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1. ABSTRACT
BACKGROUND: The presence of insects in stored grains is a significant problem for grain
farmers, bulk grain handlers and distributors worldwide. Inspections of bulk grain
commodities is essential to detect pests and therefore to reduce the risk of their presence in
exported goods. It has been well documented that insect pests cluster in response to factors
such as microclimatic conditions within bulk grain. Statistical sampling methodologies for
grains, however, have typically considered pests and pathogens to be homogeneously
distributed throughout grain commodities. In this paper we demonstrate a sampling

methodology that accounts for the heterogeneous distribution of insects in bulk grains.

RESULTS: We show that failure to account for the heterogeneous distribution of pests may
lead to overestimates of the capacity for a sampling program to detect insects in bulk grains.
Our results indicate the importance of the proportion of grain that is infested in addition to
the density of pests within the infested grain. We also demonstrate that the probability of
detecting pests in bulk grains increases as the number of sub-samples increases, even when

the total volume or mass of grain sampled remains constant.

CONCLUSION: This study demonstrates the importance of considering an appropriate
biological model when developing sampling methodologies for insect pests. Accounting for
a heterogeneous distribution of pests leads to a considerable improvement in the detection

of pests over traditional sampling models.

Keywords

Grains; Stored product pests; Heterogeneity; Sampling; Probability of detection
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1. INTRODUCTION

Stored product pests are a major problem in grain supplies globally. Insects in stored grain
products affect grain quality, their presence is often unacceptable in domestic grain
supplies, and thus are considered major pests worldwide.! They have the potential to cause
significant economic loss through direct consumption and commodity spoilage and also
endanger public health through contamination.' Secondary losses associated with fungal
growth and trade restrictions also lead to significant economic costs for growers and bulk

handlers.

To minimise commodity loss, a significant emphasis has been placed on developing effective
integrated pest management (IPM) strategies for stored products. An essential component
of IPM is early detection of pest populations, and so extensive insect monitoring and
sampling programmes form an integral component of management programmes in stored
grains.2 Sampling and monitoring techniques often form the basis for treatment and control

decisions and insect sampling programmes are well established in the grains industry.?

Sampling programmes have been established and are often regulated by major grain
producing countries as they have recognised the importance of sampling to minimise the
risk of insects establishing in bulk grain.2 Typically, they are designed such that a
representative portion of a larger lot is sampled for analysis or inspection to determine if a
commodity is free from infestation.* While their importance is well established, nonetheless
considerable variation in the methodology of sampling programmes exists between
countries, and among different grain producers, grain handlers and regulatory bodies within
countries.® For example, the quantity (generally, measured as the weight) of grain sampled

from grain bulk varies considerably between sampling programmes.? The foundation of
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numerous international and domestic grain sampling programmes relates to historical and
pragmatic constraints in the supply and distribution network, rather than being designed
within a robust statistical framework.> For example, sampling programmes have been
developed in relation to grain belt loading speeds at storage and shipping terminals, the size
of grain trucks or rail cars and the size of storage silos and bunkers.? Additionally,
differences in units in which grains are stored and measured (metric and imperial
measures), the position within the supply chain at which sampling occurs (e.g. farm silos,
central storage) and the perception of risk from insect infestation in different geographic
regions have all contributed to variations to the rate and quantity of commodity sampled in
sampling programmes.? Variation in grain sampling programmes is not only related to the
guantity of grain sampled, but also to the number of sub-samples taken from the grain bulk
that contribute to this total. For instance, Grain Trade Australia ° specifies three 1 litre
samples to be drawn from lots greater than 10 tonnes in size and an additional 1 litre
sample to be drawn for every 10 tonne increase in lot size. United Kingdom regulations
however, prescribe 2 kilogram samples for every 20 tonnes for lots less than 100 t and 1
kilogram per 20 tonnes for lots greater than 100 tonnes.? The intensity of sub-sampling has
also typically been established on the basis of practical constraints in the supply and
distribution chain, being influenced by similar factors such as the size of grain rail cars, the

units in which grains are measured (e.g. bushels) and size of storage facilities.?

As sampling programmes have been established based on practical constraints, the ecology
of pest species and the influence this has on sampling efficiency has rarely been considered.
Notably, sampling programmes for grain commodities have been developed assuming that

insects are distributed homogeneously or randomly throughout the grain bulk.>%"8
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Statistical models created under this assumption are largely dependent on the proportion of
grain sampled (the sample fraction) rather than any sub-sampling regime.®® The number of
sub-samples is not included in these models as the probability of detecting insects is

assumed to be equal over the entire grain lot.

Evaluation of sampling programmes has been conducted by numerous grain producing
countries to ensure grain commodities meet specified standards and thresholds® and to
develop effective IPM strategies.” Even though sampling programmes were often found to

k, 2368 the statistical models used were

be adequate to detect small infestations in grain bul
based on the binomial distribution with the implicit assumption that pests were
homogeneously distributed. Although the validity of assuming a homogenous distribution of
insects is questionable the performance of models which assume homogeneity under
heterogeneous conditions has yet to be determined.

The assumption of homogeneity in stored grains, although widespread, is largely for the
sake of convenience and is unlikely to be true in bulk grains storage. Ecological and
behavioural studies on stored product insects suggest that it is more probable that stored

1,9,10

product insects display a heterogeneous distribution in grain stores. Conditions within

grain storage facilities can differ significantly due to the design, size, seasonal temperature

variation and aspect of storage facility that in turn influences the distribution of pest species

9,10,11

throughout a grain consignment. As a consequence, micro-climatic conditions such as

temperature and relative humidity in relatively small pockets of grain can vary substantially
and have significant impacts on population growth and structure of stored product pests.*

1,10,11

The age and the quality of grain within a particular storage facility may also vary. Grains

can be stored for prolonged periods of time, at either bulk handling facilities or on farm
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grain storage silos leading to different aged grains of potentially differing quality being
mixed. This may have implications for the distribution of infestations within a consignment
as stored product pests are known to select for grains with higher moisture contents (which
is often a function of grain age), with the result that the spatial distribution of insects within
the grain will tend to be heterogeneous.l’m'11

Insects are unlikely to conform to a homogenous distribution within grain bulks, and thus
violate a basic assumption of sampling programmes conducted by major grain producers.
Although insect densities have been statistically fitted to continuous distributions in an

effort to estimate abundance previously,>***

a generic sampling model that accounts for
the insect clustering behaviour and abundance has not yet been developed. In this paper we
investigate the influence of a heterogeneous distribution of insects on the probability of
detecting insect pests, and consider strategies to improve insect detection. Following
development of a robust sampling model, validation was conducted via estimation of model
parameters and by sampling. We demonstrate the efficacy of this model via sampling of

grains silos, using the model to predict effective sample size for detection. We also compare

our model with a sampling model that does not account for heterogeneity.
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2. MATERIALS AND METHODS
2.1 The Model

We consider a large grain lot throughout which a target insect may be heterogeneously
distributed. Our ultimate objective is to determine the probability of detecting insects in
grain bulk under a given sampling programme using an adaptation of an approach initially
proposed by Habraken et al.*® We define the number of sub-samples drawn from a grain lot
as n and the weight of each of the sub-samples as w; nw represents the total weight of the
sample drawn from a grain lot. We assume that any grain lot can be separated into two
distinct components, which may or may not be contiguous, a proportion p that is infested
and a proportion (1-p) that is free of infestation. Further, we assume that within the
infested proportion of the lot, insects are homogeneously distributed according to a Poisson

distribution®®.

Initially, we focus on drawing samples from the infested portion of the grain lot. The
probability of drawing X contaminated samples from n total samples is binomially

distributed:
n
P(X =x) =[ijx(l— p)"™* (1)

Grain samples are typically measured by mass rather than by volume. For each sub-sample
that comes from the infested part of the lot, the probability of detecting an insect is
influenced by the rate of infestation A (where A represents the number of insects present

per kilogram within the infested portion of the grain lot). Let A be the number of insects in
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the lot:

e—xwl (le)a

P(A=a|X =x)=
al

(2)

However, in the acceptance of a grain lot the situation of key interest is that in which no

insects are detected and so a = 0. In this situation, equation 2 reduces to:
P(A=0| X =x)=e"" (3)

Consequently, summing over all possible values for X results in the unconditional

probability:

P(A=0)=Y P(X =i)P(A=0|X =i)

i=0

= Z(TJ pi (1_ p) n—i e—iwﬂ

n
i=0

-3 [?](pe-““)‘(l— "

i=0
=(@1-p+pe™)

The final step in the equation is derived from the Binomial theorem
n . .
(a+b)"=>a'b"™
i=0

Therefore the probability of detection is then given by:

P(A>0)=1-P(A=0)=1-(1-p+ pe™)" (4)
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2.2 Parameter Estimates and Model Validation

2.2.1 Study Sites

In order to use equation 4 to determine an appropriate number of samples to take for a
given probability of detection, the proportion of the lot contaminated p, and the density of
insects in the contaminated portion A need to be estimated. Parameter estimation and
model validation was conducted on a grain farm near Warwick in South East Queensland,
Australia. Three grain silos of similar design were selected for the study. Each silo held
approximately 70 tonnes of wheat that had been harvested and placed in storage for four
months. No insecticide treatments had been conducted in any of the three silos during the

storage period. All grain sampling from the silos was conducted on a single day.

2.2.2 Parameter Estimates

One silo was randomly selected, and sampling was conducted in one of the three silos to
make parameter estimates of A and p. Twenty five 800 gram samples were taken from
random locations within the silo using a Graintec® Stainless steel grain spear. Note that the
number of samples taken was consistent both with obtaining good parameter estimates and
pragmatic considerations of access to the silos. Each sample was individually bagged and
sieved using a Graintec® 2mm stainless steel grain insect sieve for a standard 10 seconds.
For each sample the number of Sitophilus oryzae (Rice Weevils), Rhyzopertha dominica
(Lesser Grain borer) and Cryptolestes spp. (Flat Grain Beetle) were recorded. For each
species p was estimated by dividing the number of samples containing that species by the
total number of samples taken, and A was estimated as the mean number of insects per

sample (i.e. the total number of that species sampled divided by the number of samples
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calculated for use in the validation procedure.

2.2.3 Model Validation

The model was validated by populating equation 4 with the mean parameter estimates for p
and A for each species, and solving to determine the number of samples n that need to be
taken for each of three detection probabilities (0.75, 0.85, 0.95). This was considered a
prediction for the maximum sampling intensity that needed to be taken to detect that
species of insect. Sampling was then undertaken at this intensity at random points within
the remaining two silos. For each sample taken, the success in detecting the insect species
within the maximum number of samples was recorded (Table 1). To ensure consistency the

sample weight (w) for each remained a constant 800 grams of wheat.

This procedure was repeated three times in each of the two silos on which model validation
was performed. For comparison with existing sampling methods, sample intensity was also
calculated for each of the probability of detection levels tested above (0.75, 0.85, 0.95)
under a Binomial sampling model ° that assumes an homogeneous distribution of insects.
Note that for the Binomial sampling model the amount of grain sampled (the sample
fraction) needs to be calculated, and this was done based on the total volume of grain held

in each silo. Insect density was calculated from initial parameter estimates.

10
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3. APPLICATION

In bulk grain lots, both the rate of infestation A, and the proportion of the lot infested p, will
vary based on a variety of factors including temperature, humidity, and storage period. We
consider the effects of these variables on the probability of detection, using a range of
values for n, the number of sub-samples drawn from the lot and w, the weight of each sub-

sample.

The probability of detecting insects within a grain lot increases as both the proportion of
commodity infested p and the rate of infestation A increases (Figure 1). This can be further
explored by investigating the probability of detection of insects as both p and A reach their
respective limits of 1 and infinity. As p approaches one (i.e. a greater proportion of the lot is
infested), n and w do not effectively act independently. The probability of detection thus

can be represented as:

P(A>0)=1-(1— p+ pe )"

=1-(e™) (5)

In equation 5 the probability of detection is simply related to the Poisson distribution and
detection is influenced by the rate of infestation A, and the total weight of grain sampled,

nw (Figure 2).

Alternatively, consider the probability of detecting insects as the rate of contamination

approaches infinity. From equation 4:

P(A>0)=1-(1-p)’ (6)

11
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This is the probability of observing a least 1 positive sample for a binomial variable. Under

this scenario, the probability of detecting an insect will vary with p (Figure 3).

Although A and p affect the probability of detection of insects within a lot as shown, when a
grain lot is sampled these will be unknown quantities. The number of sub-samples n can be
varied, however, and so variations in this parameter may form the basis for sampling
strategies. We consider here the influence of sub-sampling on the probability of detection

of insects under various combinations of A and p.

We initially consider two scenarios to illustrate the effects of changes in sub-sampling on
the probability of detecting insects for infestation rates of (A = 5) and (A = 0.5). These rates
are based on estimates for common grain beetle densities in storage >’ and provide
examples of high and low insect densities for simulation. Note that these rates encompass
the range of parameter values determined in section 2, however we considered that a wider
range of parameter values was necessary in order to encompass a broader range of
conditions. In the first scenario a fixed sample weight (nw = 10kg) was used, representing
the most intensive sampling rate recommended by Grain Trade Australia.” Here, the
probability of detecting an insect increases as the number of sub-samples increases. The
level of increase will vary according to the underlying infestation rate (Figures 4a and 4b).
Similarly, we consider the influence of sub-sampling on probability of detection when w is

held constant under at three levels of heterogeneity in lot infestation (Figures 5a and 5b).

As shown in Figures 5a and 5b, the probability of detecting an insect increases as the total
sample weight increases (shown here by increasing the number of sub-samples with a fixed
sub-sample weight). The rate of increase in the probability of detection is also significantly

higher when the total sample weight increases in comparison to when nw remains constant

12
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(Figures 4a & 5a; 4b & 5b). In all examples the detection curve asymptote is reached
significantly quicker as p increases, leading to fewer sub-samples being required for

increased detectability.

3.1 Comparison of sampling models

Hunter and Griffiths ° proposed an approach based on the Binomial distribution to estimate
insect population densities in bulk grain lots. Unlike the model presented above, an implicit
assumption of this approach is that insects are distributed homogenously throughout grain
lots. Furthermore, the approach does not consider the number and weight of samples

taken, rather the total sample fraction and follows,

P(y)=1-(1-0) (7)

Where ) represents the number of insects in a sample, P(Y) is the probability of drawing an
infested sample, § is the total fraction of the bulk grain that is sampled and v represents the
total number of insects in a lot. For example, if the sample fraction represents 0.0001% of
the total grain in a lot and the number of insects in the lot v = 513, solving for equation (7)
will give a 5% probability of detection. A further example is presented in Love et al.? where
average insect densities are calculated for given grain bin rejections. Statistical models
based on the Binomial that assume homogenous distribution of insects such as Hunter and
Griffiths ® form the basis for a number of grain sampling programmes. We therefore
compare the performance of the Hunter and Griffiths ® approach with the model proposed
in this paper (Table 1). To do this, we compare sampling results for three insect species

Sitophilus oryzae, Rhyzopertha dominica and Cryptolestes spp collected from farm storage.

13
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As demonstrated in Table 1, the model presented in this paper, P(A>0), outperforms a
model which does not consider insect distribution. This is particularly evident when the

proportion of the lot infested is less than 50%, for example, the very poor detection of S.

Oryzae by the Hunter and Griffiths ® model compared with the successful detections with a

sampling intensity generated by equation 4 (Table 1).

14
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4. DISCUSSION & CONCLUSIONS

Given the possible costs of failure to detect pests such as live insects or fungi in grain
commodities, it is important to maximise the probability for their detection. Since it is
generally impossible or impractical to inspect an entire bulk grain consignment for
impurities, sampling programmes that are effective and statistically rigorous are required.
When considering biological pests as contaminants an understanding of the ecology of the
species and how this may influence the distribution of pests through space is required to

develop effective sampling s,trategies.16’17'18'19

Previous sampling programmes to detect
insects in stored grains have been based on the binomial sampling model with the implicit
assumption that pests are homogenously distributed throughout the grain bulk.>?° In this
paper, the heterogeneous distribution of insects or other impurities is explicitly considered
via the use of an appropriate statistical model. This model better accords with the known
biology of grains pests in considering heterogeneity within a grain lot by modelling the lot as
having contaminated and un-contaminated portions. As demonstrated via field sampling
and simulation, our method considerably outperforms traditional sampling methods when

the appropriate biological assumption that insects distribute heterogeneously through grain

bulk is accounted for.

Field sampling and simulation experiments demonstrated that the probability of detecting
insect pests was influenced by both the distribution of pests within consignments and the
rate of contamination (Table 1, Figure 1). In field validation studies the number of samples
required to detect each insect species was not significantly influenced by the rate of
infestations as estimates for this parameter were similar for all species (Table 1). The

proportion of the silo infested however, did have a significant influence on sampling

15
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intensity for each species (Table 1). This was in accordance with simulation results
presented in figures 4a & 5a. Both simulation and field validation studies demonstrated that
accounting for clustering behaviour is particularly important when only a relative small

proportion <20% of a lot is infested, irrespective of total insect density.

The comparison of our model to the Hunter and Griffiths® model that does not account for
the spatial distribution of insects illustrates that current detection probabilities may be
overestimated when the spatial distribution of insects is not considered (Table 1). If the
probability of detection of pests is overestimated through the use of an inappropriate
biological model, management decisions that are based on these estimates may be more
risky than anticipated, with the potential for unanticipated commodity and economic losses.
Although the rate of infestation and the proportion of grain bulk infested are biological
parameters that cannot typically be manipulated directly, it is important to recognise that
environmental conditions that are known to influence these biological aspects of pest

infestation will affect pest detection under any given sampling regime.

Sub-sampling intensity n, and sub-sample weight w, also strongly influence detection
probabilities of pests. While the rate of infestation and the proportion of grain bulk infested
may have substantial influence on the probability of detection, these cannot be directly
changed in a real setting. In contrast, the sampling parameters n and w are critical since
they can be manipulated in order to achieve the goals of a sampling programme. A key
observation from this study is that the probability of detection increases when the number
of sub-samples n increases irrespective of the rate of infestation and proportion of the lot

infested (Figures 4a & 4b). This will occur despite the total sample weight nw, remaining

16
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constant. This can be understood as an interaction between sampling and the underlying

distribution of insects.

For an insect to be detected in the total sample, a sub-sample must first be drawn from the
infested portion of grain bulk. Clearly, the probability that at least one sub-sample
intercepts the infested portion of the lot increases as more sub-samples are drawn. For high
rates of infestation A, the probability of detecting an insect once the infested portion has
been intercepted will be high. When the rate of infestation is low, however, the volume
(weight) of sub-samples will have a greater impact on the probability of detection than the
number of sub-samples drawn (Figure 4b & 5b). In this scenario, even if the infested portion
of the grain bulk is intercepted, the probability of actually detecting an insect in that sample

will be related to the volume of the infested portion that has been sampled.

As shown here, the intensity of sub-sampling and the weight of sub-samples taken will
strongly influence the capacity of a sampling regime to detect insects. These variables are
not considered in traditional grains sampling models, however. The Hunter and Griffiths 6
model used as a comparison here considers a single measure, the sample fraction ¢ which is
equivalent to nw. Models which do not consider sub-sampling intensity n overestimate the
probability of detecting insects when tested against a heterogeneous insect distribution.
This occurs because the probability of insects being in any one sample is assumed to be

equal.

Sampling strategies for stored grains have typically been based on lot size. Grain Trade
Australia® standards for example recommend a greater sampling rate as the size of the lot
increases. This primarily relates to the statistical sampling frameworks failing to consider

insect distribution. The current study illustrates the importance of developing sampling

17
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programmes with due consideration of pest ecology, density and distribution rather than lot
size. Sampling intensity and sample size should be optimised in relation to the rate of
infestation (density of insects) and the proportion of commodity infested (insect
distribution) Table 1. Sampling based purely on lot size may not provide valid estimates of
insect density as small lots may not be sampled adequately if clustering is occurring.
Conversely, extensive sampling of large lots may be inefficient and leading to added

monitoring costs.

The approach taken in this paper was to consider the scenario where no live insects are
acceptable in a bulk grain lot (i.e. A = 0), a standard that increasingly is being adopted by
grain handlers for transfers of grain. However, in some scenarios it may be useful to
consider a sampling regime under an alternative value of A. A primary concern of grain
handlers and distributors worldwide is the emerging issue of phosphine resistance and the
reduction of potential alternative insecticide treatments due to regulatory controls.'*?*?*%3
Here, sampling programmes for grains throughout the production and supply chain might
take into consideration critical treatment thresholds for insects throughout all stages of
storage and distribution. That is, with an effective sampling methodology as demonstrated
here, grain handlers and distributors could administer treatments based on insect density
thresholds, reducing the potential for over or under utilisation of insecticide treatments.
Multi-stage sampling strategies could therefore play an important role in determining

effective treatment times. Furthermore, effective sampling would reduce costs associated

with control and treatments.

Monitoring and sampling of stored grains for insect populations has become an integral

component of IPM strategies.”** The early detection of pest populations is critical for
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effective control measures to be implemented.” The usefulness of monitoring and sampling
data however, is dependent on the accuracy of the data so that a realistic representation of
the presence of insects can be attained. Ineffective treatment and failure of IPM

programmes to control pest populations is often related to failures in detection protocols.?

This study demonstrates that the number of sub-samples and the weight of sub-samples
taken will critically influence the detection probabilities of insects in bulk grains. However,
the study also highlights the need for flexibility in considering those factors that will
influence biological parameters that cannot be easily manipulated, the rate of infestation
and the proportion of the lot infested. Further work is required to create sampling
programmes that can be adapted to account for variations in external temperature and
humidity (such as the geographic location of storage and the season in which sampling
occurs), the way in which grains are stored (e.g. vertical silos or horizontal warehousing),
and the way in which they are transported. This would allow for more efficient, cost-
effective sampling to occur throughout the production and supply chain leading to improved

IPM programmes and population management.
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Table 1. Comparison of success in detecting three different insect species when silos were sampled
under an intensity (n) predicted by a model that accounts for the heterogeneous distribution of
insects (equation 4), and one that does not (Hunter and Griffiths®). For each species-probability of
detection combination, the required sampling intensity was replicated three times. Detection of that
species at the given sampling intensity was counted as a success and so there can be a maximum of
three successes from the three replicates. P({) represents the probability of detection for the
Hunter and Griffiths® model, P(A>0) represents the probability of detection for the model specified
above. Parameter estimates of p = 0.61; A = 13.1 for R. dominica, p = 0.5; A = 17.4 for Cryptolestes
Spp. and p =0.2; A = 13.04 for S. oryzae were estimated from sampling used to populate the model

(see text for details).

P(A>0) P(Y)
Probability of n Silo 1 Silo 2 n Silo 1 Silo 2
Detection (%) Successes Successes Successes Successes
R. dominica 95 3 3 3 1 2 3
85 2 3 3 1 2 3
75 1 3 3 1 2 3
Cryptolestes 95 5 3 3 1 1 2
Spp. 85 3 3 3 1 1 2
75 2 3 3 1 1 2
S. oryzae 95 13 3 3 1 2 0
85 9 2 2 1 2 0
75 6 2 1 1 2 0
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Figure 1. The probability of detecting insects in a grain lot as a function of p, the proportion of lot infested, and

A, the rate of infestation when number samples n = 10 and the weight of samples w = 1. This represents an
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intensive sampling rate for a large lot size.
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Figure 2. The probability of detection for varying rates of infestation A, when an entire grain lot is infested (p =
1) that is, a homogeneous distribution of insects.
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Figure 3. The probability of detecting insects in a grain lot as a function of the proportion of lot infested p as A
tends towards infinity.
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Figure 4a. The probability of detecting insects in a grain lot, in relation to the number of sub-samples drawn for
various levels of heterogeneity, p. For the example presented here, nw is held at a constant 10 kg with A = 5.
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Figure 4b. The probability of detecting insects in a grain lot, in relation to the number of sub-samples drawn

for various levels of heterogeneity, p. For the example presented here, nw is held at a constant 10 kg with A =
0.5.
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Figure 5a. The probability of detecting insects in a grain lot, in relation to the number of sub-samples drawn for
various levels of heterogeneity, p. For the example presented here, w is held at a constant 1 kg with A = 5.
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Figure 5b. The probability of detecting insects in a grain lot, in relation to the number of sub-samples drawn
for various levels of heterogeneity, p. For the example presented here, w is held at a constant 1 kg with A = 0.5.
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