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Abbreviations and symbols:  

   D, translational diffusion coefficient;  

   ||D||, diffusion tensor;  

   D0, the translational diffusion coefficient in bulk water;  

   Dij, element (i, j) of the simulated laboratory-frame diffusion tensor  

    (e.g., Dxy);  

   Di, eigenvalues of the simulated laboratory-frame diffusion tensor;  

   DTI, diffusion-tensor imaging;  

   FA, fractional anisotropy of the diffusion tensor;  

   L0 , size of the unit cell of the fibre lattice;   

   MC, Monte Carlo;  

NMR, Nuclear Magnetic Resonance;  

NP, the number of tracer particles in a Monte Carlo random walk;  

NT, the number of time steps in a Monte Carlo random walk;  

RMS, root-mean square;  

   Rx,y, radius of the fibre as measured in the x or y direction;   

rmn, position of the n-th tracer particle at the end of the m-th time step;  

   vi, eigenvectors of the simulated laboratory-frame diffusion tensor;  

Δ, diffusion time;  

   ΔDi, the standard deviation of the simulated diffusion tensor eigenvalues;  

Δrmn, displacement of the n-th tracer particle during the m-th time step;  

Δt, time step in the random-walk simulation;  

φ, volume fraction of collagen.  
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Abstract  

 

We used Monte Carlo simulations of Brownian dynamics of water to study anisotropic water 

diffusion in an idealised model of articular cartilage. The main aim was to use the simulations as 

a tool for translation of the fractional anisotropy of the water diffusion tensor in cartilage into 

quantitative characteristics of its collagen fibre network. The key finding was a linear empirical 

relationship between the collagen volume fraction and the fractional anisotropy of the diffusion 

tensor. Fractional anisotropy of the diffusion tensor is potentially a robust indicator of the 

microstructure of the tissue because, in the first approximation, it is invariant to the inclusion of 

proteoglycans or chemical exchange between free and collagen-bound water in the model. We 

discuss potential applications of Monte Carlo diffusion-tensor simulations for quantitative 

biophysical interpretation of MRI diffusion-tensor images of cartilage. Extension of the model to 

include collagen fibre disorder is also discussed.  
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INTRODUCTION  

 

Articular cartilage (AC) is a connective tissue that covers the articulating surfaces of movable 

joints in mammals. It plays a crucial role in biomechanical mobility of humans by reducing static 

contact stress in the joint and serving as a wear-resistant protective material for bones (Freeman 

1979). The major components of cartilage are Type II collagen (15−20% of tissue weight) (Eyre 

and Wu 2005), proteoglycans (PG, 3−10%), and water (65-80%) (Freeman 1979; Xia 2000). The 

collagen forms a network of cross-linked fibres, in which three zones of alignment are usually 

distinguished: (1) the superficial zone, located near the articular surface, in which collagen fibres 

are aligned parallel to the surface; (2) the radial zone, located near the bone, in which the fibres 

are aligned normal to the bone; and (3) the transitional zone, which lies between the superficial 

and the radial zones and in which the collagen fibres are relatively disordered compared to the 

other two zones. This architecture of collagen fibres is responsible for the ability of cartilage to 

process mechanical load – i.e., to distribute the applied load to a greater contact area (Nieminen 

et al. 2004; Pierce et al. 2009).  

 

The zonal structure and the alignment of collagen fibres in AC can be non-destructively 

observed in magnetic resonance diffusion-tensor imaging (DTI) (Azuma et al. 2009; Deng et al. 

2007; Filidoro et al. 2005; Meder et al. 2006). Spatially-resolved maps of the direction of the 

principal eigenvector of the diffusion tensor have been shown to be consistent with the collagen 

alignment measured by other techniques, most notably polarised-light microscopy (PLM) (de 

Visser et al. 2008a). DTI has also been used to observe changes in collagen fibre orientation 

under mechanical compression (de Visser et al. 2008b; Pierce et al. 2010). However, to date the 

interpretation of DTI results in AC has been limited to the determination of the direction of the 

predominant alignment of collagen fibres, with no attempts to quantify the degree of alignment 

or the volume fraction of collagen – parameters that are also important for quantitative 

understanding of load processing in AC. One of the reasons for this is the lack of models that 

could enable translation of the fractional anisotropy of the diffusion tensor into quantitative 

morphological characteristics of the collagen network.  

 

Monte Carlo (MC) modelling can provide valuable insights into the quantitative relationship 

between the tissue morphology and the measured diffusion tensor (Avram et al. 2008; Landman 

et al. 2010; Regan and Kuchel 2002). In this work, we used MC simulations of water diffusion in 

model cartilage as a tool that enables quantitative characterisation of the collagen fibre network 
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beyond merely determining the preferred direction of collagen alignment. The model comprised 

a regular network of identically aligned collagen fibres with a specified collagen volume 

fraction. Water molecules were assumed to undergo bulk water-like diffusion in the aqueous 

domain between the fibres; the diffusion was unobstructed in the direction of fibre alignment 

(taken as the z direction) but obstructed in the directions perpendicular to the fibres (x, y 

directions). We demonstrate that the fractional anisotropy of the simulated water diffusion tensor 

in this idealised model is a linear function of the volume fraction of collagen. We compare the 

simulation results with available experimental data and empirical models of restricted diffusion 

in collagen and related systems. We discuss limitations of the perfect-alignment model as well as 

its possible extension to include fibre disorder. We also discuss the feasibility of using the 

fractional anisotropy of the DT for probing the degree of alignment of collagen in articular 

cartilage.  
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METHODS  

 

Monte Carlo simulations. The following physical units were used throughout this work: 

distance, millimetres (mm); time, seconds (s); translational diffusion coefficient, mm2 s−1.  

 

The translational self-diffusion tensor of water was computed from Monte Carlo (MC) 

simulations of 3D random walks of tracer water molecules in a regular square network of 

collagen fibres. The displacements of the tracer molecules at the end of the simulation were used 

to compute the corresponding diffusion tensor.  

 

All fibres were modelled as straight and identically aligned. The direction of the alignment was 

taken as the z direction. The centres of the fibres formed a periodic square grid in the xy plane, as 

shown in Fig. 1. The size of the unit cell of the grid was taken as L0 = 10−4 mm in all simulations. 

The cross-sectional shape of the fibres in the lattice was defined as a trigonometric function-

based approximant to the circle, as described in the Appendix. This enabled the modelling of an 

infinite fibre network and therefore obviated the need for periodic boundary conditions. The 

simulated collagen volume fraction (φ) was controlled via the collagen fibre threshold parameter 

(T) discussed in the Appendix. Water diffusion tensors were simulated for 17 values of the 

collagen volume fraction that were spaced approximately equidistantly and lay in the range from 

0 to 0.41. For each value of φ, ten MC simulations were performed as described below. The 

diffusion tensors obtained from the sets of ten simulations were used to evaluate the uncertainties 

of the computed DT eigenvalues and fractional anisotropies.  

 

Each MC simulation of model AC consisted of tracing the stochastic trajectories of NP = 81910 

tracer molecules over NT = 30000 time steps. The duration of the time step used, Δt = 5 × 10−9 s, 

was selected such as to ensure that the length of each random-walk step was much smaller than 

both L0 and the cross-sectional radius of the fibre (Rx,y): Δt << L0
2/2D0, Rx,y

2/2D0. This 

requirement was imposed in order to avoid the tracer molecules “skipping” the fibres, which 

would have resulted in an under-estimated fractional anisotropy of the diffusion tensor. At the 

beginning of each simulation, the tracer particles were given random initial positions r0n that 

were uniformly distributed in the aqueous domain of the unit cell confined between x = 0, x = L0 

and y = 0, y = L0, as illustrated in Fig. 1a. This ensured a uniform and representative sampling of 

the pore space. The initial z positions were zero for all tracer particles. The duration of the 
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simulation, Δ = NT × Δt = 1.5 × 10−4 s, was chosen such as to ensure that the average magnitude 

of particle displacement significantly exceeded the period of the fibre lattice. This, in turn, 

ensured that the diffusion tensor sampled in the simulations corresponded to the asymptotically 

long diffusion time (see Discussion). A typical distribution of the tracer particles at t = Δ/20 is 

illustrated in Fig. 1b.  

 

In each time step of the simulation, each tracer molecule attempted a step of fixed length  

 

 06r D tΔ = Δ  (1) 

 

where D0 = 2.3 × 10−3 mm2 s−1 was the self-diffusion coefficient of water molecules in bulk 

water at 25 oC. The direction of the attempted displacement vector of molecule n during time 

step m, Δrmn, was random, uncorrelated with any of the other displacements Δrpq, and uniformly 

distributed on the surface of a sphere of radius Δr centred on the respective molecule. If the 

attempted step took the molecule into a fibre, then the position of the molecule at the end of step 

m was taken as the point of intersection of the attempted trajectory and the boundary of the fibre. 

The actual displacement Δrmn was then re-calculated accordingly. If molecule n collided with a 

fibre in time step m, then in the time step m+1 the attempted displacement Δrm+1,n was calculated 

according to the normal rules described above. If the attempted step Δrm+1,n again took the 

molecule inside the fibre, the molecule remained stationary during that time step; otherwise, it 

restarted the random walk in the aqueous domain. After M time steps, the position of the n-th 

molecule was given by  

 

 0
1

M

Mn n mn
m=

= + Δ∑r r r  (2) 

 

 

Calculation of the diffusion tensor. At the end of each simulation, the apparent elements of the 

laboratory-frame (non-diagonalised) diffusion tensor were computed as  

 

 ( )( )
P

T T, 0 , 0
1T P

1 1

2

N
i i j j

ij N n n N n n
n

D r r r r
N t N =

= ⋅ − −
Δ ∑  (3) 
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where the superscripts i and j refer to the x, y, or z components of the respective position vectors: 

e.g., r1
NT,1 = xNT,1, etc.  

 

The eigenvalues and eigenvectors of the diffusion tensor were obtained by Jacobi diagonalisation 

(Press et al. 1992) of the laboratory-frame tensor given by Eq. (3). The eigenvalue whose 

eigenvector vi lay the closest to the z axis (i.e., max[|vi⋅k|]) was taken as the principal eigenvalue, 

D1. The two remaining eigenvalues were taken as the secondary eigenvalues D2 and D3. This 

method of assigning the principal eigenvalue was used in order to avoid eigenvalue sorting bias 

(Basser and Pajevic 2000); it meant that, for a finite ensemble size NP, D1 could potentially be 

smaller than D2 or D3.  

 

Fractional anisotropy. The fractional anisotropy (FA) of the diagonalised diffusion tensors was 

computed in accordance with the previously used definition (Meder et al. 2006):  

 

 
2 2 2

1 2 3
2 2 2

1 2 3

( ) ( ) ( )3
FA

2
av av avD D D D D D

D D D
− + − + −

= ⋅
+ +

 (4) 

 

where Dav is the average diffusion coefficient:  

 

 ( )1 2 3 / 3avD D D D= + +  (5) 

 

This definition of FA is designed for a prolate, axially symmetric diffusion tensor: D1 ≥ D2 = D3. 

In the limiting case D1 >> D2, D3, FA takes the value of 1; in the case of isotropic diffusion (D1 = 

D2 = D3), FA = 0.  
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RESULTS  

 

Isotropic test: Diffusion tensor in bulk water. As a test of the random-walk procedure, the 

diffusion tensor was calculated from random walks simulated in bulk water (in the absence of 

collagen fibres). The input diffusion coefficient was D0 = 2.3 × 10−3 mm2 s−1. In the first set of 

isotropic test simulations, 20 simulations were performed for the ensemble size NP = 95000. In 

this set, the simulated eigenvalues of the DT were (2.30 ± 0.01) × 10−3, (2.30 ± 0.02) × 10−3, and 

(2.30 ± 0.01) × 10−3 mm2 s−1; the simulated fractional anisotropy was 0.007 ± 0.002. In the 

second set, 20 simulations were performed for the ensemble size NP = 106. In this set, the 

simulated eigenvalues of the DT were (2.300 ± 0.004) × 10−3, (2.300 ± 0.004) × 10−3, and (2.300 

± 0.004) × 10−3 mm2 s−1; the simulated fractional anisotropy was 0.0022 ± 0.0008.  

 

Volume fraction of collagen as a function of the fibre threshold parameter.  The relationship 

between the fibre threshold parameter T and the volume fraction of collagen, φ, is illustrated in 

Fig. 2. This plot was used to translate the value of T (a computational parameter with no absolute 

physical meaning) into the value of φ (which provides a measure of the amount of collagen in the 

model tissue). In every simulation, the value of T used was converted into the corresponding 

value of φ using the values of the points shown in Fig. 2. Hence, in the following we refer to the 

dependence of the simulated DT on the collagen volume fraction (φ) rather than the fibre 

threshold parameter. The solid line shown in Fig. 2 is an approximation of φ(T) for the thin 

fibres; it was not used for the conversion.  

 

In the 17 sets of anisotropic simulations performed, the values of T used were equidistant and 

ranged from 0 to 1.6. Because the relationship between T and φ was nearly linear, the 

corresponding φ values were spaced nearly equidistantly. The φ values ranged from 0.406 to 

0.002.  

 

DT eigenvalues as a function of collagen volume fraction.  The dependence of the eigenvalues 

of the simulated diffusion tensor (Di) on the collagen volume fraction (φ) is shown in Fig. 3. The 

values shown are the averages from the sets of 10 simulations performed for each value of φ. The 

simulated principal eigenvalue was (2.30 ± 0.01) × 10−3 mm2 s−1 at φ = 0.002 and monotonically 

decreased to (2.0 ± 0.1) × 10−3 mm2 s−1 at φ = 0.406. The secondary eigenvalues exhibited a 
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more pronounced decrease with the increasing fibre volume: from (2.296 ± 0.008) × 10−3 mm2 

s−1 at φ = 0.002 to (1.51 ± 0.06) × 10−3 mm2 s−1 at φ = 0.406.   

 

The principal eigenvector of the DT tended to be aligned along the z axis. For the relatively thick 

fibres (T ≤ 0.8, φ ≥ 0.197), the principal eigenvector of 89 of the 90 simulated tensors lay within 

5o of the z axis. This trend also persisted for the thinner fibres: overall, the principal eigenvector 

of 135 of the 170 simulated tensors lay within 5o of the z axis. The three eigenvectors of a given 

tensor were always perpendicular to each other within the rounding error. The secondary 

eigenvectors tended to be approximately uniformly distributed in the xy plane, with a slight 

preference for the directions along the x, y axes and at ±45o to the x, y axes.  

 

Fractional Anisotropy as a function of collagen volume fraction.  The dependence of the 

fractional anisotropy (FA) of the simulated diffusion tensor, defined according to Eq. (4), vs the 

volume fraction of collagen (φ) is shown in Fig. 4. The empirical form of this dependence was 

linear. The solid straight line shown in Fig. 4 represents the least-squares fit, FA = 0.0046 + 

0.5066 φ. At the smallest and largest collagen volume fractions used, the respective simulated 

FA values were 0.008 ± 0.002 (φ = 0.002) and 0.209 ± 0.003 (φ = 0.406).  
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DISCUSSION  

 

Magnetic resonance (MR) measurements of translational diffusion in biological tissues and 

materials can provide a wealth of information about the microscopic morphology of the sample 

(Cooke et al. 2009; Cox et al. 2009; de Visser et al. 2008a; Filidoro et al. 2005; Greene et al. 

2008; Kuchel et al. 2000; Meder et al. 2006; Moffat and Pope 2002; Momot et al. 2004; Mori et 

al. 1999; Nucifora et al. 2007; Pierpaoli et al. 1996; Schwenzer et al. 2009; Silvast et al. 2009; 

Torres et al. 1999). Diffusion of water molecules in tissues can typically be described as 

restricted: the aqueous domain is confined by cell walls, fibres, or similar constraints (which for 

simplicity will be referred to as “walls”). The diffusing water molecules are free to move around 

the aqueous domain but are excluded from the confining walls. In this respect, diffusion of water 

in tissues is formally similar to diffusion in liquid-filled porous media (Callaghan et al. 1999; 

Mitra et al. 1992; Sen 2004). In isotropic (non-aligned) tissues such restricted diffusion is 

characterised by an apparent diffusion coefficient Dapp, which is a function of the diffusion time 

(Δ). As Δ increases from 0 to infinity, the value of Dapp monotonically decreases from the bulk-

water diffusion coefficient (D0) to the asymptotic, Δ-independent value D∞. The slope of Dapp(Δ) 

in the short-Δ limit is determined by the surface-to-volume ratio of the confinements, while the 

ratio D∞/D0 is determined by the tortuosity and the topology of the restricted aqueous domain 

(Mitra et al. 1992).   

 

Many tissues (e.g., nerves, muscles, or articular cartilage) exhibit a well-defined direction of 

global alignment. Diffusion of water in such tissues is anisotropic – i.e., the magnitude of the 

characteristic displacement of the diffusing molecules is direction-dependent. Anisotropic 

diffusion is usually characterised by a diffusion tensor (DT) (Basser et al. 1994). Such diffusion 

is also restricted, and therefore the apparent diffusion tensor can be a function of the diffusion 

time. The eigenvalues of the DT characterise the diffusivity along and across the preferred 

direction of alignment, while the eigenvectors of the DT characterise the direction of the 

alignment relative to the laboratory reference frame.  

 

In DTI of cartilage, the diffusion time (Δ) is typically determined by hardware and signal-to-

noise considerations; the typical range of Δ is between 5 and 30 ms. This corresponds to an RMS 

translational displacement between ~3 and 12 μm, which is significantly larger than the 

characteristic separation between collagen fibres (Jeffery et al. 1991). This means that DTI 
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measurements sample the asymptotic (long-Δ) diffusion tensor. The MC simulations presented 

here also sampled the long-Δ DT. As seen from Fig. 1b, the RMS displacement of the tracer 

molecules exceeded the fibre separation even after 1/20 of the full simulation; at the end of the 

simulation (Δ = 1.5 × 10−4 s) the RMS displacement of the tracers was 02 D≈ Δ  ~ 10L0, which 

corresponds to “long” Δ. In this regime, the DT can be considered independent of Δ. It also 

means that the simulated diffusion tensor depends only on φ but not on the absolute size of the 

collagen fibres. As long as the RMS displacement of the tracers during Δ significantly exceeds 

L0, the asymptotic long-Δ diffusion tensor is affected by the tortuosity of the aqueous domain but 

not by the absolute length scale of the fibre lattice.  

 

The use of Eq. (1) implies that water diffusion in the aqueous domain was assumed to be 

Gaussian. This assumption did not extend to the restricted diffusion: the obstructive effect of 

collagen fibres resulted in an average diffusion propagator that did not follow a simple analytic 

form. For this reason, the elements of the diffusion tensor were extracted from the final positions 

of the tracer particles using Eq. (3). This approach is consistent with the established 

methodology used for simulations of diffusion in porous media (Regan and Kuchel 2002, 2003; 

Valiullin and Skirda 2001). Equation (3) is model-independent in the sense that no assumptions 

were made about the functional form of the restricted-diffusion propagator; the Equation also 

accurately reflects the physical meaning of the apparent diffusion tensor obtained from DTI 

measurements.  

 

Interaction between water and collagen. In the model used, the collisions of tracer molecules 

with the fibres can be described as completely inelastic with weak absorption. A molecule 

encountering a fibre remains at its surface until the random Brownian forces impart to it a 

velocity vector that is directed away from the fibre. The colliding molecule in this model does 

not experience a strong attractive interaction with the fibre that would be sufficient to keep it in 

the absorbed state beyond a few time steps. However, weak hydrogen bonding between the water 

molecule and the fibre is assumed to be sufficient to suppress translational diffusion of the 

molecule while it remains on the fibre. The absorbed molecule has a finite residence time on the 

fibre surface (of the order of several time steps) because in a given time step the random 

Brownian forces have a comparable probability of being directed towards or away from the fibre. 

Therefore, despite the lack of strong absorptive interaction, the tracer molecules spend a finite 

fraction of time in the absorbed state. As a result, the observed diffusion coefficient in the 
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direction of fibre alignment (the unobstructed direction) can be expected to decrease linearly 

with the ratio (surface of the fibres):(volume of the aqueous domain). This ratio is proportional 

to the collagen volume fraction at low values of φ; therefore, the principal eigenvalue of the DT 

(which corresponds to diffusion along the fibres) should decrease with φ approximately linearly. 

This can indeed be seen from Fig. 3a. This decrease can be attributed to the “non-sticky” weak 

absorption model implicit in the simulations.  

 

Obstructive effect of collagen fibres. The obstructive effect of collagen fibres on water diffusion 

is manifested in the behaviour of the secondary eigenvalues of the diffusion tensor (D2 and D3), 

which characterise diffusivity in the directions perpendicular to the fibres. In the limit of zero 

noise, these two eigenvalues should be equal due to the square symmetry of the fibre network. 

For this reason, D2 and D3 were treated as being fundamentally the same quantity. In Fig. 3a, D2 

and D3 were averaged together in order to construct the plot of the secondary DT eigenvalue vs 

φ. The simulated secondary eigenvalue (D2,3) exhibited a more pronounced decrease with the 

increasing φ than the principal eigenvalue (D1). This can be explained as follows. The principal 

eigenvalue, D1, decreases with φ due to weak absorption discussed in the previous paragraph. 

This reduction is not direction-specific; therefore, the secondary eigenvalues experience an 

identical relative decrease due to the same factor. However, the secondary eigenvalues also 

experience a decrease due to the obstructive effect of the collagen fibres, which restrict 

translational diffusion of the molecules in the xy plane. The difference between the ratios D1/D0 

and D2,3/D0 is therefore a measure of the obstructive effect of the collagen fibres. In order to 

separate the obstructive effect, the secondary eigenvalues were corrected for the weak absorption 

and normalised by D0:  

 

 0 1 2,3*
2,3

0

( )D D D
D

D
− −

=  (6) 

 

Attenuation of D*
2,3 with the increasing φ represents the pure obstructive effect of the fibres. The 

natural log of D*
2,3 is plotted vs φ in Fig. 3b; the plot can be seen to be linear. This corresponds 

to the Edwards-Freed behaviour of the obstructed diffusion coefficient (Cukier 1984). Plots of 

ln(D*
2,3) vs φ1/2, φ3/4, φ2 and φ3 were also examined; all of these plots were non-linear. The 

observed behaviour of the simulated D*
2,3 is discussed below in the context of the available 

experimental data and analytic restricted-diffusion models.  
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Fractional anisotropy. The fractional anisotropy (FA) of the diffusion tensor, which is plotted in 

Fig. 4, exhibited a linear empirical relationship with the volume fraction of collagen (φ). It can 

be seen from the least-squares fit in Fig. 4 that the limiting FA at φ = 0 exceeds zero. This is due 

to the finite size of the Monte Carlo ensemble (NP = 81910) and can be understood as follows. 

The standard deviations of MC-sampled properties are inversely proportional to the square root 

of the ensemble size (Press et al. 1992); therefore, ΔDi 1/ PN∝ . The errors ΔDi in any finite-

NP simulation are positive; as a result, the values of D1, D2 and D3 will always be unequal even 

in the isotropic case (in the absence of fibres). The fractional anisotropy defined by Eq. (4) is 

non-negative; for a finite NP it is always positive, however small, as a result of statistical 

fluctuations of the Di’s. The situation is similar in experimental DTI measurements: the 

measured diffusion tensor of isotropic saline surrounding the cartilage possesses a “baseline” 

fractional anisotropy, typically in the range 0.01-0.05 (de Visser et al. 2008a; Meder et al. 2006). 

This can be understood through the analogy of calculating the average magnitude of white noise: 

while the average noise is zero, its average magnitude is positive and of the order of the noise 

RMS. Thus, the value FA = 0.0046 obtained for at φ = 0 at NP = 81910 is a “noise” fractional 

anisotropy. It can be expected to decrease with the increasing ensemble size because the standard 

deviations of the eigenvalues, ΔDi, also decrease. This was indeed the case in the test isotropic 

simulations carried out at NP = 95000 (FA = 0.007) and at NP = 1000000 (FA = 0.002).  

 

The plot of FA vs φ shown in Fig. 4 can be used as a “calibration curve” to convert the 

experimentally measured fractional anisotropy of the diffusion tensor into collagen volume 

fraction under the assumption of a regular lattice of perfectly aligned collagen fibres.  

 

Effects of “bound” water and proteoglycans. MR properties of water in AC are usually 

explained in terms of rapid dynamic equilibrium between “free” water (which has the molecular 

hydrodynamic properties similar to those of bulk water) and water hydrogen-bonded to cartilage 

biopolymers (“bound” water) (Migchelsen and Berendsen 1973; Mlynarik et al. 2004; Momot et 

al. 2010):  

 

 2 2H O + P H O P
k

k

+

−

⎯⎯→ ⋅⋅⋅←⎯⎯  (7) 
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where ⋅⋅⋅ denotes hydrogen bonding and P stands for a biopolymer (either collagen or PG). A 

given water molecule therefore spends the fraction of its time pF = k−/( k− + k+[P]) in the bulk-

like free state, where it possesses an intrinsic diffusion tensor ||DF||. It is this intrinsic “free” 

tensor that was sampled in the MC simulations in this work. The remaining fraction of time, pB = 

1 – pF, is spent in the biopolymer-bound state, where the water molecule possesses a zero 

diffusivity. Under rapid exchange, the measured  diffusion tensor is the weighted-average of the 

two states and therefore scales proportionally to pF:  

 

 F Fp=D D  (8) 

 

Each eigenvalue of the DT scales linearly with the molar fraction of “free” water according to 

Eq. (8). Because the fractional anisotropy given by Eq. (4) is invariant to the absolute scale of 

the DT, the introduction of chemical exchange given by Eq. (7) leaves the FA unchanged. 

Therefore, unlike the eigenvalues of the diffusion tensor, the anisotropy of the DT is invariant to 

the extent of hydrogen bonding between water and biopolymers (and to pB). This provides the 

justification for neglecting proteoglycans (PGs) in the Monte Carlo model presented. 

Proteoglycans comprise between 5% and 10% of AC by weight and strongly influence the 

absolute diffusivity of water through hydrogen bonding. However, this influence is not direction-

specific, and it was assumed that all eigenvalues of the DT are affected to the same relative 

extent, leaving FA unchanged. This assumption is borne out by the recent MR evidence that PGs 

do not possess global alignment (Deng et al. 2007) and do not contribute to the ordering of the 

surrounding water (Keinan-Adamsky et al. 2005). It is also supported by experimental DTI 

measurements of enzymatically degraded cartilage, where trypsin-induced PG depletion resulted 

in “no discernible change in FA profile” despite a 10-15% increase in the average diffusivity 

(Meder et al. 2006). The independence of FA of pB is also supported by the available analytic 

models of anisotropic restricted diffusion in tissues (Hazlewood and Nicholson 1995), where 

both D1 and D2,3 scale as (1 – pB), resulting in no change in the fractional anisotropy. For these 

reasons, it was assumed that the aligned collagen fibres alone capture the essential features of the 

anisotropy of the DT. Therefore, while Fig. 4 was constructed for pB = 0, it applies equally to the 

situation that includes the two-pool chemical exchange given by Eq. (7), as long as the intrinsic 

diffusivity of water in the biopolymer-bound pool is zero.  

 

The presence of rapid exchange between “bound” and “free” water also simplifies the treatment 

of spin relaxation effects. Under rapid exchange, spin relaxation of water protons can be 
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characterised by a single relaxation rate: R2 = pF R2F + pB R2B, where R2F and R2B are the intrinsic 
1H transverse relaxation rates in the “free” and “bound” water pools, respectively (Momot et al. 

2010). Under this condition, spin relaxation can be omitted from the Monte Carlo simulations 

because the relaxation attenuation factor exp(−R2Δ) simply re-scales the ensemble-average 

transverse magnetisation in a way that is independent of the magnitude of the diffusion gradients 

or the diffusional displacements of tracer molecules.  

 

Comparison with experimental data and analytic models. In a DTI study of bovine AC (de 

Visser et al. 2008a), the typical measured fractional anisotropy of the DT ranged from 0.08 ± 

0.02 near the AS to 0.11 ± 0.04 near the bone. In the same measurements, the “noise” FA 

measured in the surrounding saline was 0.07 ± 0.02. In the limit of low noise and low FA, the 

measured FA is the sum of the “noise” FA and the intrinsic FA of the tissue; therefore, the 

intrinsic FA of AC ranged between 0.01 (near AS) and 0.04 (near bone). The experimentally 

measured diffusion tensor was axially symmetric within the accuracy of the measurements. The 

principal eigenvalue of the measured DT corresponds to the simulated D1, while the two 

secondary (lower) eigenvalues correspond to D2,3. The measured D1 typically ranged from (1.7 ± 

0.1) × 10–9 m2 s–1 near AS to (1.2 ± 0.2) × 10–9 m2 s–1 near the bone. The measured D2,3 typically 

ranged from (1.5 ± 0.1) × 10–9 m2 s–1 near AS to (1.0 ± 0.2) × 10–9 m2 s–1 near the bone. The 

significant variation of the intrinsic FA across the depth of the cartilage cannot be attributed to 

differences between collagen content in the superficial and the radial zones, as the typical φ ≈ 0.2 

in both zones (Xia 2000). It is also seen that the observed intrinsic FA in the radial zone (0.04) is 

significantly lower than the result of the perfect-alignment model (FA = 0.1 for φ = 0.2). This 

can be attributed to the disorder in fibre alignment present in real AC. The presence of fibres of 

different orientations within a given volume element results in attenuation of the anisotropy of 

the DT. The presence of fibre alignment disorder is supported by the comparative study of AC 

using DTI and polarised light microscopy (PLM). The predominant direction of collagen fibre 

alignment determined from the two techniques was found to be correlated but not identical; this 

was attributed to the differences in the voxel sizes between PLM and DTI, resulting in different 

averaging behaviour of the alignment angle (de Visser et al. 2008a). Difference between the 

degree of collagen fibre alignment in different zones also appears to be the main factor 

responsible for the different FA values in the superficial and radial zones of AC. In the radial 

zone, where the alignment is relatively uniform, the observed FA is the greatest, while the 
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superficial and the transitional zones (where the collagen fibres are less ordered or completely 

disordered) exhibit the lowest FA.  

 

In real AC, the variation of water diffusivity with the increasing biopolymer content can be 

attributed to two factors: (1) the increase in the fraction of “bound” water, and (2) the increasing 

obstructive effect of the biopolymer. In the simulations presented here, the attenuation of the 

simulated D2,3 with the increasing φ was due almost entirely to the obstructive effect. This effect 

followed the Edward-Freed model, D = D0 e–Aφ, as discussed under “Obstructive effect of 

collagen fibres”. It is interesting to compare the simulated effect with the dependence of 

diffusivity on polymer content measured in related systems. Diffusion of water has been 

measured in a range of polymer hydrogels containing 5 – 60% (w/w) water (McConville and 

Pope 2000). Hydrogels are suitable systems for the comparison because the molecular 

hydrodynamics of water in AC is similar to that in hydrogels: as a result of rapid exchange of 

water molecules between bound and free environments, the diffusion coefficient of water is the 

weighted-average of the two populations. The observed D of water in hydrogels exhibited a 

behaviour of the type  

 

 
3

0
AD D e− φ=  (9) 

 

where φ was the polymer content. Diffusion of a range of probe molecules in poly(acrylamide) 

gels has also been measured; the diffusion coefficients of probe molecules exhibited a behaviour 

consistent with the de Gennes model (Tokita et al. 1996):  

 

 
1/ 4 3 / 4

0
AMD D e− φ=  (10) 

 

where M was the molecular weight of the probe molecule. The anisotropic case has been studied 

by Greene et al (Greene et al. 2010; Greene et al. 2008), who measured the diffusivities of water 

and 70 kDa dextran in compressed articular cartilage in the range of relative strains 0 – 0.7. This 

represents an indirect measurement of the dependence of the diffusivities on the biopolymer 

volume fraction (φ) because the strain of AC samples is linearly proportional to the water 

content. The diffusion coefficient of water was measured in the direction perpendicular to the 

articular surface and therefore corresponded to D1 in this work. In different measurements, this 

diffusion coefficient decreased with the strain either linearly or as a non-linear function with a 
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negative curvature. The diffusion coefficient of dextran was measured parallel to the articular 

surface and therefore corresponded to D2,3 in this work. It remained unchanged up to a certain 

threshold strain value, after which it decreased with the increasing strain approximately linearly. 

It can be seen from this collection of results that there does not appear to be a “universally 

applicable” behaviour of diffusion coefficients on the polymer volume fraction: the dependence 

D(φ) in different gel-like systems exhibited substantially different behaviours. This suggests that 

the obstructive effect of the polymer network is affected not only by the polymer content, but 

also by the morphology of the polymer network, including the spatial disorder of polymer 

molecules.  

 

This hypothesis is supported by the results of Jóhannesson and Halle (Johannesson and Halle 

1996), who compared numerical and analytic obstruction factors in ordered and disordered 

lattices of cylindrical fibres. In a regular square lattice, the transverse diffusion coefficient 

(equivalent to D2,3) was shown to behave as  

 

 
0

1 2
1

1 1

D
D 4

⎛ ⎞φ
= −⎜ ⎟− φ + φ−0.3φ⎝ ⎠

 (11) 

 

in the range of φ from 0 to 0.4. Disordered square lattice exhibited lower obstruction factors 

(greater diffusion coefficients) for the equivalent values of φ. The importance of network 

morphology is also evident from the fact that a wide range of analytic models of restricted 

diffusion is available, and the validity of individual models depends on the macromolecular 

environment. Ogston et al (Ogston et al. 1973) used the Debye model,  

 

 0
AD D e

1/2− φ=  (12) 

 

to describe transport of large particles through a solution of chain polymers. Cukier (Cukier 

1984) used Debye model as well as Edward-Freed model, D = D0 e–Aφ, and the de Gennes model 

given by Eq. (10). The applicability of these models was determined by the solvation state of the 

diffusing particles. Mackie-Meares model has also been used for polymers (Waggoner et al. 

1993) and for articular cartilage (Knauss et al. 1999). However, the latter model appears to 

underestimate the water diffusion coefficient in AC. The values of D2,3 obtained from DTI 

measurements of AC near the articular surface and in the radial zone were 0.65 D0 and 0.43 D0, 

respectively (de Visser et al. 2008a; Meder et al. 2006). The water volume fractions found in 
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these respective zones are 0.75 and 0.65 (Xia 2000), corresponding to the Mackie-Meares 

obstruction factor of 64% and 77%  – i.e., the diffusion coefficients of 0.36 D0 and 0.23 D0. This 

model, therefore, underestimates the diffusion coefficient almost by a factor of 2. This 

underestimation is all the more significant because the model takes into account only the 

obstructive effect but not the “bound” water, pB; when this is taken into account, the discrepancy 

between the Mackie-Meares model and the experimental measurements increases even further. 

The hard-sphere obstruction model, D = D0 (1 – 2φ), which has been used for colloids and 

peptide solutions (Lekkerkerker and Dhont 1984; Momot and Kuchel 2006), similarly fails.  

 

The simulated D*
2,3 obtained in this work is consistent with the Edward-Freed model. 

Interestingly, none of the models discussed are consistent with the experimental results of 

McConville and Pope (McConville and Pope 2000) concerning diffusion of water in hydrogels. 

From a comparison of the empirical and theoretical models discussed above, it is apparent that 

capturing the characteristics of the disorder of the collagen network may be a requirement for 

accurate quantitative simulation of the anisotropy of the diffusion tensor in AC. The perfect-

alignment, regular-lattice model used in the present work, therefore, provides only the first 

approximation in quantitative interpretation of DTI results of cartilage. Introduction of fibre 

alignment disorder and fibre grid disorder will be the subject of future work.  
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CONCLUSIONS  

 

In this work, we used Monte Carlo simulations of Brownian dynamics of water to study 

anisotropic water diffusion in an idealised model of the radial zone of articular cartilage. The 

model consisted of a regular network of straight, mutually parallel collagen fibres arranged in a 

regular square grid. Chemical exchange between biopolymer-bound and free water was not 

considered because it has been shown not to affect the fractional anisotropy of the diffusion 

tensor. Under the assumptions used, the fractional anisotropy of the simulated diffusion tensor 

was linearly proportional to the collagen volume fraction. The work presented is the first step 

towards biophysical interpretation of MRI-measured diffusion tensor of water in articular 

cartilage. We hypothesise that extension of the present model to include fibre alignment disorder 

and fibre grid disorder can enable a quantitative interpretation of the experimentally measured 

diffusion tensor in articular cartilage.  
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Figure Captions  
 

 

 

Fig. 1  An example of the collagen fibre lattice showing typical distributions of tracer particles: 

(a) at the start of a random walk; (b) the same tracers after the first 1500 steps of the random-

walk simulation. The x and y axes of the coordinate system used in the simulations are shown in 

the drawing; the z axis was perpendicular to the plane of the drawing. The fibre cross-sections, 

implicitly defined by Eq. (13), can be seen to be nearly circular: the fibre radii measured along 

the x axis and at 45o to the x axis differ by less than 4%. In the example shown, a small ensemble 

size (NP = 1000) was used, the same time step Δt = 5 × 10−9 s as in the actual simulations, and the 

fibre threshold parameter T = 0.8. The actual simulations used NP = 81910 tracers and NT = 

30000 time steps. The z positions were discarded in making these plots (i.e., the distributions 

shown are projections onto the xy plane).  

 

 

 

 

 

 

Fig. 2  The relationship between the threshold parameter T and the volume fraction of collagen, 

φ. For each value of T, the corresponding value of φ was obtained numerically as described in 

Methods. The solid line is a plot of the function φ = 16⋅(193/120 – T)/21π, which approximates 

φ(T) in the limit of thin fibres. This line was obtained analytically and is shown as a visual guide 

only. The conversion of T to φ was performed using the actual T and φ values corresponding to 

the points of the plot.  
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Fig. 3  (a) Eigenvalues of the simulated diffusion tensor as a function of the collagen volume 

fraction (φ): open circles, the principal eigenvalue (D1); solid squares, the secondary eigenvalues 

(D2, D3). The eigenvalues plotted correspond to long diffusion times: 2 D0 ts >> L0
2. The typical 

95% confidence interval approximately corresponds to the symbol size. The solid line 

corresponds to the input diffusion coefficient, D0 = 2.3 × 10−3 mm2 s−1, and is given as a visual 

guide. The reduction in D2, D3 with the increasing φ is due mostly to the obstructive effect of the 

fibres. The reduction in D1 is due to weak absorption of the tracer molecules on the fibre surface, 

as discussed in text. (b) ln(D*
2,3), as defined in Eq. (6), plotted vs φ. D*

2,3 is the normalised 

secondary eigenvalue of the DT corrected for the weak absorption of water molecules. Its 

attenuation with the increasing φ therefore represents the pure obstructive effect of the fibres. 

The linear dependence of ln(D*
2,3) on φ corresponds to the Edwards-Freed behaviour (Cukier 

1984).  

 

 

 

 

 

 

Fig. 4  The fractional anisotropy of the simulated diffusion tensor as a function of the collagen 

volume fraction φ. The points simulated are shown as solid dots; the size of the symbols 

approximately corresponds to the typical 95% confidence interval. The solid line is the least-

squares fit, FA = 0.0046 + 0.5066 φ. The non-zero FA in the limit φ = 0 is due to the finite 

ensemble size NP (see Discussion).  
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Appendix:  Collagen fibre lattice used in the MC simulations   

 
The surface of the fibres was defined as  
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where the threshold parameter T determines the cross-sectional size of the fibres. Equation (13) 

represents a harmonic expansion of the boundary of a perfectly spherical fibre to the eighth-order 

term of the Taylor series. The resulting fibres have nearly circular cross-sections: the fibre radii 

measured along the x axis and at 45o to the x axis differ by less than 4%. The valid range of T is 

from 0 (the thickest fibres possible) to 193/120 (infinitely thin fibres). The radius of the fibre 

measured in the x or y direction (Rx,y) is related to T as  
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L
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 (14) 

 

Equation (13) implicitly defines an infinite periodic lattice of fibres that extends over the entire 

xy plane. Therefore, this definition of the fibre network obviates the need for periodic boundary 

conditions. If, for a given point (x, y), the expression on the lhs of Eq. (13) exceeded T, the point 

(x, y) was considered to lie inside a fibre (“the fibre domain”); otherwise, the point (x, y) lay in 

the interstitial space (“the aqueous domain” or “pore space”). The volume fraction of collagen, φ, 

was computed numerically for 33 equidistantly spaced values of T ranging from 0 to 1.6 in steps 

of 0.05. For each value of T, the corresponding φ was obtained by sampling a uniform 1000 × 

1000 grid of (x, y) points covering a single unit cell of the lattice. The calibration plot for 

conversion of T into φ and vice versa is shown in Fig. 2.  
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Figure 4, Momot KI
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