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Abstract

Camera calibration information is required in order for multiple camera networks

to deliver more than the sum of many single camera systems. Methods exist for

manually calibrating cameras with high accuracy. Manually calibrating networks

with many cameras is, however, time consuming, expensive and impractical for

networks that undergo frequent change. For this reason, automatic calibration

techniques have been vigorously researched in recent years.

Fully automatic calibration methods depend on the ability to automatically find

point correspondences between overlapping views. In typical camera networks,

cameras are placed far apart to maximise coverage. This is referred to as a wide

base-line scenario. Finding sufficient correspondences for camera calibration in

wide base-line scenarios presents a significant challenge.

This thesis focuses on developing more effective and efficient techniques for finding

correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The

project consists of two major areas of work. The first is the development of

more effective and efficient view covariant local feature extractors. The second

area involves finding methods to extract scene information using the information

contained in a limited set of matched affine features.

Several novel affine adaptation techniques for salient features have been devel-
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oped. A method is presented for efficiently computing the discrete scale space

primal sketch of local image features. A scale selection method was implemented

that makes use of the primal sketch. The primal sketch-based scale selection

method has several advantages over the existing methods. It allows greater free-

dom in how the scale space is sampled, enables more accurate scale selection,

is more effective at combining different functions for spatial position and scale

selection, and leads to greater computational efficiency.

Existing affine adaptation methods make use of the second moment matrix to

estimate the local affine shape of local image features. In this thesis, it is shown

that the Hessian matrix can be used in a similar way to estimate local feature

shape. The Hessian matrix is effective for estimating the shape of blob-like struc-

tures, but is less effective for corner structures. It is simpler to compute than the

second moment matrix, leading to a significant reduction in computational cost.

A wide baseline dense correspondence extraction system, called WiDense, is pre-

sented in this thesis. It allows the extraction of large numbers of additional

accurate correspondences, given only a few initial putative correspondences. It

consists of the following algorithms: An affine region alignment algorithm that

ensures accurate alignment between matched features; A method for extract-

ing more matches in the vicinity of a matched pair of affine features, using the

alignment information contained in the match; An algorithm for extracting large

numbers of highly accurate point correspondences from an aligned pair of feature

regions. Experiments show that the correspondences generated by the WiDense

system improves the success rate of computing the epipolar geometry of very

widely separated views. This new method is successful in many cases where the

features produced by the best wide baseline matching algorithms are insufficient

for computing the scene geometry.
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Notation

c A scalar value.

x A column vector.

Mm×n A matrix with m rows and n columns.

M A matrix with number of rows and columns previ-

ously defined.

I The identity matrix – a square matrix with the

diagonal entries equal to one and all other entries

equal to zero.

|M| The determinant of the matrix M.

trace (M) The trace of matrix M. The trace of a matrix is

the sum of the diagonal elements.
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xx NOTATION

[x]× The skew matrix corresponding to vector x. De-

fined as,

[x]× =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,

for a three vector x = [x1, x2, x3]
>. Can be used

to evaluate the vector cross product, x1 × x2 =

[x1]× x2.

I (x) A function on the vector x. Often used to repre-

sent images.

I1 (x) ∗ I2 (x) The convolution of functions I1 (x) and I2 (x).
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Chapter 1

Introduction

A vast collection of computer vision research is focused on single camera imple-

mentations. This collection is progressively being extended to multiple camera

networks. In the past, camera networks consisted of sparsely placed cameras with

little or no overlap between camera views. The availability of inexpensive sensors

and the declining price of IP cameras enable networks to be designed with signifi-

cant overlap between views. Camera networks with overlapping views provide far

greater possibilities for computer vision applications than single camera systems.

Three-dimensional (3D) scene analysis is just one example.

In order for multiple camera networks to deliver more than the sum of many

single camera systems, the relationships between cameras must be known and

exploited. This requires camera calibration information. Methods exist to man-

ually calibrate cameras with high accuracy. Manual calibration of networks with

many cameras is time consuming, expensive and impractical for networks that

undergo frequent change. For this reason, automatic calibration techniques have

been vigorously researched in recent years.
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Fully automatic calibration methods depend on the ability to automatically find

point correspondences between overlapping views. Even in networks where large

numbers of cameras are available, the cameras are typically placed far apart in

the surveillance environment. The problem of finding sufficient correspondences

for camera calibration in scenarios where cameras are sparsely placed, presents a

significant challenge. This PhD project focuses on developing more effective and

efficient techniques for finding correspondences in difficult, uncalibrated, wide

base-line, multiple camera scenarios.

1.1 Motivation

Camera networks where multiple cameras view the same scene, or where the

viewing area of the cameras partially overlap, provide far greater opportunities

for creating useful computer vision systems than a similar network with no over-

lap. In a single view system, any form of scene analysis is strictly limited to

two-dimensional (2D) analysis in an arbitrary or poorly registered coordinate

system. In a multiple view system (where overlapping views are available), it is

possible to reconstruct the scene in three dimensions, register the reconstruction

to a real building model and accurately track elements in the scene in terms of

the building coordinates, as they move through the building. Being able to re-

construct the scene in three dimensions and register it to real world coordinates,

enables much more accurate measurements to be made. Example applications

that can benefit from 3D data and overlapping views include object tracking, hu-

man pose reconstruction, crowd and queue monitoring, action recognition, person

recognition (using biometrics such as gate and face) and event detection. In par-

ticular, many of the applications listed above suffer from problems related to

subject pose, where only 2D data is available. The availability of multiple views

and 3D data provide a greater ability to estimate the pose of subjects, deal with
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occlusions and extract the information required to perform a given task.

Very few of the benefits of overlapping views are available without camera cal-

ibration information. Camera calibration consists of the parameters of a model

that describes the camera position, orientation and operation. Without this in-

formation there is no basis for transferring information between views. Methods

exist for manually calibrating cameras with high accuracy. Manually calibrating

networks with many cameras is, however, time consuming, expensive and imprac-

tical for networks that undergo frequent change. The prospect of automating the

calibration process is very attractive and has inspired much research.

Fully automatic calibration methods depend on the ability to automatically find

point correspondences between overlapping views. Where two cameras are placed

close together and have similar focal lengths (short base-line), the two images are

very similar and finding correspondences is a simple problem. In typical camera

networks, cameras are placed far apart in order to cover a larger area. This is

referred to as a wide base-line scenario. Finding sufficient correspondences for

camera calibration in wide base-line scenarios presents a significant challenge.

Figure1 1.1 illustrates the wide baseline matching problem. In the small baseline

case, each point in the left image can be matched with a corresponding point

in the right image simply by comparing local image regions directly. The wide

baseline case, on the other hand, involves significant appearance changes, self

occlusion, changed relative order of objects and photometric variations. The

third row of Figure 1.1 shows a real surveillance scenario. It is difficult, even for

a human observer, to find correspondences between these views. The research

presented in this thesis aims to address this wide baseline matching problem in

order to enable automatic calibration.

1Images sourced from http://www.cs.unc.edu/~marc/data/castlejpg.zip and http://
www.cvg.rdg.ac.uk/PETS2006/data.html.

http://www.cs.unc.edu/~marc/data/castlejpg.zip
http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://www.cvg.rdg.ac.uk/PETS2006/data.html
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Figure 1.1: A small baseline image pair (top), wide baseline image pair (middle),
and a real pair of surveillance images.
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1.2 Aims and Objectives

1.2.1 Scope

Addressing the problem of automatic camera calibration requires solving a large

array of sub-problems spanning many disciplines, including image processing,

computer vision and projective geometry. This thesis is focussed on the problem

of finding correspondences between multiple overlapping views. Finding corre-

spondences is the first step towards automatic calibration.

The existing wide baseline matching methods may be divided into three sections:

local feature extraction, featured description and descriptor matching. Feature

extraction forms the first of two focus areas in this thesis. More specifically,

feature extraction techniques are developed that use fewer processing resources

and yield more robust features.

It is expected that after the field of feature-based matching reaches maturity, there

will still be scenarios where feature-based matching is insufficient for computing

the scene geometry. The second focus of this thesis is to explore new methods,

beyond feature-based matching, for extracting correspondences from overlapping

views. Methods are developed that make use of the information extracted using

feature-based matching to commence a second tier of correspondence extraction.

In summary, this thesis focuses on two specific research tasks: Improving the

quality and efficiency of local feature extractors; and exploring a second tier of

correspondence extraction algorithms capable of exploiting the limited informa-

tion discovered through feature matching.
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1.2.2 Objectives

The primary research objectives for this thesis are to:

1. Develop local feature extraction techniques that improve on the robustness

and computational efficiency of existing wide baseline methods.

2. Develop second tier correspondence extraction methods that exploit the

information contained in a set of putative feature correspondences to further

extract correspondences from multiple views.

The first objective is motivated by the need to deal with more challenging scenar-

ios and by the fact that some of the best existing local feature extractors incur

a relatively high computational cost. Local feature methods have steadily been

improving over the last few decades. There are further gains to be made in terms

of scale and affine covariance.

The second objective recognises that there will always be a limit to the abil-

ity of feature-based matching to solve complex registration problems. In order to

improve correspondence extraction algorithms, it is necessary to investigate alter-

native methods that can be implemented in addition to feature-based matching.

Affine covariant feature extractors produce a significant amount of information

that is currently not utilised by geometry computation algorithms. Matched affine

features contain information about the relative shape of features. Current geom-

etry computation methods only use point correspondences. A new generation

of methods are developed in this thesis to exploit all the information contained

in matched affine features and to produce additional correspondences. These

methods are referred to as second tier correspondence extraction methods – new

methods that extract further information once the first tier of methods (existing

feature-based matching) have been completed.
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1.3 Outline of the Thesis

Chapter 2

This chapter introduces some of the basic concepts in projective geometry that

are used throughout this thesis. Projective geometry is the study of geometric

properties which are invariant under projective transformations. It encompasses

camera geometry and the formation of images through 3D to 2D projection. The

algebra of projective geometry serves not only to formally express the concepts

of projective geometry, but is also of practical use in designing image processing

algorithms.

The subject will be treated in a manner that provides the understanding and al-

gebraic tools required to achieve the objective of finding correspondences between

views. Geometric invariance properties will not be discussed in great detail. The

focus will instead be on the practical implications for image processing.

The concepts covered include coordinate transformations and their application to

image processing, the pinhole camera model, epipolar geometry and approaches

to camera calibration.

Chapter 3

The problem of camera calibration may be interpreted as a problem of aligning

two views of a scene by means of a projection model. It is also possible to align

subregions of the images, where the relationship between these image regions

is much simpler. Chapter 3 formulates the problem of aligning images taken

from different viewpoints in terms of the wide baseline matching problem. Local

image feature extraction and matching provides a solution to the wide baseline
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image alignment problem. Local image features are patterns in an image that

are defined in limited image areas and are distinguishable from the surrounding

image in some way. They may be extracted from different views independently

and then matched to find corresponding features. The discussion in Chapter 3

focuses on feature-based matching in the wide baseline scenario, though feature-

based methods are suitable for many applications. Feature extraction, description

and matching techniques relevant to wide baseline matching are reviewed, as well

as methods for evaluating the performance of local feature extractors.

Chapter 4

A number of successful affine covariant feature extractors make use of a saliency

map to detect features, and use adaptation processes to extract the shape and

size of each feature. Chapter 4 reviews saliency map-based feature extraction

techniques.

The saliency map can be used to find feature locations, but does not directly

produce features that are sufficiently robust for wide baseline matching. In or-

der to make features more robust, a characteristic scale, shape and orientation

must be found for each feature. The Gaussian scale space is introduced and the

literature pertaining to scale, shape and orientation selection is reviewed. The

work presented in Chapters 5 and 6 develops new methods for feature scale and

shape selection. An algorithmic framework for feature extraction is presented

in Chapter 4 that is used to compare the performance of the newly developed

methods. Lastly, methods for implementing some of the scale space and saliency

operators in an efficient manner are discussed.
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Chapter 5

The concept of scale plays an important role in wide baseline vision. Charac-

teristic scale selection is an effective method to deal with the scale problem in

the domain of robust local feature extraction. Chapter 4 discusses methods pro-

posed in the literature to select a characteristic scale for each local image feature.

In Chapter 5, the scale space primal sketch is employed as a tool for analysing

features in scale space.

The scale space primal sketch has in the past been a useful tool for multi-scale

analysis of features, and for scale selection. A method is developed for com-

puting a discrete representation of the scale space primal sketch of local image

features. This discrete primal sketch is used to implement a more efficient and

effective method for scale selection, by combining the sketch with modern feature

extraction and scale selection techniques. The performance of this algorithm is

compared to existing methods. It is shown that the new method poses several

advantages over existing scale selection methods.

Chapter 6

The second moment matrix is the most successful shape estimator used in affine

adaptation of saliency map-based local image features. Chapter 6 explores the

novel approach of using the Hessian matrix as an affine shape measure for affine

adaptation. The Hessian is simpler to implement and requires less computational

effort than the second moment matrix. Experiments show that it is also more

effective in practical problems in combination with a feature extractor that ex-

tracts blob-like regions. The main limitation of the Hessian matrix is that it is

unsuitable for use with corner features.
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The ability of the Hessian matrix to measure affine shape is demonstrated from

two points of view. It is first shown how the Hessian matrix can be used to

measure the covariance matrix of a Gaussian blob up to scale. Secondly, it is

shown that it can be used to measure the shape of structures in scale space with

arbitrary shape. In both cases the model is an approximation to the real image

feature shape, and the process must be applied iteratively in order to find the

true affine shape of a feature.

The complexity and performance of the Hessian matrix and second moment ma-

trix are compared. The Hessian matrix requires significantly less processing time

than the second moment matrix. When used in combination with a blob-like

feature extractor, the Hessian produces equivalent quality features to the second

moment matrix; however, when used in combination with a corner extractor, the

feature quality is significantly reduced.

Chapter 7

The affine covariant feature extractors investigated and developed in earlier chap-

ters are robust and effective in extracting correspondences between wide baseline

views. Despite the quality of modern correspondence extraction methods, they

can not provide sufficient correspondences in all camera and scene configurations.

If cameras are too sparsely placed, produce low resolution images, or if the scene

contains few distinguishable features, then wide baseline matching techniques

may not be able to produce sufficient correspondences to allow computation of

the camera geometry.

Chapter 7 presents the Uncalibrated Wide Baseline Dense Optical Flow algo-

rithm, called WiDense. It is a method for extracting large numbers of accurate

correspondences between a pair of views using only a set of putative wide base-
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line correspondences as input. This new method does not rely on any knowledge

of the camera geometry, only the information contained in matches produced

through wide baseline matching. It can produce a useful set of correspondences

even when the input set of affine matches is not sufficient to compute the epipolar

geometry.

Chapter 7 also presents a method for evaluating wide baseline correspondence

extraction systems. The evaluation system attempts to compute the epipolar

geometry of a set of scenes using the output of a given wide baseline matching

system. The results are presented in terms of average proportion of successful tri-

als. This evaluation method is used to compare the performance of the WiDense

algorithm to existing wide baseline matching techniques. It is shown through

this evaluation that the correspondences generated by the WiDense algorithm

can be used to compute the epipolar geometry in many cases where existing wide

baseline methods alone do not provide sufficient reliable correspondences.

Chapter 8

The final chapter presents the conclusions of the thesis, and considers possible

future directions.

1.4 Original Contributions of the Thesis

Preliminaries

• A review of feature extraction and matching techniques is presented. The

review focuses specifically on affine covariant features suitable for wide base-

line matching.
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• A common algorithmic framework for saliency-based feature extraction and

adaptation is presented. This framework is used to evaluate novel methods

presented in the thesis. It allows individual modules to be exchanged easily,

so that extraction and adaptation techniques can be evaluated on a common

platform.

Scale Selection

A novel scale selection method is presented in this thesis that combines the scale

space primal sketch and modern scale selection methods. To this end, the follow-

ing contributions are made:

• The existing scale space primal sketch concept is modified to make use of

saliency map-based features as primitives, creating the scale space feature

sketch.

• An efficient algorithm is developed to construct a discrete scale space feature

sketch from a set of multi-scale features.

• An algorithm for performing characteristic scale selection using the scale

space feature sketch.

• An evaluation is performed to compare the new scale selection technique to

the existing state of the art method, when used as part of various types of

feature extractors. The evaluation shows that the new technique is superior

to the existing technique in several ways.
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Affine Adaptation

A novel affine adaptation method is presented that employs the Hessian matrix

to estimate the shape of local features. To this end, the following contributions

are made:

• Theoretical derivations show that the Hessian matrix can be used to mea-

sure the shape of image intensity distributions.

• The Hessian matrix-based iterative affine adaptation algorithm.

• An evaluation comparing the Hessian matrix to the second moment matrix

(the existing state of the art method for scale selection). The evaluation

shows that the Hessian matrix-based method achieves superior computa-

tional efficiency and equivalent feature quality when combined with a blob-

like feature extractor. When combined with a corner extractor, the Hessian

matrix-based method is more efficient, but produces features of inferior

quality, compared to the second moment matrix.

Second Tier Correspondence Extraction Methods

Several novel methods are presented that refine the quality and accuracy of cor-

respondences, and extract additional correspondences after the traditional wide

baseline matching has been performed. Contributions include:

• An alignment method for accurately aligning matched affine features and

rejecting mismatches.

• A method for producing additional matches by exploring the local vicinity

of pairs of aligned features. The method makes use of the information
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contained in the aligned pair of features to align neighbouring regions in

the images.

• A method for extracting highly accurate, small scale point correspondences

from a pair of aligned features.

• The above methods are combined to form a system, referred to as WiDense,

that extracts large numbers of highly accurate correspondences. This sys-

tem does not require knowledge of the camera or scene geometry, but only

requires a set of putative affine correspondences. Even when the input

correspondences are not sufficient to compute the camera geometry, the

WiDense system can produce many additional correspondences.

• An evaluation of the WiDense system. The evaluation shows that in sce-

narios where existing wide baseline matching methods fail to produce ad-

equate correspondences to compute the camera geometry, the additional

correspondences generated by by the WiDense system can assist in com-

puting the geometry. The addition of WiDense generated correspondences

doubled the success rate of computing the epipolar geometry in a range of

very challenging scenarios.

Evaluation Method

A new evaluation method is contributed, which measures how useful a correspon-

dence extraction system is in a practical epipolar geometry computation task.

The evaluation operates on high resolution image sets taken from a pair of cam-

eras. Ground truth data and test images are generated automatically from the

high resolution image sets. Results are presented in terms the average proportion

of trials where the epipolar geometry was computed with sufficiently low error. A

dataset containing six sets of images was compiled. The sets were captured with
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the cameras in a different configuration such that the difficulty of computing the

geometry ranged from hard to nearly impossible (given existing methods).
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Chapter 2

Projective Geometry and

Camera Calibration

Projective geometry is the study of geometric properties which are invariant under

projective transformations. It encompasses camera geometry and the formation

of images through 3D to 2D projection. The algebra of projective geometry serves

to formally express the concepts of projective geometry, and is used in the design

of image processing algorithms.

This chapter introduces basic concepts in projective geometry that are used

throughout this thesis. The subject will be treated in a manner that provides

the understanding and algebraic tools required to formulate and solve the prob-

lem of extracting correspondences between different views. Geometric invariance

properties will not be discussed in great detail. The focus will instead be on the

practical implications for image processing. For a more detailed treatment of

projective geometry, the interested reader is referred to [22].

The following section introduces basic concepts and notation. Section 2.2 defines
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various coordinate transformations and their application to image processing.

The pinhole camera model is introduced in Section 2.3, along with a brief discus-

sion on lens distortion models. In Section 2.4 the concept of epipolar geometry is

explained and in Section 2.5 some approaches to camera calibration are explored.

The chapter is concluded in Section 2.6.

2.1 Homogeneous Representation of Points and

Lines

A line in a 2D plane, R2, may be represented by an equation, ax+by+c = 0, or by

a vector of its parameters, l = [a b c]>. Multiplying this vector by any non-zero

constant generates an equivalent line vector, since the line equation represents the

same line. The class of vectors subject to this equivalence relationship is known

as homogeneous vectors.

The line equation can be expressed as the inner product of a vector containing the

point coordinates and the line vector, [x y 1] [a b c]> = 0. Multiplying by a non-

zero constant gives an equivalent expression, [kx ky k] [a b c]> = 0. The vector

[x y 1]> is therefore a homogeneous vector representation of the coordinates [x y]>

in R2. The representation, p = [x y w]>, is referred to as the homogeneous

coordinate representation of the inhomogeneous point p =
[

x
w

y
w

]>
.

The equivalence of [x y 1]> and [kx ky k]> in projective geometry may be mod-

elled in terms of the projection of a point in R3 through the coordinate origin to

a plane parallel to the x− y plane and intersecting the z axis at z = 1. The ray

passing through the origin and the point kp = [kx ky k]> also passes through the

point p = [x y 1]> on the projection plane. These two points are therefore equi-

valent since they correspond to the same projection ray and are indistinguishable
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in terms of the projection plane.

The coordinate space in which the homogeneous point, p = [x y w]>, and line

l = [a b c]> are defined is referred to as the projective two space, P2. Sim-

ilarly, projective three space, P3, may be defined with homogeneous points,

p = [x y z w]>, lines, l = [a b c d]> and planes, π = [a b c d]> (represented

by their normal vectors).

The homogeneous vector representation has several convenient characteristics.

Firstly, points at infinity are simply represented as p = [x y 0]>. The equiva-

lent inhomogeneous point,
[

x
0

y
0

]>
, has no real meaning, but the homogeneous

representation may be used meaningfully in algebra and is critical to camera

calibration. Secondly, linear coordinate transformations may be represented as a

simple matrix multiplication. For example, in inhomogeneous coordinates a point

p = [x y]> may be scaled by factor a and translated by t = [tx ty]
> as,

p
′
= ap + t.

In homogeneous coordinates, this may be written as,

p
′
=


a 0 tx

0 a ty

0 0 1

p.

Linear transformations are the subject of the following section.

2.2 Projective Transformations

This section defines various transformations of P2 and discusses their use and

implementation for image processing. The class of transformations that will be

discussed is referred to as a projective transformation, a projectivity, or a homog-
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raphy. A projective transformation, H (x) of homogeneous coordinates x has the

following properties:

1. H is a mapping from Pn to itself, H : Pn → Pn.

2. H is a linear mapping, such that it may be expressed as multiplication

with a non-singular matrix, H (x) = Hn×nx, where Hn×n is a homogeneous

matrix (defined up to an arbitrary non-zero scale factor). The mapping is

therefore also invertible.

3. If any three points, x1, x2 and x3 are collinear, then the transformed points,

Hx1, Hx2 and Hx3, are also collinear.

4. The composition of two projective transformations produces another pro-

jective transformation, H1 (H2 (x)) = H1H2x = H12x.

5. Because the coordinate system is homogeneous, transformation matrices

are also homogeneous – kH is equivalent to H for any constant, non-zero

k.

These transformations can be used to describe the relationship between different

projected images in several ways. If two images are produced by projecting

through the same point onto two different planes, then the images are related

by a projective transformation. Similarly, a planar surface projected through

different viewpoints is related to each image by a projective transformation, and

hence the images are also related to each other by a projective transformation.

Two projections, through different viewpoints, of a surface that is not planar are

not related by a projective transformation.
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2.2.1 2D Projective Transformations

In P2, a general projective transformation H has eight degrees of freedom. It is

possible to parameterise a projective transformation such that each parameter

represents a degree of freedom and a distinct geometric effect. A transformation

may also be decomposed into a series of transformations so that each one addresses

a particular geometric effect. This section presents each of these geometric effects

as a separate transformation before combining them into a general projective

transformation. Transformation matrices may be expressed in terms of their

parameters, for example M (m1, m2, . . . ,mn), or simply by their symbol, M, if

the parameters have previously been defined.

Translation

A translation transformation may be defined as,

T (tx, ty) =

 I t

0> 1

 =


1 0 tx

0 1 ty

0 0 1

 .

A translation simply shifts all points in the same direction, Tx = x + t. The

inverse translation is the translation in the opposite direction, T−1 (tx, ty) =

T (−tx,−ty).

Rotation

A rotation around the coordinate origin may be defined as,

R (θ) =

 R
′

0

0> 1

 =


cos (θ) −sin (θ) 0

sin (θ) cos (θ) 0

0 0 1

 .
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The inverse rotation is the rotation in the opposite direction, R−1 (θ) = R (−θ).

In order to rotate the coordinates around a point other than the origin, the point

must first be translated to the origin, then the rotation must be applied and

lastly the point must be translated back from the origin to its original location,

R (θ, cx, cy) = T (cx, cy)R (θ)T (−cx,−cy).

Scaling

A scaling transformation is defined as,

K (k) =

 K
′

0

0> 1

 =


k 0 0

0 k 0

0 0 1

 .

Note that scaling does not consist of simply multiplying a point vector by a

constant. Because homogeneous vectors are used, such an operation generates

an equivalent point vector. On the other hand, K (k)x = (kx, ky, w)> results in

scaled coordinates. The inverse scaling is, K−1 (k) = K (k−1).

Anisotropic Scaling

An anisotropic scaling transformation scales coordinates by different amounts

in two orthogonal directions. The scaling introduced in the previous section, in

contrast, is referred to as isotropic scaling, since it affects coordinates to the same
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degree in all directions. An anisotropic scaling transformation may be defined as,

A (q, φ) =

 A
′

0

0> 1

 = R (−φ)D (q)R (φ) ,

D (q) =


q 0 0

0 q−1 0

0 0 1

 .

This transformation may be interpreted as a rotation, followed by an anisotropic

scaling along the coordinate axes, and finally a counter rotation. The axis of

scaling is specified by parameter φ. The ratio of the amount of scaling along each

orthogonal direction is q2. Note that in the above definition, the determinant

of the matrix D is one. This ensures that, when a transformation contains both

isotropic and anisotropic scaling, a distinction can be made between the two com-

ponents and so that their parameters each represent a unique degree of freedom.

The inverse is simply, A−1 (q, φ) = A (q−1, φ).

Projective Scaling

Projective scaling models the perspective effect and is defined as follows,

P (v1, v2) =

 I 0

v> 1

 =


1 0 0

0 1 0

v1 v2 1

 .

Transforming a point using P gives Px = (x, y, v1x + v1y + 1), or equivalently,

Px =

(
x

v1x + v1y + 1
,

y

v1x + v1y + 1
, 1

)
.

This transformation introduces scaling that varies with a change in coordinates.
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Reflection

A reflection negates one of the coordinates. The two reflections are defined as,

Nx =


−1 0 0

0 1 0

0 0 1

 , Ny =


1 0 0

0 −1 0

0 0 1

 .

Reflections will not be used in this thesis.

Transformation Classes

Transformations are classified according to invariance properties – the geometric

properties that are preserved after the transformation has been applied. These

classifications are used to distinguish between different types of transformations.

A Euclidean transformation, or isometry, consists of rotation and translation

(three parameters),

M =

 R
′

t

0> 1

 .

A similarity transformation consists of rotation, translation and isotropic scaling

(four parameters),

S =

 R
′
K

′
t

0> 1

 .

An affine transformation includes anisotropic scaling (six parameters),

H =

 A
′
R

′
K

′
t

0> 1

 .

A projective transformation includes projective scaling (eight parameters),

P =

 A
′
R

′
K

′
t

v> 1

 . (2.1)
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A projective transformation may also be defined as,

P =

 P
′

t

v> 0

 .

In this case, decomposition into separate components is not possible as it is in

equation 2.1.

2.2.2 Image Transformation

One may state that point x is mapped to point x
′

by transformation H, ac-

cording to x
′

= Hx. Digital images consist of intensity values measured at a

set of discrete sampling points. When transforming images, it seems natural to

express the transformation as the transfer of the intensity value at point xi to

the point x
′
i = Hxi for all i. This usually results in the intensity samples being

transferred to coordinates that are not on a convenient sampling grid. A more

practical approach is to map the sampling points of the transformed image to the

source image using the inverse transformation, and using bilinear interpolation

to compute the new samples. The transformation of image I (x) to image I
′
(x)

using transformation matrix H is expressed as follows,

I
′
(x) = I (Hx) . (2.2)

Here x can be any point (or all points) within the domain of image I
′
(x). It is

possible that Hx falls outside the domain of image I (x). A common approach

to dealing with this situation is to assign a background intensity value (usually

zero) to I
′
(x) for all values of x where Hx falls outside image I (x).
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2.3 The Pinhole Camera Model

Cameras project rays of light from the 3D world onto a 2D image plane. The

action of a camera is commonly modelled using the pinhole camera model, or the

central projection camera model. In this model, all projection rays pass through

a single point, the camera centre. In reality, cameras have a significantly large

aperture and a lens that deflects light. A high quality lens may produce an image

that is very similar to an equivalent pinhole camera. The distortions introduced

by lenses may be accounted for by a non-linear mapping between distorted lens

coordinates and undistorted, or ideal projection coordinates. This thesis will

make use of the pinhole camera model only and assume that lens distortion is

negligible.

The pinhole camera model consists of a 3×4 matrix that projects 3D homogeneous

points to 2D homogeneous points. The model is defined as,

P = KR
[

I −c
]

=


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 ,

K =


fmx s xc

0 fmy yc

0 0 1

 .

Here c is the position of the camera centre in the world coordinate frame (P3), R

is a 3 × 3 rotation matrix representing the orientation of the camera coordinate

frame, and K is referred to as the camera calibration matrix. The elements

in K are referred to as the camera intrinsic parameters. f is the focal length

– the distance of the image plane to the camera centre. mx and my are the

number of pixels per unit distance in the image. In most cases the camera pixels

are square, so that mx = my, and they are often chosen to equal 1, so that f is

expressed in terms of pixels. s is the skew parameter and is zero for most cameras
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(with orthogonal pixel arrays). (xc, yc)
> is the principal point – the point, in pixel

coordinates, where the line joining the camera centre and the image plane (known

as the principal axis) is perpendicular to the image plane.

The action of the camera on world point x3 ∈ P3 to produce image point x2 ∈ P2

is expressed simply as,

x2 = Px3.

2.4 Epipolar Geometry

Epipolar geometry describes the geometry of two cameras or views. It depends

on the intrinsic parameters and relative orientation of the camera, but is inde-

pendent of scene geometry. Epipolar geometry is conveniently represented by the

fundamental matrix, F, a 3× 3 matrix with rank two. The properties of epipolar

geometry will be explored in terms of the fundamental matrix and two cameras,

P and P
′
with camera centres c3 and c

′
3.

The baseline of two cameras is the line joining the camera centres. The epipoles,

e and e
′
are the intersections of the baseline with the image planes. Alternatively,

epipole e is the image of camera centre c
′
3 as viewed from P, e = Pc

′
3. Similarly,

e
′
= P

′
c3.

Any plane that contains the baseline is known as an epipolar plane. The inter-

section of an epipolar plane with an image plane is an epipolar line. An epipolar

plane may be defined by a point in space, x3 and the two camera centres. This

plane produces epipolar lines l and l
′
in each image. The points x2 and x

′
2 that

are the images of x3 lie on these epipolar lines, so that x>2 l = x
′>
2 l

′
.

The fundamental matrix provides a mapping from the image of a point in one
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Figure 2.1: A pair of views of the same scene with epipolar lines of selected points
overlayed in blue.

view to the corresponding epipolar line in the other view, l = F>x
′
2 and l

′
= Fx2.

Figure 2.1 illustrates this property – for each point marked with a white cross and

ellipse, a blue epipolar line is overlayed on the other image, where it intersects

the corresponding point. From this property, it is found that x
′>
2 Fx2 = 0. This

property is particularly useful when searching for correspondences, since it allows

the search space to be restricted to the vicinity of the epipolar line.

All epipolar lines intersect the epipole, e
′>l

′
= 0, therefore e

′>Fx2 = 0 for all x2.

Therefore e
′>F = 0 and similarly e>F> = Fe = 0. e

′
is the left null-vector of F

and e is its the right null-vector.

One of the most important properties of the fundamental matrix is that it can

be used to define a pair of camera matrices as,

P =
[

I 0
]
, P

′
=

[ [
e
′]
×F e

′
]
. (2.3)

The above cameras are related to the real cameras by a projective transforma-

tion. When reconstructing cameras and scenes from correspondences between

two cameras in general position, it is only possible to produce a reconstruction

with projective ambiguity – the reconstruction differs from the real system by

a projective transformation which cannot be resolved without more information
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about the scene. The reconstruction in equation 2.3 is therefore a most useful

result. The fundamental matrix is often used in the above way as the first step

in reconstructing cameras and scenes.

2.5 Camera Calibration

The camera matrix for any camera can be computed from a set of correspond-

ing 3D and image points or lines by means of the direct linear transformation

algorithm and appropriate data normalisation. The most difficult part of this

process is acquiring the correspondences. Measurements must be taken in the 3D

world and corresponding points or lines marked in the image. This is a largely

manual process. A common method for acquiring accurate world coordinate mea-

surements is to construct a calibration object with many regularly spaced points.

A manual or image processing method is then used to locate the corresponding

points in images. These methods all require a significant amount of labour on

the part of an operator or technician for each camera.

It is possible to extract camera models purely from correspondences between

multiple camera views. Unfortunately, without real world measurements, the

absolute position, orientation and scale of a set of cameras can not be recovered.

Only the relative camera positions, orientations and calibration matrices can be

found. In the case where only two cameras are available, the reconstruction will

contain projective ambiguity – that is, the reconstruction will be related to the

real cameras by an unknown projective transformation. A reconstruction up to

a similarity or projective transformation is, in many cases, sufficient in order for

multiple camera computer vision techniques to effectively transfer information

between views.
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It is therefore possible to compute a sufficient camera calibration model using

only correspondences between views. The calibration procedure may by auto-

mated by automating the process of extracting correspondences between views.

Automatic correspondence extraction is a difficult problem if the cameras are

placed in a sparse arrangement, as they often are in surveillance scenarios. This

is the motivation for the research presented in this thesis – better methods for

extracting correspondences in difficult scenarios are sought in order to address

the requirements for automatic calibration.

2.6 Chapter Summary

This chapter presents the basic tools of projective geometry that will be used

throughout this thesis to express and solve problems. The concepts of homoge-

neous representation of coordinates, lines, planes and transformations are intro-

duced. Various types of linear projective transformations are described. These

will be used extensively throughout this thesis to represent features and local

image relations.

The central projection camera model, epipolar geometry and camera calibration

are briefly introduced. These concepts form the basis of understanding cam-

era operation and relationships between cameras and provide the motivation for

developing automatic correspondence extraction techniques.



Chapter 3

The Wide Baseline Matching

Problem

Image alignment or image registration is one of the fundamental problems in im-

age processing and computer vision. It is an essential step in any system that

attempts to make some comparison between sets of visual information, extract

meaningful measurements from images, or combine visual information from mul-

tiple sources. Automatic calibration aims to align multiple views of a scene by

means of a model of the cameras and scene. When the baseline (the line join-

ing camera centres) is relatively large, then finding the alignment can be very

challenging. This chapter examines the problem of aligning wide baseline image

pairs and broadly examines wide baseline matching as a method for addressing

this problem.

Section 3.1 defines the wide baseline image alignment problem. Feature-based

alignment is presented in broad terms in Section 3.2. The discussion focuses on

the wide baseline scenario, though feature-based methods are suitable for many

applications. Methods for evaluating the performance of local feature extractors
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are reviewed in Section 3.3. Section 3.4 reviews the published literature pertaining

to the feature extraction, description and matching techniques relevant to wide

baseline matching. The chapter is concluded in a summary in Section 3.5.

3.1 The Wide Baseline Matching Problem

A picture may be worth a thousand words, but it captures only a fraction of

the information in a scene. Images captured from different view points capture

different information from the scene. By combining the information from multiple

2D views it is possible to recover some of the 3D world and camera configuration

information. It is only possible to combine information from different views if the

relationship between the views and the relationship of related image segments

can be discovered. These are the fundamental problems in computer vision –

alignment and segmentation.

The images of two cameras viewing the same scene appear different due to the dif-

ferent relative arrangement of objects in the scene. The difference in appearance

is limited if the two cameras are placed close together. Increasing the distance be-

tween cameras, or the baseline, results in complicated changes in appearance that

are unpredictable without extensive knowledge of the scene and cameras. The

two images cannot be aligned by a linear transformation of image coordinates,

unless the scene consists of only one planar surface.

Apart from the effects of projection, the variation in appearance between widely

separate views may be influenced by the following factors:

• Camera lens distortion (non-linear).

• Different photometric responses of the cameras (as a result of vignetting or
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Figure 3.1: Images from two of the surveillance cameras in the PETS2006
database. The two viewpoints are widely separated, but share some overlap.

automatic gain control, for example).

• Specular reflections (reflection of bright light sources off some surfaces).

There is often no prior knowledge of how any of the above effects are pre-

sented in a particular case. Figure 3.1 shows an example of two cameras in a

typical surveillance network with some overlapping view (sourced from http:

//www.cvg.rdg.ac.uk/PETS2006/data.html). This example exhibits many of

the characteristics listed above. It is difficult, even for a human, to find the cor-

responding regions between these two images. The task of aligning such views

automatically poses a great challenge.

The relationship between widely separated views can only be fully expressed

in terms of a geometric model that captures the 3D to 2D projection, such as

epipolar geometry or calibrated camera models and 3D scene models (Chapter 2).

The complex relationship between views makes it impossible to align the images

by comparing them directly. However, it is feasible to align local subregions of

the images that correspond to small, continuous surface sections in the 3D scene.

The alignment problem is considerably simpler in a local sense than the global

alignment problem. The following approximations may be used to simplify the

http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://www.cvg.rdg.ac.uk/PETS2006/data.html
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alignment of a small local area:

• Lens distortion is locally negligible (except for very wide angle lenses, not

treated in this thesis).

• The photometric relationship is approximately linear over small correspond-

ing regions.

• Surfaces are locally planar. Different projections of a small local surface are

therefore related by a linear transformation and may even be approximated

by an affine transformation.

• The relative order of elements in a local area is preserved across views.

• Occlusions and regions affected by specular reflections may be treated as

binary – a particular region is either occluded (and not observable) or not

occluded.

It is possible to align small local regions individually across views, and to thereby

collect a set of corresponding regions. An appropriate geometric model relating

the two views may be computed using the set of correspondences. The wide

baseline image alignment problem is thereby reduced to a problem of finding

corresponding local regions – the wide baseline matching problem.
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3.2 Matching using Local Features

Despite the assumptions and approximations that may be applied when matching

small local regions, wide baseline matching is still a difficult task. There are

several issues that need to be taken into consideration in addressing the problem.

Firstly, it is not possible to align any and all regions in an image. A region

must contain sufficient information to identify it uniquely across multiple views.

It must also be well localised spatially and its scale and shape must be well

defined. Regions that occupy only a few pixels in the image, for example, do

not contain sufficient information to distinguish them from all other regions.

Regions of homogeneous intensity do not provide a means for accurate localisation

and cannot be accurately aligned, even if they can be matched. It is therefore

necessary to carefully select the regions to align.

Local image feature extraction provides a method to deal with the problem of

selecting regions for matching. Local image features are patterns in an image that

are defined in limited image areas and are distinguishable from the surrounding

image in some way. Various types of local features may be found in images,

including line segments, contours, corners and blobs (examples include [17, 32,

49]). Local features are spatially well defined – they have a location and spatial

extent. Global image features, in contrast, are a representation of information in

the entire image.

The next problem is to establish correspondences between selected features. With

proper normalisation it becomes possible to compare feature regions directly

through pixel differences. Directly comparing normalised regions not only re-

quires a large amount of memory and computation time, but it does not yield

good results. Feature descriptors provide a method for representing features in

a more compact manner and at the same time make the matching process more
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robust. A descriptor is a vector representation computed from the feature image

region.

Matching features using descriptors usually results in a set of putative corre-

spondences that is contaminated by incorrect matches. In difficult wide base-

line scenarios there may be more incorrect matches than correct matches. The

geometric model parameters may be computed from the set of putative corre-

spondences by means of a robust parameter estimation method such as Random

Sample Consensus (RANSAC) [19] or Least Median of Squares (LMS) [50].

In summary, wide baseline matching, or feature-based alignment in general, fol-

lows this procedure: First regions that are good candidates for alignment are

selected – the local features. Each local feature is assigned a descriptor based

on the feature appearance. Sets of features are then compared across views by

means of their descriptors, in order to select matching features. The scene ge-

ometry, in terms of some parametric model, is recovered from the set of putative

correspondences using a robust parameter estimation method.

The rest of this section introduces basic and general concepts relevant to local

feature-based alignment. The remainder of the chapter reviews the published

literature on the topic.

3.2.1 Terminology

The computer vision literature makes use of a large number of terms to describe

various concepts related to local features. Ambiguities and inconsistencies in

terminology are common. This section presents the terminological conventions

used throughout this thesis.
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Feature. Used to indicate local image feature. This thesis is concerned with local

image features only. Referring to these as simply features is therefore unambigu-

ous. A number of alternative terms appear in the literature, including interest

point or point of interest and region of interest (ROI). In practice, a feature

consists of a support region that defines the feature (see below). A feature is

therefore interpreted as the information required to isolate the feature support

region.

Feature support region. Features generally have a local image region associated

with them, either because this region defines the structure of the feature or be-

cause this region influenced the feature extractor to select the feature. This is

referred to as the support region in this thesis. Some types of features, such as

corners, may ideally be represented by a point – a geometric entity with a defined

location, but no spatial extent. In practice, images are discrete and the majority

of the algorithms used to extract features must process a significant region of the

image in order to extract a feature. Most practical features therefore at least

have a finite spatial extent, defining its support region. The centre point of this

region can usually be employed by geometric algorithms as if the feature were a

point structure.

Feature extractor. An algorithm or its implementation that processes an image

to detect the presence of local image features and extract these features. The

term feature detector is also frequently used with the same meaning. Feature

extractor is used in this thesis since most of the relevant algorithms extract a

significant amount of information in conjunction with each feature, rather than

merely detecting the presence of features.

Descriptor. A vector representation used to characterise local features so that

they may be matched to corresponding features and distinguished from dissimilar

features. A descriptor is computed from the feature support region.
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Covariance. If a feature extractor is covariant under a specific type of transfor-

mation, then if the feature extractor is applied to two images related by such a

transformation, the corresponding features it produces are related according to

the same transformation. In other words, if two images are related according to

I2 (x) = I1 (Hx), and the extractor is covariant to the class of transformation

that H belongs to, then corresponding features extracted from these two images

will be related according to F2 = HF1 (see Section 3.2.2 below for a discussion on

representing features by normalisation transformations). This information may

be used to extract invariant descriptors (see below).

Invariance. If a feature extractor is invariant under a specific type of transfor-

mation, then if the feature extractor is applied to two images related by such

a transformation, it will produce the same features from both images. In other

words, if two images are related according to I2 (x) = I1 (Hx), and the extractor

is covariant to the class of transformation that H belongs to, then corresponding

features extracted from these two images will be related according to F2 = F1.

A covariant pair of corresponding features provide a means for normalising their

support regions so that the normalised regions are invariant. If I2 (x) = I1 (Hx)

and F2 = H−1F1, then I2 (F2x) = I1 (F1x) (at least to some local extent). This

is explained in more detail in the next section.

3.2.2 Feature Representation and Description

As defined in the previous section, a feature is defined as the information required

to isolate the feature support region. In this thesis, features are represented by

an affine transformation, F, that represents a mapping from a unit circle centred

at the origin to an ellipse circumscribing the feature support region. The feature
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transformation is composed as,

F (tx, ty, q, φ, θ, k) = T (tx, ty)A (q, φ)R (θ)K (k) . (3.1)

The component transformations that make up F are defined in Chapter 2, Sec-

tion 2.2.1. The parameters of each feature’s transformation are determined by

the feature extractor. Not all feature extractors produce features with full affine

transformations, but all extractors at least provide the translation component

(which gives the feature location).

The feature transformation can be used to sample a normalised image for the

purpose of computing the descriptor. The normalised image is computed as,

In (x) = I
(
FK

(
k−1

d

)
x
)
, x, y ∈ [−kd, kd] , (3.2)

where kd is the desired resolution of the normalised image. Feature descriptors

are computed from the normalised images of features because the normalisation

accounts for some of the local variations in image appearance.

If an affine covariant feature extractor is used to extract two corresponding fea-

tures, F1 and F2, from a pair of images, I1 (x) and I2 (x), related by an affine

transformation I1 (x) = I2 (HAx), then by definition the features are related by

the same transformation that relates the images, F1 = H−1
A F2. A consequence of

this fact is that the normalised images computed from each feature are the same

and hence the descriptors computed from these normalised images are the same.

A covariant feature therefore allows the computation of an invariant descriptor.

In practice the features will not be perfectly covariant, since they are computed

independently from different images with noise. This results in some variation in

the normalised images and descriptors.
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3.3 Evaluation Methods

Two evaluations of affine covariant feature extractors have been published, each

with its own evaluation method. These two methods are described in this section.

The relevant results of the two evaluations are discussed as part of the review of

feature extractors in Section 3.4.1.

3.3.1 Feature Repeatability Test

The affine feature extractor evaluation method presented in [45] computes four

metrics – repeatability, correspondence count, matching score and the number of

correct matches. An image dataset is provided in which the images are related

by planar projective transformations. The test metrics are computed using the

knowledge of the relationship between images.

The repeatability metric is the affine extension to the point correspondence re-

peatability introduced in [52]. An overlap error is defined to measure the amount

of error in relative position and shape of corresponding features detected in dif-

ferent views. Overlap is defined as,

εo = 1−
E (µa) ∩ E

(
H>µbH

)
E (µa) ∪ E (H>µbH)

.

Here E (µ) defines a region bound by the elliptic curve x>µx = 1. The ellipse is

derived from the affine feature shape and is normalised to have an average radius

of 30 pixels. The normalisation is necessary because the overlap error of features

could otherwise be reduced by simply enlarging the features. H is the homography

mapping image b to image a, so that µ1 = H>µ2H, if µ1 and µ2 are exactly

corresponding elliptic curves in images a and b respectively. E (µa)∩E
(
H>µbH

)
is the union of the regions and E (µa) ∪ E

(
H>µbH

)
is the intersection. The

intersection of the regions is computed numerically. Features with overlap error
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below 40% are considered repeated and are counted as correspondences. The

repeatability measure is defined as the number of correspondences divided by the

minimum number of features in the common parts of the two images.

The matching score and number of correct matches give an indication of how

well the features can be matched using a given descriptor. Features are matched

using their descriptors and one-to-one nearest neighbour matching. Matches are

deemed correct if the overlap error of a given match is below 40%. The matching

score is the number of correct matches divided by the minimum number of features

in the common part of the two images.

The dataset consists of eight sets of images, accompanied by a set of trans-

formations relating the test images to the reference image in each set. Each

set of images exhibits a variation of one property. There are two image sets

that contain a change in viewpoint, two that contain a change in scale, two

that contain varying blur (camera focus), one that contains varying JPEG com-

pression and one with varying camera exposure time. The test data, ground

truth homographies and test procedure scripts are readily available from http:

//www.robots.ox.ac.uk/~vgg/data/data-aff.html. The main shortcoming of

this evaluation method is the small number of test images in the dataset.

This evaluation method is used to evaluate some of the new feature extraction

methods presented in this thesis. An efficiency metric was added to measure the

computational efficiency with which a feature extractor produces correct matches.

The efficiency is expressed in terms of the rate, r, at which matches are produced,

r =
ci

ti + t0
,

where ci is the number of correct matches between reference image 0 and test

image i, and ti and t0 are the times taken to extract features from image i and

0, respectively.

http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
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Literature

3.3.2 3D Object-based Evaluation

In [47], an evaluation is presented that uses a database of 100 objects, pho-

tographed on a turntable at 5◦ rotation intervals, in three different lighting con-

ditions, using two cameras. The evaluation operates by extracting features from

all of the images in the database, as well as a set of unrelated images (to gener-

ate background interference features). Sample features are then matched to the

entire database using nearest neighbour matching. The accuracy of a match is

verified using three tests. The first test is the second nearest neighbour ratio test

described in [39]. The second test checks that the matched feature belongs to

the correct object. The last test uses the epipolar constraints of the two images

containing the matched features and an auxiliary view.

Unfortunately the camera calibration information is not provided with the im-

age data. The calibration is also not consistent throughout the database due

to problems encountered during the acquisition. These problems make using

this database and ensuring the quality of the results excessively difficult. The

dataset is available at http://www.vision.caltech.edu/pmoreels/Datasets/

TurntableObjects/.

3.4 Local Feature Extractors, Descriptors and

Matching in the Literature

3.4.1 Feature Extractors

A very large number of local feature extractors have been proposed for various

applications. A detailed review has been published in [54]. Two performance

http://www.vision.caltech.edu/pmoreels/Datasets/TurntableObjects/
http://www.vision.caltech.edu/pmoreels/Datasets/TurntableObjects/
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evaluations have been presented in [45] and [47]. Among the array of available

feature extractors, only those that are affine covariant are sufficiently robust to aid

in the calibration of widely separated cameras. The following affine covariant fea-

ture extractors are reviewed in this section. The Harris Affine and Hessian Affine

extractors [43, 45] are part of a group of extractors referred to as saliency map-

based feature extractors. This class of extractors is studied extensively in this

thesis. The Maximally Stable Extremal Regions (MSER) extractor [40] achieved

the best results in many of the performance tests and is used in some experiments

in this thesis. Other affine covariant feature extractors include Edge Based Re-

gions (EBR) and Intensity Based Regions (IBR) [55, 56, 58], Salient Regions

[24, 25] and Stable Affine Frames (SAF) [48].

The work in this thesis is based on three extractors – MSER, Harris Affine and

Hessian Affine. These three extractors achieve superior results in the published

evaluations and make use of some of the most thoroughly researched and tested

techniques.

Saliency Map-based Extractors

This class of extractors operates by computing a saliency map from an image

and selecting the local maxima or minima of this map as points of interest. The

saliency map is a function of image partial derivatives and indicates regions of high

information content. Various saliency operators have been proposed, including

the Harris & Stephens operator [21], the Determinant of Hessian operator [6], and

the Laplacian of Gaussian and Difference of Gaussians [39] operators. Features

extracted using a saliency map are not directly affine covariant, but are only

isometrically covariant. Affine covariance is achieved by estimating the scale and

shape of the features through a process called affine adaptation.
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Certain saliency map-based extractors have been shown to perform relatively well

(the Hessian and Harris Affine extractors [43, 45] in particular). Although the

MSER extractor (discussed below) requires less processing time per image and

has been shown to be more repeatable in some tests, the saliency map-based

extractors produce larger numbers of features and are superior in scenes that do

not contain many planar features [47]. Saliency map-based extractors and affine

adaptation are discussed in detail in Chapters 4 through 6. Much of the research

reported in this thesis makes contributions in the field of saliency map-based

feature extractors.

Maximally Stable Extremal Regions

The operation of the MSER extractor [40] is analogous to sequentially applying

a range of thresholds to an image and keeping track of the connected sets of

pixels above and below the threshold. These connected sets of pixels are called

extremal regions because either all the pixels in a region have higher value than

the region border, or they all have lower value. An extremal region is considered

maximally stable at a given threshold if the change in region size over a local

range of thresholds is minimal.

The output of the MSER extractor is the set of pixel coordinates for each re-

gion. This may be converted to the feature transformation representation (see

Section 3.2.2) by computing the transformation parameters from the first and

second order moments of the pixel locations. The extractor algorithm is very

similar to the watershed algorithm and may be implemented in a computation-

ally efficient manner [10, 15, 28].

MSER attained the highest scores in many of the tests performed in the evalua-

tions [45, 47]. It is most effective when the scene contains many planar regions.
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When a scene does not contain many planar regions, the performance of the

MSER extractor falls below that of the saliency map-based methods. The most

significant shortcoming of MSER is that it produces significantly fewer correspon-

dences than other methods.

Edge Based Regions Extractor

The EBR extractor [55, 56, 58] uses the Harris & Stephens operator [21] to select

corner points. The Canney edge detector [9] is then used to extract nearby edges

in the image. The Harris corner is labelled p and a point on edge i leading away

from p is labelled pi (si), where si is an arbitrary parameter of the edge. A

relative affine invariant parameter is defined for each point as,

li =

∫
abs

(∣∣∣ ∂pi

∂si
p− pi (si)

∣∣∣) dsi,

where abs () is the absolute value. The ratio of two of these relative invariants,

li
lj
, is an absolute affine invariant. By requiring that l = l1 = l2 for two points, p1

and p2, and defining a point q that completes the parallelogram defined by the

points p,p1,q,p2, a region, Ω (l), is defined that is a function of the parameter l.

Regions are selected from Ω (l) where both of the following photometric quantities

go through an extreme value over l,

P1 = abs


˛̨̨̨
˛ p1 − pg p2 − pg

˛̨̨̨
˛˛̨̨̨

˛ p− p1 p− p2

˛̨̨̨
˛

 L,

P2 = abs


˛̨̨̨
˛ p− pg q− pg

˛̨̨̨
˛˛̨̨̨

˛ p− p1 p− p2

˛̨̨̨
˛

 L,
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where,

L = M1√
M0M2−M2

1

,

Mn =
∫

Ω
In(x, y)dxdy,

pg = 1
M0

 ∫
Ω

I(x, y)xdxdy∫
Ω

I(x, y)ydxdy

 .

In the case where both edges are straight, l = 0 and the above method cannot

be used. In these cases, the constraint l = l1 = l2 is not used and Ω is instead

defined in terms of s1 and s2. Values for s1 and s2 are chosen where the valleys

of P1 and P2 intersect. The minima of P1 and P2 are not used, since they are not

well defined in this case.

The EBR extractor performs relatively poorly in the majority of tests in [45]. It

achieved at best similar results to Harris Affine and Hessian Affine, but scored

significantly lower than these extractors in many of the tests. It also requires two

orders of magnitude more computation time per image.

Intensity Based Region Extractor

The IBR extractor [55, 56, 58] selects extrema of the image intensity function as

region centre points. It then evaluates the following function along rays extending

outward from the selected region centre:

f (r) =
abs (I (r)− I0)

max
(R r

0 abs(I(r)−I0)dr

r
, ε

) ,

where r is the radius from the centre point, I0 is the image intensity at the

centre point, and ε is a small number used to prevent dividing by zero. The

region boundary is marked by finding the first local maximum along f (r) for a

set of rays emanating from the centre point. An ellipse is fitted to these points
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by computing their second order moments. Finally, the size of the ellipse is

multiplied by two.

The main shortcoming of IBR is that it produces very few features compared to

other extractors. It obtains good repeatability in the change of viewpoint test

with a structured scene, but performs poorly in all other tests [45, 47].

Salient Regions

The Salient Regions extractor [24, 25] evaluates an entropy function over all

possible elliptical regions in the image (a five parameter space corresponding to

the ellipse parameters). For a given ellipse, the entropy is computed as,

H = −
∑

I

p (I) logp (I) ,

where p (I) is the probability density function of the image intensities in the

elliptical region. Where the entropy reaches maxima over scale, the entropy is

multiplied by the derivative of the pdf over scale,

W =
s2

2s− 1

∑
I

∣∣∣∣∂p (I)

∂s

∣∣∣∣ ,

to compute the saliency measure, Y =WH (s being the scale parameter).

This extractor is extremely time consuming – it requires on the order of 30 min-

utes per image. This is due to the exhaustive evaluation of entropy over a five

parameter affine scale space. It also achieves the lowest scores of all the tested

extractors in the majority of tests.
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Stable Affine Frames Extractor

The SAF extractor [48] constructs affine frames on intensity isophotes and selects

frames that are sufficiently stable. Affine frames are formed by finding sets of

three points on an isophote – two points defining a bitangent and the furthest

point from the bitangent along the isophote between the bitangent points. The

bitangents are found using the method in [8]. Stable frames are selected by

grouping frames in adjacent intensities using a similarity measure. A group of

similar frames is said to be stable if the group contains a sufficient number of

similar frames.

The evaluation of the SAF extractor in [48] presents a limited set of results from

the test presented in [45] (SAF was developed subsequent to the publication of

[45, 47] and was not included in those evaluations). From the limited results it

appears that the repeatability of the SAF extractor is on par with MSER, Hessian

Affine and Harris Affine, while it consistently produces more correspondences. No

matching score results were published. This extractor appears to be an interesting

candidate for wide baseline matching, however, due to time constraints it could

not be implemented and properly evaluated.

3.4.2 Descriptors

Once features have been extracted from multiple views, they must be compared

and matched across views. Comparing their support region images or normalised

support region images is both computationally expensive and ineffective. It is

computationally expensive because a significant number of pixels for each feature

from one image must be compared to the pixels of every feature from a second

image. The complexity is therefore a product of the number of sample pixels,
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and the number of features in both images. It is ineffective because features

do not provide perfectly aligned images, even when normalised. This is due

to the fact that features are extracted independently from each image and are

not aligned directly. Feature descriptors offer a better solution to the problem,

because they provide a more compact representation of features, require fewer

comparison operations, and they introduce a limited degree of robustness to slight

variations in feature appearance. A vector representation also allows the set of

features to be stored in a structure that is more efficiently searched, such as a

k-D tree.

Evaluations of feature descriptors have been published in [42, 44, 47]. In

these evaluations the descriptors based on the Scale Invariant Feature Trans-

form (SIFT) [38, 39] perform the best. The SIFT descriptor is used throughout

this thesis. Some local feature descriptors are reviewed below.

Histogram-based descriptors

Descriptors that make use of histogram techniques have been very successful.

They are effective because they capture the shape of local features very well and

encode this shape in a high dimensional vector. The Scale Invariant Feature

Transform (SIFT) is the most significant among these and is the inspiration for

the other methods.

SIFT, as proposed in [38, 39], consists of a feature extractor and descriptor. This

discussion will focus on the descriptor only. SIFT captures the distribution of

gradients in a local image region by constructing a 3D histogram of gradients.

The histogram dimensions consist of the x and y position in the normalised

image and the orientation of the local gradient. A typical configuration divides

the spatial dimensions into 4 bins and the gradient orientation into 8 bins. This



50
3.4 Local Feature Extractors, Descriptors and Matching in the

Literature

gives a total of 128 bins, which are used directly as a 128-dimensional descriptor

vector.

The intensity gradient magnitude and orientation is computed at each pixel in

the normalised image. The gradient is weighted by a Gaussian window centred at

the normalised image centre, in order to give the central regions greater weight-

ing. Each gradient is distributed to the bins that are nearest to its position and

orientation using a trilinear weighting method, to avoid boundary effects. The

descriptor vector is composed from the elements of the histogram. The vector is

normalised by normalising its magnitude to 1, applying a threshold of 0.2 to all

elements and, finally, normalising the magnitude to 1 again.

Shape Context [7] is similar to SIFT, except that it compiles a histogram of

edge locations (instead of all gradients) using a log-polar distribution of bins. A

modified version of Shape Context is presented in [44], where the edge points

are also binned according to the edge orientations and weighted according to

edge gradient magnitude, making it even more similar to SIFT. In most tests,

Shape Context performs similarly to SIFT, but it performs significantly worse

in viewpoint change tests. Its main shortcoming is the limited robustness of the

edge extraction process – the same edge pixels are not always selected for similar

features.

The Gradient Location-Orientation Histogram (GLOH) descriptor is an extension

to SIFT proposed in [44]. It computes a histogram in a similar manner to SIFT,

but using a different spatial distribution of bins and a larger number of bins. The

resulting descriptor vector is then projected to a 128 dimensional vector. The

transformation used for the projection is computed using principal component

analysis on a large set of training descriptors. GLOH performed better than

SIFT in some tests, but was not significantly better than SIFT on average.
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Spin Images [29, 30] builds a histogram according to the radius from the feature

centre and intensity value. Constructing the histogram in this way results in a

rotation invariant descriptor. Ten bins are used for both radius and intensity,

producing a vector with 100 dimensions. The concept was inspired by a method

used to describe and match 3D surface meshes [23]. Spin Images performs rela-

tively poorly in all tests, when compared to other descriptors. A similar variation

of SIFT is also presented in [30], called Rotation Invariant Feature Transform

(RIFT). It uses radial bins instead of a square grid of bins, thereby reducing the

sensitivity to rotation. The RIFT descriptor was not tested against the other

descriptors in an equivalent test, however, results from [30] indicate that its per-

formance is significantly reduced compared to SIFT.

Other descriptors

PCA-SIFT was introduced in [26]. The SIFT feature extractor was used, but

the descriptor is not related to SIFT at all. A linear transformation is used to

project the image of local gradients to a low dimensional (20 dimensions in [26])

vector space. The transformation is computed by means of principal component

analysis on a large set of normalised gradient images found by extracting features

from a set of training images. PCA-SIFT performed the best among the methods

that do not use histograms, but its performance is inferior to the SIFT-based

descriptors.

Steerable filters [20, 27] measure the response of a set of filters to the normalised

image. A steerable filter is a linear combination of Gaussian derivative basis

functions. Complex filters [51] operate in a similar manner. In this case the

filters used are derived from the family,

fmn (x, y) = (x + iy)m (x− iy)n g (x, y, σ) ,
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with σ fixed proportional to the normalised image size. These filter-based ap-

proaches performed relatively poorly in all tests. The number of descriptor di-

mensions is determined by the number of filters applied and is therefore typically

relatively low. Higher order derivatives cannot be used to increase the number of

dimensions, because they are too sensitive to minor variations and detract from

the robustness of the descriptor.

Moment invariants have been proposed in [46, 57]. Generalised colour moments

of order p + q and degree a + b + c are defined as,

Mabc
pq =

∫∫
Ω

xpyqRa (x, y) Gb (x, y) Bc (x, y) dxdy,

where R, G and B are the images of the red, green and blue channels and Ω

is the computation window. Moment invariants produce descriptors with few

dimensions. Higher order moments are sensitive to small geometric variations

and are no more robust than correlation methods.

Speed Up Robust Features (SURF) [5] is a feature extractor and descriptor in-

tended to require little processing time. The descriptor is computed as follows.

The normalised image region is divided into a regular 4 × 4 grid. In each grid

sub-region the Haar wavelets in the horisontal and vertical directions (dx and dy)

are sampled from a 5 × 5 grid of sample points. Four quantities are computed

from the Haar wavelet samples,

v1 =
∑

dx,

v2 =
∑
|dx| ,

v3 =
∑

dy,

v4 =
∑
|dy| .

These values are collected from all of the 4 × 4 grid of subregions to form a

descriptor vector with 64 dimensions. The descriptor vector is then normalised

to have unit length. An alternative formulation is also proposed that has 128
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dimensions and is called SURF-128. For each subregion, the following quantities

are computed,

v1 =
∑
∀dx<0

dx, v2 =
∑
∀dx<0

|dx| ,

v3 =
∑
∀dx>0

dx, v4 =
∑
∀dx>0

|dx| ,

v5 =
∑
∀dy<0

dy, v6 =
∑
∀dy<0

|dy| ,

v7 =
∑
∀dy>0

dy, v8 =
∑
∀dy>0

|dy| .

From the evaluation given in [5] it appears that the performance of SURF is

similar to that of the SIFT-based descriptors while the performance of SURF-

128 is superior. The evaluation in [5] is unfortunately very limited (only one test

case is used). More thorough evaluation would be required before making any

conclusions regarding the performance of the SURF descriptor.

3.4.3 Matching

Several different techniques have been proposed for finding matches between two

sets of features. In general, matching involves evaluating the distance between

features. Euclidean distance in the descriptor vector space is the most common

method used.

Threshold-based matching simply applies a threshold to the distance between

every pair of features. All feature pairs with a distance below the threshold are

matched. This results in a set of one-to-many matches. That is, each feature in

one image may be matched to several features in a second image.

In nearest neighbour matching, each feature in one image is matched to the

nearest feature in the second image if the distance between these features is
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below a threshold. Each feature may be matched to one feature only.

Nearest neighbour distance ratio matching also involves finding the nearest neigh-

bour matches, but applies the threshold differently. A nearest neighbour match

is rejected if the ratio between the distance to the nearest neighbour and the dis-

tance to the second nearest neighbour is above a threshold. If the distance from a

feature to its nearest neighbour is Dn1 and the distance to the second neighbour is

Dn2, then the threshold, t, is applied as follows: Dn1/Dn2 < t. This method was

first described in [39]. It effectively avoids selecting ambiguous matches, thereby

greatly reducing the number of incorrect matches, when compared to nearest

neighbour matching. This method is used for matching in the work presented in

this thesis.

More elaborate approaches to feature matching have been proposed. In [2] the

matching problem is treated as a classification problem. In [41] a method is

proposed for projecting descriptor vectors to a lower dimensional space so that

the nearest neighbour search method becomes optimal (under the assumption

that descriptor variation is Gaussian distributed). The reduction in descriptor

dimensionality aids in reducing the computational cost of matching. Bayesian

and maximum a posteriori, approaches are presented in [13].

3.5 Chapter Summary

In this chapter, the problem of aligning images taken from widely separated

viewpoints is formulated in terms of the wide baseline matching problem. The

local image feature-based approach of feature extraction, feature description and

matching, is reviewed. Although the local feature-based methods in general can

be used in a wide variety of problems, the review in this chapter and the research
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in the following chapters is focused on the techniques relevant to the wide baseline

case. Features that are robust to affine deformation, or affine covariant features,

are required in this scenario.

From the review in this chapter, specific techniques are selected for use in further

research. Among the affine covariant local feature extractors, the saliency map-

based methods and the MSER extractor yield the best results. These extractors

are used and developed further in the following chapters. The evaluation method

presented in Section 3.3.1 is used to evaluate the results of new methods for

saliency map-based feature extraction. An efficiency metric was added to the

existing set of tests to evaluate the relative computational efficiency of different

feature extractors. The SIFT descriptor and nearest neighbour ratio matching is

used to established correspondences.

The next chapter reviews saliency map-based feature extraction and adaptation

in greater detail.





Chapter 4

Salient Features

A number of the more successful affine covariant feature extractors make use of

a saliency map to detect features, and adaptation processes to extract the shape

and size of each feature. A saliency map is computed using an image operator

that is a function of image partial derivatives. The saliency operator highlights

local features that are suitable for matching across views, but does not provide a

viewpoint covariant feature directly.

The output of saliency operators is dependant on the scale or resolution of an

image. Section 4.1 introduces the concept of scale space and explores the prop-

erties of the Gaussian scale space. Section 4.2 discusses the computation of the

saliency map, existing saliency operators and properties of the saliency map.

The saliency map provides a means of determining the feature coordinates, tx and

ty. Each of the remaining parameters (scale k, shape q, φ, and orientation θ) is

determined using a separate adaptation process. Section 4.3 reviews techniques

for selecting scale, shape and orientation for features detected using a saliency

map.
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In the literature, feature extractors are usually discussed in terms of a specific

solution to all of the above problems, while adhering to the same overarching

design model. A generalised saliency map-based feature extractor algorithm is

presented in Section 4.4. It is used in the rest of this thesis to directly compare

alternative feature parameter estimation methods within the same framework.

Section 4.5 discusses how to implement some of the operators mentioned in this

chapter in an efficient manner. The chapter is concluded in Section 4.6

4.1 Scale Space

Scale is a very important concept in computer vision. The description of an object

depends greatly on the size of the object and of the scale at which it is described.

The scale of objects is not preserved in an image and is affected by factors such as

focal length, resolution and the distance between camera and subject. Describing

an object from its image therefore requires finding an appropriate scale at which to

describe it, or perhaps describing it over a range of scales. The saliency operators

described in later sections are sensitive to a change in scale – images of the same

scene taken at different resolutions or with different camera zoom settings result

in saliency maps where the extrema are not in comparable locations.

The concept of scale space has been formalised in order to analyse images with

objects of different scales. Changing the zoom level of a camera or moving the

camera towards or away from a subject effectively alters the relative resolution

with which the projection of the subject is sampled. Scale space models the

process of creating an image with varying resolution, facilitating multi-resolution

or multi-scale analysis. An image scale space is a representation of an image

that provides access to different image scales by means of a scale parameter. It
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is generated by progressively removing details from the image, so that a higher

scale level contains only larger scale detail and all smaller scale detail is removed.

The scale parameter corresponds to the parameter of the process by which details

are removed. A low pass filter is a natural choice for the process described above.

Scale space theory is discussed at length in [33, 53]. This section describes the

2D Gaussian scale space and its properties.

4.1.1 The Isotropic Gaussian Scale Space

It is desirable for the filter function chosen for producing a scale space to possess

the following properties:

• Rotation and shift invariance, to ensure the scale space is not affected by

image transformations that do not affect the image scale.

• Strictly decreasing magnitude around the filter coordinate origin.

• Consistent behaviour over all scales.

• Differentiable and integrable, since it is desirable to work with the deriva-

tives of the scale space.

• The number of local maxima and minima of an image and its derivatives

strictly decrease as scale increases. This ensures that the level of detail

strictly decreases as scale increases.

The Gaussian function possesses all of these properties. In [1], it is argued that

the Gaussian function is the only function that ensures that the number of local

extrema strictly decrease as scale increases. Artefacts of the imaging process,

such as blurring due to limited lens resolution or incorrect focus, may also be
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Figure 4.1: The 2D Gaussian function. Truncated, scaled and contrast enhanced
for presentation. Black corresponds to zero and brighter intensity represents
higher value.

modelled using the Gaussian function. Although other definitions of scale space

do exist, the Gaussian scale space (defined below) is the preferred definition of

scale space for use in robust local feature extraction.

The isotropic Gaussian operator is defined in terms of inhomogeneous coordinates

x = (x, y)> and variance σ2 as,

g (x, σ) =
1

2πσ2
e
−x>x
2σ2 =

1

2πσ2
e
−x2−y2

2σ2 . (4.1)

Figure 4.1 shows a Gaussian function. The isotropic Gaussian scale space of

image I (x) is defined simply as the convolution of the image with the Gaussian

kernel g (x, σ),

I (x, σ) = g (x, σ) ∗ I (x) . (4.2)

This space then has coordinates (x, y, σ).

A discrete scale space may be computed by sampling the space at discrete intervals

of σ. Such a representation is often called the scale space pyramid and the

individual images that make up the pyramid are referred to as layers of the

pyramid. Because higher scale images contain less information and do not contain

high resolution information, it is possible to sample these layers at a lower spatial

density. This reduces the amount of memory and processing required.
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A common approach (used for example in [39]) is to sample the scale space at

regular intervals of log2 (σ). The same spatial sampling density is used over a scale

octave. This ensures that the pixels of each level in an octave are consistently

aligned, which simplifies multi-scale image operations. Each successive octave is

down-sampled by a factor of two.

4.1.2 Scale Space Derivatives

Saliency operators are mostly based on image derivatives. It is therefore impor-

tant to understand the properties of image derivatives in scale space. This section

discusses the properties of scale space derivatives and Section 4.1.3 discusses how

the extrema of derivative functions are affected by scale.

The following notation will be used to express scale space derivative images more

concisely,

Ij (x) =
∂

∂j
I (x) .

Image and Gaussian Derivatives are Interchangeable

The scale space derivative expression may be stated in any of the following forms:

∂

∂i
I (x, σ) =

∂g (x, σ)

∂i
∗ I (x) = g (x, σ) ∗ ∂I (x)

∂i
, (4.3)

where i is any of the spatial dimensions. The derivative of a scale space image,

I (x, σ), produced by convolution with a Gaussian, is equivalent to convolving

the derivative of the Gaussian with the image and equivalent to convolving the

Gaussian with the derivative of the image. More generally, since the Gaussian is

infinitely differentiable, for any order and sequence of partial derivatives (includ-
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ing derivatives with respect to scale),

∂n∏n
j=1 ∂ij

I (x, σ) =
∂ng (x, σ)∏n

j=1 ∂ij
∗ I (x) .

The properties of scale space derivatives are therefore determined directly by the

properties of the Gaussian function. This has implications for the implementation

of the saliency and scale space image operators (see Section 4.5).

Non-stationary extrema

Extrema of scale space derivatives do not necessarily remain spatially stationary

over a change in scale (except perhaps in the centre of rotationally symmetric

image structures). The exact behaviour of extrema over scales is explored in

Section 4.1.3.

Decreasing amplitude over scale

Consider an image, I (x), that contains a single step edge that runs perpendicular

to dimension i. The maximum value of the partial derivative of the image with

respect to dimension i decreases as the scale increases. If Ii (x, σ1) and Ii (x, σ2)

are the partial derivatives along dimension i of the image at scale levels σ1 < σ2,

then,

arg max
x
|Ii (x, σ2)| < arg max

x
|Ii (x, σ1)| .

This property is related to the fact that a change in sampling resolution will

result in a change in derivative amplitude, unless the resolution is accounted for.

If the derivative of a function sampled with period p, f (px) , x ∈ (Z), is to be

computed correctly, then the sampling period must be accounted for by adjusting
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the unit length,
∆f (x)

∆x
=

∆f (px)

p∆x
.

In the case of the Gaussian function, g (x, kσ) = g (k−1x, σ), which means that

changing scale is analogous to changing sampling resolution, and,

∂g (x, σ)

∂i
= k

∂g (x, kσ)

∂i
.

The magnitude of derivatives is not only affected by scale according to the above

property, but also due to the image structure. It is desirable to extract informa-

tion regarding image structure from the change in derivative magnitude over scale.

It is therefore necessary to normalise scale space derivative images according to

scale and the order of derivative as follows,

Inim (x, σ) = σm ∂m

∂im
I (x, σ) .

4.1.3 Extrema of Scale Space Derivatives

Multi-scale analysis is motivated by the fact that the positions of extrema of

scale space derivatives are not scale covariant, but vary over a change in scale.

Figure 4.2 shows four levels of a scale space pyramid, as well as the Determinant

of Hessian operator (see Section 4.2.1) computed on each of the levels of the

pyramid. The locations of the maxima of the Determinant of Hessian map vary

significantly over scale. Although different saliency operators behave differently,

they are all based on scale space derivatives and share common characteristics.

These characteristics are explored in detail below. In this section, the extrema

(over the spatial dimensions) of saliency operators will be referred to as extrema.
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Figure 4.2: Deterimanant of Hessian computed at various scales.

Continuous Variation over Scale

The spatial positions of extrema vary continuously over scale. The velocity of ex-

trema with respect to scale is determined by the image structure, and is explained

in the properties listed below.

Motion Away from Edges

For all the saliency functions described in this chapter, extrema are found near

two or more (non-parallel) straight edges or near curved edges. As scale increases,

extrema move away from the edges of origin so that the displacement component

perpendicular to each edge is proportional to the change in scale. Extrema move

from a narrower region to a wider region over increasing scale. When an extreme

point reaches a location in a bounded region where it is at a maximum distance

from all the enclosing edges, the extreme point becomes stationary, since it can no

longer move further from all of the dominant edges surrounding it (until structures

from outside the bounded region begin to have a significant affect). Figure 4.3

shows an example where the Laplacian of Gaussian of various scales is convolved

with a triangle.
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Consider a corner with angle θ formed by the intersection of two step edges of

equal step size as an example. The extreme point will be found on the line

bisecting the corner and will travel away from the corner intersection. Over a

change in scale ∆σ, the extreme point will be displaced by distance d along the

bisecting line of the corner, which may be expressed as d ∝ ∆σ/sin (θ/2).

In a triangle, three extrema will originate in the corners and move towards the

centre of the incircle of the triangle. The edge opposite each corner will have no

effect on the extreme point formed by the corner at low scale, due to the relatively

large distance to the edge. As scale increases, this edge will at first attract the

extreme point, so that it accelerates until it converges with the other two extrema

from the opposite corners. Once the extrema converge to one point, this extreme

point will be effected by all three edges equally and will remain stationary as

scale increases. The velocity of extrema is therefore only strictly linear when no

more than two straight edges are present.

Converging Extrema

Similar extrema can converge as scale increases. Maxima can converge and min-

ima can converge, but a maximum and a minimum cannot converge to the same

point. A single extreme point cannot diverge into multiple extrema as scale in-

creases, due to the characteristics of the scale space. Extrema accelerate towards

each other as they approach convergence. Extrema related to different structures

are, by definition, separated by edges and as such will be located a significant

distance apart, may be of different sign and will propagate in diverging directions

as scale increases (at least until the separating structure is no longer dominant).
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Figure 4.3: The top left frame shows a triangle input image. The next four frames
show the image convolved with the Laplacian of Gaussian function at scales 2, 4,
8 and 16. The maxima are indicated by red crosses. The last frame shows the
positions of the maxima overlaid on the original image.

Creation and Annihilation

Extrema may both be created and annihilated as scale increases. Consider a

perfectly circular image structure convolved with a Laplacian of Gaussian kernel

(introduced in the next section). If the scale of the Laplacian is sufficiently low,

then it will result in a circular ridge and valley on either side of the circle edge, but

no locally extreme point. As the scale increases, the ridge and valley will move

away from the edge. An extreme point will be created at the centre of the circular

shape at the scale where the ridge or valley on the inside of the circle converges

on the centre. In the presence of large, distant structures around the circle, the

extreme point will, at a sufficiently high scale, become insignificant compared to

the response of the Laplacian to other structures, and will be annihilated.

It should be noted that image intensity extrema cannot be created in the scale
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space as scale increases. Extrema can only be created in the derivatives of the

scale space.

4.2 The Saliency Map

The purpose of the saliency map is to give a measure of the local information

content in an image, in order to aid in locating regions suitable for matching across

views. Image structures that are spatially well defined result in an interesting

response from the saliency function, usually in the form of a locally extreme

value. Features are selected at the maxima or minima (depending on the saliency

function used) of the saliency map. A threshold is often applied to suppress noise

and responses to weak structures.

4.2.1 Saliency Functions

A large number of saliency operators have been proposed for the task of image

feature detection. This section defines the operators that have been used for the

task of wide baseline matching with most success. Section 4.5 reviews techniques

for implementing these operators.

Laplacian of Gaussian and Difference of Gaussians

The Laplacian of image I (x) is defined as,

L (I (x)) = ∇2I (x) =
∂2I (x)

∂x2
+

∂2I (x)

∂y2
. (4.4)

The Laplacian of Gaussian (LoG) function is defined as,

Lg (x, σ) = ∇2g (x, σ) =
x2 + y2 − 2σ2

2πσ6
e
−x2−y2

2σ2 , (4.5)
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Figure 4.4: The 2D Laplacian of Gaussian function, truncated, scaled and con-
trast enhanced for presentation. 50% grey value (near image corners) corresponds
to a value of zero.

(a) (b)

Figure 4.5: (a) A test pattern. (b) The magnitude of the test pattern after
convolving with a LoG kernel. Black corresponds to zero and brighter intensity
represents higher value.

and is shown in Figure 4.4. Figure 4.5 shows the result of convolving an image

with this function and taking the absolute value at each pixel.

This operator produces a large magnitude response in the presence of steep gradi-

ents or edges in the image. Curved edges elicit an even larger response, especially

curves with radius σ. Corner and blob structures result in local extrema in the

output. The LoG operator is therefore useful for corner and blob detection. It

also produces spurious local extrema along straight edges due to noise or slight

curvature changes. This results in a significant proportion of local extrema asso-

ciated with noise or structures that cannot be located reliably across views.
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The first order derivative of the Gaussian along the scale dimension is equivalent

to the scale-normalised Laplacian of Gaussian,

∂

∂σ
g (x, σ) = σ2∇2g (x, σ) .

The Difference of Gaussians operator is an approximation of the the derivative

over scales (and the Laplacian) and is computed by subtracting two Gaussians

as follows,

Dg (σ1, σ2) ∗ I (x) = (g (x, σ2)− g (x, σ1)) ∗ I (x) = I (x, σ2)− I (x, σ1) ,

where σ2 > σ1. It is a close approximation to the scale-normalised Laplacian of

Gaussian and, given an efficiently implemented Gaussian filter, is considerably

more efficient to compute than convolving an image with the Laplacian kernel.

A more general form of the Difference of Gaussians, the Difference of Low Pass

(DoLP) transformation was introduced in [12] in a framework for describing

shapes in a multi-scale representation. Examples of previous works that make

use of the LoG or DoG operator for feature detection include [34, 38, 39]. It is

also used for scale selection (see Section 4.3.1).

Determinant of Hessian

The Hessian is the matrix of second order partial derivatives of a function. The

Hessian of an image convolved with a Gaussian is defined as,

∂2I (x, σ)

∂x2
=

 ∂2

∂x2
∂2

∂x∂y

∂2

∂x∂y
∂2

∂y2

 I (x, σ) =

 Ix2 (x, σ) Ixy (x, σ)

Ixy (x, σ) Iy2 (x, σ)

 . (4.6)

Its eigenvalues represent the second order gradients in the directions of its eigen-

vectors. The determinant of this matrix is large when both eigenvalues are large,

and gives an indication of regions where there are strong gradients in more than
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one direction. In the proximity of a straight edge or parallel edges, only one

eigenvalue is large and the determinant has small magnitude. The determinant

of the Hessian matrix is therefore useful for detecting corners and blobs, while

unstable structures and noise along nearly straight edges are suppressed.

Figure 4.6 illustrates the process of applying the determinant of Hessian operator.

Observe that, in comparison to the Laplacian of Gaussian operator in Figure 4.5,

the straight edges in the image do not produce a large response. Only spatially

well defined structures such as blobs and corners produce significant local maxima.

The Determinant of Hessian operator was first introduced in [6] and is one of the

earliest operators introduced for corner selection. It has recently been used to

create some of the most successful feature extractors [43, 45].

Harris

The Harris operator [21] involves applying an operator commonly referred to as

the second moment matrix and then computing a saliency measure from this

matrix. The second moment matrix is defined as,

µ (x, σD, σI , I (x)) = g (x, σI) ∗

 I2
x (x, σD) IxIy (x, σD)

IxIy (x, σD) I2
y (x, σD)

 . (4.7)

Here σD is referred to as the differentiation scale and σI is the integration scale.

Convolution with the Gaussian operator with scale σD performs the scale space

operation. Convolution with the Gaussian operator with scale σI effectively per-

forms windowed integration of the elements of the matrix. The second moment

matrix is a positive definite, symmetric matrix and can be seen as a local estimate

of the covariance matrix of an image.
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A test pattern, I (x). I (x, σ).

Ix2 (x, σ). Ixy (x, σ).

Iy2 (x, σ).
∣∣∣∂2I(x,σ)

∂x2

∣∣∣.
Figure 4.6: Computing the Determinant of Hessian. The first row shows a test
pattern and the same pattern filtered with a Gaussian. The second row and left
image of the third row show the second order partial derivatives of the filtered
image (the elements of the Hessian matrix, Equation 4.6). The last image shows
the Determinant of the Hessian matrix.
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The Harris operator is computed from the second moment matrix as follows,

H (x, σD, σI , I (x)) = |µ (x, σD, σI , I (x))|−k (trace (µ (x, σD, σI , I (x))))2 , (4.8)

where k is often set to 0.04. The measure computed by this operator is commonly

referred to as the Harris cornerness measure. The cornerness measure is large

when the eigenvalues of the second moment matrix are both large, indicating

significant change in the image in two orhtogonal directions. Computing equation

4.8 is less computationally demanding than computing the eigenvalues directly.

Figure 4.7 illustrates the process of applying the Harris operator. Note that this

operator requires additional filtering steps compared to the determinant of Hes-

sian operator. It can be seen that edge responses are suppressed very effectively

and that the corner locations are distinguished from the surrounding image with

high contrast.

The Harris corner detector was described in [21]. It forms the basis of some

popular modern affine covariant feature extractors [4, 43, 45].

4.2.2 Covariance Properties

Salient features are selected by finding the extrema of saliency maps. This process

only generates point coordinates for each feature and does not specify a support

region directly. The position of extrema produced by saliency operators are trans-

lation and rotation (isometrically) covariant. Translation covariance arises natu-

rally from the fact that the convolution operation is translation invariant. The

saliency operators listed above are rotationally symmetric and therefore rotation

covariant (rotationally invariant at the centre of rotation). Saliency operators are

very sensitive to a change in scale. They are sensitive to a change in view angle

to a limited degree due to the relative change in scale of image structures.
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Ix (x, σD). I (x, σD). Iy (x, σD).

I2
x (x, σD). IxIy (x, σD). I2

y (x, σD).

g (x, σI) ∗ I2
x (x, σD). g (x, σI) ∗ IxIy (x, σD). g (x, σI) ∗ I2

y (x, σD).

H

Figure 4.7: The process of computing the Harris cornerness measure. The first
row shows the differentiation scale image in the centre, with its first order partial
derivative images on either side. The second row shows products of the derivative
images. The third row shows the images in the second row filtered with an
integration scale Gaussian. The last image shows the Harris cornerness measure
computed from the images in the third row using Equation 4.8.
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4.3 Affine Feature Extraction

4.3.1 Scale Selection

Early scale conscious feature extraction methods simply extract maxima from the

saliency map for every discrete scale level in a scale space pyramid. The result

is a very large set of features with large groups of similar features. Most of these

features are not likely to yield appropriate point correspondences when matching

against a similar set from a different viewpoint. An example can be found in [16],

where this method is used to match a low resolution image to a high resolution

image. Extracting multi-scale features in this way is not sufficient to produce

scale invariant features, but is often used by other methods as a first step in

exploring the scale space.

A more successful method of producing scale invariant features is to select char-

acteristic scale features. In [34] it is proposed that some combination of scale-

normalised derivatives (a scale response function) computed in the vicinity of an

image structure will assume a local maximum at the scale corresponding to the

structure size. The scale response function is thereby used as a correlation detec-

tor to select a characteristic scale. The characteristic scale selected is therefore

directly related to the characteristic size of the image structure. The simplest

method of characteristic scale selection is to locate scale space maxima – points

that represent local maxima of the saliency map in the spatial and scale dimen-

sions. This is consistent with the proposition in [34], since saliency functions are

usually composed from normalised derivatives. Example implementations have

been published describing scale space non-maximum suppression using the Lapla-

cian [34], Difference of Gaussians [38] and determinant of Hessian [5] functions.

The scale space maxima approach was extended in [43] by locating points that are
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local maxima of the Harris operator in the spatial dimensions and maxima of the

scale-normalised Laplacian in the scale dimension. Utilising different functions

for selecting scale and for locating spatial position makes it possible to use the

functions that are most stable in each domain. For example, the Harris operator

produces stable maxima in the spatial domain, but rarely produces stable maxima

in scale space. The Laplacian is useful for scale selection, but is not as effective

for feature selection, since it often results in the selection of ambiguous points

along nearly straight edges.

Selecting scale space maxima using simple 3D non-maximum suppression in scale

space pyramids has a few drawbacks. This method often rejects points that

are useful features as a result of the limited sampling density of the scale space

pyramid. Non-maximum suppression algorithms require that successive pyramid

levels be sampled consistently in the spatial dimensions. This places restrictions

on how the scale space can be sampled and limits the savings that can be made

by progressive down-sampling (see Section 4.5.2).

An iterative scale selection method was proposed in [43] which does not suffer

from the above issues. It offers higher accuracy scale selection at the cost of

greater computation time. The algorithm is initialised by selecting multi-scale

points using the Harris or Determinant of Hessian operator and each point is

iteratively adapted. At each iteration, i, the following two steps are executed:

1. The new scale σi at which the Laplacian of Gaussian achieves a local max-

imum over scales is sought in the range [0.7σi−1, 1.4σi−1] at the position

xi−1. If no local maximum is found the feature is rejected.

2. The new spatial point xi nearest xi−1 is found at which the Harris operator

evaluated at scale σi achieves a maximum.
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This continues until the point converges in scale space.

4.3.2 Shape Adaptation

The scale adaptation processes presented in the preceding chapter operate by

computing the saliency map for the three parameter scale space, I (x, σ). It

is desirable to extend the feature extraction problem to include the shape pa-

rameters q and θ. Simply extending the image space to an affine scale space,

I (x, σ, q, θ), and evaluating the saliency map over the whole space would require

an excessive amount of processing effort (isotropic Gaussian scale space is already

quite expensive to compute). Fortunately this is not required, since the shape

parameters do not have a drastic effect on the location of extrema of saliency

operators. It is sufficient to only make use of the local space around characteris-

tic scale features to compute the feature shape. It is important to note that the

local shape estimation process does not estimate the shape of the imaged surface

(this is not possible), but instead computes a shape estimate based on the local

intensity distribution.

The most effective modern shape estimation methods derive from [35], which uses

the second moment matrix to iteratively measure local shape. In [35], the Gaus-

sian scale space is extended to affine Gaussian scale space. The affine Gaussian

operator is of the form,

g (x, Σ) =
1

2π |Σ|
e
−x>Σ−1x

2 ,

where Σ is a positive definite symmetric matrix known as the covariance matrix

and |Σ| is the determinant of Σ. The affine scale space is,

I (x,Σ) = g (x, Σ) ∗ I (x) .
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The affine second moment matrix computed in affine scale space is defined as,

µ (x,ΣD,ΣI) = |ΣD| g (x,ΣI) ∗DA,

DA =

 I2
x (x,ΣD) IxIy (x,ΣD)

IxIy (x,ΣD) I2
y (x,ΣD)

 ,

with ΣD and ΣI differing only in scale.

Affine adaptation is performed by iteratively computing the second moment ma-

trix as,

Mi = µ (x, kDMi−1, kIMi−1) ,

where i is the iteration number, kD is chosen to maximise the value of the Lapla-

cian at x, kI is chosen so that the minimum eigenvalue of kIM remains constant

during iterations and M0 = I. It is shown in [35] that if M is computed as above,

then it converges such that, for sufficiently large n,

µ (x, kDMn, kIMn) ≈Mn.

The resulting matrix M is covariant under affine transformations of the image.

This method adapts the scale and shape components while the feature position

is kept fixed at its initial position.

The method presented in [4] applies a normalising affine transformation to a local

image region, instead of adapting the parameters of affine scale space. Integra-

tion scale and differentiation scale of the second moment matrix operator are set

proportional to the scale at which the feature is detected. At each iteration of the

algorithm the local image region around the selected feature is transformed using

the inverse square root of the second moment matrix computed during the pre-

vious iteration (initially I). The second moment matrix is then computed again

from the normalised image region, using radially symmetric Gaussian kernels,

and is normalised to have a determinant of 1. This continues until the measured

normalised second moment matrix is sufficiently close to the identity matrix. The
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final shape transformation is the composition of all the normalisation transfor-

mations applied during adaptation. The method published in [4] is more easily

implemented and more efficient than the method of [35], but only adapts the

shape component while leaving the scale and position fixed. This method is also

applied to both Harris and Determinant of Hessian features in [45].

A more complete algorithm is presented in [43] that updates the integration scale,

differentiation scale and feature location at each iteration, before computing the

second moment matrix. It is the affine extension to the scale covariant algorithm

presented in the same article. A summary of the algorithm is presented in Algo-

rithm 4.1. A measure of local shape isotropy is defined based on the eigenvalues

λmin, λmax of the second moment matrix as,

Q (µ) =
λmin (µ)

λmax (µ)
. (4.9)

Adaptation concludes when Q is sufficiently close to 1. This is a more compu-

tationally expensive algorithm than the method of [4]. It is the only algorithm

that allows for a change in scale and position as the shape is adapted. In the

evaluation presented in [45], the authors chose to use a method most similar to

[4], and the method in [43] was not evaluated. The performance of this algo-

rithm is therefore unknown, however the author’s preference for the method in

[4] indicates that perhaps the method in [43] does not produce superior results.

4.3.3 Orientation Selection

The extractors found in the literature do not assign an orientation to the features,

and instead defer this task to the descriptors. This appears to be a reasonable

choice, since some descriptors are rotation invariant and others are not. The

extractor evaluations (See Chapter 3) are also not affected by feature orientation.

The SIFT descriptor [39] and descriptors derived from it make use of a separate
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Algorithm 4.1: Summary of the Affine Adaptation Algorithm in [43].

begin4.1.1

A0 ← I.4.1.2

repeat4.1.3

In (x)← Ii (kAix + xc).4.1.4

Select integration scale σIi that maximises LoG over scale at4.1.5

point xi−1.
Select differentiation scale that maximises Q (Eqn. 4.9) from4.1.6

the range σDi ∈ [0.5, 0.75] σIi.
Find new spatial point xi nearest xi−1 at which the Harris4.1.7

operator achieves a maximum.
µi ← µ (xi, σDi, σIi).4.1.8

q ← Q (µi).4.1.9

Ai ← µ
− 1

2
i Ai−1.4.1.10

Ai ← λ−1
max (Ai)Ai.4.1.11

until q > QT4.1.12

end4.1.13

orientation selection process, which is discussed below.

The orientation selection method presented in [39] operates as follows. First

the feature transformation is computed using the saliency map, scale selection

and affine adaptation as described in the preceding sections of this chapter. A

normalised image is then computed using the feature transformation. The ori-

entation θ and magnitude m of the image gradients are computed at every pixel

in the normalised image, resulting in corresponding images Θ (x) and M (x). A

Gaussian function with scale parameter set to 1.5 times the scale of the nor-

malised feature is used to weight the values of the gradient magnitude image,

M (x). This progressively reduces the contribution of gradients further from the

feature centre. The values of M (x) are then accumulated in a histogram accord-

ing to the corresponding angle in Θ (x). The histogram has 36 bins for the 360◦

range of angle values. The maximum value in this histogram corresponds to the

dominant gradient orientation of the normalised image. The angle correspond-

ing to the maximum value in the histogram, as well as all local maxima within
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80% of the maximum, are selected as characterisitic orientations for the feature.

Multiple orientations may therefore be assigned to each feature. The precision

of each selected angle is refined by fitting a parabola to the three values in close

proximity to the maximum and computing the location of the vertex.

4.4 A Framework for Affine Salient Feature Ex-

traction

In the literature, feature extractors are usually discussed in terms of a specific so-

lution, including saliency operator, scale selection method and affine adaptation

method. A number of the saliency map-based methods make use of a common

overarching procedure, varying only in the functions used to estimate each com-

ponent of the feature affine transformation. A general adaptation framework,

independent of specific estimation functions, is required in order to compare dif-

ferent estimation functions. In this section, the design of a generalised salient

feature extractor and affine adaptation algorithm is presented. This algorithm is

employed in the experimental evaluation of the various new techniques developed

in later chapters.

The existing affine covariant feature extraction algorithms essentially follow a

similar overarching design. They consist of the following modules:

1. Feature location by finding local maxima in a saliency map.

2. Feature scale selection by finding a maximum over scales in a function of

normalised derivatives.

3. Feature affine shape estimation using a second order shape measure.
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4. Orientation selection.

These modules are combined in different ways by different authors. Most algo-

rithms consist of an initialisation stage, where initial feature points are found in

scale space, and an adaptation stage, where each feature is adapted to a point and

shape that is affine covariant (for example [4, 43, 45]). The modular view of adap-

tation algorithms presented above allows the design of an adaptation algorithm

independent of the various measures used.

The generalised affine covariant feature extractor algorithm is listed in Algo-

rithm 4.2. Section 4.4.1 discusses the various subroutines employed by the algo-

rithm and Section 4.4.2 discusses the algorithm as a whole.

4.4.1 Subroutines and Constants

Generic Functions

One of the design objectives is to define an algorithm that can use any set of

parameter estimation functions. The generic estimator functions listed below are

used in the algorithm definition to achieve this objective. A specific implementa-

tion would substitute specific functions for each of these generic forms.

Ie (x, σi) ← E (I (x) , σi) represents the saliency operator. It accepts an input

image I (x) and scale σi, and produces the saliency map Ie (x, σi). Alternatively,

σi may be a set of scales and Ie (x, σi) a set of images, one for each element in σi.

This produces a scale space pyramid of saliency maps.

rσ ← S (I (x) ,xi, σi) is the scale response operator. The inputs are an image and

the scale space coordinates at which to compute the response rσ.
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Algorithm 4.2: Generalised Feature Extraction Algorithm.

Function fA ← EXTRACT (Ii)4.2.1

Input:
Ii (x) – An image.
Output:
fA = {H0,H1, . . . ,Hn} – A vector of features in the form of a
normalisation transformation matrix for each feature.
begin4.2.2

σp ← {σ0, σ1, . . . , σns}.4.2.3

Ie (x, σp)← E (Ii (x) , σp).4.2.4

fm ← MSMAXIMA (Ie (x, σp) , T ).4.2.5

fs ← SCALESELECT (S, fm).4.2.6

fs ← TOPN (fs, nf ).4.2.7

fA ← ∅.4.2.8

foreach fj ∈ fs do4.2.9

(xj, σj) = fj.4.2.10

i← 0.4.2.11

Aj ← I.4.2.12

q ← Ql + ε.4.2.13

while (i < ni) · (q < Qh) · (q > Ql) do4.2.14

k ← λ−1
max (Ai).4.2.15

In (x)← Ii (kAjx + xj).4.2.16

Au ← A (In (x) ,0, kσj).4.2.17

Aj ← A
1
2
uAjA

1
2
u .4.2.18

q ← Q (Au).4.2.19

end4.2.20

if q > Qr then4.2.21

k ← λ−1
max (Ai).4.2.22

In (x)← Ii (kAjx + xj).4.2.23

Rj ← R (In (x) ,0, kσj).4.2.24

Hj ←
[

σjRjAj −xj

0 1

]
.

4.2.25

fA ← {fA,Hj}.4.2.26

end4.2.27

end4.2.28

end4.2.29
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A ← A (I (x) ,xi, σi) represents the shape estimator function. The inputs are

an image and the scale space coordinates at which to compute the shape. The

output is a positive definite symmetric 2× 2 shape matrix.

R ← R (I (x) ,xi, σi) is the orientation selection function. The inputs are an

image and the scale space coordinates around which to compute a characteristic

orientation. It returns a rotation matrix, or set of rotation matrices R.

fc ← SCALESELECT (S, fm) is the generic scale selection algorithm. The input,

S, is a scale response function and fm is a set of scale space feature coordinates.

The output, fc, is a smaller set of refined characteristic scale features in the same

format as fm.

Subroutines

The algorithm makes use of several trivial subroutines. These are listed below.

q ← Q (M) returns the isotropy measure of the 2 × 2 symmetric matrix M, as

defined in Equation 4.9 [43].

e← λmax (M) returns the largest eigenvalue of square matrix M.

f ← MSMAXIMA (Ie (x, σp) , T ) extracts the local 2D maxima in each level,

σi ∈ σp, of map pyramid Ie (x, σp), with discrete scale levels σp = {σ0, σ1, . . . , σn}.

Points with a value lower than threshold T are not selected. A set of scale space

coordinates, f = {(x0, σ0) , (x1, σ0) , . . . , (xm, σn)}, are returned.

fs ← TOPN (fi, n) selects the n features from set fi that have the highest scale-

normalised saliency value. If fi contains fewer than n features, then fs = fi.
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Constants

The following constants are used in the algorithm. Where values are given, they

were chosen empirically to achieve a balance between computation time and fea-

ture quality.

T . The threshold used during maxima extraction to reject weak points. This

should be chosen depending on the particular saliency function in use.

nf . The maximum number of initial characteristic scale features to adapt. This

should be chosen according to needs of the application.

Ql. The minimum allowed isotropy measure. Features producing a shape matrix

estimate with isotropy lower than this are discarded. This threshold is used to

avoid adapting features that are on straight edges and are not corners or blobs.

Implementations used in this thesis use Ql = 0.05.

Qh. The isotropy measure convergence threshold. Features producing a shape

matrix estimate with isotropy higher than this are considered to have converged.

This thesis uses 0.98.

Qr. Features with an isotropy measure below this threshold, after the maximum

number of iterations have been reached, are rejected. Implementations used in

this thesis use Qr = 0.5.

ni. The maximum number of iterations allowed for the affine shape estimation

process. It was determined, through experimentation, that allowing more than 8

iterations does not improve extractor performance significantly, and only increases

computation time. The value of ni is therefore set to 8 in this thesis.
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4.4.2 Discussion

The algorithm extracts an initial set of multi-scale features by computing the

multi-scale saliency map using operator E and extracting 2D maxima from this

map (lines 4.2.3 - 4.2.5). Scale selection is performed using the scale selection

routine SCALESELECT and scale response operator S in line 4.2.6. In line 4.2.7

the number of features is limited by removing the features with lower saliency

response and keeping only nf features (by means of the TOPN function). The

purpose of this step is to limit the processing time and memory requirements

during the adaptation step. It makes it possible to control the number of features

more specifically than simply applying a global, predetermined threshold to the

saliency map.

The rest of the extraction algorithm adapts each feature individually. The affine

shape matrix is initialised with the identity matrix, and the isotropy measure is

initialised with a value between the lower and upper isotropy thresholds (lines

4.2.12, 4.2.13). Each iteration involves normalising the local image region around

the feature (lines 4.2.15, 4.2.16)), measuring the feature’s affine shape using the

shape estimator A (line 4.2.17), updating the normalisation matrix (line 4.2.18),

and checking the shape isotropy (line 4.2.19, 4.2.14) to determine whether con-

vergence has been reached.

Image normalisation is performed by transforming the original image by a mod-

ified version of the latest normalisation matrix and translating the feature point

to the origin. The shape matrix is modified such that its largest eigenvalue is

1 in order to prevent aliasing. The scale factor used to modify the shape ma-

trix is incorporated in the shape estimation process accordingly. The formula

used for updating the normalisation matrix (line 4.2.18) ensures that the ma-

trix remains symmetric and that no extra rotation component is introduced. At
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the end of each iteration the isotropy of the measured shape is checked. If the

isotropy measure is too small, then the feature is too elongated and is probably

a nearly straight line. If the shape is almost perfectly isotropic, then adaptation

has converged and further adaptation will have little effect. Most features reach

convergence after only a few iterations, but not all features are guaranteed to

converge quickly. The number of iterations is limited to prevent getting stuck on

features that do not converge stably and quickly.

If affine shape adaptation completes successfully (i.e., the last measured isotropy

is above Qr), then the feature orientation is selected and the final feature trans-

formation composed. First the feature support region is normalised using the

previously computed affine shape (lines 4.2.22 and 4.2.23) similar to the nor-

malisation step in the affine shape estimation process. The orientation is then

selected using R (line 4.2.24). Finally, the complete feature transformation ma-

trix is constructed from all the measured parameters in line 4.2.25. If more than

one rotation matrix was returned by R, then one feature transformation matrix

is constructed for each rotation matrix.

4.5 Implementing Image Operators

4.5.1 The Gaussian Filter and its Derivatives

The Gaussian function (equation 4.1) is non-zero for all real coordinates. When

used as a digital convolution filter, the convolution kernel must be computed

from the Gaussian function over a limited support region. Truncating to a coor-

dinate range of (−3σ, 3σ) results in a filter with over 99% of the energy of the

function with infinite support. The derivatives of the Gaussian may require a

larger support region, depending on the sensitivity requirements of the applica-
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tion. Convolution with a 2D Gaussian kernel has complexity O (nσ2), where n is

the number of image pixels. Computing a scale space representation of an image

using 2D Gaussian convolution is computationally expensive. Fortunately, the

2D Gaussian function and its derivatives have several properties that allow more

efficient implementation.

Separability

The 2D Gaussian function may be expressed as the convolution of two separate

1D Gaussian functions,

g (x, y, σ) = g (x, σ) ∗ g (y, σ) . (4.10)

In other words, the Gaussian image filter operation may be implemented as a

two stage process where a 1D filter is applied along each principal direction. It

is said that the Gaussian kernel is separable. This reduces the filter complexity

to O (nσ).

Recursive Implementation

The 1D Gaussian filter and its derivatives may be implemented in the form of

a recursive filter with a number of filter taps that is fixed and independent of

σ. Two slightly different methods for constructing a recursive implementation

of the Gaussian filter have been published in [14] and [59]. The complexity of

the recursive separable implementation of the Gaussian filter is linear in the

number of image pixels and independent of filter scale. For very small scales,

separable convolution filters require less time to compute than the equivalent

recursive filter. The time required by convolution filters quickly exceeds that of

the recursive implementation as scale increases. The exact scale at which the
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recursive version becomes more efficient depends on the number of filter taps

used in the recursive implementation.

Repeated filtering

Filtering an image with two Gaussian filters with scales σ1 and σ2 is equivalent

to filtering with a single Gaussian with scale σ1+2 =
√

σ2
1 + σ2

2. When using

recursive filters, this fact is of little importance. When using convolution filters

to construct a scale space pyramid, for example, the total processing time may

be reduced by producing each scale level from the preceding scale level, instead

of filtering the original image. This allows the use of smaller scale filters.

Derivatives

As explained in Section 4.1.2, the derivatives of a scale space image may be com-

puted by taking the derivatives of the image after the convolution with the Gaus-

sian, or by convolving with the derivatives of the Gaussian (see Equation 4.3).

The implication is that a scale space derivative image may be produced either

by filtering with a Gaussian derivative filter, or by filtering with a Gaussian

and subsequently computing the derivative. In the case where multiple different

derivatives are to be computed at the same scale (as is common in computing

saliency functions), it is more efficient to filter with a Gaussian and to compute

the derivatives separately, since Gaussian derivative filters are more computa-

tionally expensive than the difference filters used to compute image derivatives.

On the other hand, using Gaussian derivative filters produces slightly superior

results, since the derivative is computed analytically, rather than by means of a

digital difference filter.
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4.5.2 Scale Space

The Gaussian scale space of an image is most commonly implemented by com-

puting a scale space pyramid – a set of images that each sample the scale space

at one scale. It is most practical to sample the scale space at σ = 2k, where k is a

regular series of positive values. At lower scales, a small increase in scale results

in a significant reduction in detail. At higher scales, in contrast, little detail is

present so that a small change in scale results in little change in detail. Sampling

using an exponential series of sampling scales results in a set of samples where

the level of detail decreases more monotonically.

It is common to down-sample the pyramid in the spatial dimensions as scale

increases, in order to reduce the computation time required to produce the pyra-

mid. The down-sampling may be performed in several ways. The simplest is

to down-sample every level, resulting in a monotonic reduction in sampling den-

sity. An alternative is to down-sample after each scale octave (at scales σ = 2i

where i ∈ N) and to add an extra level before and after each octave that are

sampled at the same spatial resolution as the octave. This method is used where

there is a need for consistent spatial sampling over multiple levels. An example

is illustrated in [39], where 3D non-maximum suppression is applied.

4.5.3 Saliency Operators

The saliency operators introduced in Section 4.2.1 are composed of linear com-

binations of scale space derivatives. The operator output may be computed by

computing the derivative images as described in Section 4.5.1 and then comput-

ing the weighted sum or product of the corresponding pixels in the derivative

images. Examples are illustrated in Figures 4.6 and 4.7 where the Determinant
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of Hessian and Harris cornerness operators are computed.

4.6 Chapter Summary

This chapter reviews saliency map-based feature extraction, scale selection, shape

estimation and orientation selection. A saliency map provides a method for

analysing the local information content in images. Regions of distinct curvature

produce extrema in saliency maps.

Saliency operators are inherently scale sensitive. Gaussian scale space is intro-

duced as a platform for multi-scale analysis. Saliency operators are then reviewed

in the context of Gaussian scale space. Among the many possible saliency oper-

ators, the Harris and Determinant of Hessian operators provide the most stable

features. Of these two, the Determinant of Hessian is the simplest to compute

and has been used to produce the most repeatable feature extractor.

Extracting features using a saliency map provides a set of scale space coordi-

nates for each feature, but does not provide a scale, shape or orientation directly.

Methods for characteristic scale selection attempt to find for each feature a max-

imum over scale of various functions of normalised scale space derivatives. Such

a maximum indicates a characteristic scale. An affine covariant shape may be

computed for a local image region by iteratively measuring the second moment

matrix. Several similar shape estimation procedures are reviewed. The orienta-

tion of a feature is computed last, after the local image region around the feature

has been normalised in terms of scale and affine shape.

A generalised framework for extracting affine covariant features by means of a

saliency map and affine adaptation is presented. This framework accommodates

the use of different saliency operators, scale selection methods, affine shape es-
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timation methods, and orientation selection methods. It will be used in later

chapters to compare the performance of different alternative components of the

affine adaptation process.

The last section of this chapter briefly discusses the implementation of the Gaus-

sian operator, scale space and scale space derivative operations.





Chapter 5

The Salient Feature Scale Space

Primal Sketch

The concept of scale plays an important role in wide baseline vision. Chapter 4,

Section 4.3.1 discusses methods proposed in the literature to select a characteristic

scale for each local image feature. Characteristic scale selection is an effective

method used to deal with the scale problem in the domain of robust local feature

extraction.

The scale space primal sketch has in the past been a useful tool for multi-scale

analysis of features and for scale selection [32], but is not used in modern feature

scale selection methods. This chapter develops a method for computing a discrete

representation of the scale space primal sketch of local image features. This

discrete primal sketch is used to implement a more efficient and effective method

for scale selection by combining the sketch with modern feature extraction and

scale selection techniques.

Section 5.1 introduces the scale space primal sketch. The concept is extended to
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the sketch of saliency map features in scale space and the motivation for exploring

this technique is examined. An algorithm for building a feature scale space primal

sketch is developed in Section 5.2. In Section 5.3, the primal sketch is used to

create a scale selection algorithm. The performance of this algorithm is compared

to existing methods. Section 5.4 concludes the chapter with a summary.

5.1 The Scale Space Primal Sketch

The scale space primal sketch was introduced in [31, 32]. It is the graph consist-

ing of the loci of functional primitives over scale. In [31, 32] the primitives used

are grey level blobs, or local extrema in the image intensity function. The scale

space primal sketch was used to select the characteristic scale of grey level blobs

by finding the scale at which the blob assumes the maximum volume. Other ap-

plications include an edge extraction method, where the scale of the edge finding

operator is selected automatically using the primal sketch.

The scale space primal sketch concept may be extended to extrema of the deriva-

tives of scale space and to saliency maps. In terms of the primal sketch repre-

sentation, the only modification is that the primitives are chosen to be extrema

of saliency operators. This representation will be referred to as the scale space

feature sketch. The method for computing the scale space feature sketch repre-

sentation must be derived from the behaviour of features in scale space and the

methods for computing the scale space itself.

The motivation for exploring the scale space feature sketch as a multi-scale feature

analysis tool is discussed below.
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5.1.1 Motivation

The existing feature characteristic scale selection methods (reviewed in Chapter 4,

Section 4.3.1) use either scale space maxima or an iterative search strategy. Each

of these methods has limitations. Using a scale space feature sketch may provide

a means for avoiding these limitations. The feature sketch also provides a multi-

scale representation of features; however, the discussion in this chapter will focus

on the application of characteristic scale selection.

Pyramid Construction

The scale space maxima method imposes restrictions on how the scale space

pyramid can be constructed. The non-maximum suppression technique commonly

used for finding maxima in digitally sampled data requires the data to be sampled

uniformly. The scale space pyramid must therefore be constructed such that

adjacent layers are sampled at the same spatial resolution. Either the whole

pyramid must be sampled at the same spatial resolution, or extra layers must be

generated each time the pyramid is down-sampled. These restrictions limit the

savings, in terms of processing time, that can be made by progressively down-

sampling the pyramid.

The scale space feature sketch is a graph structure in which each node is a feature,

denoted by its coordinates. The structure of this graph does not depend on the

method used to extract the feature coordinates, and therefore does not impose

any restrictions on how they are computed. The individual features need only

be extrema in the spatial directions, and therefore extracting a feature on one

pyramid layer does not require processing any other layer. Section 5.2 describes

an algorithm for constructing the scale space feature sketch from a set of multi-

scale features without any additional image processing. In short, none of the
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feature sketch graph, features or graph construction algorithms depend on the

structure of the scale space pyramid.

Accuracy

The accuracy of the scale space maxima method is limited by the scale resolution

of the pyramid. If the scale space were sampled infinitely densely, then finding

scale space maxima would be equivalent to tracking the evolution of spatial ex-

trema over scale and selecting points where the spatial maxima also reached a

maximum over scale. In a discrete pyramid, however, the spatial maxima may be

displaced by a distance of several pixels between consecutive scale layers. This can

result both in spurious maxima being detected and in true maxima being missed

by the non-maximum suppression process. The scale space feature sketch, by

definition, is a discrete representation of the evolution of spatial extrema over

scale. Therefore, if the feature sketch is computed correctly, it addresses the

above problem directly by keeping track of spatial extrema over scale.

Different Functions for Spatial and Scale Selection

The literature indicates that selecting points where the saliency function assumes

a local maximum over the spatial dimensions, and where the Laplacian assumes

a local maximum over scales, results in good quality characteristic scale features

[43, 45]. This is because the Laplacian acts as a matched filter for structure size.

This scale selection scheme may be implemented using the scale space feature

sketch. All nodes in the feature sketch are at extrema of the saliency map over

the spatial dimensions. By evaluating the Laplacian at the scale space position

of each feature in the sketch, it is possible to select a feature where the Laplacian
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assumes a local maximum in the graph. In this way the Laplacian is strictly

evaluated along the feature locus in scale space and provides a structure size

matching strength for each feature. It is hypothesised that this method will yield

superior results. The scale space feature sketch-based scale selection method is

presented in detail and evaluated in Section 5.3.

5.2 The Scale Space Feature Sketch Graphing

Algorithm

5.2.1 Objective

The objective is to develop an algorithm to efficiently extract the scale space

sketch of the spatial extrema of a saliency function. This objective is formalised

as follows: Given the Gaussian scale space image, I (x, σ), a scale space saliency

map, D (x, σ) is computed by applying some saliency operator to the image,

D (x, σ) = D (I (x, σ)) .

Select a point, xm, at the lowest available scale, σ0, in D (x, σ) where the value of

D assumes a locally extreme value over the spatial dimensions (it does not need

to be a maximum in the scale direction). As the scale dimension is traversed

smoothly, the spatial location of the extreme point will vary smoothly, according

to the properties listed in Chapter 4, Section 4.1.3. Define the locus of an extremal

point in scale-space as xσ = s (σ). The objective of the graphing algorithm is to

extract the locus, s (σ), for every feature.
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5.2.2 Algorithm Design

The samples or nodes of the scale space feature sketch can be found by applying

2D non-maximum suppression to D (x, σ) for all σ. This produces the nodes of

the graph, but does not provide the graph structure. The graphing algorithm as-

sembles the feature sample points into graph structures that represent the sketch.

The graphing algorithm and graph data structure are derived from the properties

and behaviour of the extrema of saliency functions in scale space. These proper-

ties are enumerated in Chapter 4, Sections 4.1.2 and 4.1.3. The properties that

play a primary role in the determining the rules of the algorithm are summarised

as follows,

1. Extrema may merge, but may not diverge as scale increases.

2. Extrema may be created or annihilated.

3. Extrema move by a finite amount over a finite change in scale.

4. Extrema generated by different structures are, by definition, separated by

edges in the image. They will be separated by a distance related to the

scale and will diverge.

5. Extrema generated by closely related structures tend to converge.

6. The velocity of extrema over scale can only be predicted through extensive

analysis of the image gradients.

From the first property it is clear that the feature sketch graph will take the form

of a forest of tree graphs. The root of a tree in the graph is the highest scale

feature in that tree. Connected elements in the tree are at adjacent scales. The

data structures chosen to represent the graph make use of a bottom-up approach
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in terms of scale. The graph is represented by the vector of features, f , and two

index vectors, p and l. The feature vector, f , lists the scale space coordinates

of each feature. Each element in index vector p corresponds to an element in

the features vector, f , and lists the index of the feature’s parent feature – the

parent of feature f (i) is f (p (i)). Any feature’s parent is at a higher scale than

the feature. In the case of root nodes (that do not have higher scale parents),

p (i) = i. Index vector l lists the indexes of the leaf nodes. This representation

encodes convergences implicitly, since multiple nodes may have the same parent.

The graph is constructed by a simple bottom-up method. The parent of each

feature in a given scale level is found by searching the next scale level up, in the

spatial vicinity of the feature. The closest feature found within a set radius is

chosen as the parent. Note that direct connectivity (such as eight-connectivity)

is not required. Because features from different structures tend to diverge and

features from within a closed structure tend to converge, the most appropriate

parent of any feature is the one closest to it in the next scale. It is possible that

a parent may be found when in fact the feature has been annihilated, though

this is sufficiently unlikely. The nearest feature search strategy is chosen because

predicting the displacement of a feature over scale requires analysing the gradients

in the vicinity of the feature, which is computationally demanding. Features for

which no suitable parent can be found are root nodes. Features that are not the

parent of any other node are leaf nodes (lowest scale node in a branch) and are

listed in l.

The size of the area searched for the parent of a feature must be large enough

to include all features from the same structure. At the same time, features from

other structures should be avoided. When a feature is annihilated, the highest

scale feature before the annihilation is the root feature of its tree. A maximum

search radius must be chosen carefully to avoid incorporating such trees into



100 5.2 The Scale Space Feature Sketch Graphing Algorithm

nearby trees, instead of creating the appropriate root node. The velocity over

scale of features located near corners depends on the angle of the corner and

can be very large where the angle is very small. Converging features accelerate

as they approach convergence. The situation is exaggerated if the scale-space is

sampled very sparsely, so that there is a large scale change between successive

levels. Based on these observations, it is desirable to maximise the search radius,

to improve the likelihood of locating features that belong to the same structure.

The dominant limiting factor in choosing a search radius is the minimum distance

that features from different structures can be located from each other. The deter-

minant of Hessian operator is considered as an example. This operator produces

maxima at a distance of σ from an edge. Therefore, features from opposite sides

of an edge will be located 2σ or more from each other at any particular scale,

until other image structures start to affect the feature position. The search radius

limit for determinant of Hessian features is chosen as 1.5σi (where σi is the scale

of the feature for which a parent is sought) to compromise between the search

area for a given feature and the search area of a potential neighbouring feature

at the same scale. This should only be reduced if the pyramid is sampled very

densely. The graphing algorithm accepts the parameter k, and sets the search

radius to kσ, where k should be chosen based on the specific behaviour of the

saliency operator used.

5.2.3 The Algorithm

The scale space feature sketch graph construction algorithm is listed in Algo-

rithm 5.1. Lines 5.1.7 - 5.1.9 build the list of leaf nodes. Lines 5.1.10 - 5.1.11

search for the parent of feature fi. The function, t ← FINDNEAR (x, σ, r), is

discussed in detail below. If a suitable parent is found, its index is recorded in
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Algorithm 5.1: The Scale Space Feature Sketch Graph Construction
Algorithm.

Function:
{p, l} ← GRAPH (f, k).
Input:
f = {{x, σ}1 , {x, σ}2 , . . . , {x, σ}n} – A set of n feature coordinates in
discrete scale space with scales {σ1, σ2, . . . , σm}, sorted according to
ascending scale.
k – The search radius multiplier.
Output:
p = {p1, p2, . . . , pn} – The output graph. Each element, pi, corresponds
to a feature fi at the same index and lists the index of the parent of fi.
Root nodes list themselves as parent.
l = {l1, l2, . . . , lo} – The list of leaf node indexes.
begin5.1.1

p← {0, 0, . . . , 0} (n zeros).5.1.2

l← ∅.5.1.3

i← 1.5.1.4

repeat5.1.5

fi = {xi, σj}.5.1.6

if pi = 0 then5.1.7

l← {l, i}.5.1.8

end5.1.9

r ← kσj.5.1.10

t← FINDNEAR (xi, σj+1, r).5.1.11

if t = 0 then5.1.12

pi ← i.5.1.13

else5.1.14

pi ← t.5.1.15

pt ← 1.5.1.16

end5.1.17

i← i + 1.5.1.18

until σj = σm5.1.19

while i ≤ n do5.1.20

if pi = 0 then5.1.21

l← {l, i}.5.1.22

end5.1.23

pi ← i.5.1.24

i← i + 1.5.1.25

end5.1.26

end5.1.27
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the appropriate element in p, line 5.1.15, otherwise, the node is marked as a root

node, line 5.1.13. Line 5.1.16 ensures that nodes that have children are not en-

listed as leaf nodes. Features at the highest scale level, processed in lines 5.1.20 -

5.1.26, do not have parents, and therefore do not require the parent search step.

They are all labelled as parents and those that are leaf nodes are appended to

the list of leaf nodes.

The function, t ← FINDNEAR (x, σ, r), searches the set of input features for

features at scale level σ that are within radius r of the spatial coordinates x. The

function returns the index of the feature closest to x. If no feature is found within

the specified radius, then zero is returned. The implementation of this function

should be optimised based on the arrangement of the feature set. For example,

if the non-maximum suppression operation that was used to generate the feature

set was run over one scale level at a time from bottom to top in the pyramid and

from top to bottom in the image, then the features are sorted according to scale

level and each level is sorted according to the y coordinate. While searching for

the parents of features at scale σj, a search window can be maintained at scale

σj+1 over a y coordinate range of r. As processing continues, the y coordinate of

the features being processed will increase monotonously and the search window

is updated accordingly. In this way the number of features searched is limited to

only a few features, instead of the whole feature set.

Figures 5.1 and 5.2 show visualisations of the scale space feature sketch graphs

superimposed on a set of multi-scale determinant of Hessian features. The effect of

scale sampling density is shown in Figure 5.3. A consistent sketch is produced for

various scale sampling densities. A sketch produced from a lower scale sampling

density feature set is approximately equivalent to one produced from a higher

density set, but with detail removed. At very low sampling densities, errors

become more common. Figure 5.3 shows an example where sampling one level



5.2 The Scale Space Feature Sketch Graphing Algorithm 103

Figure 5.1: Output of scale space feature sketch graphing algorithm when applied
to Determinant of Hessian features. Each white circle with a cross at its centre
represents a feature. The radius of the circle indicates the feature scale. The
scale space feature sketch is indicated by coloured lines joining the centres of the
feature circles. Each branch of the sketch was assigned a random colour.

per scale octave results in some of the branches of the graph not being connected

to the nearby tree, in contrast to the higher sampling density cases, where these

branches are connected.
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Figure 5.2: Enlarged subregions of Figure 5.1
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1 2

4 8

Figure 5.3: Output of scale space feature sketch graphing algorithm for four
different scale sampling densities – one, two, four and eight samples per scale
octave, as indicated.
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5.3 Characteristic Scale Selection using Scale

Space Primal Sketch Graphs

The characteristic scale features in a primal sketch may be identified using a

very simple procedure. First some scale response function is evaluated at each

feature’s coordinates in the image scale space. This could be the saliency function,

the Laplacian, or some other function of scale space derivatives. Characteristic

features are then selected as the features that yield a response higher than their

neighbours in the graph.

Algorithm 5.2 presents an algorithm for performing characteristic scale feature

selection. At each point in the graph, the responses of three nodes along the

branch are compared to check for the presence of a local maximum in the second

node (lines 5.2.4 - 5.2.14). If a maximum is found, it is marked in a label array,

k. At the end, the label array is converted to array of indexes of selected features

(line 5.2.15).

5.3.1 Evaluation

In this section the scale space feature sketch (SSFS) based scale selection method

is compared to the scale space 3D maxima method. The testing method described

in [45] and Chapter 3, Section 3.3.1 is used.

A set of feature extractors were set up that used different saliency operators, scale

response operators, scale selection methods and affine adaptation methods. Each

extractor was given a shorthand name based on its configuration. The saliency

operators tested were the Determinant of Hessian operator (labelled He) and the

Harris operator (labelled Ha). The scale response operator was either the saliency
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Algorithm 5.2: The Scale Space Primal Sketch-based Scale Selection
Algorithm.

Function:
s← SELECT (f, p, R (x, σ)).
Input:
f = {{x, σ}1 , {x, σ}2 , . . . , {x, σ}n} – A set of n feature coordinates in
discrete scale space.
p = {p1, p2, . . . , pn} – The feature sketch graph. Each element, pi,
corresponds to a feature fi at the same index and lists the index of the
parent of fi. Root nodes list themselves as parent.
R (x, σ) – The scale response function (may be pre-computed at each
feature location).
Output:
s = {s1, s2, . . . , sm} – The indexes of the selected features.
begin5.2.1

i1 ← 1.5.2.2

k ← {0, 0, . . . , 0} (n zeros, Boolean).5.2.3

while i1 ≤ n do5.2.4

i2 ← p (i1).5.2.5

i3 ← p (i2).5.2.6

f1 = f (i1).5.2.7

f2 = f (i2).5.2.8

f3 = f (i3).5.2.9

r1 ← R (x1, σ1).5.2.10

r2 ← R (x2, σ2).5.2.11

r3 ← R (x3, σ3).5.2.12

ki ← (r2 > r1) · (r2 > r3).5.2.13

end5.2.14

s← arg (k 6= 0).5.2.15

end5.2.16
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operator or the Laplacian operator. Extractors using the Laplacian operator as

scale response are given subscript l. Two scale selection methods were tested –

the scale space feature sketch-based method (given subscript P) and the 3D non-

maximum suppression method (given subscript 3). Iterative scale selection is not

included in the evaluation because it does not provide significant benefits over

the other method, but requires much greater computation time. Extractors were

tested with and without affine adaptation. Those that employ affine adaptation

are given subscript A. This gives a total of eight extractors tested.

All tests used a Gaussian scale space pyramid computed over the same scale range

with the same total sub-sampling factor, and the same number of scale levels per

octave (see Chapter 4 for a discussion on scale space). The 3D non maximum

suppression methods used pyramids in which the sampling remained the same

for an octave, and each successive octave was down-sampled. Additional levels

were computed at the start and end of each octave to facilitate 3D operations

in the first and last levels. The primal sketch-based methods used pyramids in

which each successive level was down-sampled. Both pyramids down-sampled by

a factor of
√

2 per octave. The SIFT descriptor [38, 39] was used for all extractors.

Results

The analysis of test results is listed in Tables 5.1 -5.16. Tables 5.1 - 5.8 present

paired T-tests comparing the SSFS-based methods to the 3D methods. Ta-

bles 5.9 - 5.16 present paired T-tests comparing the methods using the saliency

function as scale response to the methods that use the Laplacian.

Figure 5.4 presents a visual summary of the relative performance of the two scale

selection methods. Box plots of the log of the ratio of test scores of the two

methods are shown.



5.3 Characteristic Scale Selection using Scale Space Primal Sketch
Graphs 109

mean(HeP) mean(He3) mean(HeP / He3) p
repeatability (%) 61.14 61.12 1.01 0.98
correspondences 1579.67 1569.00 0.98 0.66
matching score (%) 21.87 21.22 1.04 0.01
correct matches 508.07 506.03 1.01 0.78
efficiency (n/s) 922.88 709.40 1.30 0.00

Table 5.1: Paired T-test comparing results of HeP and He3.

mean(HelP) mean(Hel3) mean(HelP / Hel3) p
repeatability (%) 60.48 54.03 1.14 0.00
correspondences 1569.67 1527.87 1.00 0.45
matching score (%) 21.06 14.20 1.49 0.00
correct matches 496.47 376.20 1.31 0.00
efficiency (n/s) 873.95 617.27 1.40 0.00

Table 5.2: Paired T-test comparing results of HelP and Hel3.

mean(HePA) mean(He3A) mean(HePA / He3A) p
repeatability (%) 56.04 57.57 0.98 0.01
correspondences 1192.30 1219.40 0.95 0.07
matching score (%) 20.86 21.33 0.99 0.08
correct matches 393.90 411.57 0.96 0.00
efficiency (n/s) 100.01 26.57 4.81 0.00

Table 5.3: Paired T-test comparing results of HePA and He3A.

mean(HelPA) mean(Hel3A) mean(HelPA / Hel3A) p
repeatability (%) 54.99 49.63 1.12 0.00
correspondences 1154.00 1153.43 0.97 0.99
matching score (%) 20.42 13.15 1.55 0.00
correct matches 382.10 285.03 1.34 0.00
efficiency (n/s) 97.74 21.84 4.40 0.00

Table 5.4: Paired T-test comparing results of HelPA and Hel3A.

mean(HaP) mean(Ha3) mean(HaP / Ha3) p
repeatability (%) 51.38 52.68 1.02 0.71
correspondences 1028.33 396.97 2.26 0.00
matching score (%) 18.22 21.84 0.88 0.01
correct matches 314.17 137.73 1.93 0.00
efficiency (n/s) 197.82 57.18 3.04 0.00

Table 5.5: Paired T-test comparing results of HaP and Ha3.
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mean(HalP) mean(Hal3) mean(HalP / Hal3) p
repeatability (%) 54.43 45.05 1.23 0.00
correspondences 1241.80 474.93 2.83 0.00
matching score (%) 18.14 15.07 1.26 0.00
correct matches 361.77 130.43 2.81 0.00
efficiency (n/s) 230.56 77.09 2.99 0.00

Table 5.6: Paired T-test comparing results of HalP and Hal3.

mean(HaPA) mean(Ha3A) mean(HaPA / Ha3A) p
repeatability (%) 44.56 50.48 0.93 0.07
correspondences 708.90 332.47 1.80 0.00
matching score (%) 19.38 22.48 1.02 0.01
correct matches 253.63 132.07 1.86 0.00
efficiency (n/s) 18.35 2.72 17.55 0.00

Table 5.7: Paired T-test comparing results of HaPA and Ha3A.

mean(HalPA) mean(Hal3A) mean(HalPA / Hal3A) p
repeatability (%) 46.56 40.69 1.21 0.00
correspondences 750.07 380.40 2.03 0.00
matching score (%) 17.92 13.75 1.36 0.00
correct matches 245.50 117.20 2.25 0.00
efficiency (n/s) 13.02 2.51 8.27 0.00

Table 5.8: Paired T-test comparing results of HalPA and Hal3A.

mean(Hel3) mean(He3) mean(Hel3 / He3) p
repeatability (%) 54.03 61.12 0.88 0.00
correspondences 1527.87 1569.00 0.99 0.38
matching score (%) 14.20 21.22 0.69 0.00
correct matches 376.20 506.03 0.77 0.00
efficiency (n/s) 617.27 709.40 0.89 0.00

Table 5.9: Paired T-test comparing results of Hel3 and He3.

mean(Hel3A) mean(He3A) mean(Hel3A / He3A) p
repeatability (%) 49.63 57.57 0.86 0.00
correspondences 1153.43 1219.40 0.98 0.05
matching score (%) 13.15 21.33 0.65 0.00
correct matches 285.03 411.57 0.73 0.00
efficiency (n/s) 21.84 26.57 1.00 0.09

Table 5.10: Paired T-test comparing results of Hel3A and He3A.
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mean(Hal3) mean(Ha3) mean(Hal3 / Ha3) p
repeatability (%) 45.05 52.68 0.88 0.00
correspondences 474.93 396.97 1.13 0.04
matching score (%) 15.07 21.84 0.80 0.00
correct matches 130.43 137.73 0.96 0.36
efficiency (n/s) 77.09 57.18 1.41 0.00

Table 5.11: Paired T-test comparing results of Hal3 and Ha3.

mean(Hal3A) mean(Ha3A) mean(Hal3A / Ha3A) p
repeatability (%) 40.69 50.48 0.84 0.00
correspondences 380.40 332.47 1.08 0.09
matching score (%) 13.75 22.48 0.82 0.00
correct matches 117.20 132.07 1.01 0.02
efficiency (n/s) 2.51 2.72 1.49 0.67

Table 5.12: Paired T-test comparing results of Hal3A and Ha3A.

mean(HelP) mean(HeP) mean(HelP / HeP) p
repeatability (%) 60.48 61.14 0.99 0.02
correspondences 1569.67 1579.67 1.00 0.41
matching score (%) 21.06 21.87 0.97 0.00
correct matches 496.47 508.07 0.97 0.02
efficiency (n/s) 873.95 922.88 0.93 0.00

Table 5.13: Paired T-test comparing results of HelP and HeP.

mean(HelPA) mean(HePA) mean(HelPA / HePA) p
repeatability (%) 54.99 56.04 0.98 0.00
correspondences 1154.00 1192.30 0.98 0.00
matching score (%) 20.42 20.86 0.98 0.04
correct matches 382.10 393.90 0.98 0.01
efficiency (n/s) 97.74 100.01 0.99 0.02

Table 5.14: Paired T-test comparing results of HelPA and HePA.

mean(HalP) mean(HaP) mean(HalP / HaP) p
repeatability (%) 54.43 51.38 1.21 0.18
correspondences 1241.80 1028.33 1.60 0.00
matching score (%) 18.14 18.22 1.23 0.94
correct matches 361.77 314.17 1.62 0.00
efficiency (n/s) 230.56 197.82 1.60 0.00

Table 5.15: Paired T-test comparing results of HalP and HaP.
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Figure 5.4: Box plots of the log of the ratio of extractors using the scale space
feature sketch scale selection method and extractors using 3D non-maximum
suppression.
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mean(HalPA) mean(HaPA) mean(HalPA / HaPA) p
repeatability (%) 46.56 44.56 1.23 0.28
correspondences 750.07 708.90 1.40 0.06
matching score (%) 17.92 19.38 1.13 0.20
correct matches 245.50 253.63 1.28 0.44
efficiency (n/s) 13.02 18.35 0.95 0.00

Table 5.16: Paired T-test comparing results of HalPA and HaPA.

Discussion

The SSFS-based scale selection method achieves superior computational efficiency

in all tests. When using the Determinant of Hessian extractor and no affine

adaptation, SSFS achieves a small gain of 30% to 40% on average (Tables 5.1 -

5.2). With the Harris detector, SSFS is three times as efficient as the 3D method

(Tables 5.5 - 5.6).

For the extractors that make use of affine adaptation, the SSFS-based methods

yield greatly superior efficiency compared to the 3D-based methods. On average

a 4.4 to 4.8 fold increase in efficiency is observed for the Determinant of Hessian-

based extractors (Tables 5.3 - 5.4) and 8.3 to 17.6 times increase is observed for

the Harris-based extractors (Tables 5.7 - 5.8). The plots in Figure 5.4 show an

efficiency increase in excess of ten fold for a significant proportion of trials. The

same extractors do not show an increase in correct match counts of comparable

magnitude to the increase in efficiency. This suggests that the SSFS-based scale

selection method produces features that complete the affine adaptation process

in fewer iterations.

The two scale selection techniques yield similar performance when using the De-

terminant of Hessian extractor (Table 5.1). When using the Harris extractor, the

SSFS-based method consistently produces at least twice as many correspondences

and matches, and three times higher efficiency. The matching score is reduced
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by a factor 0.88 (Table 5.5).

When using the Laplacian as scale response function, the SSFS-based method

consistently achieves higher repeatability (10% to 20% increase), matching score

(approximately 50% increase) and number of correct matches (30% to 40% in-

crease), compared with the 3D method (Tables 5.2, 5.4, 5.8, 5.8). Tables 5.9 - 5.16

compare the methods using the saliency function as scale response to the methods

that use the Laplacian. When comparing the performance of the Laplacian and

the saliency function as scale response functions, the 3D-based methods show a

degradation in performance in all metrics apart from the number of correspon-

dences (Tables 5.9 - 5.12). This degradation is most significant when using the

Determinant of Hessian extractor. The matching score metric is most strongly

affected with as much as 35% reduction in score. The SSFS-based methods do

not show the same degradation in performance (no more than 5% in any metric,

Tables 5.13 - 5.16). For the Determinant of Hessian extractor using SSFS-based

scale selection, there is no noticeable difference between using the Laplacian and

the saliency function as scale response function. This is expected, since the

Determinant of Hessian and Laplacian are very similar functions. For the Har-

ris extractor, using the Laplacian results in a 60% increase in correspondences,

correct matches and efficiency. These results support the hypothesis that the

SSFS-based scale selection is more effective than the 3D method, when using the

Laplacian as scale response function.

Overall, the SSFS-based scale selection method achieves results that are equiva-

lent or superior to the 3D non-maximum suppression method in all tests. The

SSFS-based method is the better choice, by a convincing margin, when using the

Harris extractor, the Laplacian scale response function, or affine adaptation.
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5.4 Chapter Summary

In this chapter, the scale space primal sketch is introduced as a tool for multi-

scale analysis and scale selection. The scale space feature sketch is proposed – a

primal sketch where the primitives are salient features. This is a simple extension

and does not require any modification of the scale space primal sketch concept.

An algorithm is presented for computing the SSFS from a set of multi-scale

features. The design of this algorithm is based on the knowledge of how saliency

map-based features typically behave in scale space. It requires no further image

processing, operating only on the set of feature coordinates.

A novel method for selecting characteristic scale features from the SSFS is pre-

sented. The new method is compared experimentally with 3D scale space non-

maximum suppression. Using the SSFS for scale selection has four principal

advantages over the existing 3D scale space non-maximum suppression method:

Firstly, it does not impose restrictions on how the scale space is sampled. Sec-

ondly, greater accuracy is achieved through the ability to accurately track features

over scale. Thirdly, the scale response function can be evaluated strictly along

the feature locus, making it possible to select the best feature. This gives better

scale selection results than somewhat arbitrarily asserting that the scale response

of a feature must assume a local maximum over scale. This property is especially

beneficial when different functions are used for selecting spatial position and scale

position. Finally, greater computational efficiency is achieved, especially where

affine adaptation is applied subsequent to scale selection.





Chapter 6

Affine Adaptation using the

Hessian Matrix

The second moment matrix is currently the dominant affine shape estimator used

in affine adaptation of saliency map-based local image features. This chapter ex-

plores the novel approach of using the Hessian matrix as an affine shape measure

for affine adaptation. Both operators are introduced in Chapter 4, Section 4.2.1.

Affine adaptation using the second moment matrix is reviewed in Section 4.3.2.

The main motivations for using the Hessian matrix instead of the second moment

matrix are that the Hessian is simpler to implement and requires less computa-

tional effort. The experiments in Section 6.5 show that it is also more effective in

practical problems. The limitations associated with the Hessian matrix are also

explored.

The ability of the Hessian matrix to measure affine shape is demonstrated from

two points of view. Section 6.1 shows how the Hessian matrix can be used to

measure the covariance matrix of a Gaussian blob up to scale. In Section 6.2

isotropy is defined in terms of the Hessian itself. It is shown that the Hessian
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can be used to measure the second-order shape of structures in scale space with

arbitrary shape. In both cases the model is an approximation to the real image

feature shape. The process must be applied iteratively in order to find the true

affine shape of a feature.

Implementation issues are briefly considered in Section 6.3. Section 6.4 compares

the complexity of the Hessian and second moment operators. The performance

of the Hessian matrix and second moment matrix used as affine shape estimators

is compared in Section 6.5. The chapter is concluded in Section 6.6.

6.1 The Affine Gaussian Model

In this section it is demonstrated that the Hessian matrix can be used to measure

the covariance matrix of an affine Gaussian function up to scale. This is then

applied to real image features in scale space.

The 2D affine Gaussian function centred on the coordinate origin is defined as,

g (x, Σ) =
1

2π |Σ|
e
−x>Σ−1x

2 .

The matrix Σ may be decomposed as,

Σ = σ2
αΣ

′
= σ2

α

 σxx σxy

σxy σyy

 , (6.1)

so that det(Σ) = σ4
α, det(Σ

′
) = 1, σxx > 0 and σyy > 0. Rewriting g (x,Σ) with

arbitrary gain k in terms of Σ
′
and σα yields,

g (x,Σ) = ke
−x>Σ

′−1x

2σ2
α .
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The second order partial derivatives (the Hessian) of g (x,Σ) are,

∂2g(x,Σ)
∂x2 = kg (x,Σ)

(
1

σ4
α

(
x2σ2

yy − 2xyσyyσxy + y2σ2
xy

)
− σyy

σ2
α

)
,

∂2g(x,Σ)
∂y2 = g (x,Σ)

(
1

σ4
α

(
x2σ2

xy − 2xyσxyσxx + y2σ2
xx

)
− σxx

σ2
α

)
,

∂2g(x,Σ)
∂x∂y

= g (x,Σ)
(

1
σ4

α

(
−x2σxyσyy + xy

(
σxxσyy + σ2

xy

)
− y2σxxσxy

)
+ σxy

σ2
α

)
,

∂2g(x,Σ)
∂y∂x

= ∂2g(x,Σ)
∂x∂y

.

In the following discussion the second order partial derivatives of g will be indi-

cated as,

gxx (x,Σ) = ∂2g(x,Σ)
∂x2 ,

gyy (x,Σ) = ∂2g(x,Σ)
∂y2 ,

gxy (x,Σ) = ∂2g(x,Σ)
∂x∂y

= ∂2g(x,Σ)
∂y∂x

.

Evaluating the second order partial derivatives at x = 0 gives,

gxx (0,Σ) = k−σyy

σ2
α

= −k
′
σyy,

gyy (0,Σ) = k−σxx

σ2
α

= −k
′
σxx,

gxy (0,Σ) = k σxy

σ2
α

= k
′
σxy.

In matrix form, the Hessian of a Gaussian evaluated at the Gaussian centre is a

scaled version of the negative inverse of the Gaussian’s covariance matrix,

∂2g (x,Σ)

∂x2

∣∣∣∣
x=0

= −k
′

 σyy −σxy

−σxy σxx

 = −k
′
Σ−1.

Negating the sign of the Gaussian negates the sign of the Hessian.

Hence Σ
′
can be recovered by evaluating the inverse Hessian matrix at the centre

of the Gaussian function,

H′
=

∂2g (x,Σ)

∂x2

∣∣∣∣
x=0

,

H =
H′

sign
(
H′

0,0

)√
det (H′)

,

Σ
′

= H−1,
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where sign
(
H′

0,0

)
gives the sign (+1 or −1) of the top left element of H′

. To

normalise the anisotropic blob to an isotropic blob, simply transform the image

by the square root of Σ′,

g
(
Σ

′ 1
2x,Σ

)
= ke

−x>Σ
′ 1
2>Σ

′−1Σ
′ 1
2 x

2σ2
α

= ke
−x>x

2σ2
α .

This proof shows how to directly measure the affine shape of a Gaussian func-

tion of which the centre point is known. This method may be applied to local

image features, despite the fact that image structures are, in general, not proper

affine Gaussian functions. The characteristic scale representations of blob-like

structures are sufficiently close to affine Gaussian blobs since they have been con-

volved with a Gaussian of the same scale as the structure. A characteristic scale

blob extractor, such as the Laplacian or determinant of Hessian extractor, can

be used to find the blob scale and centre point.

The Hessian matrix can therefore be used for affine normalisation in conjunction

with a characteristic scale blob extractor. This system does not, however, provide

a direct solution. Convolving an isotropic function with an isotropic Gaussian

produces another isotropic function, but convolving an anisotropic function with

a Gaussian produces a function with a different shape to the original. The Hes-

sian therefore only provides an approximate shape measure when applied to a

characteristic scale shape.

An iterative technique can be used to achieve an accurate shape measure. At

each iteration, the shape is measured with the Hessian and then normalised by

transforming the shape with the inverse square root of the normalised Hessian.

After each iteration the normalised shape is closer to isotropic, resulting in a

more accurate shape estimate during the following iteration. This continues until

the shape is measured to be sufficiently close to isotropic. The normalisation
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transformation accumulated over all iterations represents the final affine covariant

shape measure.

6.2 Isotropic Local Hessian

In the previous section, the concept of isotropy was defined in terms of the co-

variance matrix of a Gaussian blob. In this section, isotropy is instead defined in

terms of the Hessian matrix itself, so that it is not tied to a particular function

or primitive. A shape is considered isotropic if the eigenvalues of the Hessian

matrix, evaluated at the shape centre, are of equal magnitude. The isotropy

property is rotation invariant because the Hessian is rotation invariant [6], and

scale invariant because scaling the function simply scales the Hessian (the relative

magnitude of eigenvalues is preserved). The Hessian-based definition of isotropy

is also compatible with the Gaussian-based definition of isotropy, since evaluating

the Hessian at the centre of a Gaussian produces a matrix differing only in scale

to Σ (see previous section).

Using inhomogeneous coordinates, x = [ x y ]>, define function i (x) as being

isotropic around x = 0. It may be assumed that an arbitrary shape, f (x), is

related to an isotropic shape i (x) by an affine transformation,

f (x) = i (Ux) ,

where U is of the form,

U = kR (θ)A.

The coordinate system is chosen so that the centre of f (x) is at the coordinate

origin. The Hessian of shape f (x) is,

∂2f (x)

∂x2
=

∂2i (Ux)

∂x2
= U>

 ixx (Ux) iyx (Ux)

ixy (Ux) iyy (Ux)

U.
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Evaluating this equation at the shape centre point, 0, gives,

∂2f (x)

∂x2

∣∣∣∣
x=0

= U>

 ixx (0) iyx (0)

ixy (0) iyy (0)

U.

Since i (x) is defined to be isotropic around x = 0, the derivative matrix in the

above equation is a scalar matrix of unknown scalar s, simplifying the equation

to,

∂2f (x)

∂x2

∣∣∣∣
x=0

= sU>U

= sk2AR (−θ)R (θ)A

= sk2A2. (6.2)

The Hessian therefore measures sk2A2. Normalising the determinant and taking

the square root gives A. The angle of rotation, θ, is not measured and the scale,

k, of the original U cannot be recovered from the Hessian due to the presence of

unknown scale factor s (an unknown parameter of i (x)). Applying the inverse of

A to the shape gives,

f
(
A−1x

)
= i

(
UA−1x

)
= i

(
kR (θ)AA−1x

)
= i (kR (θ)x) ,

which is an isotropic shape, since i (x) is isotropic and isotropy is scale and

rotation invariant.

This method effectively fits a second order surface to f (x) in the vicinity of x = 0

(and ignores the lower order components). Real images rarely contain purely sec-

ond order shapes and contain noise. Fitting a second order surface to such an

image by evaluating the Hessian at a single point is of no use. Computing a Gaus-

sian scale space of the image removes pixel noise and smoothes local features. At

the characteristic scale of a feature, a second order approximation is a reasonable



6.2 Isotropic Local Hessian 123

(a) (b) (c) (d)

Figure 6.1: (a) A simple shape. (b) Characteristic scale image of (a). (c) A
second order approximation to (b). (d) The difference between (b) and (c) (black
indicates small difference).

approximation of the local feature shape, as illustrated in Figure 6.1. It can be

seen that the second order function is a reasonable approximation in the feature

area, but quickly becomes inaccurate outside the feature.

An isotropic function in Gaussian scale space may be defined as,

ig (x) = g (x, σ) ∗ i (x) .

In this definition, the isotropy property is scale dependant. A function that is

isotropic at a particular scale may not be isotropic at another scale, because the

Gaussian convolution removes different levels of detail from the shape at different

scales.

It is not feasible to model a distorted version of an isotropic function in scale

space as,

f (x) = ig (Ux) = g (Ux, σ) ∗ i (Ux) ,

because the distorted Gaussian, g (Ux, σ), cannot be produced without knowing

U. Instead, a distorted function in isotropic scale space may be observed as,

f (x) = g (x, σ) ∗ i (Ux) .

The Hessian of this function is,

∂2f (x)

∂x2
=

∂2g (x, σ)

∂x2
∗ i (Ux) = g (x, σ) ∗ ∂2i (Ux)

∂x2
.
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This may be interpreted either as the Hessian of a smoothed version of the dis-

torted function, or as a weighted average of the Hessian of the distorted function

over an area proportional to the feature scale. The scale space thereby provides

a method for fitting a second order surface to an arbitrary image structure in

a stable manner. Evaluating the above function at x = 0 does not, however,

give a simple measure of the distortion as in Equation 6.2. Smoothing with an

isotropic Gaussian affects the shape of a non-isotropic structure, since it does not

average the shape information over an area of the same shape as the structure of

interest. The result is that measuring the Hessian of an arbitrary shape in scale

space provides only an approximate measure of the shape. The problem therefore

lends itself to an iterative solution – if the distortion can be corrected using an

approximate shape measure, then a second attempt at measuring the shape will

yield better results because the shape of the Gaussian smoothing function will be

more similar to the corrected structure shape.

The distortion of an isotropic function, i (x), distorted by affine transformation

U, is iteratively estimated by means of the following procedure at each iteration,

fj (x) = g (x, σ) ∗ i
(
UÛjx

)
, (6.3)

Ûj+1 = H− 1
4

j ÛjH
− 1

4
j , (6.4)

where fj is the measured function at iteration j, Hj is the Hessian of fj (x),

evaluated at x = 0, and Ûj is the affine correction transformation (a symmetric

matrix with determinant of 1) and represents the inverse of the distortion estimate

at iteration j (with Û0 = I). Eventually this process will converge such that fj

is isotropic and Hj is scalar. If fj is isotropic, then i
(
UÛjx

)
is isotropic. In

this case, convolution with the isotropic Gaussian function has no affect on the

isotropy of i
(
UÛjx

)
(other than to adjust scale), because both functions are

isotropic. The matrix, Ûj, is then equal to the inverse of the A component of U.

A correction transformation has therefore been found that is covariant with U,
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as long as the scale, σ, is selected in a covariant manner.

Note the method used to update the correction transformation in Equation 6.4.

This method prevents an unwanted rotation component from being introduced

into Û.

6.3 Practical Issues

The Hessian matrix is predicted to be less stable than the second moment matrix

due to the absence of an averaging window applied after differentiation. For this

reason it is recommended that a small averaging filter be applied to improve

stability. Implementations presented in this thesis make use of a Gaussian filter

with scale parameter σ = 1 and truncated to a 3× 3 pixel window to average the

Hessian matrix over a small area. This has a practically insignificant effect on

the scale at which the Hessian is measured, but results in more stable and noise

tolerant measurements.

The Hessian matrix is not positive definite. In a saddle point the Hessian matrix

will have one positive and one negative eigenvalue, in which case the Hessian

can not be properly scalar. The definition of isotropy does not require the sign

of gradients to be the same, only their magnitudes, and so isotropy may still

be achieved. Simply negating the negative eigenvalue of the measured Hessian

matrix is sufficient to deal with the problem. One possible way to do this is to

compute the singular value decomposition (SVD) of the Hessian matrix, thereby

accessing the eigenvalues directly. The SVD of a 2 × 2 symmetric matrix is

trivial to compute. It can also be used to compute the square root of the matrix

and the isotropy measure (see Chapter 4, Section 4.3.2), which form part of the

adaptation algorithm (Section 4.4).
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6.4 Comparison of the Complexity of the Hes-

sian and Second Moment Operators

Both the Hessian matrix and the Second Moment matrix can be computed from

an image by applying a series of filters to the image. The scale operator and

windowed integration operation can be implemented as Gaussian filters, which

are most efficiently realised as IIR filters [14, 59]. The differentiation operations

can be implemented as 3 × 3 kernel filters. The complexity of all these filters

is linear in the number of image pixels processed. The only difference between

computing the Hessian matrix and the Second Moment matrix is the arrangement

of the above filters.

To compute these operators at a single point in an image (as is done repeatedly

during affine adaptation), the filters need only be applied to the image neigh-

bourhood that has a significant influence on the point of interest – this is referred

to as the filter support region. The first filter must be applied to the sum of the

support regions of all the filters required to compute an operator. Once one filter

has been applied, its support region can be discarded, leaving a smaller area to

process for subsequent filters. The derivative kernels require a 3 pixels wide sup-

port area. IIR Gaussian filters technically require infinite support (because the

Gaussian is non-zero for all real coordinates), though the region within a radius

of 3σ accounts for over 99% of the filter response. The total support width for a

Gaussian filter is therefore specified as 6σ.

The number of operations per pixel required by each filter is listed in Table 6.1.

Each derivative kernel requires a different number of operations per pixel, due to

the presence of zero elements in the kernels. The derivative kernels are given in

Figure 6.2. The constant kg depends on the specific Gaussian filter implementa-

tion.
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Filter Label Op’s per pixel
∂I/∂x cx 6
∂I/∂y cy 6

∂2I/∂x2 cxx 9
∂2I/∂y2 cyy 9

∂2I/∂x∂y cxy 4
g (x, σ) cgσ kg

g (x, 1) truncated to 3× 3 cg1 9

Table 6.1: Number of operations per pixel for filters.

-1 0 1
-1 0 1
-1 0 1

1 1 1
0 0 0
-1 -1 -1

1 -2 1
1 -2 1
1 -2 1

1 1 1
-2 -2 -2
1 1 1

-1 0 1
0 0 0
1 0 -1

cx cy cxx cyy cxy

Figure 6.2: Image derivative kernels.

The Hessian operator consists of the following processing steps:

1. Filter to the feature scale, σ, with a Gaussian filter, at a cost of cgσ opera-

tions per support pixel. A support region of 6σ pixels is required.

2. Compute second order partial derivatives (three filters) at a cost of cxx,

cyy and cxy operations per support pixel. A support region of 3 pixels is

required.

3. Apply 3×3 averaging filter to each of the three derivative images, at a cost

of cg1 operations for each of the three derivative images. A support region

of 3 pixels is required.

The number of operations required to compute the Hessian matrix at a pixel is,

cH = cgσ (6σ + 3 + 3) + (cxx + cyy + cxy) (3 + 3) + 3cg1

= kg (6σ + 6) + 159.

The Second Moment operator consists of the following processing steps:
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1. Filter to differentiation scale σD with a Gaussian filter, at a cost of cgσ

operations per support pixel. A support region of 6σD pixels is required.

2. Compute the first order partial derivative images Lx and Ly, at a cost of

cx and cy operations per support pixel. A support region of 3 pixels is

required.

3. Multiplying the derivative images to produce images L2
x, L2

y and LxLy, at

a cost of one operation per pixel for each product image.

4. Filter each derivative product image with a Gaussian with scale σI to com-

pute windowed integration, at a cost of cgσ per pixel per image. A support

region of 6σI pixels is required.

The number of operations required to compute the Second Moment matrix at

one pixel is,

cS = cgσ (6σI + 6σD + 3) + (cx + cy) (6σI + 3) + 3 (6σI) + 3cgσ (6σI)

= kg (24σI + 6σD + 3) + 90σI + 36.

Given that for the same feature both σI in the Second Moment operator and and

σ in the Hessian operator are set to the characteristic scale of the feature, it is

clear that the Hessian matrix requires significantly less computational effort than

the Second Moment matrix.

6.5 Experimental Evaluation

In this section the Hessian matrix and second moment matrix are compared in

terms of their effectiveness and efficiency in adapting local image features.
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Label Saliency function (E) Scale function (S) Shape estimator (A)
HeH Det of Hessian Det of Hessian Hessian
HeS Det of Hessian Det of Hessian SMM
HaH Harris Laplacian Hessian
HaS Harris Laplacian SMM

Table 6.2: Test Feature Extractor Configurations.

6.5.1 Evaluation Method

Four feature extractors were constructed using the algorithm presented in Chap-

ter 4, Section 4.4, each using a different combination of estimation functions.

These extractors are listed in Table 6.2. All extractors used the orientation selec-

tion method and SIFT descriptor described in [38]. Figure 6.3 shows the output

of the four extractors on corresponding sections of a pair of images. Note that

the Hessian and second moment matrices produce different shapes for the same

feature, but that the shape is none the less covariant between images.

Two evaluation methods are used to compare the above extractors. The first

is the repeatability test procedure and data described in [45] and Chapter 3,

Section 3.3.1. The second is the epipolar geometry computation task described

in Chapter 7, Section 7.2 (this evaluation method makes use of the WiDense

algorithm, developed in Chapter 7). Only the two datasets with the simplest

geometry (no. 5 and 6) were used for this test, because the other datasets are

so challenging that they do not give useful results for the set of extractors tested

here. Ground truth was generated using the MSER extractor.

6.5.2 Results

The repeatability results were analysed by means of paired T-tests. A paired

T-test comparing the Hessian extractors (HeH and HeS) is listed in Table 6.3,
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HeH

HeS

HaH

HaS

Figure 6.3: Image sections showing the output of the evaluation extractors.
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and a paired T-test comparing the Harris extractors (HaH and HaS) is listed in

Table 6.4.

mean(HeH) mean(HeS) mean(HeH / HeS) p
repeatability (%) 58.67 57.99 1.01 0.0680
correspondences 1711.93 1564.13 1.12 0.0000
matching score (%) 20.90 21.94 0.95 0.0295
correct matches 492.67 467.80 1.05 0.0002
efficiency (n/s) 95.93 16.34 5.92 0.0000

Table 6.3: Paired T-test comparing results of HeH and HeS.

mean(HaH) mean(HaS) mean(HaH / HaS) p
repeatability (%) 38.30 47.53 0.79 0.0000
correspondences 528.83 937.13 0.53 0.0000
matching score (%) 14.98 17.33 0.87 0.0001
correct matches 178.03 293.30 0.58 0.0000
efficiency (n/s) 27.10 12.93 2.08 0.0000

Table 6.4: Paired T-test comparing results of HaH and HaS.

Table 6.5 lists the results for the epipolar geometry computation task with the

error threshold set to t = 16. The table lists the average number of successful

epipolar geometry computation trials for each extractor in each dataset, as well

as the average success rate over all datasets. Figure 6.4 shows the average success

rate over all datasets at each of the tree error thresholds t = 4, t = 16 and t = 64.

6.5.3 Discussion

The discussion of results focuses on comparing the performance of extractors

using different affine shape measures. The determinant of Hessian extractors, HeH

and HeS, are compared and the Harris extractors, HaH and HaS, are compared

separately. The Hessian and Harris extractors have been compared to each other

in previous studies.

A paired T-test comparing the Hessian extractors (HeH and HeS) is summarised
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set nf HaS HaH HeS HeH

5 46 16.14 5.26 10.09 14.61
6 41 12.52 4.38 12.1 18.76

total 87 28.66 9.64 22.19 33.37
% 32.94 11.08 25.51 38.36

Table 6.5: Results for the epipolar geometry computation task. The average
number of successful epipolar geometry computation trials with error threshold
t = 16 are listed.
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Figure 6.4: Average success rates for the epipolar geometry computation task.

in Table 6.3. In terms of repeatability, matching score and the number of cor-

rect matches, there is no significant difference between these two extractors on

average. In terms of efficiency, the extractor using the Hessian matrix to esti-

mate affine shape (HeH) consistently outperforms the extractor using the second

moment matrix (HeS) by a factor as high as 6.6 times and 5.9 times on aver-

age. Using the Hessian matrix resulted in a small increase of approximately 12%

in the number of correspondences. The difference in performance between the

two extractors is consistent across all types of tests. In the epipolar geometry

estimation task, correspondences generated using HeH are successfully used to

compute the epipolar geometry in approximately 1.5 times as many cases as cor-

respondences generated using HeS. This indicates that the Hessian-based shape

adaptation is more likely to produce useful results in practical problems than the
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second moment matrix-based method.

A paired T-test comparing the Harris extractors (HaH and HaS) is summarised

in Table 6.4. These two extractors produced significantly different results. The

extractor using the Hessian matrix to estimate affine shape (HaH) consistently

achieved lower repeatability scores (79%), matching scores (87%) and produced

approximately half the number of correspondences and correct matches. Despite

lagging in the other metrics, the HaH extractor is on average twice as efficient

at producing correct matches as the HaS extractor. In the epipolar geometry

estimation task, using HaH produces useful results in only a third as many cases

as HaS.

This difference in behaviour of Hessian matrix-based affine adaptation between

the Harris and Hessian extractors may be attributed to the fact that the Harris

extractor selects corner features more often than the Hessian extractor, while the

Hessian extractor predominantly selects blob-like structures. The Hessian matrix

should be computed at the centre of a blob, as outlined in Section 6.1, and may be

unstable or inaccurate otherwise. A second order approximation without the first

order terms is also not sufficiently accurate at a corner. The results indicate that

the Hessian matrix is very effective and efficient in affine adaptation of blob-like

features, but is much less effective for corner features.

6.6 Chapter Summary

In this chapter it is shown that the Hessian matrix can be used to estimate the

affine shape of local image features using an iterative approach, similar to how

the second moment matrix is commonly used. A blob extractor that makes use

of the Hessian matrix requires on average 5.9 times less processing time than an
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extractor using the second moment matrix, while exhibiting the same performance

in terms of repeatability, matching score and the number of correspondences and

correct matches. This reduction in computation time is primarily attributed

to the fact that fewer filter stages are required to compute the Hessian matrix,

compared to the second moment matrix. The Hessian matrix-based method also

leads to useful epipolar geometry estimates in 1.5 times the number of cases,

compared to the second moment matrix-based method.

When combined with a corner extractor, the Hessian matrix produced lower re-

peatability (79%), fewer correspondences (53%), fewer correct matches (58%) and

fewer useful epipolar geometry estimates (34%) than the second moment matrix.

This is due to the fact that the Hessian matrix is less stable and accurate when

computed in regions other than at the centre of a blob-like image region. Despite

the reduction in correspondence counts, using the Hessian matrix still produced

correspondences approximately twice as efficiently as the second moment matrix.



Chapter 7

Dense Optical Flow across

Uncalibrated Wide Baseline

Views

The affine covariant feature extractors investigated and developed in earlier chap-

ters are robust and effective in extracting correspondences between wide baseline

views. Despite the quality of modern correspondence extraction methods, they

can not provide sufficient correspondences in all camera and scene configurations.

If cameras are too sparsely placed, produce low resolution images, or if the scene

contains few distinguishable features, then wide baseline matching techniques

may not be able to produce sufficient correspondences to allow computation of

the camera geometry.

This chapter presents the Uncalibrated Wide Baseline Dense Optical Flow algo-

rithm, called WiDense. It is a method for extracting large numbers of accurate

correspondences between a pair of views using only a set of putative wide baseline

correspondences as input. The new method does not rely on any knowledge of the
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camera geometry, only the information contained in matches produced through

wide baseline matching. It can produce useful output even when the input set of

correspondences is not sufficient to compute the epipolar geometry. The WiDense

algorithm is presented in Section 7.1.

In Section 7.2 a method for evaluating wide baseline correspondence extraction

systems is presented. The evaluation attempts to compute the epipolar geometry

of a set of scenes using the output of a given wide baseline matching system. The

results are presented in terms of average success rates. This evaluation method

is used in Section 7.3 to compare the performance of the WiDense algorithm

to existing wide baseline matching techniques. It is shown through this evalua-

tion that the correspondences generated by the WiDense algorithm can be used

to compute the epipolar geometry in many cases where existing wide baseline

methods alone do not provide sufficient reliable correspondences.

7.1 The WiDense Algorithm

Matching features across widely separated views usually involves comparing fea-

ture sets containing a large proportion of features that are not common to both

views. Each feature must therefore be described with a large amount of infor-

mation in order to distinguish it from the interfering features. This means that

each feature that is successfully matched contains simpler, smaller scale features

within its support region. These sub-features do not contain enough informa-

tion to be matched unambiguously across views, but can be exploited once the

primary feature has been matched.

A matched pair of affine covariant features provides much more information than

simply a corresponding pair of points. They also contain normalisation transfor-
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mations that approximately map the originating local image regions to a common

coordinate frame. These affine normalisation transformations can be combined

into a transformation that maps one image to the other. This transformation is

valid over the whole plane on which the feature is located. A matched pair of

affine covariant features therefore gives an affine planar transformation between

the two images of the plane containing the feature.

The Uncalibrated Wide Baseline Optical Flow, or WiDense, algorithm presented

in this section takes advantage of the affine mapping provided by matched fea-

tures and the information contained in their local image regions. The known

local planar transformation is first refined and then used to constrain the search

space, allowing the search for fine scale feature correspondences. The surrounding

neighbourhood of the matches is also explored using this transformation, in order

to find more correspondences.

The term, “dense correspondences”, is used slightly differently in different con-

texts. In the context of short baseline stereo, for example, it refers to correspon-

dences for every pixel in an image. Another example is to subdivide an image in

a regular grid and find a correspondence for every cell in the grid. In this thesis,

dense correspondence means that correspondence has been found for every image

region that can be aligned. Image regions that contain no information (homo-

geneous) provide no means of finding correspondences. Furthermore, in a wide

baseline scenario, occlusions may be very large and the commonly visible part in

the scene may account for a small proportion of image area. It is therefore not

possible to match every part of an image in these scenarios.
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Figure 7.1: The uncalibrated wide baseline dense correspondence extraction pro-
cess.

(a) (b) (c) (d)

Figure 7.2: Example output from the different stages of the WiDense algorithm.
Features are indicated by white ellipses and correspondences are indicated by
black lines joining the feature positions in each image. (a) Phase one: Hessian
Affine features and putative correspondences. (b) Phase two: Aligned seed corre-
spondences. (c) Phase three: Replicated correspondences. (d) Phase four: Dense
correspondences.
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7.1.1 Overview

The WiDense algorithm consists of four phases. Figure 7.1 presents a diagram of

the system and Figure1 7.2 shows the output of each phase on an example image

pair.

The first phase is the conventional wide baseline matching step. It consists of ex-

tracting and matching affine covariant features using any affine covariant feature

extractor, descriptor and matching routine. This phase generates a set of puta-

tive correspondences that may contain a large proportion of incorrect matches,

depending on the scene complexity. In the example in Figure 7.2(a), the set of

210 putative correspondences contains approximately 9% correct matches.

The second phase consists of properly aligning the image regions associated with

each matched pair of features. This phase is similar to the match refinement

stage in [18], however the alignment method used is significantly different. The

output of this step is a set of seed features with refined normalisation transfor-

mations. Some incorrect matches are eliminated by removing correspondences

that cannot be aligned with sufficiently low error. This phase is referred to as

seed correspondence alignment, and is discussed in Section 7.1.2. In the exam-

ple in Figure 7.2(b), the set of putative correspondences has been reduced to 67

correspondences, containing approximately 28% correct matches.

The third phase involves searching the neighbourhood of each seed correspondence

for other regions that are related by approximately the same transformations as

the seed features. The alignment of each new correspondence is refined to ac-

commodate limited changes in surface orientation. This process is referred to as

correspondence replication and is presented in Section 7.1.3. In the example in

1Images sourced from http://www.robots.ox.ac.uk/~vgg/data/valbonne/images.tar.
gz.

http://www.robots.ox.ac.uk/~vgg/data/valbonne/images.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/valbonne/images.tar.gz


140 7.1 The WiDense Algorithm

Figure 7.2(c), the set of correspondences has been expanded to 155 correspon-

dences, of which approximately 45% are correct.

The final step is to select small scale features from each corresponding pair of

affine features and to align them precisely. This is presented in Section 7.1.4. In

the example in Figure 7.2(d), a total of 616 point correspondences were extracted,

of which 60% are correct.

The algorithm produces a large number of highly accurate point correspondences,

containing a relatively small proportion of outliers. Further example output and

basic observations regarding the algorithm are presented in Section 7.1.5. Lengthy

derivations are presented separately in Appendix A to simplify the algorithm

presentation.

7.1.2 Seed Region Alignment

Affine covariant features provide a normalisation transformation that maps a pair

of corresponding features to a common coordinate frame. These transformations

are computed independently for each feature from images taken under very differ-

ent conditions. As a result, they are not highly accurate. This section discusses

a procedure for accurately aligning corresponding image regions, given the ap-

proximate normalisation transformation for each region. It will be assumed that

an affine transformation is a sufficient local approximate model for relating two

images of the same surface. As a by-product, the seed alignment process removes

some incorrect matches when they cannot be aligned with sufficiently low error.
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Expected Alignment Error

The initial normalisation transformations included in a matched pair of features

can be expected to contain significantly large error. The nature and severity of

this error is discussed here.

If the image region is symmetric to a significant degree, then it is likely that the

selected orientations of the two regions do not correspond. The robustness of

the SIFT descriptor makes it possible to match features despite such an error.

It is therefore possible that there is gross error in terms of region rotation. An

example case that suffers this problem is presented in Figure 7.3. If a rotation

invariant descriptor was used for matching, then the feature orientation may not

be available at all.

The anisotropic scaling components, A (q, φ), of the affine transformations are

unlikely to be grossly inaccurate, but can be expected to contain limited error,

even in ideal conditions. Larger regions may suffer from projective transformation

that cannot be fully accounted for by anisotropic scaling. This effect is usually

negligible, however. Image regions that contain more than one plane cannot be

aligned perfectly using only a linear transformation, and hence will suffer from

varying degrees of error on each plane.

The translation component of the affine transformations (or the feature loca-

tion) can be expected to be reasonably accurate. The most significant source of

translation error is non-planar regions of the image.

The image intensity can vary to a great extent between views due to different cam-

era exposure settings and lighting conditions. Feature extractors and descriptors

are generally very robust to intensity variations (except when saturation occurs).

It is therefore likely that correspondences may be found with a large difference
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in intensity. Although only geometric alignment is of interest, image intensities

must also be aligned in order for the geometric alignment process to obtain useful

error estimates. Due to the local extent of the image region, a linear mapping of

intensity is sufficient to compensate for photometric differences.

Algorithm

The seed region alignment algorithm has the following steps:

1. Select which feature is used as the template and which feature is to be

registered to the template.

2. Compute normalised template image patch.

3. Initialise the registration transformation.

4. Coarse orientation selection.

5. Iterative inverse compositional alignment.

6. Check that results are reasonable and discard matches that are not within

error and geometric bounds.

7. Subdivide regions with excessively eccentric shape.

Each step is now discussed in detail. Figure 7.3 illustrates the process up to

step 5.

1) Template Selection: The image alignment process operates by using one image

as a static template image and the second image as a registration image that is

to be mapped onto the template image. The choice of which feature to use to

generate the template is made based on the eccentricity, q, of the normalisation
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Figure 7.3: The seed alignment algorithm. The left column is chosen as the
template feature, and the right column is the corresponding registration feature
(step one). Row 1 – The original image regions, It and Ir. Row 2 – Normalised
template Itn (x) and initial Ir (Hrx) (step two and three). Row 3 – Ir (Hrx) after
computing rough orientation estimate (step four). Row 4 – Ir (Hrx) after inverse
compositional alignment (step five).
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transformations. The feature with eccentricity furthest from one (most eccen-

tric) is used as template, since the normalised image will be most affected by

anisotropic sampling distortion. This distortion effect is counteracted to some

extent in the process of applying an anti-aliasing filter in step 2. In the following,

the chosen template feature is referred to as Ht and its source image as It. The

registration feature and its image are referred to as Hr and Ir.

2) Compute Normalised Template Image: The objective of this step is to compute

a normalised template image with dimensions 2rt + 3× 2rt + 3, to be used in the

image alignment process. The author’s implementation of this algorithm uses

rt = 20, which results in gradient images with a width of 41 pixels in step 5.

These values provide a sufficient number of samples for the alignment process,

while keeping the processing costs low. The normalisation process consists of

anisotropic scaling of the feature support region, applying an anti-aliasing filter,

down-sampling to the desired image size and photometric normalisation.

The following transformation is applied to the feature support region to remove

anisotropic scaling and shift the feature to the origin,

Hn = T (txt, tyt)A (qt, φt)K (qt) .

Scaling by K (qt) ensures that the largest eigenvalue of A (qt, φt)K (qt) is 1,

thereby preventing aliasing during image transformation. Note that no rotation

component has been included in Hn. This is because the orientations supplied

by the features are assumed to be unreliable or unavailable (see Section 7.1.2).

The orientation is recovered in step 4.

The affine rectified image patch is then computed as, Ia (x) = It (Hnx) , over

the coordinate range x, y ∈
[
−ktq

−1
t − 1, ktq

−1
t + 1

]
(the local extent of the

feature). At this point the rectified image needs to be scaled by a factor of

sn = rt/ktqt. A Gaussian anti-aliasing filter with parameter σ = sn/3 is first
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applied to the rectified image. The scaled, rectified image is then computed as,

Is (x) = Ia (K (s−1
n )x) , over the coordinate range x, y ∈ [−rt − 1, rt + 1]. In cases

where the feature is smaller than the desired patch size, the rectified image is not

scaled (Is (x) = Ia (x)).

The final step in preparing the template patch is photometric normalisation. The

parameters of a linear intensity mapping are computed as,

l = min (Is) ,

h = max (Is) ,

iut = 255
h−l

,

ivt = −liut,

and the final normalised template image is computed as, Itn = iutIs + ivt. This

linear mapping maps the minimum intensity value to 0 and the maximum to 255.

The parameters of this mapping are stored along with the template feature for

use in later processing steps.

3) Initialise Registration Transformation: The registration feature transforma-

tion needs to be modified slightly in order to be compatible with the template

image constructed in the previous step. The registration transformation is ini-

tialised as,

Hr = T (txr, tyr)A (qr, φr)K
(
krr

−1
t

)
.

If the template image is smaller than rt, then the registration transformation is

initialised as,

Hr = T (txr, tyr)A (qr, φr)K
(
krk

−1
t q−1

t

)
.

The intensity mapping for the registration image is simply copied from the tem-

plate image parameters, iur = iut, ivr = ivt. The intensity mapping is not com-

puted using the same procedure as step 2 because simply selecting the minimum

and maximum intensity is sensitive to spurious pixel values.
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4) Coarse Orientation Selection: As mentioned in Section 7.1.2, the orientations

of the features may be inconsistent. For this reason, the orientation is found by

means of a coarse exhaustive search. The registration transformation is computed

at twenty different rotation angles, evenly spaced over a full rotation, according

to,

Hri = HrR (θi) , i ∈ N [1, 20] .

The mean squared error between the template image and the transformed reg-

istration image is measured at each angle. A parabola is fit to the error values

around the lowest error value and used to interpolate the estimated angle of

minimum error, θ̂. The registration transformation is then updated using θ̂,

Hr = HrR
(
θ̂
)

.

5) Iterative Alignment: This step consists of applying the inverse compositional

image alignment algorithm [3] to refine the registration transformation Hr in

order to minimise the difference between Itn (x) and Ir (Hrx). The algorithm in

[3] is extended to align image intensities using a linear mapping (parameters iur

and ivr) at the same time as geometric alignment is performed. The derivation of

the combined geometric and photometric inverse compositional image alignment

algorithm is presented in Section A.2. After alignment, the scale factor rt is

removed form the transformations.

6) Consistency Check: Inverse compositional alignment is not guaranteed to suc-

ceed, though it is likely to succeed in the majority of correct matches and even in

some cases where the matches are not correct. In order to eliminate correspon-

dence where alignment has failed, the final RMS error, qr and kr are checked to

be within reasonable bounds. A significant proportion of incorrect matches may

be eliminated by checking the mean squared error, at the risk of also eliminat-

ing correct matches. Through trials it has been determined that a RMS error

threshold of 40 rejects the majority of incorrect matches while ensuring that
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few successfully aligned correct matches are rejected. In future research it may

be possible to choose this threshold automatically based on the image contents,

thereby allowing the algorithm to reject incorrect matches with greater reliability.

The qr and kr are checked to detect grossly deformed regions that coincidentally

do not result in large RMS error. The thresholds for these parameters need only

be set at the extremes of reasonable values. The threshold for qr was chosen to be

0.05. The threshold for kr was chosen to be (dmin/4)2, where dmin is the minimum

image dimension.

It can be seen from Figure 7.2 and the examples in Section 7.1.5 that this step

can eliminate a significant proportion of the incorrect putative matches.

7) Eccentric Feature Subdivision: The feature normalisation transformations of

a corresponding pair of features are often more eccentric (smaller q parameter)

than the transformation directly relating the two feature image regions. This is

because the affine shape of each feature is computed from the distribution of image

gradients, and not from the orientation of the surface relative to the viewpoint.

The result is that the transformations applied during image alignment cause

excessive amounts of distortion to the images, which affects alignment accuracy.

One possible solution is to find the direct transformation between the two re-

gions, and to use this transformation to directly align images instead of using the

normalisation approach. Because it is convenient to process rectangular image

regions rather than any other shape, using this approach can result in neighbour-

ing regions being included in the alignment process. These regions may not be

coplanar with the region of interest and can adversely affect alignment accuracy.

The solution proposed here subdivides very eccentric features across their longest

axis so that the resulting features are less eccentric and cover the same image
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Figure 7.4: The eccentric feature subdivision process.

surface. The result is that each image is distorted to a limited degree, instead

of one image suffering the full effect of the direct transformation, or both images

being warped excessively.

Subdividing a pair of features is only useful if the following three criteria are met:

1. k >= 24 for both features.

2. q1q2 < 0.69.

3. q12 < qd, where q12 is the eccentricity parameter of matrix H12 = H−1
1 H2

and qd is the eccentricity parameter of matrix

Ad (qd, φd) = A (q1, φ1 + θ1)A (q2, φ2 + θ2).

The derivation of these criteria can be found in Section A.4.
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Correspondences that meet the above criteria are subdivided by splitting the

most eccentric feature across its longest axis and projecting the two resulting

features to the other image. The feature subdivision procedure is illustrated in

Figure 7.4 and discussed below. The derivation of the procedure is documented

in Section A.5.

The most eccentric feature is labelled Ha and the corresponding feature is labelled

Hb. Feature Ha is split in to features Ha1 and Ha2 by computing the parameters

of the new features as follows:

txδ = −0.5kaq
−1
a sin (φa) ,

tyδ = 0.5kaq
−1
a cos (φa) ,

txa1 = txa + txδ,

tya1 = tya + tyδ,

txa2 = txa − txδ,

tya2 = tya − tyδ,

ka1 = ka2 =
1√
2
ka,

qa1 = qa2 =
√

2qa,

θa1 = θa2 = θa,

φu1 = φu2 = φa,

iua1 = iua2 = iua,

iva1 = iva2 = iva.
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The corresponding features, H2a and H2b, are computed by projecting H1a and

H1b to image b,

Hab = H−1
a Hb,

Hb1 = HabHa1,

Hb2 = HabHa2,

iub1 = iub2 = iub,

ivb1 = ivb2 = ivb.

Here Hab is the direct transformation mapping feature a to feature b.

7.1.3 Feature Replication

The seed region alignment process produces a set of corresponding regions that

are aligned precisely, using normalisation transformations. The feature replica-

tion stage makes use of this information to explore the local plane on which each

correspondence is located, in order to find further correspondences. A seed cor-

respondence is replicated by attempting to align neighbouring regions using the

seed’s normalisation transformations. If the alignment of a neighbouring region

succeeds, a new correspondence is created for that region.

Figure 7.5 illustrates how different feature types are replicated. Seed features

split according to Section 7.1.2, step 7 are replicated only in directions that do

not result in overlap between the descendants of features split from the same

feature (Figure 7.5(b)). Each seed correspondence, H1 and H2, produces eight

replicated correspondences (Figure 7.5(a)). Every replicated correspondence is

assigned a direction vector, d = [ dx dy 1 ]>, with dx, dy ∈ {−1, 0, 1}.

The initial parameters of each replicated correspondence, Hr1 and Hr2, are com-

puted from the seed correspondence parameters using the following procedure:
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(a)

(b)

(c) (d)

Figure 7.5: Feature replication patterns. Solid ellipses represent originating
features and dashed ellipses represent replicated features. The arrow at the centre
of the ellipse represents the replication direction assigned to the feature. Seed
features do not have a specific replication direction and have a dot at the centre.
(a) Seed features. (b) Split seed features. (c) Diagonally replicating features. (d)
Horizontally or vertically propagating features.
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The translation parameters of Hr1 are computed using the vector d as,

txr1 = tx1 + 1.6k1

(
dxq1cos (φ1)− dyq

−1
1 sin (φ1)

)
,

tyr1 = tya + 1.6k1

(
dxq1sin (φ1) + dyq

−1
1 cos (φ1)

)
.

The remaining parameters are copied directly from H1. Hr2 is then computed

as,

H12 = H−1
1 H2,

Hr2 = H12Hr1.

The derivation of the above equations is listed in Section A.6. Each replicated

correspondence is aligned (as discussed later in this section) and successfully

aligned correspondences are further replicated.

Successfully replicated correspondences are further replicated based on their di-

rection vectors. Diagonally replicated correspondences, with dxdy 6= 0, are repli-

cated in three directions (Figure 7.5(c)):

d1 =


dx

dy

1

 , d2 =


0

dy

1

 , d3 =


dx

0

1

 . (7.1)

Other correspondences (replicated horisontally and vertically) are replicated fur-

ther only in the same direction (Figure 7.5(d)).

After computing the initial parameters, each new correspondence is aligned to

compensate for variations in surface orientation. The alignment process is also

used to validate replicated correspondences. It is expected that the alignment

process will fail in the majority of cases where surface discontinuities are encoun-

tered.

The alignment procedure is similar to the seed feature alignment procedure in

Section 7.1.2, with some variations. The error in replicated features is expected to
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be caused predominantly by variations in surface orientation between the source

and replicated features, or by surface discontinuities (which result in invalid fea-

tures). No initial coarse alignment process is therefore used here. It is initially

unknown whether the feature image regions contain sufficient information to per-

form alignment – the selected region may be homogeneous. A test is performed

before alignment to ensure some information is present.

The following procedure is used to align replicated features:

1. Compute normalised template and registration image patches.

2. Check that both images provide sufficient information to perform alignment.

3. Select which feature is used as the template and which feature is refined.

4. Iterative inverse compositional alignment.

5. Check that results meet expectations.

1) Normalise Images: Both features need to be normalised in order to compute

the information content measure in the next step. The pair of corresponding

features will be referred to as H1 and H2. The desired patch half width, r
′
t, of

the normalised images is computed from the feature scales, k1 and k2, as,

r
′

t = min {k1, k2, rt} ,

where rt = 21, as in Section 7.1.2. The following method is used for both features.

Given a feature H, an affine rectified image is computed as,

Hn = T (tx, ty)A (q, φ)R (θ) ,

Ia (x) = I (Hnx) .
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where Hn is the same as H without a scaling component and Ia (x) is computed

over the coordinate range, x, y ∈ k [−1, 1] (the local extent of the feature). Apply

a Gaussian anti-aliasing filter with scale parameter, σ = k/3rt, to image Ia. The

scaled image is then computed as,

Is (x) = Ia

(
K

(rt

k

)
x
)

,

and the final normalised image is computed as,

In = iuIs + iv.

2) Check Information Requirement: Before attempting to align the normalised

images, it is first determined whether they contain sufficient information to avoid

the aperture problem. This is not necessary when aligning the original matched

features (Section 7.1.2), since these features were specifically selected to be suit-

able for matching and alignment. In the case of replicated features, nothing is

yet known about intensity distribution in the region.

The information test computes a normalised histogram of image gradients, h (i),

with eight direction bins, θh (i), i ∈ Z[0, 8]. Two measures are computed from

the histogram to determine if the image contains sufficient information. The first

is the total energy,

eh =
∑
∀i

h (i) .

The second measure, dh, is used to detect when the image contains only a single

dominant edge. It is computed as the ratio of the magnitude of the mean gradient

vector to the total energy.

g = g∠θg =
∑
∀i

h (i) ∠θh (i) ,

dh =
g

eh

.
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If both measures satisfy the thresholds,

eh > 20,

dh < 0.8,

then the process proceeds to the next step. Otherwise, the feature is discarded.

These thresholds were chosen, through trials, to simultaneously maximise the

number of output features and the proportion of inlier correspondences found

during the computation of the epipolar geometry of various scenes. It might be

more effective to compute an appropriate threshold based on image information

content – this is a topic for future research.

3) Select Template: The most eccentric feature is selected as template feature

and its normalised image (computed in step 1 above) is used as the template

image. The other feature is refined in the following step and its source image is

used as the registration image.

4) Iterative Alignment: The inverse compositional alignment algorithm (see Sec-

tion A.2 and [3]) is used to refine the registration feature.

5) Check Outcome: A mean squared error threshold of 40 and a minimum q

threshold of 0.05 are applied to determine if the feature was successfully aligned.

Features that do not meet these requirements are discarded.

Figure 7.6 shows a simple example where the feature replication algorithm was

applied. In this case only a few unique features were correctly matched using

wide baseline matching. Unfortunately, the wealth of texture information in

the images is too ambiguous to be matched directly. The original wide baseline

matches contained only 11 correct matches. Although this is sufficient to compute

the epipolar geometry, the correct matches are buried in 80% incorrect matches,

which can confuse even the most robust methods.
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(a) (b)

Figure 7.6: The feature replication algorithm applied to a textured, curved
surface. (a) Input seed features and matching lines from phase 2. (b) Output
replicated correspondences

After seed feature alignment (Figure 7.6(a)), the situation is somewhat improved.

Using feature replication, the few correct seeds are multiplied into a large num-

ber of correct matches (Figure 7.6(b)). The incorrect seeds simply fail to produce

more than a few replicated features. The result is a total of 790 accurate corre-

spondences and only 6% incorrect matches after replication.

7.1.4 Dense Correspondence Extraction

The dense correspondence extraction phase attempts to find all the small scale

correspondences within each aligned affine region. The iterative alignment per-

formed in preceding phases produces a set of reasonably accurately aligned cor-
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respondences. This alignment greatly simplifies the process of finding small scale

correspondences, however, it can not be assumed that every pixel in the aligned

regions correspond exactly. The affine model used to align image regions does not

account for surfaces that are not perfectly flat, nor for projective deformation. It

is assumed that the alignment error of any point in aligned images is in the order

of a few pixels.

The aperture problem plays a very significant role when attempting to align

small image regions. The image patch used for alignment must contain sufficient

information to determine the relationship between images unambiguously. This

problem is addressed in two ways by the dense correspondence extraction phase.

Firstly, a two parameter translation transformation is used to perform the align-

ment, instead of a six parameter affine model. This reduces the amount of infor-

mation required for unambiguous alignment. The alignment efforts of previous

stages have taken care of the affine and photometric alignment sufficiently, so that

it does not need to be further refined. Furthermore, only point correspondences

are desired at this stage – the affine transformation between regions will not be

used any further. It is therefore only necessary to find the translation between

corresponding points in the normalised images.

Secondly, the alignment is only performed on regions considered to have sufficient

information to determine the translation unambiguously. The determinant of

Hessian [6] corner detector is used in this algorithm to select points suitable for

alignment. This detector selects points that are located in areas with significant

image gradients in at least two directions. This provides sufficient information to

determine the translation transformation.

The dense correspondence extraction procedure is as follows:
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1. Normalise image regions.

2. Extract corners.

3. Align corners.

4. Project new correspondences back to original images.

5. Remove duplicates.

Figure 7.7 demonstrates the first three steps of this process. Observe that, because

the surface in these images is not flat, there is some alignment error between the

images.

1) Normalise Images: The pair of corresponding features are labelled Ha and Hb,

such that ka > kb. The normalisation transformations is computed as,

Hna = T (txa, tya)A (qa, φ)R (θa) ,

Hnb = T (txb, tyb)A (qb, φ)R (θb) .

Normalise image b directly,

Ibn = Ib (Hnbx) , x, y ∈ [−kb, kb] .

Compute the affine-normalised image of image a as,

Iaa = Ia (Hnax) , x, y ∈ [−ka, ka] ,

filter Iaa with a Gaussian anti-aliasing filter with scale parameter σ = kb/3ka,

and compute the normalised image a as,

Ian = Iaa

(
K

(
kb

ka

)
x

)
, x, y ∈ [−kb, kb] .

This produces two normalised images for the corresponding features that are at

the highest common resolution.
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Figure 7.7: The point registration process. Each column shows one of a pair
of corresponding features from two different images. Row 1 – Normalised pair
of image patches (step 1). Row 2 – corner points detected in image 1, indicated
as black and white crosses (step 2). Row 3 - 5 – progressively smaller aligned
subregions around one of the points (step 3). Note the decreasing alignment error
as the region size is reduced.
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2) Extract Corners: The objective of the corner extraction step is to find points

suitable for further alignment, not for matching across images. Corners are only

extracted in one normalised image and are initially assumed to be at the same

location in the corresponding normalised image. Corners are extracted by ap-

plying the determinant of Hessian operator to the image (at a single scale) and

extracting the maxima. The determinant of Hessian of an image is computed as,

g1 (x) = 1
2π

e
−x>x

2 ,

Ig (x) = g1 (x) ∗ Ian (x) ,

IH (x) =
∣∣∣∂2Ig(x)

∂x2

∣∣∣ .

The positions, c = {x1,x2, . . . ,xn}, of the local maxima of IH with a value above

a threshold of 100 are then extracted.

3) Align Corners: Initially the transformation relating each point correspondence

is set to Tab (0, 0). Inverse compositional alignment is then used to refine this

transformation using progressively smaller image regions (refer to Section A.3 for

the details of the alignment equations). In the first iteration, the alignment is

performed on an image region half the width of the normalised images, w0 = kb.

At each following iteration, the width is reduced according to wi+1 = wi−
⌊√

wi

⌋
.

The process concludes when w < 10. Regions smaller than this threshold con-

tain too few pixels for the inverse compositional alignment to compute accurate

parameter updates. A region width of 10 also coincides roughly with the support

region of the determinant of Hessian corners. Because there is already little error

in the alignment, the inverse compositional alignment usually requires only 1− 3

iterations for every image size.

Figure 7.7 shows this process in action. Initially the high contrast objects in the

images dominate the alignment process, resulting in alignment error at the point

of interest. As the alignment region size is reduced, the high contrast interference

is removed, allowing the point of interest to be aligned exactly. If the alignment
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process used only the smallest image size, then the initial alignment error would

have been comparable to the image size and would not have been resolved.

4) Project Back: After aligning a point xi and finding Tab (tx, ty), the point is

projected back to the original images,

xa = HnaK
(

kb

ka

)
xi,

xb = HnbTab (tx, ty)xi.

5) Remove Duplicates: During the feature replication stage (Section 7.1.3), it is

possible that different seed features can produce partially overlapping replicated

features. This can in turn result in duplicate dense features being extracted. The

presence of several duplicates of the same point correspondence is detrimental

to the robust geometry estimation process. Random Sample Consensus [19], for

example, may encounter degenerate configurations more frequently and require

more trials to find a good solution. Duplicates are eliminated by searching for

groups of correspondences that are within a distance of one pixel of each other

in both images. Each group of correspondences is then replaced by one average

correspondence.

Figure 7.8 shows a simple example where dense correspondences were extracted

from a matched pair of affine features.

7.1.5 Example Output

Figures2 7.9 - 7.11 and Figures3 7.12 - 7.13 present two examples where the

WiDense algorithm was applied to find correspondences between views and to

2Images sourced from http://www.robots.ox.ac.uk/~vgg/data/valbonne/images.tar.
gz.

3Images sourced from http://www.cs.unc.edu/~marc/data/castlejpg.zip.

http://www.robots.ox.ac.uk/~vgg/data/valbonne/images.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/valbonne/images.tar.gz
http://www.cs.unc.edu/~marc/data/castlejpg.zip
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(a) (b)

Figure 7.8: Dense correspondences extracted from a matched pair of affine fea-
tures. (a) Input MSER features. (b) Dense correspondences.



7.1 The WiDense Algorithm 163

compute the epipolar geometry. The wide baseline matches are in both cases not

sufficient to compute the epipolar geometry accurately, while the correspondences

produced by the WiDense algorithm make the computation possible and produce

a large proportion of inliers.

Figures 7.9 - 7.11 shows a case where the MSER feature extractor was used

(image (c)). Computing the epipolar geometry from the matched MSER features

results in a grossly inaccurate, degenerate solution (image (d)). The degenerate

solution is likely the result of the limited variation of depth in the scene; the

MSER features are not accurate enough to resolve the depth variations.

Images (e) – (g) show the output of the three phases of the WiDense algo-

rithm. Image (e) shows the correspondences aligned successfully during seed

region alignment. It can be seen that the seed region alignment process rejects

a significant proportion of incorrect matches. From the 13 seed correspondences,

the replication process generates 54 correspondences (image (f )) and the dense

correspondence extraction process finds 511 correspondences (image (g)). Using

these correspondences, the epipolar geometry is correctly estimated (images (i)

and (j )) with 81% inliers. Image (j ) shows the inlier correspondences. Only 20%

of the original matches were correct. The WiDense algorithm required approxi-

mately 266ms to complete on an AMD PhenomTM 9500 quad core PC, running

in a single thread. The wide baseline matching process, by comparison, took

approximately 657ms.

A second example is presented in Figures 7.12 - 7.13. Here the Hessian Affine

extractor was used to find correspondences (image (c)). The epipolar geometry

computation fails when only using Hessian Affine matches (not shown). Using

WiDense, 189 seeds are successfully aligned, 549 regions are produced through

replication, and 2131 dense correspondences are extracted. The epipolar geom-

etry is correctly computed with 61% inliers, while only 12% of the original cor-
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(a) (b)

(c) (d)

Figure 7.9: Using WiDense to compute epipolar geometry in a difficult case
(continues Figure 7.10 and 7.11). (a, b) Input images. (c) MSER features and
matches. (d) Epipolar geometry estimate (degenerate).
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(e) (f )

(g) (h)

Figure 7.10: Continuing from Figure 7.9. (e) Aligned affine correspondences
(phase 1). (f ) Replicated correspondences (phase 2). (g) Dense correspondences
(phase 3). (h) Inlier correspondences.
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(i) (j )

Figure 7.11: Continuing from Figure 7.10. (i, j ) Epipolar geometry estimate
using WiDense correspondences (correct).

respondences are correct. The WiDense algorithm completed in approximately

2.4s. This example took longer to process than the previous example due to the

larger number of correspondences processed. The Hessian Affine extraction and

matching took 26s.
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(a) (b)

(c) (d)

Figure 7.12: Using WiDense to compute epipolar geometry (Continues Fig-
ure 7.13). (a, b) Input images. (c) Hessian Affine features and putative corre-
spondences. (d) Successfully aligned affine correspondences (phase 1).
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(e) (f )

(g) (h)

Figure 7.13: Continuing from Figure 7.12. (e) Replicated correspondences (phase
2). (f ) Dense correspondences (phase 3). (g, h) Epipolar geometry estimate.
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7.2 The Epipolar Geometry Computation Task

Computing the epipolar geometry is the first stage in many calibration algorithms.

It can be used to constrain the search for further correspondences and can be used

to generate a reconstruction of the scene and cameras with projective ambiguity

[22]. The Epipolar Geometry Computation Task is an experiment that evaluates

a correspondence extraction method in terms of its usefulness in computing the

epipolar geometry of a set of scenes. An experiment trial consists of attempting

to compute the epipolar geometry of a pair of cameras using a given correspon-

dence extractor, and then comparing the results with ground truth data. If the

epipolar geometry estimate is sufficiently accurate (its error is below a theoretical

threshold), then the test trial is considered successful. The average success rate

is computed over many trials and many input scenes. This test procedure eval-

uates how likely it is that a particular correspondence extraction technique will

generate an epipolar geometry estimate that is sufficiently accurate for practical

applications.

7.2.1 Data

Six sets of test data were acquired using a pair of digital cameras arranged to

view a scene from widely separated views. Each set consists of images taken

with the cameras in fixed position. The camera positions were varied between

sets. The contents of the scene were altered for each pair of test images. Images

were captured at high resolution (4.1 and 10 million pixel cameras were used) to

compute the ground truth geometry. Test images are generated by scaling the

original images to 640×480 pixel resolution. Scale factors are recorded for relating

the test image geometry back to ground truth geometry. Scaling images to a low

resolution removes a large proportion of the features from the images, ensuring
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(1 ) (2 )

(3 ) (4 )

(5 ) (6 )

Figure 7.14: Example images from each dataset

that the task of computing the geometry of these test images is challenging.

Figure 7.14 shows a pair of example images from each dataset. The dataset may

easily be extended in future using the same capturing procedure listed above.

7.2.2 Generating Ground Truth Data

The ground truth data consists of a large set of accurate point correspondences

for each dataset. The error in a given estimate of the epipolar geometry is mea-

sured by computing the error of the set of ground truth correspondences when

compared against the estimated geometry. The ground truth data is generated

automatically from the high resolution images in the dataset and then mapped

to the coordinates of the test images. The following procedure is used to generate

the ground truth data for each dataset:
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1. Features are extracted and matched across each high resolution image pair

using the MSER feature extractor. The correspondences for all the image

pairs in a dataset are collected into one large set of correspondences.

2. An initial estimate of the epipolar geometry is computed using RANSAC

[19] and the normalised eight point algorithm [22, 36, 37].

3. Features are matched again, using the initial geometry estimate to constrain

matching so that all correspondences are inliers.

4. The WiDense algorithm is applied using the inlier correspondences as input.

Because the matches are at this stage verified by means of the epipolar con-

straint, the WiDense algorithm produces a large number of highly accurate

correspondences and few outliers.

5. A more accurate estimate of the epipolar geometry is computed from the

WiDense correspondences. The dense correspondences collected from the

entire dataset are used.

6. The set of inlier correspondences are scaled to match the resolution of the

test images and are kept as ground truth data.

Note that the exact method used for extracting ground truth correspondences is

not critical, as long as a sufficient number of accurate correspondences are gener-

ated. The quality of the ground truth correspondences is ensured by verifying all

correspondences using the epipolar geometry. Because the ground truth epipolar

geometry is computed using a large set of high resolution input images, it is likely

that it will be of good quality.
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7.2.3 Test Procedure

The test procedure is designed to measure the success rates of different corre-

spondence extraction systems when applied to the task of estimating the epipolar

geometry. Each test trial proceeds as follows:

1. Correspondences are extracted between one pair of images from the dataset

using a particular extraction system.

2. The epipolar geometry of the image pair is estimated from the correspon-

dences using RANSAC and the normalised eight point method.

3. The error of the epipolar geometry estimate is computed as the Sampson

distance [22] of the ground truth correspondences. The Sampson distance

is a first-order approximation to the geometric error and is defined as,

es = N−1
x

∑
∀x

(
x
′>F̂x

)2

(
F̂x

)2

1
+

(
F̂x

)2

2
+

(
F̂>x′

)2

1
+

(
F̂>x′

)2

2

,

where x and x
′
are the ground truth correspondences, Nx is the number of

correspondences, and F̂ is the epipolar geometry estimate.

4. The error, es, is compared to three thresholds, t1 = 4, t2 = 16, t3 = 64. If es

is below a threshold, the model is considered sufficiently accurate for that

threshold category and the trial is considered a success. The three thresh-

olds are used to represent the precision requirements of three hypothetical

users of the geometry estimate.

One hundred trials are run for each extractor and image pair combination, and the

average success rate is computed to compensate for the variability in the RANSAC

method. Finally, the average number of successful trials for each dataset is re-

ported.
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7.3 Evaluation of the WiDense Algorithm

7.3.1 Correspondence Extractors Tested

The primary objective is to evaluate whether the WiDense algorithm results in

improved success rates when used to supplement wide baseline matching methods.

To this end, four correspondence extraction systems were implemented and tested

with and without using the WiDense algorithm. The following three feature

extractors were used:

1. The Harris Affine extractor using the Harris operator [21] for point extrac-

tion; the Laplacian function and the scale space primal sketch-based scale

selection method (Chapter 5, Section 5.3); the second moment matrix for

affine shape estimation [4, 35] (labeled HaA).

2. The Hessian Affine extractor using the determinate of the Hessian operator

[6] for point extraction; the determinate of the Hessian function and scale

space primal sketch-based scale selection method (Chapter 5, Section 5.3);

the Hessian matrix for affine shape estimation (Chapter 6) (labeled HeA).

3. The Maximally Stable Extremal Region extractor [40] (labeled MSER).

The fourth correspondence extraction system used all three above feature extrac-

tors.

The SIFT descriptor [38, 39] was used to describe features. Features were matched

using one-to-one nearest neighbour matching. A feature with two nearest neigh-

bours at distances d1 and d2 with d1 < d2 is matched to the feature at distance d1

if d1 < 0.5 and d1/d2 < 0.95. The first threshold specifies the maximum matching

distance and the second threshold prevents ambiguous matches [39].
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set nf HaA aligned replicated dense WiDense

1 18 0.00 0.00 0.00 0.00 0.00
2 19 0.00 0.00 0.00 0.00 0.37
3 39 0.71 3.00 3.00 2.96 3.45
4 20 0.00 0.00 1.00 0.00 0.00
5 46 2.60 8.19 9.82 10.35 9.56
6 41 12.54 10.30 14.00 17.90 21.45

tot. 183 15.85 21.49 27.82 31.21 34.83
% 8.66 11.74 15.20 17.05 19.03

Table 7.1: Test results for the Harris Affine extractor and the various stages
of the WiDense algorithm. The average number of successful epipolar geometry
computation trials with error threshold t2 = 16 are listed.

7.3.2 Results

The test results for threshold level t2 = 16 are presented in Tables 7.1 - 7.4.

Each table presents the results for one of the feature extractors and the various

stages of the WiDense algorithm. Each table entry lists the average number of

image pairs for which the epipolar geometry was computed successfully. Results

are included for every stage of the WiDense algorithm so that the significance of

each stage may be evaluated. The “set” column lists the dataset number and the

“nf” column lists the number of frames in the corresponding dataset. The third

column contains the results of using the relevant extractor alone. The “aligned”,

“replicated” and “dense” columns give the results of only using the features pro-

duced by the alignment, replication and dense matching stages, respectively. In

the “WiDense” column, all the features produced through the WiDense process

are combined. Results for the other thresholds show mostly similar trends, and

are not presented in so much detail.

Figure 7.15 presents the average results over all test data for each threshold,

indicating the effect that the threshold has on success rates.
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set nf HeA aligned replicated dense WiDense

1 18 0.00 0.00 0.00 0.00 0.00
2 19 0.00 0.00 0.00 3.00 2.00
3 39 3.00 5.00 3.00 6.00 7.00
4 20 1.00 1.00 1.00 2.00 0.83
5 46 8.75 12.00 13.53 17.53 19.34
6 41 13.49 18.16 21.85 26.39 23.27

tot. 183 26.24 36.16 39.38 54.92 52.44
% 14.34 19.76 21.52 30.01 28.66

Table 7.2: Test results for the Hessian Affine extractor and the various stages
of the WiDense algorithm. The average number of successful epipolar geometry
computation trials with error threshold t2 = 16 are listed.

set nf MSER aligned replicated dense WiDense

1 18 0.00 2.90 6.00 6.00 5.00
2 19 0.00 1.00 2.00 5.77 4.80
3 39 8.82 10.67 8.41 13.45 11.23
4 20 4.00 1.00 1.68 5.00 5.03
5 46 12.31 19.72 18.56 25.77 25.90
6 41 16.89 19.37 22.33 25.50 24.18

tot. 183 42.02 54.66 58.98 81.49 76.14
% 22.96 29.87 32.23 44.53 41.61

Table 7.3: Test results for the MSER extractor and the various stages of the
WiDense algorithm. The average number of successful epipolar geometry com-
putation trials with error threshold t2 = 16 are listed.

set nf All aligned replicated dense WiDense

1 18 1.08 2.48 3.00 5.00 4.38
2 19 0.79 1.00 0.00 4.54 4.12
3 39 9.74 12.12 11.00 15.76 18.46
4 20 3.38 5.66 6.00 6.33 6.45
5 46 19.44 26.32 24.73 26.60 26.89
6 41 24.71 29.90 29.94 32.16 31.06

tot. 183 59.14 77.48 74.67 90.39 91.36
% 32.32 42.34 40.80 49.39 49.92

Table 7.4: Test results for all the extractors combined and the various stages
of the WiDense algorithm. The average number of successful epipolar geometry
computation trials with error threshold t2 = 16 are listed.



176 7.3 Evaluation of the WiDense Algorithm

Ha He MSER All
0

10

20

30

40

50

60

70

Extractor Combination

S
uc

ce
ss

 r
at

e,
 %

 

 
Original
WiDense

Ha He MSER All
0

10

20

30

40

50

60

70

Extractor Combination

S
uc

ce
ss

 r
at

e,
 %

 

 
Original
WiDense

Ha He MSER All
0

10

20

30

40

50

60

70

Extractor Combination

S
uc

ce
ss

 r
at

e,
 %

 

 
Original
WiDense

t = 4 t = 16 t = 64

Figure 7.15: Success rate results averaged over all datasets for each of the three
error thresholds

7.3.3 Discussion

The results show a large range of variation across the different correspondence

extraction systems. The difference between the Harris, Hessian and MSER-based

systems is consistent with previous evaluations of these feature extractors [45, 47].

The difference in results between different data sets is the result of different

camera geometry. Some camera configurations result in more difficult scenarios

for geometry computation than others.

The addition of WiDense consistently improves the results for every correspon-

dence extractor. An increase of between 1.3 and 2.3 times the success rate was

observed. It can be seen from Figure 7.15 that the WiDense algorithm provides

a consistent performance improvement over a range of accuracy requirements.

The alignment stage improves the success rate significantly by itself, even though

it was originally intended to prepare the input features for replication and dense

feature extraction stages. The replication stage makes a small improvement to
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the success rate on average. Its main contribution is a larger set of regions to

search for dense features. The dense extraction stage gives the most significant

increase in success rate.

There is little difference between tests using only the dense correspondences and

dense and replicated correspondences combined (“WiDense” column). This is

likely due to the fact that the dense correspondences are more accurate than

the features from previous stages and account for a dominant proportion of the

total feature set. It appears that it is most beneficial to only use the dense

correspondences for computing the scene and camera geometry. These features

are also the closest to ideal point correspondences and may be more useful in the

reconstruction process than the original affine features with their large support

regions.

7.4 Chapter Summary

The Uncalibrated Wide Baseline Dense Optical Flow algorithm, or WiDense al-

gorithm, and the Epipolar Geometry Estimation Task are presented in this chap-

ter. The WiDense algorithm makes use of the information contained in a set

of putative wide baseline matches to find a large number of accurate correspon-

dences between two views. It consists of three phases. The first phase accurately

aligns the support regions of each input correspondence and removes a significant

proportion of incorrect matches in the process. The second phase explores the

neighbourhood of each correspondence and aligns many additional correspon-

dences. In the last phase, fine scale correspondences are extracted from each

aligned correspondence, yielding a large set of accurate point correspondences.

The WiDense algorithm is useful for extracting additional correspondences in
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difficult scenarios where even the best wide baseline matching methods cannot

produce sufficient accurate correspondences to compute the camera geometry. It

is particularly useful in highly textured scenes, scenes with many similar features

that are too ambiguous to match reliably using other methods, and scenes with

little variation in depth, where high accuracy is required to avoid getting stuck

on a degenerate solution. WiDense can produce large numbers of additional

correspondences and requires processing time on par with current wide baseline

matching algorithms.

Experiments have demonstrated that the WiDense algorithm can assist in com-

puting the epipolar geometry in challenging scenarios. Using the WiDense algo-

rithm, in addition to an established feature extractor, allows successful compu-

tation of the epipolar geometry in, on average, twice as many cases as using the

feature extractor alone. These results indicate that the WiDense algorithm is

very useful for finding correspondences and computing the geometry of complex

scenes.

The Epipolar Geometry Estimation Task is a method for evaluating how useful

correspondence extraction methods are for computing the epipolar geometry. It

provides a way to compare correspondence extractors in terms of their utility in

a real world calibration task.
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Conclusions and Future Work

The ability to calibrate cameras automatically is a critical requirement for multi-

view computer vision algorithms to be deployed to real surveillance networks on

a large scale. The process of finding correspondences between overlapping views

is a cornerstone of automatic camera calibration. This task is challenging in

cases where cameras are sparsely arranged (where the baseline between cameras

is relatively wide).

The research presented in this thesis makes contributions in two primary research

directions. The first is the further development and improvement of robust feature

extraction algorithms. Outcomes from this research direction are discussed in

Section 8.1. The second is the exploration of methods beyond the traditional

feature matching approach. New techniques are presented that explore the scene

further, based on the information produced through matching. These techniques

are referred to as second tier correspondence extraction techniques. The outcomes

of this research direction are discussed in Section 8.2. Ideas for future research

directions in the wide baseline matching field are discussed in Section 8.3.
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8.1 Salient Feature Research

The mathematics used to express and solve the problems addressed in this thesis

are introduced in Chapter 2. The problem of wide baseline matching is presented

in Chapter 3, followed by a review of the feature extraction and matching lit-

erature. Chapter 4 presents a review of saliency map-based feature extraction

techniques. An algorithmic framework for saliency map-based affine covariant

feature extraction is presented. This framework is used to compare the perfor-

mance of the new methods developed in later chapters.

In Chapter 5, a new method for scale space analysis of local features is presented.

The scale space primal sketch is adapted to the scale space feature sketch (SSFS).

An algorithm is devised to extract the sketch from a set of multi-scale features.

This algorithm operates on the features only, and does not require any further

image processing. It therefore requires little processing time and does not place

any requirements on how the scale space pyramid is constructed. A scale selection

method based on the SSFS is presented. This novel scale selection method is more

effective, accurate and efficient than existing methods. These benefits are most

pronounced when using different functions for spatial position selection and scale

selection, or when using affine adaptation.

Chapter 6 demonstrates that the Hessian matrix can be used to estimate the shape

of local image features in the same way the second moment matrix is commonly

used. The Hessian matrix is simpler to compute and delivers a significant gain

in extractor efficiency, in comparison to the second moment matrix. Using the

Hessian matrix to estimate the shape of blob-like features results in features of

equivalent quality to using the second moment matrix. Applying the Hessian

matrix to corner features, however, results in a significant reduction in feature

quality.
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8.2 Second Tier Correspondence Extraction

Techniques

The wide baseline matching approach can only produce a limited number of

features, due to the amount of information required to describe each feature. This

means that each matched feature contains a significant amount of information in

the form of normalisation transformations and local image gradients. Existing

methods treat matched affine features as point correspondences and do not take

advantage of this information. Chapter 7 presents a set of novel procedures

for extracting the information contained in matched features and utilising it to

find additional correspondences. These procedures are combined to form the

Uncalibrated Wide Baseline Dense Optical Flow algorithm, called WiDense.

The WiDense algorithm consists of four phases. The first phase is the con-

ventional wide baseline matching step. In the second phase, the affine feature

matches produced by the first phase are accurately aligned. During this phase,

many incorrect matches are detected and discarded. The third phase makes use

of the feature normalisation transformations to search the neighbourhood of each

match for more regions that can be aligned. The fourth phase selects many

small scale features from each aligned pair of features, and aligns them with high

accuracy. During the third and fourth stages, correct matches produce many

replicated and dense correspondences, while incorrect matches tend to produce

few additional incorrect correspondences. The result is a large set of correspon-

dences, of which the majority are highly accurate.

Chapter 7 presents a method for evaluating wide baseline correspondence ex-

traction systems. The evaluation system operates by attempting to compute

the epipolar geometry of a set of scenes using the matches produced by a given

wide baseline matching system. By means of this evaluation, it is found that
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the WiDense system achieves a success rate of between 1.3 and 2.3 times that of

existing methods.

8.3 Future Work

The local feature matching approach is reaching maturity. It is expected that

further research into feature extractors will only yield incremental improvements

over existing methods. This thesis recognises this limitation and has begun to

explore techniques that go beyond feature extraction and matching. The WiDense

system represents the first major step towards developing a paradigm of second

tier correspondence extraction methods.

Each of the four phases of the WiDense system represents a major approach

to extracting information from a set of affine matches. Possibilities for future

research exist within each phase. The feature alignment stage could be included in

the matching process directly, to help identify incorrect matches. For example, by

applying the alignment step to the top two or three nearest neighbour matches and

observing the final alignment error, it may be possible to discern between features

that appear ambiguous in descriptor space. The alignment system currently

makes use of a fixed threshold to select between successfully and unsuccessfully

aligned matches. Ideally this should be replaced by a system that selects the

threshold based on the image information content, thereby improving the utility

of this step in discerning correct and incorrect matches.

The replication stage could be improved by using more intelligent search strate-

gies and methods that are robust to small occlusions. Man-made environments

frequently contain surfaces that are coplanar but disjoint. A strategy for search-

ing the entire image for surfaces that are coplanar to a given feature may be able
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to find many additional correspondences. Detecting duplicate and overlapping

regions in this phase could help reduce redundant processing.

The WiDense system as a whole could be extended to dealing with more than

two overlapping views at a time. Techniques such as congealing [11] could be

used to simultaneously align features across many views. Future research may

also attempt to find entirely new ways to exploit the information provided by

matched affine features.

The development of wide baseline matching systems is hampered by the lack of

data suitable for supporting algorithm development and evaluation. The ability

to generate test cases from artificial 3D data would be very useful to research in

this field. Computer graphics could be used to generate images from 3D models.

Example sources of useful data include CAD models produced by architects,

or the maps used in game engines. This approach would make it possible to

generate test data with highly accurate ground truth information (full camera

and scene geometry) and precisely controlled variations in viewing angle, view

overlap, baseline, illumination, camera exposure settings, lens configuration, and

many more.
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Appendix A

Algorithm Derivations

This appendix lists the derivation of several components of the WiDense system

presented in Chapter 7, Section 7.1.

A.1 Decomposition of an Affine Transformation

Local image features are defined by affine normalisation transformations. The

generic form of this transformation is (from Chapter 3, Section 3.2.2),

H (tx, ty, q, φ, θ, k) = T (tx, ty)A (q, φ)R (θ)K (k) . (A.1)

The inverse compositional image alignment algorithms (presented later in this

section) do not maintain this parameterisation of the feature transformation and

only returns the transformation matrix. Several parts of the WiDense algorithm

require the matrix to be decomposed into the above parameterisation. An affine

transformation matrix with unknown parameters may be decomposed into the

above form using the procedure described below.
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Geometric Transformation and a Linear Intensity Transformation

The centre coordinates, tx and ty, can be extracted from the last column of H

directly. The scale component can be extracted by computing the square root of

the determinant of the upper left 2 × 2 block of H, or, k =
√

det (T−1H). The

remaining rotation and shape components may be separated as follows,

HAR = K−1T−1H = AR,

HARH>
AR = ARR>A> = A2

=

 A
′2 0

0> 1

 ,

where A
′2 a 2×2 matrix. An eigen decomposition of A

′2 yields q2 as the smallest

eigenvalue and φ as the angle of the eigenvector associated with q2. The rotation

matrix may be recovered by computing A
′−1 from q−1 and φ, and computing,

R =

 A
′−1 0

0> 1

HAR.

The rotation angle, θ, may then be recovered by computing the arccos of the top

left element of R and taking the sign of the middle left element.

A.2 Inverse Compositional Image Alignment

using an Affine Geometric Transformation

and a Linear Intensity Transformation

This section presents the derivation of the inverse compositional image alignment

algorithm using an affine transformation, followed by the derivation of the inverse

compositional image intensity alignment algorithm. A combined algorithm that

performs geometric and photometric alignment simultaneously is presented after

the derivations.
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The objective of the inverse compositional image alignment algorithm is to iter-

atively minimise the cost function,

ew =
∑
∀x

(It (W (x,p∆))− Ir (W (x,p)))2 ,

with respect to p∆. Here It is referred to as the template image, Ir is the reg-

istration image, W (x,p) is some transformation of the coordinates, x, with pa-

rameters p, and p∆ is referred to as the update parameters.

Using an affine coordinate transformation,

H (x,p) = H (p)x =


1 + p1 p2 p3

p4 1 + p5 p6

0 0 1

x,

the cost function can be written as,

ew =
∑
∀x

(It (H (p∆)x)− Ir (H (p)x))2 .

The first order Taylor expansion of this equation is,

ew =
∑
∀x

(It (H (0)x) + Dp∆ − Ir (H (p)x))2 , (A.2)

where,

D = ∇It (H (0)x) ∂H(p)x
∂p

=
[

∂It

∂x
x ∂It

∂x
y ∂It

∂x
∂It

∂y
x ∂It

∂y
y ∂It

∂y

]
,

(A.3)

and,

H (0) = I,

∇It (x) =
[

∂
∂x

∂
∂y

]
It (x) ,

∂H(p)x
∂p

=

 x y 1 0 0 0

0 0 0 x y 1

 .

The partial derivative of Equation A.2 with respect to p∆ is,

∂ew

∂p∆

=
∑
∀x

D> (It (x) + Dp∆ − Ir (H (p)x)) .
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Geometric Transformation and a Linear Intensity Transformation

The parameter updates, p∆, may be computed by setting this equation to zero

and solving for p∆,

p∆ = H−1
g

∑
x

D>Ie, (A.4)

where,

Ie = Ir (H (p)x)− It (x) ,

Hg =
∑
x

D>D.

Once the update parameters have been computed, the transformation is updated

according to,

H (p)← H (p)H−1 (p∆) .

It is assumed that the geometric alignment between the images is not grossly

inaccurate when the photometric image alignment is performed. A linear function

of image intensities is used to align the images. At each iteration of the alignment

algorithm, the error function,

ei =
∑
∀x

(i∆aIt (x) + i∆b − iaIr (x)− ib)
2 ,

is minimised with respect to i∆ =
[

i∆a i∆b

]
. The partial derivatives of this

function are,

∂ei

∂i∆
=

∑
∀x

 It (x)

1

 (i∆aIt (x) + i∆b − iaIr (x)− ib) .

The parameter updates, i∆, may be computed by setting this equation to zero

and solving for i∆,

i∆ = H−1
i

∑
∀x

[
It (x) I

′
r (x) I

′
r (x)

]
, (A.5)

where,

Hi =
∑
∀x

 I2
t (x) It (x)

It (x) 1

 ,
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I
′

r (x) = iaIr (x) + ib.

The parameters are then updated according to,

I
′
r (x) ← i∆aI

′
r (x) + i∆b,

∴ ia ← ia · i∆a,

ib ← ib · i∆a + i∆b.

Algorithm A.1 lists the combined affine geometric and linear photometric image

alignment algorithm. Notice that the photometric transformation is only updated

if the update parameter i∆a is in the range i∆a ∈ (0.4, 2.5) (line A.1.12). This is to

prevent extreme intensity changes that may result from attempting photometric

alignment when the geometric alignment is not yet sufficiently accurate.
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Geometric Transformation and a Linear Intensity Transformation

Algorithm A.1: Iterative Inverse Compositional Image Alignment us-
ing an Affine Geometric Transformation and a Linear Intensity Trans-
formation.

Function:
(Hr, ir, eo)← ALIGNAP (It (x) , Ir (x) ,Hr, ir, ni, t∆).
Description:
Iteratively refines Hr and ir to minimise the sum of squared
differences between It (x) and iaIr (Hrx) + ib.
Input:
It (x) – The template image.
Ir (x) – The registration image.
Hr – The affine registration transformation.

ir =
[

ia ib
]>

– The linear photometric transformation.
ni – The maximum allowed number of iterations.
t∆ – The convergence threshold.
Output:
Hr – the refined affine registration transformation.
ir – the refined linear photometric transformation.
eo – The final RMS difference between It and transformed Ir.
beginA.1.1

compute D from Equation A.3.A.1.2

compute H−1
g from Equation A.4.A.1.3

compute H−1
i from Equation A.5.A.1.4

j ← 0.A.1.5

repeatA.1.6

I
′
r (x)← iaIr (Hrx) + ib.A.1.7

Ie (x) = I
′
r − It.A.1.8

p∆ ← H−1
g

∑
x D> (Ie (x)).A.1.9

Hr ← HrH
−1 (p∆).A.1.10

i∆ ← H−1
i

∑
∀x

[
It (x) I

′
r (x)

I
′
r (x)

]
.

A.1.11

if (i∆a > 0.4) · (i∆a < 2.5) thenA.1.12

ia ← iai∆a.A.1.13

ib ← ibi∆a + i∆b.A.1.14

endA.1.15

p∆ ← (i∆a − 1)2 + i2∆b + p>∆p∆.A.1.16

j ← j + 1.A.1.17

until (j > ni) + (p∆ < t∆)A.1.18

eo ←
√

N−1
x

∑
∀x I2

e (x).A.1.19

endA.1.20
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A.3 Inverse Compositional Image Alignment

using a Translation Transformation

The inverse compositional image alignment algorithm using a translation trans-

formation is derived in a similar manner as the affine and photometric alignment

algorithm in the preceding section, but is considerably less complex. The trans-

lation registration transformation is parameterised as,

T (p) =


1 0 p1

0 1 p2

0 0 1

 .

The first order Taylor expansion of the objective function is,

ew =
∑
∀x

(It (x) + Dp∆ − Ir (T (p)x))2 ,

where,

D = ∇It (x)
∂T (p)x

∂p
=

[
∂It

∂x
∂It

∂y

]
, (A.6)

and,

∇It (x) =
[

∂
∂x

∂
∂y

]
It (x) ,

∂T(p)x
∂p

=

 1 0

0 1

 .

The parameter updates, p∆, may be computed by setting the first order partial

derivatives of this equation to zero and solving for p∆,

p∆ = H−1
g

∑
∀x

D>Ie, (A.7)

where,

Ie = Ir (T (p)x)− It (x) ,

Hg =
∑
∀x

D>D.
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Transformation

Algorithm A.2: Iterative Inverse Compositional Image Alignment
using a Translation Transformation.

Function:
(Tr, eo)← ALIGNT (It (x) , Ir (x) ,Tr, ni, t∆).
Description:
Iteratively refines Tr to minimise the sum of squared differences
between It (x) and Ir (Trx).
Input:
It (x) – The template image.
Ir (x) – The registration image.
Tr – The translation transformation.
ni – The maximum allowed number of iterations.
t∆ – The convergence threshold.
Output:
Tr – the refined translation transformation.
eo – The final RMS difference between It and transformed Ir.
beginA.2.1

compute D from Equation A.6.A.2.2

compute H−1
g from Equation A.7.A.2.3

j ← 0.A.2.4

repeatA.2.5

I
′
r (x)← Ir (Trx).A.2.6

Ie (x) = I
′
r − It.A.2.7

p∆ ← H−1
g

∑
x D> (Ie (x)).A.2.8

Tr ← TrT
−1 (p∆).A.2.9

p∆ ← p>∆p∆.A.2.10

j ← j + 1.A.2.11

until (j > ni) + (p∆ < t∆)A.2.12

eo ←
√

N−1
x

∑
∀x I2

e (x).A.2.13

endA.2.14

Once the update parameters have been computed, the transformation is updated

according to,

T (p)← T (p)T−1 (p∆) .

The inverse compositional image alignment algorithm using a translation trans-

formation is listed in Algorithm A.2.
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A.4 Criteria for Subdividing Eccentric Features

Step 7 of the algorithm presented in Section 7.1.2 lists three criteria that must

be met before a corresponding pair of features is subdivided. These are derived

here.

Criterion 1: k >= 24 pixels. Features must be large enough to be aligned

effectively using inverse compositional alignment. The threshold of 24 pixels is

chosen so that regions are at least as large as the chosen width of the template

image used in the alignment process (2rt + 3, with rt = 20).

Criterion 2: q1q2 < 0.69. If q1q2 > 2
−1
2 , then the subdivided features will be

more eccentric than the original features. If both q1 and q2 are close to 2
−1
4 , then

a very large number of subdivisions may be required before q1q2 > 2
−1
2 . For this

reason the threshold is set slightly lower, to 0.69.

Criterion 3: q12 < qd, where q12 is the eccentricity parameter of matrix H12 =

H−1
1 H2 and qd is the eccentricity parameter of matrix,

Ad = A (q1, φ1 + θ1)A (q2, φ2 + θ2) . (A.8)

The third criterion requires that the change in viewpoint not account for all of the

eccentricity of the normalisation transformations. This is determined as follows.

The direct transformation between a pair of corresponding features is computed

from their normalisation transformations, H1 and H2, as, H12 = H−1
1 H2, so

that H12 maps feature 1 to feature 2. The total image deformation in the feature

transformations is computed by Equation A.8. The eccentricity of matrix Ad will

be larger than the eccentricity of H12 if the features are more eccentric than the

transformation mapping one feature to the other. The eccentricity parameters,

q12 and qd may be extracted from the matrices H12 and Ad using the method

detailed in Section A.1.
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A.5 Computing the Parameters of Subdivided

Features

Section 7.1.2 presents a method for subdividing eccentric features into less ec-

centric features (step 7 in the algorithm). This section presents the derivation

of the formulae for computing the parameters of the sub-features Ha1, Ha2, Hb1

and Hb2, given two corresponding features, Ha and Hb, with qa < qb.

The objective of feature splitting is to compute two features that have the same

combined support region as the original feature. The orientation (parameter θ)

of the new features is unimportant, as long as it is consistent across the corre-

spondence, hence, θa1 = θa2 = θa.

The principal axes of the new features should be parallel with the original features’

axes, meaning φ is preserved, φu1 = φu2 = φa.

The area of the feature support region is proportional to k2. Therefore, if the

feature is split in half, then the new scale parameter is found as follows,

2k2
a1 = 2k2

a2 = k2
a,

ka1 = ka2 = 1√
2
ka.

The length of the longest axis of the feature is divided in two, so that,

2ka1q
−1
a1 = kaq

−1
a ,

2√
2
kaq

−1
a1 = kaq

−1
a ,

q−1
a1 = 1√

2
q−1
a ,

qa1 = qa2 =
√

2qa.

Let the centre points of features a1 and a2 be defined as, ta1 =
[

txa1 tya1 1
]>

,
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ta2 =
[

txa2 tya2 1
]>

. Define two points t
′
a1 and t

′
a2 that are related to ta1 and

ta2 by, ta1 = Hat
′
a1, ta2 = Hat

′
a2.

The points t
′
a1 and t

′
a2 are located at a distance of 0.5 (in normalised coordinates)

from the coordinate origin. Ha may be expressed as,

Ha = T (txa, tya)K (ka)R (−φa)D (qa)R (φa)R (θa) ,

which is equivalent to the feature transformation model presented in Equation 3.1,

Chapter 3, Section 3.2.2. Applying the rotations R (φa)R (θa) to t
′
a1 and t

′
a2 will

place these points on the y-axis, such that, R (φa)R (θa) t
′
a1 =

[
0 0.5 1

]>
,

and R (φa)R (θa) t
′
a2 =

[
0 −0.5 1

]>
. The location of the new centre points

can be found by applying the remainder of the transformation,

ta1 = T (txa, tya)K (ka)R (−φa)D (qa)


0

0.5

1

 ,

=


txa

tya

1

 + 0.5kaq
−1
a


−sin (φa)

cos (φa)

1

 .

Similarly,

ta2 =


txa

tya

1

− 0.5kaq
−1
a


−sin (φa)

cos (φa)

1

 .

The equations in Section 7.1.2, step 7 express the above equations in a manner

more convenient for implementation.

The features Hb1 and Hb2 corresponding to Ha1 and Ha2 can be found by com-

posing Ha1 and Ha2 from the parameters found above, and then projecting them

to image b. The direct transformation from feature a to b is, Hab = H−1
a Hb. The
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corresponding features are then,

Hb1 = HabHa1,

Hb2 = HabHa2.

Finally, the intensity mapping parameters are simply copied,

iua1 = iua2 = iua,

iva1 = iva2 = iva.

A.6 Computing the Parameters of Replicated

Features

Section 7.1.3 presents a procedure for aligning neighbouring regions of a feature

by replicating the feature in all directions. This section lists the derivation of the

equations used to compute the parameters of a replicated feature.

The objective is to replicate a corresponding pair of features, H1 and H2, in

direction d =
[

dx dy 1
]>

, where dx, dy ∈ {−1, 0, 1}, to produce a pair of

features, Hr1 and Hr2. The only parameters in the replicated features that are

different to the original features are the position (translation) parameters, tx

and ty. These are found using a method similar to computing the position of

subdivided features, as in the previous section. The only differences are the

direction and distance of displacement. The direction is determined by d. The

distance is chosen such that the new features are next to the original features,

with a small amount of overlap. When processing image patches, the margin of

the image cannot be used. Including limited overlap between features ensures

that all of the image is processed in subsequent steps.

Define the centre point of feature r1 as the point, tr1 =
[

txr1 tyr1 1
]>

, and
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define a point t
′
r1 that is related to tr1 by tr1 = H1t

′
r1. Let the point t

′
r1 satisfy

the equation,

R (φ1 + θ1) t
′

r1 =


1.6dx

1.6dy

1

.

The constant, 1.6, in this equation determines the relative distance of the original

and replicated features. A value of 2 would result in these features being adjacent,

whereas 1.6 results in some overlap.

The location of the new centre points can be found by applying the remainder of

the transformation,

tr1 = T (tx1, ty1)K (k1)R (−φ1)D (q1)


1.6dx

1.6dy

1

 .

Expanding the above gives,

txp1 = tx1 + 1.6k1

(
dxq1cos (φ1)− dyq

−1
1 sin (φ1)

)
,

typ1 = tya + 1.6k1

(
dxq1sin (φ1) + dyq

−1
1 cos (φ1)

)
.

The corresponding feature, Hr2 may be computed from the relative transforma-

tion as,

H12 = H−1
1 H2,

Hr2 = H12Hr1.
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