitation, average rainfall intensity, and wet pavement 
related variables between models seem to be indicative of different driver behavior and warrants further 
investigation. 

5. The effect and behavior of the various rain-related variables evaluated in this study suggest that the variables 
explain different phenomenon related to weather and the safety in a region. For example, the number of rainy 
days may allow for an adjustment of the baseline accident frequency while rainfall intensity may be indicative 
of different driving behavior.  

6. The significance of the region level indicator variables suggest that regional differences are not completely 
explained by the included weather variables. It is possible that additional weather related variables are needed, 
or non weather variables are needed to explain the inter-regional differences as yet unexplained. However, in 
cases where the use of a regional indicator is not possible, i.e. there isn’t sufficient regional differences that can 
be captured by a regional indicator only, inclusion of rain-related variables is warranted. 

 
The following recommendations are made based on the results of the study: 
1. Weather, in particular rain, plays a significant role in driving risk. Rain-related variables are needed to help 

explain differences between crash experience across regions and the results seem to indicate sufficient 
improvement of the models to warrant the additional effort required to include these variables into datasets. 

2. Additional weather related variables, such as ice, snow, and fog, should be examined.  
3. Risk compensation needs to be examined. Because rain has a theoretically complex influence on roadway 

safety, the way in which different drivers respond to rain is of extreme interest. Risk compensation—a driver’s 
response to perceived risk—is likely to play a critical role in sorting out the exact impacts of rain on roadway 
safety.   
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Table  1: Variable Statistics for Planning Level Accident Frequency Model 
VARIABLE Statistic MICHIGAN 

STATE, 
MAG, PAG 

MICHIGAN 
STATE 

MAG PAG MAG, PAG 

POP_PAC 
(population 
per acre) 

Mean 1.87387 2.21634 0.386094 3.90137 1.55454 
Std.Dev. 3.22845 3.51992 0.438722 4.0731 2.89511 
Skewness 2.621 2.34367 1.63245 1.32129 2.93912 
Kurtosis 11.6255 10.0868 7.64235 5.16343 13.4456 
Minimum 2.51E-06 0.001083 4.12E-06 2.51E-06 2.51E-06 
Maximum 30.8821 30.8821 3.75561 24.4839 24.4839 
NumCases 4779 2306 1651 822 2473 

POP16_64 
(population 
age 16 to 64) 

Mean 0.641392 0.637632 0.647475 0.639722 0.644898 
Std.Dev. 0.078925 0.047601 0.100471 0.0974 0.099508 
Skewness -1.11009 2.49446 -1.5285 -1.15505 -1.40671 
Kurtosis 13.8933 17.0196 10.4846 9.10921 10.024 
Minimum 0.117531 0.510894 0.117531 0.178771 0.117531 
Maximum 0.999809 0.999809 0.99673 0.998213 0.998213 
NumCases 4779 2306 1651 822 2473 

TOT_MILE 
(total 
mileage – 
includes all 
functional 
classes) 

Mean 33.0001 58.9728 12.2203 1.87406 8.78135 
Std.Dev. 38.1929 37.5681 19.787 2.60765 16.9516 
Skewness 2.11378 1.16997 16.1242 5.52901 17.6505 
Kurtosis 13.9249 6.39375 385.459 47.376 491.763 
Minimum 0 2.167 0 0.003176 0 
Maximum 556.749 323.448 556.749 32.036 556.749 
NumCases 4779 2306 1651 822 2473 
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Table 2: PLANSAFE Accident Frequency Base Model  
VAR MAG, PAG, MI MICHIGAN 

ONLY 
MAG and PAG MAG ONLY PAG ONLY 

Coefficient 
(t-value) 

Coefficient 
(t-value) 

Coefficient 
(t-value) 

Coefficient 
(t-value) 

Coefficient 
(t-value) 

Constant 3.5 
(139.758) 

4.59 
(143.907) 

2.98 
(81.765) 

2.96 
(67.113) 

2.51 
(34.166) 

POP_PAC 7.34 x 10-2 
(12.533) 

4.53 x 10-2 
(8.537) 

5.56 x 10-2 
(6.197) 

1.39 
(13.806) 

0.118 
(8.795) 

POP16_64 2.72 x 10-4 
(34.342) 

1.98 x 10-4 
(36.217) 

6.15 x 10-4 
(28.952) 

2.79 x 10-4 
(8.883) 

4.37 x 10-4 
(4.528) 

TOT_MILE 1.14 x 10-2 
(23.390) 

1.51 x 10-3 
(3.45) 

8.4 x 10-3 
(5.312) 

9.85 x 10-3 
(6.220) 

6.84 x 10-2 
(3.998) 

Adjusted R-
squared 

0.43394 0.54526 0.30335 0.39197 0.22752 
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Table 3: Variable Statistics for PLANSAFE Accident Frequency Model 

VARIABLE Statistic 
MICHIGAN 

STATE, 
MAG, PAG 

MICHIGAN 
STATE MAG PAG MAG, PAG 

TOTPREC 
(total 
precipitation 
for 2001 to 
2002) 

Mean 36.172 59.6457 11.5225 19.8289 14.2834 
Std.Dev. 24.761 13.2787 1.96443 5.32739 5.22673 
Skewness 0.3061 -1.23279 0.579336 2.65735 2.20257 
Kurtosis 1.4145 5.67529 3.22417 12.3601 11.3578 

Minimum 1.39E+00 7.69 1.39E+00 15.62 1.39 
Maximum 91.14 91.14 16.88 49.3 49.3 
NumCases 4779 2306 1651 822 2473 

RAINDAYS 
(total days 
with any rain 
for 2001 and 
2002) 
 

Mean 148.377 233.585 50.1981 106.53 68.9224 
Std.Dev. 94.3777 59.2249 12.3697 12.3225 29.2751 
Skewness 0.378295 -0.54534 0.04639 -0.16326 0.526633 
Kurtosis 1.74476 3.68843 3.40444 4.42671 1.9844 

Minimum 2 36 2 64 2 
Maximum 380 380 84 152 152 
NumCases 4779 2306 1651 822 2473 

HRWET 
PAV (total 
hours that 
average 
rainfall 
exceeded 
0.1mm per 
hour) 

Mean 1298.24 2010.83 519.081 864.101 633.762 
Std.Dev. 947.77 908.121 120.075 218.093 227.699 
Skewness 1.1827 0.501749 -0.57796 0.349052 0.948391 
Kurtosis 3.36143 2.12321 3.15216 3.41521 4.18794 

Minimum 14 256 14 528 14 
Maximum 4369 4369 752 1717 1717 
NumCases 4779 2306 1651 822 2473 

WETPV 
DAY 
(number of 
days in 
which one or 
more wet 
pavement 
hours 
occurred) 

Mean 99.9789 163.961 33.6045 53.8017 40.3178 
Std.Dev. 69.0768 42.2482 6.8394 13.1066 13.3729 
Skewness 0.47897 -0.24983 0.856175 1.20195 1.41073 
Kurtosis 1.82937 4.25273 3.19278 3.73959 5.25022 

Minimum 2 15 2 42 2 
Maximum 327 327 55 101 101 

NumCases 4779 2306 1651 822 2473 

AVERINT 
(average 
intensity as 
calculated: 
TOTPREC/ 
RAINDAYS 

Mean 0.224888 0.224888 0.242865 0.188781 0.224888 
Std.Dev. 0.071088 0.071088 0.071698 0.054122 0.071088 
Skewness 1.39912 1.39912 1.43988 1.52876 1.39912 
Kurtosis 5.24108 5.24108 5.14685 5.02344 5.24108 

Minimum 0.142 0.142 0.16375 0.142 0.142 
Maximum 0.695 0.695 0.695 0.410833 0.695 
NumCases 2473 2473 1651 822 2473 

 
 
 
 



Table 4: Estimated t-values for planning level models developed with rain-related variables: accident frequency models  
REGION/ 
MODEL 

VARIABLE t VALUES 

MI, 
PAG, 
MAG 

Constant POP_PAC POP16_64 TOT_ 
MILE 

TOTPREC RAINDAYS HRWETPAV WETPVDAY AVERINT Adjusted R 
squared 

BASE 
MODEL 

3.5 -139.758 7.34 x 10-2 -12.533      0.43394 

BASE 
MODEL 
WITH 

WEATHER 

59.183 6.262 36.959 10.433 17.43    -9.720 0.47115 

110.423 8.391 36.212 10.090 15.453     0.43394 

50.690 6.552 36.688 11.466  14.902   -4.443 0.46249 

53.746 7.393 35.361 16.111   13.938  -5.189 0.45949 

54.361 6.364 36.709 9.964   5.986 9.929 -6.911 0.47032 

56.755 7.47 37.076 10.309    16.097 -7.755 0.46645 

106.399 7.437 36.240 9.324   6.941 8.806  0.46513 

MI 
STATE 

Constant POP_PAC POP16_64 TOT_ 
MILE 

TOTPREC RAINDAYS HRWETPAV WETPVDAY AVERINT Adjusted R 
squared 

BASE 
MODEL 

143.907 8.537 36.217 3.45      0.54526 

BASE 
MODEL 
WITH 

WEATHER 

42.126 8.479 34.08 4.575 3.757  -2.797 -4.973 -4.493 0.55135 

63.998 8.408 36.113 3.549     -2.531 0.54636 
74.505 8.49 34.423 3.81    -3.494  0.54746 
40.677 8.493 34.809 3.65  -2.294   -3.337 0.54719 
51.857 8.343 34.234 3.944    -3.717 -2.857 0.54887 
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MAG Constant POP_PAC POP16_64 TOT_ 

MILE 
TOTPREC RAINDAYS HRWETPAV WETPVDAY AVERINT Adjusted R 

squared 
BASE 

MODEL 
67.113 13.806 8.883 6.22      0.39197 

BASE 
MODEL 
WITH 

WEATHER 

3.937 10.869 8.543 8.554 -7.995 -4.441 11.889 9.749  0.45101 
2.249 10.736 8.876 8.053 -6.81  10.222 7.737 2.077 0.44588 
31.918 12.15 9.24 7.157     -7.389 0.41113 
13.213 11.347 9.645 8.13   6.677  -5.397 0.42632 

PAG Constant POP_PAC POP16_64 TOT_ 
MILE 

TOTPREC RAINDAYS HRWETPAV WETPVDAY AVERINT Adjusted R 
squared 

BASE 
MODEL 

34.166 8.795 4.528 3.998      0.22752 

BASE 
MODEL 
WITH 

WEATHER 

59.183 6.262 36.959 10.433 17.43    -9.72 0.43394 
50.69 6.552 36.688 11.466  14.902   -4.443 0.46249 

53.746 7.393 35.361 16.111   13.938  -5.189 0.45949 
54.31 6.364 36.709 9.964   5.986 9.929 -6.911 0.47032 
56.755 7.47 37.076 10.309    16.097 -7.755 0.46645 
58.089 11.577 34.591 24.123     -5.667 0.4376 

MAG & 
PAG 

Constant POP_PAC POP16_64 TOT_ 
MILE 

TOTPREC RAINDAYS HRWETPAV WETPVDAY AVERINT Adjusted R 
squared 

BASE 
MODEL 

81.765 6.197 28.952 5.312      0.30335 

BASE 
MODEL 
WITH 

WEATHER 

32.139 2.776 28.496 5.3 -14.089  9.698   0.36078 

33.08 7.68 25.466 6.079  -11.123   -14.54 0.36239 

28.965 3.198 29.278 5.156    -10.093 6.771 0.33674 

39.864 5.606 27.207 5.581 -10.093    -8.882 0.35697 
 
 



Van Schalkwyk, Washington, and Mitra. 16 

Table 5: Accident Frequency Models with Regional Indicators and Combinations of Rain-Related and Regional Indicators 
M

O
D

EL
S VARIABLES WITH ASSOCIATED COEFFICIENT (t-values) 

Constant POP_PAC POP16_64 TOT_ 
MILE 

TOTPREC RAINDAYS HRWET 
PAV 

WETPV 
DAY 

AVER 
INT 

AZ_IND Adjus-
ted R 

Square 
Value 

BASE 
1 

3.500 
(139.758) 

7.339 
(12.533 

2.720 x 10-4 
(34.342) 

1.141 x10-2 
(23.390 

      0.43394 

MOD 
1 

4.328 
(94.321) 

4.149x10-2 

(7.155) 
2.634 x 10-4 

(34.722) 
3.115 x10-3 

(5.110) 
     -0.925 

(-21.154) 
0.48234 

BASE 
2 

3.804 
(59.183) 

3.752x 10-2 

(6.262) 
2.840 x 10-4 

(36.959) 
6.120 x10-3 

(10.433) 
1.462 x10-2 

(17.430) 
   -2.531 

(-9.720) 
 0.47115 

MOD 
2 

5.413 
(44.198) 

3.111x 10-2 
(5.305) 

2.573 x 10-4 
(33.420) 

3.300 x10-3 
(5.474) 

-6.426 x10-3 
(-4.013) 

   -2.575 
(-10.128) 

-1.318 
(-15.296) 

0.49576 

BASE 
2 

3.247 
(110.423) 

4.965x10-2 
(8.391) 

2.807 x10-4 
(36.212) 

5.975 x10-3 
(10.090) 

1.273 x10-2 
(15.453) 

     0.46079 

MOD 
2 

4.834 
(44.161) 

4.351x10-2 
(7.505) 

2.542 x10-4 
(32.691) 

3.168 x10-3 
(5.210) 

-8.189 x10-3 
(-5.090) 

    -1.308 
(-15.023) 

0.48503 

BASE 
4 

3.495 
(50.690) 

3.984x10-2 
(6.552) 

2.845 x10-4 
(36.688) 

6.826 x10-3 
(11.466) 

 3.181 x10-3 
(14.902) 

  -1.139 
(-4.443) 

 0.46249 

MOD 
4 

6.008 
(40.693) 

3.508 x10-2 
(40.693 

2.493 x10-4 
(32.348) 

3.504x10-3 
(5.842) 

 -2.987 x10-3 
(-7.791) 

  -3.641 
(-13.010) 

-1.559 
(-19.059) 

0.50041 

BASE 
5 

3.610 
(53.746) 

4.460x10-2 
(7.393) 

2.738 x10-4 
(35.361) 

8.700 x10-3 
(16.111) 

  2.722 x10-4 
(13.938) 

 -1.330 
(-5.189) 

 0.45949 

MOD 
5 

5.097 
(48.664) 

2.957x10-2 
(5.016) 

2.643 x10-4 
(35.203) 

3.241x10-3 
(5.373) 

  -1.925 x10-5 
(-0.776) 

 -2.731 
(-10.514) 

-1.050 
(-18.105) 

0.49412 

BASE 
6 

3.614 
(54.361) 

3.822x10-2 
(6.364) 

2.838 x10-4 
(36.709) 

5.984x10-3 
(9.964) 

  1.404 x10-4 
(5.986) 

3.590 x10-3 
(9.929) 

-1.781 
(-6.911) 

 0.47032 

MOD 
6 

5.523 
(40.272) 

2.967 x10-2 
(5.044) 

2.547 x10-4 
(32.812) 

3.557x10-3 
(5.875) 

  -1.116 x10-5 
(-0.467) 

-2.501 x10-3 
(-4.780) 

-2.821 
(-10.858) 

-1.353 
(-15.762) 

0.49643 

BASE 
7 

3.699 
(56.755) 

4.437 x10-2 
(7.470) 

2.870 x10-4 
(37.076) 

6.202x10-3 
(10.309) 

   4.816 x10-3 
(16.097) 

-1.988 
(-7.755) 

 0.46645 

MOD 
7 

5.495 
(44.446) 

2.933 x10-2 
(5.025) 

2.548 x10-4 
(32.844) 

3.570x10-3 
(5.902) 

   -0.252 x10-3 
(-4.821) 

-2.795 
(-11.022) 

-1.338 
(-16.910) 

0.49651 

BASE 
8 

3.204 
(106.399) 

4.439 x10-2 
(7.437) 

2.812 x10-4 
(36.240) 

5.603 x10-3 
(9.324) 

  1.620 x10-3 
(6.941) 

3.150 x10-3 
(8.806) 

  0.46513 

MOD 
8 

4.581 
(42.490) 

4.030 x10-2 
(6.865) 

2.560 x10-4 
(32.582) 

3.418 x10-3 
(5.578) 

  4.715 x10-5 
(1.924) 

-2.088 x10-3 
(-3.954) 

 -1.117 
(-13.284) 

0.48409 



Table 6: Example of Planning Level Safety Prediction Models for the Prediction of Frequency of Crashes with a 
Fatal and/or Injury Level of Severity for the region that includes the entire Michigan State, Pima County (AZ), and 
Maricopa County (AZ) 
VARIABLE NAME VARIABLE 

DESCRIPTION 
BASE MODEL 

WITHOUT RAIN-
RELATED 

VARIABLES: 
Coefficients (t-value) 

BASE MODEL WITH 
SELECTED RAIN-

RELATED 
VARIABLES 

Coefficients (t-value) 
Constant  1.363 

(62.117) 
1.374 

(26.916) 
TOT_MILE Total number of miles in 

the TAZ (includes all 
different functional 
classes) (US Census 2000) 

 
1.580 x 10-2 

(38.512) 
 

6.344 x 10-3 
(14.139) 

POP00_15 Number of individuals age 
0 to 15 in the TAZ (US 
Census 2000) 

 
6.590 x 10-4 

(40.102) 
 

6.663 x 10-4 
(46.239) 

NF0214PA Total miles of Other 
Principal Arterial 
(excludes principal 
arterials that are interstate) 
as a portion of the total 
size of the TAZ in acres 

 
170.69 

(18.376) 

 
135.358 
(16.465) 

NF0616PA Total miles of Minor 
Arterial roads (excludes 
principal arterials that are 
interstate) as a portion of 
the total size of the TAZ in 
acres 

 
193.933 
(20.373) 

 

 
114.260 
(13.251) 

TOTPREC Total precipitation in the 
area measured over two 
years (2001 and 2002) 

 
 

 
2.547 x 10-2 

(37.850) 
 

AVERINT Average Intensity of 
Rainfall (calculated by 
dividing TOTPREC and 
number of days with any 
rainfall) 

 
-2.225 

(-10.710) 

Adjusted R-squared value 0.55536 0.65819 
 


