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Abstract

This thesis addresses the problem of detecting and describing the same scene points in

different wide-angle images taken by the same camera at different viewpoints. This is

a core competency of many vision-based localisation tasks including visual odometry

and visual place recognition.

Wide-angle cameras have a large field of view that can exceed a full hemisphere,

and the images they produce contain severe radial distortion. When compared to tra-

ditional narrow field of view perspective cameras, more accurate estimates of camera

egomotion can be found using the images obtained with wide-angle cameras. The

ability to accurately estimate camera egomotion is a fundamental primitive of visual

odometry, and this is one of the reasons for the increased popularity in the use of

wide-angle cameras for this task. Their large field of view also enables them to cap-

ture images of the same regions in a scene taken at very different viewpoints, and this

makes them suited for visual place recognition. However, the ability to estimate the

camera egomotion and recognise the same scene in two different images is dependent

on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in

the images. Most algorithms used for this purpose are designed almost exclusively for

perspective images.

Applying algorithms designed for perspective images directly to wide-angle im-

ages is problematic as no account is made for the image distortion. The primary contri-

bution of this thesis is the development of two novel keypoint detectors, and a method

of keypoint description, designed for wide-angle images. Both reformulate the Scale-

Invariant Feature Transform (SIFT) as an image processing operation on the sphere.

As the image captured by any central projection wide-angle camera can be mapped to

the sphere, applying these variants to an image on the sphere enables keypoints to be

detected in a manner that is invariant to image distortion. Each of the variants is re-

quired to find the scale-space representation of an image on the sphere, and they differ

in the approaches they used to do this. Extensive experiments using real and syntheti-

cally generated wide-angle images are used to validate the two new keypoint detectors

v
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and the method of keypoint description. The best of these two new keypoint detec-

tors is applied to vision based localisation tasks including visual odometry and visual

place recognition using outdoor wide-angle image sequences. As part of this work, the

effect of keypoint coordinate selection on the accuracy of egomotion estimates using

the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is

proposed which attempts to account for the uncertainty of keypoint positions during

detection. A word reliability metric is also developed for use within a visual ‘bag of

words’ approach to place recognition.
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Chapter 1

Introduction

Most mobile robots are required to be able to localise themselves with re-

spect to their surrounding environment. Vision sensors can be used for this

purpose, and two core components of many vision-based localisation sys-

tems are visual odometry and visual place recognition. Wide-angle cam-

eras are frequently used since they have considerable advantages com-

pared to narrow field of view planar perspective cameras for incremental

motion estimation due to their ability to more accurately disambiguate ro-

tational and translational motion. The large field of view of wide-angle

cameras also has potential advantages for visual place recognition. A

critical question which has received little attention is how image process-

ing algorithms should be applied to the images acquired with wide-angle

cameras which inherently have extreme radial distortion. A major contri-

bution of this work is a suitable method of keypoint detection and descrip-

tion in wide-angle images and a robust wide-baseline keypoint matching

algorithm suitable for use with wide-angle images. The algorithm is suited

to, and evaluated for, visual odometry and visual place recognition.

Mobile robots have numerous and growing applications in real world scenarios.

This work is motivated by applications to environmental monitoring and exploration.

Examples include robots for ecological monitoring of the Great Barrier Reef [65, 239],

and the Mars exploration rovers [145], both of which operate in unstructured outdoor

environments without navigational infrastructure such as GPS. Critical to the success

of these, and many other outdoor mobile robots, is the ability to localise either with

respect to a global coordinate frame, or in a local coordinate frame with respect to

objects near the robot.

1



2 Chapter 1: Introduction

When considering outdoor above ground vehicle localisation GPS appears to be an

attractive solution requiring only a GPS receiver to obtain a global coordinate for the

vehicle. However, numerous factors can limit its use which may be considered as the

failure modes for GPS, and include multi-path prorogation in natural or urban canyons,

degenerate satellite configurations, and occlusions due to buildings for example. GPS

can at best only provide a global coordinate, but without a known map of the operat-

ing environment there is no way for the vehicle to estimate its surroundings without

additional sensors. Using GPS alone is therefore not suited for dynamic or unknown

environments. It is interesting to note that for the case where a map of the environment

is known, other sensors such as scanning laser rangefinders [219] and computer vision

[186] have been shown through extensive experiments to provide effective alternatives

to GPS.

Both laser and vision sensors can also be used for localisation in unstructured en-

vironments. As they are able to perceive the surrounding environment, they have the

additional capability of being able to incrementally build a map of the operating envi-

ronment as they move, a process referred to as simultaneous localisation and mapping

(SLAM). This map can then be used to aid in localisation and identify when the ve-

hicle returns to a previously visited location. Laser scanners have been demonstrated

as a suitable sensor for this purpose in large scale outdoors environments, in particular

using SLAM by Bosse et al [23, 24]. Although visual SLAM is presently suited pre-

dominantly to small structured environments, accurate localisation using only vision

has also been demonstrated in unstructured outdoors environments with notable works

including Nistér et al [181, 182], Tardif et al [218], Scaramuzza [198] and Maimone et

al [145]. However, there are a number of advantages in using vision over laser scan-

ners. Vision sensors are relatively low cost, small and lightweight making them easily

retrofitted to most robots. Vision is also more information rich, capable of obtaining

information over an area of the environment (compared to a single scanning point)

with additional cues such as colour and texture. The use of vision for localisation is

considered in this thesis for these reasons. More specifically, wide-angle cameras are

considered as they have potential advantages when compared to narrow field of view

cameras, as will be discussed.

Image formation with narrow field of view cameras is typically a perspective pro-

jection of scene points to the image plane where straight lines in the scene appear

straight in the image, as illustrated in figure 1.7a. The term perspective camera will be

used to refer exclusively to narrow field of view perspective camera for the remainder

of the thesis. Although image formation with some wide-angle cameras is described

by perspective projection, the term wide-angle camera will be used to refer to those
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(a) Narrow field of view perspective camera. (b) Wide-angle camera (fisheye lens) with a

field of view in excess of a full hemisphere.

Figure 1.1: Images of the same scene obtained with a narrow field of view perspective

camera and a wide-angle (fisheye) camera. The dashed red lines on the wide-angle

image show the superimposed field of view of the perspective camera in (a). The

radial distortion in the wide-angle camera is most evident towards the lower half of the

image where the straight lines of the tiles are curved in the image.

with a near hemispherical field of view whose output images are characterised as hav-

ing extreme radial distortion where straight lines in space appear curved in the image,

as shown in figure 1.1b.

1.1 Fundamentals and Challenges of Vision-Based Lo-

calisation

1.1.1 Visual Odometry

Camera egomotion is the change in rotation and translation between camera view-

points. By integrating incremental estimates of camera egomotion, one can find the

location of the camera with respect to some reference starting location. This process is

typically referred to in the robotics literature as visual odometry [181, 182] and is the

foundation for many vision-based localisation frameworks. Camera egomotion can be

estimated by observing how the appearance of the surrounding environment changes

from one image to the next. For example, figure 1.2a shows a sequence of images

obtained from a camera moving through an indoor environment. From human per-

ception it is clear that the camera is moving forwards through the scene, and this is

based on observing how objects in the environment change position through the image

sequence.
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The change in appearance of the environment between two images needs to be

measured quantitatively to estimate camera egomotion. Assume that each pixel in the

first images is associated with a unique scene point. For each pixel in the first image,

the position of the corresponding scene points in the second image could be found

where the change in position gives the so called dense optical flow. The sparse opti-

cal flow is more typically used in many visual odometry applications which uses only

a select number of salient scene points, although some methods have been proposed

which attempt to obtain an egomotion estimate without the need to find any corre-

sponding points [146]. Referring to figure 1.2, given a sequence of images (1.2a) the

fundamental steps of visual odometry using sparse optical flow may be summarised as

follows:

1. Locate and describe distinctive world points in the images (figure 1.2b): this

is the method by which image processing algorithms identify visually salient

(distinctive) scene points in the images. Many terminologies have been used

to describe these sets, including but not limited to: corners, features, interest

points and keypoints. The terminologies used are typically specific to a particular

algorithm, however, to avoid confusion the term keypoint will be used in this

chapter. Each keypoint is then assigned a unique descriptor which encodes the

image information within a local region surrounding the keypoint. There are a

large number of methods used to detect and describe keypoints, and a detailed

taxonomy is presented in chapter 3.

2. Find corresponding keypoints between successive images (figure 1.2b): given a

set of keypoints in two images, the keypoints are matched to find the keypoint

correspondences. A keypoint in each image is typically identified as a corre-

sponding pair based on the similarity (distance) between their descriptors which

may be measured quantitatively using a number of methods — these will be

discussed in chapter 3. Key to the success of finding correct keypoint corre-

spondences is the ability to both detect the same keypoints in each image and to

describe them correctly via their descriptors. Additionally, there must be suffi-

cient overlap between the views or else it may not be possible to find keypoint

correspondences.

3. Use keypoint correspondences to estimate camera egomotion: assuming that a

set of correct keypoint correspondences between views has been found (sparse

optical flow), this information is used to estimate the camera egomotion using

fundamentals of two-view geometry [95] where a number of methods will be

discussed in chapter 5. Two factors which have the potential to limit the accuracy
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of the egomotion estimate, which will be discussed in this chapter, are the ability

to resolve the magnitude of the translation (scale ambiguity), and to reliably

decouple rotational and translational motion.

4. Integrate estimates of camera egomotion (figure 1.2c): by integrating the esti-

mates of the camera egomotion, the pose (location and orientation) of the camera

can be found with respect to some initial pose. It is important to find accurate

estimates of camera egomotion since long-term integration of egomotion errors

can result in large accumulated errors in the estimate of camera pose [127].

As mentioned in the third step, there is a scale ambiguity in the magnitude of

the translational component of the camera egomotion found using monocular image

sequences (applies to both perspective and wide-angle images). This ambiguity occurs

since an image is simply a 2D representation of the 3D environment whereby only

the direction and not the distance to a scene point can be found. For example, slow

motion with near objects appears the same as fast motion with distant objects where

both will produce similar sparse optical flow. One solution used to resolve the correct

magnitude of translation is to use stereo vision where two cameras at a known position

with respect to each other triangulate the Euclidean position of the scene points. This

has been used successfully for this purpose for visual odometry [1, 181], but requires

two cameras to be used.

Resolving the scale ambiguity using monocular camera requires more considera-

tion. One method is to utilise knowledge of the camera configuration with respect to

scene points. An example which has become commonplace for visual odometry es-

timation of ground vehicles is to use a subset of keypoint correspondences known to

lie in the ground plane [48, 33, 198, 200]. The known height of the camera above the

ground plane can then be used to resolve the magnitude of the camera translation. As

is the case when using stereo vision, the correct scaled egomotion estimate can be ob-

tained on a frame-to-frame basis, that is, without having to use any information from

previous frames.

It is still possible without using constraints on the positions of the scene points

to resolve the scale ambiguity in the egomotion estimates for monocular image se-

quences. However, this scale ambiguity can only be resolved with respect to previous

egomotion estimates which leaves a single global scale ambiguity. For example, refer-

ring to figure 1.2c, although the relative pose between all views can be recovered there

is no way to know if the camera has moved several metres or kilometres; this is the

global scale ambiguity. One approach is to use structure from motion algorithms (as
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(a) A typical image sequence acquired by a moving camera.

(b) Example set of keypoints detected in two images (left), the keypoint cor-

respondences (middle) and the change in position of the keypoints superim-

posed on the first image (right) typically referred to as the sparse optical flow.

(c) Estimated relative camera pose of each image in the se-

quence obtained using a structure from motion algorithm.

Figure 1.2: Given some image sequence, the change in position of scene points in

the image can be used to estimate the camera egomotion between views. The pose of

the camera with respect to some starting pose can be found by integrating successive

egomotion estimates, a process referred to as visual odometry. The visual odometry

estimate in this examples was found using a structure from motion algorithm — al-

though the relative pose between views has been found, there is no way to know if

the camera has moved several metres or kilometres using only the monocular image

sequence.
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used in figure 1.2c), where for a given estimate of the camera egomotion, the positions

of the scene points can be reconstructed from the positions of the keypoint correspon-

dences in the images. Assuming that any of the keypoint correspondences in following

frames are associated with these points, they can be used to both assist in the estimation

of the camera egomotion and resolve the relative scale between successive egomotion

estimates [181, 218]. Unlike methods which use stereo vision or constraints on the

positions of scene points, structure from motion approaches require that information

from previous frames in the sequence be retained.

More recently simultaneous localisation and mapping (SLAM) has been employed

for vision-based localisation, including visual odometry, which incrementally builds

a map of the operating environment as the camera moves. This map is then used

for localisation, where the estimate of the camera location is found with respect to

all known points in the map in a probabilistic manner [43]. Unlike structure from

motion approaches, SLAM has the capability for loop closure. Loop closure is the

ability to detect that the vehicle has returned to a previously mapped region of the

environment and re-localise itself with respect to this map. However, similarly to

structure from motion approaches, there is still a global scale ambiguity in locali-

sation estimates as only the relative Euclidean coordinates of scene points can be

found during the mapping phase. SLAM is an active area of research in computer

vision [166, 121, 192, 193, 42, 43, 224, 150, 238] and Davison et al [58] have demon-

strated real-time (30Hz) implementations [59]. Unfortunately, as noted by Dailey and

Parnickun [53] most methods are suited to relatively small, structured environments

and most successful when the camera reamins primarily in the mapped environment

[43].

Assuming for now that the scale ambiguity can be reliably resolved between ego-

motion estimates, there is still the problem of disambiguating the components of the

rotation and translation in the egomotion estimate. This ambiguity is well documented

in the literature for narrow field of view perspective cameras, and it can have a great

effect on the accuracy of egomotion estimates [89]. Integrating inaccurate estimates

of camera egomotion therefore limits the accuracy of localisation estimates [127], as

previously discussed.

To illustrate this ambiguity, refer to figure 1.3a which shows a camera centred at

the origin of the world coordinate frame of reference observing some scene. Rx,Ry

and Rz denote rotations about the x,y and z axes respectively. Consider the two cases

where the camera either rotates by some small angle about the y axis, Ry, or translates

in the direction of the x axis, tx. For a unit sphere centred at the origin of the camera
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(a) Camera centred at the origin

of the world coordinate frame

observing a scene.

z

y

x

(b) Spherical flow field for pure

rotation, Ry.

z

y

x

(c) Spherical flow field for

translation in negative x direc-

tion, tx.

Figure 1.3: Camera centred at the origin of the world coordinate frame observing a

scene. For the case of translation, the spherical flow fields intersect at antipodal points

which are the centre of expansion and contraction. For this example, the cameras

principal (optical) axis is the z axis.

coordinate frame, the optical flow of scene points between the views would follow

the patterns shown on the view sphere in figures 1.3b and 1.3c for the rotation and

translation respectively; these are often referred to as the spherical flow fields [89].

The red lines in each figure indicate the effective field of view of a typical perspective

camera. It is evident from the figures that the spherical flow fields appear very similar

within the field of view of the perspective camera. This similarity is illustrated using a

real perspective camera in figure 1.3 which shows the sparse optical flow found for a

small change in camera rotation Ry (top row) and a small change in camera translation

tx (bottom row). It can be seen from this figure that both produce extremely similar

results. For the purposes of later discussions, observe that the spherical flow field

for the translation tx in figure 1.3c intersects at antipodal points on the sphere. These

antipodal points are the centre of expansion and contraction.

To further illustrate this similarity, and to consider how it may be resolved, define

X = (x,y,z)T ∈ R3 as the Euclidean position of a scene point in the camera coordinate

system. For a perspective projection, a scene point projects to a pixel coordinate u =

(u,v)T in the image plane by [
u

v

]
=

f

z

[
x

y

]
(1.1)

where f is the focal length of the camera — a more detailed description of perspective

projection will be presented in chapter 2. Given the estimate of the change in position

u̇, v̇ of the keypoints between two images, Hutchinson, Hager and Corke [105] derive

the image Jacobian J which describes the apparent motion of keypoints (u̇, v̇) in the

image plane for small changes in camera translation t = (tx, ty, tz)
T and small changes
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Translation
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Original

Image

Figure 1.4: Similarities in optical flow produced for a change in camera rotation Ry

(top row) and a change in camera translation tx (bottom row). The rightmost column

shows the change in position of the keypoints (sparse optical flow) superimposed on

the original image.

in camera rotation Rx(ωx),Ry(ωy) and Rz(ωz) about the x,y and z axes respectively,

where ωx,ωy and ωz are the changes in angles:

[
u̇

v̇

]
= J




tx

ty

tz

ωx

ωy

ωz




(1.2)

where

J =

[
f
z

0 −u
z

−uv
f

f 2+u2

f
−v

0
f
z

−v
z

− f 2−v2

f
uv
f

u

]
(1.3)

The ambiguity between rotation and translation for small motion is evident from

equations 1.2 and 1.3. For a camera constrained only to translation tx and rotation

Ry(ωy) as in this example, the equation of motion reduces to

[
u̇

v̇

]
=

[
f
z

f 2+u2

f

0 uv
f

][
tx

ωy

]
. (1.4)
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Observing from figure 1.4 that there is almost no optical flow vertically (v̇ ≈ 0), equa-

tion 1.4 shows that it is difficult to reliably decouple rotation and translation without

knowing the depths z of scene points. Although an estimate for the change rotation

and translation can be found, it is highly sensitive to noise in the estimate of the sparse

optical flow [89] and becomes more difficult to obtain with both reductions in depth

discontinuities in the scene (i.e. variations in the distance to scene points from the cam-

era) and decreasing field of view (larger focal length f for a perspective camera) [54].

Even for the case where there exist depth discontinuities in the scene, for very small

changes in rotation or translation there is minimal parallax which makes the estimate

of six degree of freedom camera egomotion and the recovery of scene structure non-

linear and ill-posed [179, 178]. As a consequence, many frames are required to obtain

an accurate scene reconstruction using perspective cameras which can be used for ego-

motion estimation [100], for example using structure from motion algorithms or visual

SLAM. Gluckman and Nayar [89] state that to obtain accurate egomotion estimates

that are insensitive to camera orientation, either the focus of expansion or contraction

should ideally be withing the cameras field of view. However, they note that this is

difficult to achieve using perspective cameras. With respect to figure 1.3a, the appear-

ance of the focus of expansion or contraction would only be within the cameras field

of view for predominantly translational motion tz in the direction of the z axis.

It is necessary to consider then how the accuracy of visual odometry may be im-

proved. Before discussing the potential advantages of using wide-angle cameras, it is

of benefit to review a number of approaches adopted in the literature for perspective

cameras which include:

• Resolve the position of world points (stereo vision and structure from motion)

• Obtain an estimate of motion from another sensor (sensor fusion)

• Make assumptions (or constraints) regarding world points and/or camera motion

• Increase change in pose between views (keypoint tracking and wide-baseline

keypoint detection and matching)

Resolve the position of scene points (stereo vision and structure from motion)

Stereo vision can be used to calculate the relative Euclidean position of scene points

in the camera coordinate system as previously discussed. Not only can this be used

to resolve the scale ambiguity, it has the potential to obtain more accurate egomotion

estimates than those found using monocular images [182]. An early use of stereo for
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egomotion estimation and scene reconstruction is given by Ho and Chung using im-

ages sequences consisting of a small number of frames [100]. They observed improved

accuracy in the position of the reconstructed scene points and egomotion estimates us-

ing stereo vision when compared to the use of monocular images and a structure from

motion algorithm which they found required considerably more images to achieve ac-

curate reconstruction. This was due to the effective baseline (change in pose) between

the images used for scene reconstruction. For stereo this was 50cm between the two

cameras, and for the monocular scheme the change in pose between successive images

in the sequence which was comparatively smaller.

Nistér, Naroditsky and Bergen [181] have also used stereo for egomotion estima-

tion, in their case 28cm baseline separation between the cameras. In contrast, although

stereo was capable of recovering the scale ambiguity in the egomotion estimate, they

found that the use of the triangulated 3D points from stereo pairs were not suitable for

the direct estimation of camera rotation. They attribute this to the errors in triangu-

lation and the uncertainty in depth which has been found to grow quadratically with

distance [110]. This uncertainty in the depth direction and source of error in egomotion

estimates was also noted by Mallet and Lacroix [149] who were required to discard re-

constructed points with high uncertainty in the depth direction to obtain more accurate

6 degree of freedom egomotion estimates for a blimp and the generation of elevation

maps [110, 111]. This restricts the use of stereo vision in some respects to cases where

scene point are close to the cameras, for example in indoor environments or outdoors

using downward facing cameras near the ground. Similar problems in the use of stereo

vision for reliable egomotion estimation, in particular rotation, where also observed

in early works of Olson, Matthies, Schoppers and Maimone [190, 189] for obtaining

visual odometry estimates of a planetary rover. They found that the localisation er-

rors grew super linearly with distance travelled (using a forward facing perspective

camera) caused primarily from the errors in the estimate of rotation. When they used

an absolute orientation in simulations, the error growth was reduced considerably and

grew more linearly. In more recent works, they have incorporated methods of multi-

frame feature tracking , as will be discussed shortly, to improve accuracy of their visual

odometry system with accurate results achieved over long transits [188, 145]. This is a

similar strategy used by Nistér et al [181, 182] and Johnson et al [109] to achieve high

accuracy visual odometry estimates over long image sequences using stereo vision.

Monocular structure from motion algorithms can also be used to recover the po-

sition of scene points and potentially improve the accuracy of camera egomotion es-

timates. These algorithms require both the use and calibration of a single camera. In

contrast, stereo vision requires both the use and calibration of two cameras, and the
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calibration of the relative pose between the two cameras. However, as previously dis-

cussed, structure from motion algorithms can only recover the position of scene points

after an estimate of the camera egomotion has been found and can only resolve the

scale ambiguity with respect to previous egomotion estimates. For this reason, only

corresponding points that were found in previous frames can be used to assist in find-

ing the current estimate of the camera egomotion. As noted by Nistér et al [181, 182],

this has potential limitations if the position of the scene points found previously were

for a small translational component in the camera egomotion; for small translation,

there is great uncertainty in the depth direction when resolving the scene structure. As

noted in the same work, stereo vision in contrast does not suffer from this problem

and is more suitable for slow moving, or even stationary cameras (without the use of

multi-frame tracking).

Obtain an estimate of motion from another sensor

Fusion of vision and inertial data is a popular approach used to improve the accu-

racy of egomotion estimation [91, 47], where improved results can be obtained using

inexpensive inertial measurement units. Another advantage of using inertial data is the

ability to resolve the scale ambiguity for monocular vision-based localisation [192].

There are numerous examples of works combining vision and inertial data, includ-

ing applications for unmanned aerial vehicles (UAVs) by Corke [46] and Kanade [116].

Examples can also be found for autonomous underwater vehicles (AUV’s) by Dun-

babin, Corke and Buskey [65], and Chroust and Vincze [39] who state that fusion of

vision and inertial data is suitable as vision is ideal for slow motion estimation and

inertial more suited to fast motion where difficulties arise in obtaining reliable optical

flow. These advantages were also noted in the works of Huster and Rock [103, 104],

who fused inertial data and monocular ego-motion estimation for localisation of an

AUV. Further evidence of localisation improvements using vision and inertial data is

found in the works of Eustice [67] who fused inertial data with egomotion estimates

obtained from a downward facing perspective camera. Corke, Lobo and Dias [47] and

Lobo and Dias [141, 140] also describe advantages of using vision and inertial data,

for example using inertial data to obtain a vertical reference cue from gravity when

considering full 6 degree of freedom camera motion. A detailed description of meth-

ods is given by Strelow and Singh [214], who give quantitative evidence of localisation

improvements through fusion of egomotion estimates from vision and inertial cues for

structure from motion using both perspective and wide-angle (catadioptric) cameras.

Although all the methods described have the potential to improve the overall accuracy

of visual odometry, it is still of benefit to obtain the most accurate egomotion estimates
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possible using vision.

Make assumptions (or constraints) regarding scene points and/or camera motion

Another method which has been used in an attempt to improve the accuracy of

vision-based localisation is to make assumptions regarding camera motion, for exam-

ple being constrained to 3 degree of freedom planar motion, and/or the relative position

of scene points.

A novel technique was proposed in a series of works by Campbell, Sukthankar,

Nourbakhsh and Pahwa [34, 35] who use the sparse optical flow in different regions

of the image to estimate 3 degree of freedom planar camera motion. Points above the

horizon were first used to estimate the camera rotation as they are generally further

away than those below and more sensitive to rotation with respect to their change in

position on the image plane between views. The remaining points below the horizon

were then used to find the camera translation. A similar scheme was used by Thanh et

al [220], however, multiple omnidirectional cameras were used to resolve the depth of

points which were then classified far or near. Again, the far points were used to first

estimate rotation, then the near points used to find the translation using this estimate of

rotation.

In some scenarios it is possible to assume that the scene points used to estimate the

egomotion lie in the ground plane. This constraint can be used to improve the estimate

of camera egomotion and has been utilised for visual odometry in numerous works

[48, 33, 248, 198]. As discussed previously it has the additional advantage that the

scale ambiguity in the egomotion estimate can be resolved given the known height of

the camera from the ground plane. However, making assumptions regarding camera

motion and/or scene points is not suitable for many practical applications, for example,

a camera mounted to a robot traversing uneven terrain.

Increase change in pose between views

It was mentioned previously that for monocular images sequences, structure from

motion algorithms require a large change in camera pose to more accurately recon-

struct the position of scene points which may be used to estimate camera egomotion

and/or the relative scale between the current and previous egomotion estimates. By

increasing the change in pose between two views, there is also a greater change in

the appearance of the operating environment in the images and hence more distinctive

sparse optical flow. Assuming that reliable keypoint correspondences can be found,

then there is the potential to improve the accuracy of the egomotion estimate. For
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monocular sequences, this is potentially the most practical method used to improve

egomotion estimates without the use of additional sensors.

One method that can be used in an attempt to increase the change in pose between

views used to compute camera egomotion is to track keypoints across multiple frames

before computing the egomotion. In this context, tracking refers to the ability to find

the same scene points in the operating environment in multiple consecutive images.

Although a more formal discussion is reserved for chapter 3, tracking can be performed

using classical algorithms such as Kanade-Lucas-Tomasi (KLT) [144, 209, 223], or by

detecting and matching the same keypoints in multiple images [181].

Keypoint tracking using KLT was used successfully by Corke, Strelow and Singh

[48] to improve the accuracy of egomotion estimation considerably compared to sim-

ple frame-to-frame estimates. The tracking approach using detection and matching of

the same keypoints in multiple images was used by Matthies et al [188] for rover lo-

calisation. By tracking the 3 dimensional positions of scene points (found using stereo

vision), they found a 27.7% reduction in localisation error over localisation estimates

using simple simple frame-to-frame matching. A similar method of tracking was used

by Nistér, Naroditsky and Bergen [181]. In their application, features were tracked

over multiple frames using an additional algorithm they developed [179] to select the

optimal frames to use for construction of the trifocal tensor used for Euclidean scene

reconstruction and the estimation of camera egomotion. Using this approach, the three

frames could be selected over several hundred frames allowing the change in pose

between each to be extended. Although Neumann, Fermüller and Aloimonos [178]

state that the decoupling of rotation and translation is a geometric problem which ex-

ists using both small and large baselines, the results of Nistér, Naroditsky and Bergen

[181] showed very good accuracy. Agrawal and Konolige also found improvements

in the accuracy of localisation using multi-frame tracking [2] when compared to their

previous work using simple frame-to-frame egomotion estimates [1], where in both

vision was fused with inertial and GPS data for localisation. Konolige, Agrawal and

Solà have demonstrated excellent long-range localisation accuracy by fusing egomo-

tion estimates using this approach to multi-frame tracking with inertial and GPS data

[124].

Rather than track features over multiple frames, it is logical to consider why feature

correspondences are not simply found over wide-baselines, where wide-baseline refers

to a larger change in pose between images. Similarly to tracking, this has the potential

to improve the accuracy of egomotion estimates. This may be understood by consider-

ing egomotion estimation as a signal to noise ratio problem. During keypoint detection
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there is some error in the estimate of the position of the scene points in the image. By

increasing the baseline separation, the change in position of the scene points between

images will typically increase which improves the signal to noise ratio. However, the

ability to reliably detect and match the same scene points in images separated by wide-

baselines becomes difficult [222, 203]. This is due to the fact that the appearance of

the same regions in the scene can appear significantly different as a result of changes

in illumination and projective deformations. A number of works have addressed this

problem of wide-baseline keypoint detection and matching, and a taxonomy of these

methods is presented in chapter 3. In brief, they have been shown to be valuable for

vision-based localisation applications. They are frequently used also for tracking pur-

poses, where the same keypoints are detected and matching across multiple images —

this is the same method of tracking described previously in [181].

To summarise, the use of keypoint tracking and/or wide-baseline keypoint detec-

tion and matching algorithms can be used to extend the change in pose between views

used to compute camera egomotion. This has the potential to improve the accuracy

of visual odometry. However, due to the small field of view of perspective cameras

there is a limit to the change in pose between views which can be achieved before

there is insufficient overlap to find enough keypoint correspondences to estimate the

camera egomotion between views. For these reasons, the use of wide-angle cameras

has become an increasingly popular choice for visual odometry.

Advantages of wide-angle camera

Wide-angle cameras have an extended field of view, often in excess of a full hemi-

sphere, and the images they produce exhibit extreme radial distortion, as shown in

figure 1.1. Example wide-angle cameras include fisheye and catadioptric [174]. Since

there are finite limits on the size of the images (number of pixels) they produce, wide-

angle cameras trade spatial resolution for an increased field of view. The advantages

of their use for visual odometry compared to perspective cameras are twofold. First,

they are able to more accurately decouple rotational and translational motion [178, 89].

Secondly, they allow more overlap between views over large changes in camera pose

which is suited for keypoint tracking or wide-baseline keypoint detection and match-

ing.

To illustrate, consider the example in figure 1.3 where a camera changes pose by

some rotation Ry or translation tx. The appearance of the theoretical spherical flow

fields for a rotation Ry and translation tx in the image for a perspective and wide-angle

camera are shown in figure 1.5. It is of interest to note that although appearance of
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Figure 1.5: Theoretical spherical flow fields (top row) for pure rotation and translation,

and their appearance in the perspective image (middle row) and wide-angle image

(bottom row) for the cameras in figure 1.1. The red and green lines on the top row

indicate the field of views of the perspective and wide-angle camera respectively.

these fields will vary depending on the wide-angle camera used, the sparse optical

flow obtained from any wide-angle camera viewing the same scene would, in theory,

project to identical spherical flow fields on the unit view sphere [89]. From simple

inspection, the difference in the appearance of the spherical flow fields represented in

the image planes for each motion is more apparent for the wide-angle camera.

Gluckman and Nayar state that wide-angle images are able to greatly simplify the

decoupling of rotation and translation due to the visibility of either the focus of ex-

pansion or contraction in a hemispherical image, or both in a full spherical motion
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field [89]. They also note that motion estimation using wide-angle images is less sen-

sitive to noise (with respect to keypoint location) compared to perspective images since

distinct motion patterns are evident, as demonstrated in figure 1.5. This observation

has been validated empirically by Nelson and Aloimonos [177], and Strelow and Singh

[214]. In addition, Neumann et al [178] have also considered the suitability of camera

selection for structure from motion, considering both the field of view and linearity of

structure from motion estimation. They describe a hierarchy of camera selection with

wide-angle cameras shown to be superior to perspective cameras. The same authors

also describes the advantages of spherical motion parameters obtained from omnidi-

rectional (wide-angle) cameras compared to perspective, concluding that biological

selection of spherical imaging systems for many animals is most likely the optimal

choice [68].

A number of direct comparisons have been made for vision-based localisation us-

ing perspective and wide-angle cameras. Streckel et al [213] compared the accuracy

of structure from motion estimates using images (of the same size) obtained from a

perspective and a fisheye camera, and it was found that the results obtained using the

fisheye camera were superior. Despite the fact that the fisheye cameras had a reduced

angular resolution, they observed that the increased field of view permitted many more

keypoints to be tracked across images, where the spatial distribution of the keypoints

over the wide field of view gave improved localisation estimates. A similar compari-

son of a perspective and wide-angle camera was presented by Davison et al [58]. They

found that more accurate localisation estimates using a visual SLAM system were ob-

tained with a wide-angle fisheye camera compared to those with a narrow field of view

perspective camera.

To recap, wide-angle cameras are potentially more suitable for visual odometry

than perspective cameras. It is easier to more reliable decouple rotational and transla-

tional motion using images obtained from wide-angle cameras, and wide-angle cam-

eras can maintain an increased overlap in the images they capture for large changes in

camera pose. As is the case for any camera, the ability to accurately estimate camera

egomotion from the images they produce, and hence find reliable visual odometry es-

timates, is dependent on the ability to detect and match the same keypoints in different

images.
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(a) Courtyard. (b) Open loop map (c) Closed loop map

Figure 1.6: Loop closure for a mobile robot operating in an outdoor courtyard. The

‘open loop’ map (b) shows the estimate of the vehicle location and reconstructed posi-

tion of scene points prior to loop closure. When the vehicle detects that it has revisited

the same location it closes the loop (c). The location of the vehicle is updated and the

updated ’closed loop’ map found. These figures have been provided courtesy of Brian

Williams [238], Department of Engineering Science at Oxford University.

1.1.2 Visual Place Recognition

A key part of SLAM is loop-closure, recognising correctly that the camera has returned

to a previously visited location. This is of great benefit as the localisation estimates for

a camera drift due to integrated errors in egomotion estimates. This means also that the

same scene point can be mapped at two separate locations in the map. If the camera

returns to the same location and the corresponding scene points in the current and

previous map can be found, the camera can both re-localise itself with respect to the

previous map and update the global map (i.e. ‘close the loop’), as illustrated in figure

1.6. There are a number of different methods used to detect loop-closure [238] which

will be discussed in chapter 5. Among these, appearance-based methods have been

shown to provide good results and robustness [51]. They detect potential loop closure

in the space of appearance by comparing the similarity of the image content in the

current image to all those images at previous locations in the transit. These methods

can also be used for place recognition within simple topological maps, for example

simply identifying that a camera has returned to some room visited previously. It is

more appropriate to then refer to this process using the more general term visual place

recognition.

As discussed, appearance based methods compare the similarity of image content.

This image content can be based on a global representation of the image, for example

using wavelet image decomposition [225] or colour histograms [194]. Alternatively,

and more commonly, local image content is used where the image is described by

information derived from the set of keypoints detected in the image [202, 79, 154, 51,
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(a) Current image. (b) Previous image in transit

Figure 1.7: The increased field of view of wide-angle images provides advantages for

visual place recognition. This is due to the ability to maintain sufficient overlap be-

tween images in the same region of the operating environment subject to large changes

in camera pose. The red lines superimposed on each of the images is the approximate

field of view of a typical perspective camera. Notice that for the perspective camera

there is minimal overlap.

52, 38, 4, 69, 99, 107], although combinations of global and local methods have been

considered [196]. For local image description, many methods utilise the concept of

visual words introduced by Sivic and Zisserman in [210] for image retrieval. Methods

using visual words allow the similarity of an image to be compared to all those in a

large database of images (i.e. all previous images in the transit) efficiently and quickly,

for example using the vocabulary tree algorithm of Nistér and Stewénius [183].

It is of interest to consider here the suitability of camera selection for visual place

recognition. As was the case for visual odometry, there is an advantage in the use of

wide-angle cameras as a result of their increased field of view which has seen them

used for visual place recognition by Andreasson et al [3], Booij et al [22] and Ullah

et al [231]. To highlight this advantage, figure 1.7 shows two images of the same

scene taken by a wide-angle fisheye camera at different viewpoints — the camera has

returned to a previously visited area of the operating environment. The red superim-

posed lines indicate the effective field of view of a typical perspective camera. It can

be observed from the figure that even though there is a substantially large difference

in the camera pose between views, in particular rotation, there is still a large overlap

between the wide-angle images. If a perspective camera were used, from the effective

field of view shown it is evident that there would be minimal overlap. The chances of

reliably recognising that the camera has returned to a previously visited location for

this example would therefore be greater for the wide-angle camera.

To conclude, wide-angle cameras have potential advantages when compared to per-

spective cameras for vision based localisation, including visual odometry and visual
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place recognition. For both, the ability to detect and match the same keypoints in dif-

ferent images subject to large changes in camera pose is a necessary criteria. This

is an image processing problem which relates specifically to wide-baseline keypoint

detection and matching. In general, wide-baseline keypoint detection and matching

algorithms have been designed for use with perspective cameras. Their suitability for

use with wide-angle images or new algorithms designed specifically for wide-angle

images are areas of research which have attracted little attention.

1.2 Wide-Angle Image Processing

In general, most implementations of wide-baseline keypoint and matching are applied

directly to wide-angle images without considering or accounting for the extreme radial

distortion in the images [200], or simply to the rectified panoramic representation of

the original image [22, 233, 172]. Although these approaches have worked with some

success, there is little evidence in the literature of more suitable methods designed for,

and evaluated with, wide-angle images. One notable exception is the work presented

by Briggs et al [26] who considered wide-baseline matching with wide-angle images.

However, their method was suited only to 1 dimensional rectified panoramic images

which is not suited to generalised 6 degree of freedom camera motion. Although not

developed for wide-baseline keypoint detection and matching, Daniilidis et al [56]

formulated image processing as an operation on the sphere. The importance of this

approach, which will be discussed in detail in chapter 3, is that it accounts for the

radial distortion in the image.

As the existing methods of wide-baseline keypoint detection, description and match-

ing have worked with success with perspective images, it seems logical to consider how

they can be adapted to suit wide-angle images, that is, to account for the radial distor-

tion in the image. One way to do this would be to use the approach of Daniilidis et al

[56] and reformulate these existing algorithms as operations on the sphere.

1.3 Research Questions and Methodology

It is proposed that the use of wide-angle images is suitable for use in applications

relating to vision-based localisation of mobile robots, including visual odometry and

visual place recognition. This thesis addresses the following research question:
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‘Can a method of wide-baseline keypoint detection and matching be found suited for

use with any wide-angle camera for vision based localisation, including visual

odometry and visual place recognition?’

This gives rise to a number of additional questions that are addressed in this thesis:

1. What types of wide-angle cameras exist, what are the methods of modelling the

distortion in the image, and how can they be calibrated to resolve the camera’s

intrinsic parameters?

2. What existing methods of wide-baseline keypoint detection are suitable for vision-

based localisation?

3. What are the limitations of applying these existing methods to wide-angle im-

ages and how, if possible, can they be adapted to suit wide-angle images?

4. Can an alternative to existing wide-baseline keypoint detection and matching

algorithms be developed which is more suitable for use with wide-angle images?

5. Assuming a suitable alternative can be found, can it be used to obtain accurate

visual odometry estimates for a mobile robot, and if so, what are the effects of

increasing the change in pose between views with respect to accuracy?

6. Assuming again that a suitable alternative can be found, can it be used to obtain

robust visual place recognition using wide-angle cameras?

To answer these questions, an extensive review of literature is first conducted which

identifies various classes of wide-angle cameras and methods used to both model and

calibrate for the radial distortion in the images. A novel and generic calibration algo-

rithm is developed which is used to select, from a range of empirical choices proposed

in the literature, a suitable model for a fisheye camera used in this work. This model

assumes that the fisheye camera has a single effective viewpoint (central projection)

where the model describes a mapping from rays in space to the image plane. As with

all central projection cameras, this model can be used to map the wide-angle image to

the unit view sphere. This is followed with an extensive review of wide-baseline key-

point detection and matching algorithms. This includes the class of algorithms based

on the scale-space framework and a number of alternate approaches. The suitabil-

ity of these methods is considered with respect to vision based localisation where the

Scale-Invariant Feature Transform (SIFT) proposed by Lowe [142], which is used ex-

tensively throughout the literature for vision based localisation, is identified as a prime

candidate.
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As with many image processing algorithms, most wide-baseline methods including

SIFT have been designed for use with perspective images. The limitation of applying

these methods directly to wide-angle images is identified as their inability to account

for the radial distortion in the image. It is proposed that SIFT, and any other similar

algorithms based on the scale-space framework, can be reformulated as an image pro-

cessing operation on the unit sphere; since any central projection wide-angle image

can be mapped to the sphere, this approach is suited for all central projection wide-

angle cameras. This general approach was inspired by the work of Daniilidis et al[56]

who proposed and demonstrated image processing as an operation on the sphere for

wide-angle images, and Bülow’s work relating to scale-space theory for functions on

the sphere [31, 30].

A number of variants of the SIFT algorithm, which are the primary contributions

of the thesis, are developed for use with the images obtained with calibrated central

projection wide-angle cameras. A wide-angle image is considered as a function on the

sphere, and the underlying scale-space for a wide-angle image is therefore defined as

the solution of the spherical heat diffusion equation which was solved by Bülow [31].

These variants are based on alternate ways of implementing spherical diffusion: in the

spherical Fourier domain (termed spherical SIFT) and a more efficient approximate

diffusion on the stereographic image plane (termed parabolic SIFT). Suitable means

for obtaining keypoint descriptors are formulated which considers keypoint support

regions defined on the sphere. For spherical SIFT, factors relating to bandwidth se-

lection are considered where a suitable anti-aliasing filter is developed and validated

through experiments. The new methods are compared to a direct application of SIFT

(SIFT is applied directly to the wide-angle without making any account for the radial

distortion) through extensive experiments using synthetic and real wide-angle images

(fisheye and catadioptric). A quantitative comparison of the relative performance is

made using the percentage correlation of keypoint correspondences between images

and recall versus 1-precision statistics. The parabolic SIFT (pSIFT) algorithm is iden-

tified as a better alternative to SIFT for use with wide-angle images and has similar

computational expense.

The pSIFT algorithm is used to obtain visual odometry estimates for both a fish-

eye and catadioptric image sequence. The keypoint detection algorithm is validated

through extensive experiments where it is shown that accurate visual odometry esti-

mates can be obtained. This includes a visual odometry algorithm using a ground plane

constraint, and a generalised structure from motion algorithm. A variable frame-rate

algorithm is used similar to that proposed by Mouragnon et al [170] to track keypoints

through multiple frames in order to increase the change in pose between views used to
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compute the camera egomotion. The visual odometry estimates using this method are

compared to those using every frame through extensive experiments. Finally, experi-

ments using a real fisheye image sequence taken along a 4.4 kilometre path are used to

validate the new keypoint detector for visual place recognition.

1.4 Contributions

The contributions of the thesis include:

1. Review of image formation with wide-angle cameras and the development of

a novel and generic calibration algorithm which effectively calibrates for the

camera intrinsic parameters on the unit sphere using multiple images of a planar

checkerboard pattern.

2. Review of wide-baseline keypoint detection and matching algorithms and their

suitability for both vision based localisation and use with wide-angle images.

3. Development of two variants of SIFT, termed spherical and parabolic SIFT, using

the underlying scale-space as the solution of the heat diffusion equation on the

sphere which are both suitable for use with any central projection wide-angle

camera. This includes the formulation of an approximate spherical diffusion

operation for parabolic SIFT which operates on the stereographic image plane.

4. Analysis of bandwidth selection when obtaining scale-space images via convo-

lution in the spherical Fourier domain (spherical SIFT) and the development of

a suitable anti-aliasing filter which may be used to counterfeit aliasing.

5. Systematic experiments comparing the performance of spherical SIFT and parabolic

SIFT to SIFT (operating directly on the wide-angle images without accounting

for the image distortion) using extensive synthetic and real wide-angle images.

6. A coordinate weighting scheme suitable for egomotion estimating using the Di-

rect Linear Transform (DLT) and a ground plane constraint with parabolic SIFT

keypoints. The weighted spherical coordinates of keypoints are used to estimate

camera egomotion using the DLT. This weighting estimates the uncertainty of a

keypoints position on the sphere relative to its uncertainty in position found in

a wide-angle image during detection. Using a real wide-angle image sequence,

the accuracy of the visual odometry estimates found using this weighting scheme
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are shown to be more robust than those found using simply the normalised ho-

mogeneous coordinates of the calibrated keypoints.

7. A comparison of visual odometry estimates found using a fixed frame-rate and

variable frame-rate tracking algorithm.

8. Development of a word reliability metric which is incorporated into the “Video

Google” algorithm [210] for visual place recognition. Using this metric, robust

place recognition using a wide-angle (fisheye) camera and the new parabolic

SIFT keypoint detector is demonstrated through experiments.

1.5 Structure of Thesis

Chapter 2 presents the foundations for image formation with wide-angle cameras and

methods of calibration. This includes the development of the novel calibration

algorithm and its use in selecting a suitable camera model for a wide-angle cam-

era.

Chapter 3 reviews methods for detecting, describing and matching keypoints between

views. This includes some ‘classical’ methods suited for small changes in cam-

era pose between views, and wide-baseline methods suited for large changes in

camera pose between views. The wide-baseline algorithms include those based

on the scale-space framework, and a range of alternate methods. From this re-

view, the suitability of these wide-baseline methods is considered with respect to

wide-angle images and a method is selected which may be potentially modified

for used with wide-angle images.

Chapter 4 develops the spherical SIFT and parabolic SIFT algorithms that are suited

for keypoint detection and description with central projection wide-angle cam-

eras. The algorithms are variants of the Scale-Invariant Feature Transform and

effectively implement image processing as a function on the sphere. One of the

key components of the algorithms is the definition of scale-space for wide-angle

images as the solution of the spherical heat diffusion equation on the sphere.

The methods are compared to the standard SIFT algorithm using artificial and

real wide-angle images in multiple experiments.

Chapter 5 applies the new parabolic SIFT keypoint detection algorithm to visual

odometry using real wide-angle image sequences obtained with a fisheye and



1.5. Structure of Thesis 25

catadioptric camera. The visual odometry estimates are found using various con-

straints on camera motion and the relative position of scene points. The accuracy

of visual odometry estimates are compared using both a fixed frame-rate (every

consecutive image in the sequence) and a fixed frame-rate which increases the

change in pose between views used to compute the camera egomotion. As part

of this, a coordinate weighting scheme for parabolic SIFT keypoints is devel-

oped for egomotion estimation using the Direct Linear Transform (DLT) and a

ground plane constraint. This follows with the application of the parabolic SIFT

keypoint detector for visual place recognition using a real wide-angle (fisheye)

image sequence. This includes the detailed implementation of the word reliabil-

ity metric which is validated through experiments.

Chapter 6 presents the conclusions for the work addressing each of the research ques-

tions in this chapter and proposes a number of directions for future work.
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Chapter 2

Wide-Angle Image Formation and

Calibration

For computer vision applications, image formation is typically considered

as a geometric mapping of scene points to the image plane. This mapping

is defined by a parametric camera model which varies depending on the

wide-angle camera used. For applications to vision-based localisation,

for example structure from motion, it is necessary to find a suitable camera

model and calibrate to find the model parameters. This chapter presents a

review of image formation for a number of classes of wide-angle cameras,

including catadioptric and dioptric, and a range of calibration techniques.

A novel and generalised calibration algorithm is then developed suited for

use with any central projection camera using multiple images of a pla-

nar checkerboard pattern. This includes a robust means for finding the

checkerboard intersections (grid points) used for, and operating in par-

allel with, calibration. A fisheye camera used extensively in experiments

throughout the thesis is calibrated using this algorithm, and a suitable

model is selected empirically from a range proposed in the literature. An

important observations made in this chapter is that the image obtained

with any central projection camera can be mapped to the unit view sphere.

The significance of this becomes apparent in later chapters when deriving

a generalised means for wide-baseline keypoint detection and matching

with wide-angle images.

27
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2.1 Introduction

A digital camera used in computer vision provides as output a discrete two-dimensional

image representative of the surrounding environment. Typically the values at each ele-

ment of the image (pixels) are light intensity measurements, either colour or greyscale.

For practical purposes, image formation can be considered as a geometric mapping of

scene points X = (X ,Y,Z)T ∈ R3 defined with respect to the world coordinate frame

of reference to pixel locations u = (u,v)T ∈ R2 in the image plane, where there exists

an inverse mapping from points in the image plane to rays in space. This mapping is

frequently described in the literature by a parametric camera model; a function which

defines for each pixel in the image plane either the corresponding ray in space (ray-

based models), or the corresponding point in the perspective image plane (pinhole

based models). It is critical to correctly model the geometric process of image for-

mation for many vision based localisation tasks. The camera must also be calibrated

whereby both the pose of the camera with respect to the world coordinate frame and

parameters of the camera model are found. Structure from motion algorithms, for ex-

ample, require the camera model and calibration parameters to be found for egomotion

estimation and the inverse mapping of points in the image plane to rays in space for

scene reconstruction.

Recall from chapter 1 that image formation with narrow field of view cameras is

typically a perspective projection of scene points to the image — they are referred to

as perspective cameras. Perspective cameras project straight lines in space to straight

lines in the image [95], and the image obtained with a perspective camera is consid-

ered to be undistorted due to this property. Wide-angle cameras in contrast have an

increased field of view, and although image formation with some wide-angle cameras

is still described by perspective projection, for those with a near hemispherical field of

view this is not the case. The wide-angle camera which captured the image in figure

1.1b, for example, has in excess of a hemispherical field of view — a camera is om-

nidirectional if the field of view is in excess of a full hemisphere [162]. The image is

considered to be distorted as straight lines in space appear curved in the image1. This

distortion can include components in both the radial and tangential directions in the

image, both of which will be discussed in section 2.2.2.

Image formation with perspective and wide-angle cameras is reviewed in sec-

tion 2.2. Although most perspective cameras are generally not considered wide-angle,

many pinhole based models for fisheye cameras describe image formation as a map-

1The exception is for straight lines which pass directly through the centre of distortion
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ping from the fisheye to perspective image plane — pinhole models are discussed in

section 2.2.2.3. This review of image formation is restricted to parametric camera mod-

els which describe the process of image formation. Although non-parametric models

have been developed [98], parametric models are used far more extensively in the lit-

erature, and they have been use successfully to accurately model an extensive range

of cameras. An important observation made from this review is that the image ob-

tained with any central projection camera (perspective and wide-angle) can be mapped

to the unit view sphere centred at the cameras single effective viewpoint (centre of pro-

jection). This has significance in later chapters where suitable means for wide-angle

image processing are considered.

A review of camera calibration algorithms follows in section 2.3. Many calibra-

tion algorithms are specific to a single camera model. A novel algorithm is developed

in section 2.4 that can be used to calibrate any central projection wide-angle camera

and takes as input multiple images of a planar checkerboard pattern. As part of this

calibration algorithm, a robust means for finding the checkerboard intersections (grid

points) required for calibration is developed. The fisheye camera used extensively in

experiments throughout this work is then calibrated using this algorithm using a num-

ber of the models proposed in the literature — the image in figure 1.1b was obtained

with this camera. These results are used to select empirically the most suitable model

for this camera.

2.2 Image Formation

2.2.1 Perspective Cameras

The projection of a scene (world) point X to a point at a pixel position u on the per-

spective image plane is defined by the ideal pinhole model. The position u is defined

as the intersection of the image plane with the ray from point X which passes through

the viewpoint (pinhole) 0, as illustrated in figure 2.1. The camera’s principal axis is

normal to the image plane, passes through the pinhole 0, and intersects the image plane

at the principal point u0. For the camera centred at the origin of the world coordinate

frame of reference and whose principal axis is aligned with the z axis, similar triangles



30 Chapter 2: Wide-Angle Image Formation and Calibration

define the mapping X 7→ u as




X

Y

Z


 7→

(
f X/Z

fY/Z

)
, (2.1)

where f is the camera focal length with units of pixels to be dimensionally correct.

Figure 2.1: Image formation with a perspective camera defined by the ideal pinhole

model. The camera centre C = (Cx,Cy,Cz)
T is located at the origin 0 = (0,0,0)T of

the world coordinate frame, and the cameras principal axis is aligned with the z axis of

the world coordinate frame. The camera’s principal axis intersects the image plane at

the principal point.

In practice, a more generalised pinhole model is used which defines the transfor-

mation of scene points X to their associated points u in the image plane by the camera

matrix P:

u = PX, (2.2)

where both X and u are represented by their homogeneous 4 and 3 vector coordinates

respectively. The process of image formation defined by the camera matrix P is de-

pendent on the camera intrinsic values (the parametric camera model) and the camera

extrinsic parameters R ∈ SO(3) and C = (Cx,Cy,Cz)
T ∈ R3. Here, R is the orientation

of the camera with respect to the world coordinate frame of reference, and C is the po-

sition of the camera centre (pinhole) in the world coordinate frame of reference. The

camera matrix P can then be decomposed as

P = K R[I3×3|−C], (2.3)

where I3×3 is the 3× 3 identity matrix. The camera intrinsic variables are defined by
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the camera calibration matrix K [96]:

K =

[
A u0

0T 1

]
=




fu s u0

0 fv v0

0 0 1


 , (2.4)

where A is an affine transform. This affine transform models the imperfections of many

CCD sensors, including separate focal lengths fu and fv to account for uneven scaling

in the u,v image coordinates respectively, and the parameter s to model shearing. The

parameter u0 = (u0,v0)
T is the pixel position in the image of the principal point (point

of intersection of the cameras principal axis and image plane).

Perspective cameras have less than a hemispherical field of view, being able to only

image scene points X in front of the camera. Assume that the camera is centred at the

origin of the world coordinate frame of reference where C = (0,0,0)T and R = I3×3 is

the 3×3 identity matrix. A point X = (X ,Y,0)T for example projects to a point with a

homogeneous coordinate u = (u,v,0)T , which is a point at infinity in the image plane.

The homogeneous coordinates u = PX and u′ = PX′ are also projectively equivalent

for the scene point X in front of the camera and the scene point X′ = −X behind the

camera. Perspective projection is therefore unable to define the projection of a scene

point behind the camera to a unique position in the image.

2.2.2 Wide-Angle Cameras

Wide-angle cameras can be classified as catadioptric or dioptric. The term catadioptric

is used to denote an imaging system using a reflective surface and either a perspective

or orthographic camera [175]. The name originates from dioptrics, which is the sci-

ence of refracting elements (lenses), and catoptrics, the science of reflective surfaces

(mirrors). Although a number of works have considered catadioptric cameras with

multiple reflective surfaces [176, 173], those with a single reflective surface are most

commonly used for vision-based localisation. Wide-angle dioptric cameras attain an

increased field of view using a specially shaped lens; these are frequently referred to

as fisheye lenses, where a camera fitted with such as lens is referred to as a fisheye

camera.

As for perspective cameras, the process of image formation is dependent on the

camera’s intrinsic and extrinsic parameters. In the following discussion regarding im-

age formation with wide-angle cameras, the term camera model is defined to mean

only the camera intrinsic parameters — the position of all scene points are assumed
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to be in the cameras frame of reference. The wide-angle camera models discussed in

this section (excluding the pinhole-based fisheye models in section 2.2.2.3) describe

the mapping of scene points to the camera’s sensor. Each element on the sensor has a

coordinate x(x,y) = (x,y)T with respect to the principal point which is parameterised

by polar coordinates x(r,ζ) = (r sinζ,r cosζ)T . A point on the sensor with a coordinate

x maps to a point on the image with a coordinate u(u,v) = (u,v)T by the transform

u = Ax+u0. (2.5)

Here, A is an affine transform which models uneven scaling in the x,y sensor coordi-

nates and shearing, and u0 = (u0,v0)
T is the position of the camera centre. There are

many definitions for the camera centre, and a detailed taxonomy is given by Willson

[240] and Willson and Shafer [241]. Willson and Shafer state that the camera centre

is often defined as the intersection of the optical (principal) axis of cameras lens with

the sensor. However, most cameras have multiple lenses, and in the case of catadiop-

tric cameras, combinations of lenses and mirrors. As each lens and mirror has its own

optical axis, it is difficult to define any one single optical axis for the camera. Misalign-

ment of the optical axis results in decentering (non radially symmetric) distortions in

wide-angle images. In the following discussions it is assumed that wide-angle cam-

eras have a single well defined optical axis. This axis is the cameras principal axis,

which is orthogonal to the camera’s sensor, intersects the camera’s sensor at the origin

x = (0,0)T , and intersects the image plane at the point u0. The principal point u0 is

therefore considered as the centre of distortion in a wide-angle image.

2.2.2.1 Central vs Non-central Cameras

Before discussing catadioptric and fisheye camera models, it is necessary to define the

terms central projection and non-central projection. A central projection camera has a

single effective viewpoint. With respect to the pinhole model in figure 2.1, the camera

is central projection as the rays from all scene points intersect at a the camera’s single

viewpoint located at 0T . A scene point X therefore projects to the same coordinate u in

the image independent of its position on the ray (i.e.. independent of the homogeneous

scale factor of X).

An example central and non-central projection catadioptric camera is illustrated in

figures 2.2a and 2.2b respectively. For the central projection camera there is a single

viewpoint at f2. For the non-central camera there is a locus of viewpoints termed a

caustic [216, 215]. As discussed by Nayar and Baker [175], central cameras are ideal
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as they permit geometrically correct perspective images to be produced from regions

of the image which may be used for (undistorted) human viewing and image process-

ing. This is possible as the image obtained with any central projection camera can be

mapped to the unit view sphere centred at the single viewpoint. This is illustrated in

figure 2.3 for a central projection catadioptric camera and (assumed) central projec-

tion fisheye camera. Recalling that for a central projection perspective camera that the

position in the image u of a point X is independent of its homogeneous scale factor,

then the points X and X
||X || will both project to the same point u in the image. As X

||X ||
is a point on the unit view sphere, a geometrically correct perspective image can be

obtained given any wide-angle image mapped to the view sphere. However, not all re-

gions in the wide-angle image can be mapped via the sphere to the perspective image

as it has less than a hemispherical field of view. For the purposes of later discussions,

define η as a point on the unit view sphere parameterised as

η(θ,φ) =




sin(θ)cos(φ)

sin(θ)sin(φ)

cos(θ)


 , (2.6)

where θ ∈ [0,π) is an angle of colatitude and φ ∈ [0,2π) an angle of longitude, as

shown in figure 2.4.

For non-central cameras, without accounting for the locus (caustic) of viewpoints

and depth of points, the reconstructed perspective image would contain some degree of

parallax error [86]. The inability to produce geometrically correct perspective images

from the images obtained with non-central cameras is illustrated more clearly with

reference to figure 2.5. Consider two world points X1 and X2 and assume a unit sphere

is centred at the intersection of the ray from point X1 and the camera’s principal axis

— refer to this point as the reference viewpoint. Points X1 and X2 intersect this unit

view sphere at positions η1 and η2 respectively which in turn map to points u1 and

u2 in the image plane respectively. Notice that the ray X̃2 from point X2 does not

intersect the camera’s principal axis at the reference viewpoint. If a geometrically

correct perspective image were to be produced, the point defined as the intersection of

the sphere and the ray from X2 passing through the reference viewpoint needs to be

found — this can be considered as the correct coordinate for the point X2 on the view

sphere with respect to the reference viewpoint. However, even if the location of the ray

X̃2 were known with respect to the reference viewpoint, unless the position of the point

on this ray is known then the correct position on the unit view sphere with respect to the

reference viewpoint cannot be found. For example, the point at two different positions

X′
2 and X′′

2 will map to different positions η′
2 and η′′

2 on the view sphere with respect
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(a) Central projection catadioptric camera.
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(b) Non central projection catadioptric camera.

Figure 2.2: Central versus non-central catadioptric projection. For central projection

all rays intersect at a single effective viewpoint f2. For non-central, there is a locus

of viewpoints (caustic). The point f1 for both cases can be considered as the effective

pinhole. For the central camera, the distances c and z refer to the those in the derivation

of central catadioptric cameras by Nayar and Baker [175] in equations 2.7 and 2.8.

to the reference viewpoint.

2.2.2.2 Catadioptric

Central Catadioptric

Nayar and Baker [175] were the first to derived the entire class of central projection

catadioptric cameras with a single reflective surface, more specifically the shapes of

the reflective surfaces (mirrors) and their required axial separation from the cameras.

This derivation was based on the assumption of perspective image formation for the

camera and specular reflection whereby the angle of incidence of a ray to the mirror

is equal to the angle of reflection. They show that the surface slope of the mirrors is

obtained from a quadratic first order differential equation whose solutions are

(
z− c

2

)2

− r2

(
k

2
−1

)
=

c2

4

(
k−2

k

)
f or(k ≥ 2) (2.7)

(
z− c

2

)2

+ r2

(
1+

c2

2k

)
=

(
2k + c2

4

)
f or(k > 0) (2.8)
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Wide−angle Image

Mapped to sphere

Perspective View

Wide−angle Camera

Figure 2.3: Catadioptric (left column) and fisheye (right column) cameras. The top

row shows the typical camera sensors. If each camera is central projection, the image

can be mapped back to the unit view sphere from which an undistorted perspective

view can be obtained.
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x

y

z

φ

θ

η(θ,φ)

Figure 2.4: Spherical Coordinates. A ray in space originating from the centre of the

sphere can be parameterised by an angle of colatitude θ ∈ [0,π) and longitude φ ∈
[0,2π). This ray intersects the unit sphere at the point η(θ,φ).

Figure 2.5: Without knowing the spherical coordinates of all world point on the the

view sphere with respect to a single effective viewpoint, a geometrically correct per-

spective image cannot be produced. Even if the location of the ray X̃2 were known

with respect to the reference viewpoint, unless the position of the point on this ray is

known then the correct position on the unit view sphere with respect to the reference

viewpoint cannot be found. For example, the point at two different positions X′
2 and

X′′
2 will project to different positions η′

2 and η′′
2 on the view sphere with respect to the

reference viewpoint.

where, referring to figure 2.2a, c is the separation between the effective pinhole and

viewpoint, k > 0 is a constant, and z is the height of the mirror from the effective

viewpoint (focus). They note from inspection of equations 2.7 and 2.8 that the solution

for the entire class of mirrors are swept conic sections. A summary of the solutions

determined by the values k and c is given in table 2.12

2For a parabolic catadioptric camera, there is an orthographic projection of the rays from the mirror

to the image and not perspective. Although this violates the initial assumptions made in the derivation
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Condition Equation Mirror Type

k = 2 and c > 0 z = c
2

Planar

c = 0 and k ≥ 2 z =
√

k−2
2

r2 Conical

c = 0 and k > 2 z2 + r2 = k
2

Spherical

k > 0 and c > 0
1
a2

e

(
z− c

2

)2
+ 1

b2
e
r2 = 1

Ellipse *

where: ae =
√

2k+c2

4
and be =

√
k
2

k > 2 and c > 0
1

a2
h

(
z− c

2

)2 − 1

b2
h

r2 = 1
Hyperbola *

where: ah = c
2

√
k−2

k
and bh = c

2

√
2
k

k → ∞ and c → ∞ z = h2−r2

2h
Parabola *

Table 2.1: Solutions for the entire class of central projection (single viewpoint) cata-

dioptric cameras with a single reflective surface derived by Nayar and Baker [175].

The mirrors are all swept conic sections. The parameter c is the separation between

the focal (image) plane and the single viewpoint, k > 0 some constant, and z is the

height of the mirror from the viewpoint (focus) — see figure 2.2a. * denotes the prac-

tical solutions identified by Nayar and Baker [175, 7].

For each solution, the mirror must be located at a specific position with respect to

the camera. A camera would need to be located in the centre of the spherical mirror

for example which is not a practical solution as the mirror would obstruct the camera.

The three practical catadioptric cameras identified by Nayar and Baker [175, 7] are

those which use an elliptical, hyperbolic or parabolic mirror. Figure 2.6 shows the

configuration of a catadioptric camera using each of these mirrors. For the parabolic

catadioptric camera, there is an orthographic projection of the rays from the mirror to

the image plane (all rays remain parallel to the cameras principal axis). This requires

the use of a camera with an orthographic lens system, one example being a telecentric

lens [174].

Nayar and Baker note that a major limitation of the elliptical catadioptric camera

is the convex mirror which restricts the maximum field of view to a single hemisphere.

They also state that although the design of a parabolic catadioptric camera is more

difficult than a hyperbolic catadioptric camera, both the construction and calibration

of the parabolic catadioptric camera is easier. This is due to the fact that there is an

orthographic projection of the rays from the mirror to the image plane. The projection

of the mirror shapes, Nayar and Baker [7] show that a solution is possible from 2.7 as c → ∞, k → ∞
and c

k
= h is a constant.
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of scene points to the image is therefore invariant to the distance between the reflec-

tive surface and the mirror (assuming it is above the mirror). This property makes

calibration simpler than with the other classes, particularly when there is a parallel

misalignment between the cameras optical axis and the axis of the mirror. Image for-

mation with parabolic catadioptric cameras has also a number of important properties

which have permitted simple calibration algorithms to be developed [83], the details of

which will be discussed in following sections. A number of different practical designs

were developed by Nayar [174].

The unified image model for central catadioptric cameras

The unified image model for central catadioptric cameras derived by Geyer and

Daniilidis [85, 55, 84, 86] proves an equivalence between central catadioptric image

formation and a two step mapping via the sphere. Importantly, this single model can

be used to describe image formation with central projection elliptical, hyperbolic, and

parabolic catadioptric cameras. This work originated when proposing a method of cal-

ibration for parabolic catadioptric cameras [83], where it was observed that lines in

space project to conic sections in the image for central catadioptric cameras. From

these observations, the equivalence was proved based on the generalised mapping of

points from quadratic surfaces.

The unified model states that for central catadioptric cameras (ellipse, hyperbola,

parabola), the process of image formation is equivalent to the projection of a scene

point to a sphere centred at the single viewpoint, then from the sphere to the image

sensor. A geometric representation of the equivalence is shown in figures 2.7 and 2.8.

for a central projection parabolic catadioptric camera. For the parabolic camera, the

first stage of the mapping is from a scene point X to the parabolic surface whose single

effective viewpoint is f . The second stage of the mapping is orthographic projection

from the parabolic surface to a point x on the camera sensor ℓ. For a sphere whose

centre is at the focus f of the parabola, and whose radius is equal to the distance of

the focus f to the nearest point on the directrix of the parabola, the first stage of the

mapping is from the point X to the surface of the sphere followed by stereographic

projection to the point x on the camera sensor ℓ.

Referring to figure 2.9, image formation using the unified image model is defined

by the two parameters l and m. l is the point of projection on the axis orthogonal to

the camera sensor ℓ which passes through the focal point (centre of sphere), and m is

the distance of the focal point from the sensor. For a unit sphere, the parameters m and

l are dependent on the eccentricity ε of the mirror (conic section), as summarised in
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Figure 2.6: The three practical central catadioptric cameras identified by Nayar and

Baker [175, 7] capable of obtaining an increase the field of view image use an elliptical,

hyperbolic or parabolic reflective surface. All are central projection where incoming

rays intersect at a single effective viewpoint f2. For the parabolic catadioptric camera,

the second stage of the mapping is orthographic projection from the reflective surface

to the image plane.
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f

n = (0, 0, 1)T

X

x

ℓ

Figure 2.7: Geometric equivalence of image formation using a parabolic catadiop-

tric camera and the unified image model. For the parabolic camera, the first stage of

the mapping is from a world point X to the parabolic surface whose single effective

viewpoint is f . The second stage of the mapping is orthographic projection from the

parabolic surface to a point u on the camera sensor ℓ. For the unified image model,

the equivalent mapping is from the point X to the surface of the sphere centred at f

followed by stereographic projection (from the north pole n = (0,0,1)T ) to the point u

on the camera sensor ℓ.

table 2.2. As illustrated in figure 2.10, for a parabolic camera the point of projection

is l = 1. For both the hyperbola and ellipse, the point of projection is in the range

0 < l < 1. Notice also that the unified image model can model perspective projection

for l = 0.

The unified image model describes the mapping of a point on the sphere η(θ,φ) to

a point x(r,ζ) defined by polar coordinates on the camera sensor by the equation

r =
(l +m)sin(θ)

l + cos(θ)
, ζ = φ, (2.9)

where the inverse is

θ = arccos

(
(l +m)

√
r2(1− l2)+(l +m)2 − lr2

r2 +(l +m)2

)
, φ = ζ. (2.10)

The transformation from the sensor to image plane coordinates and vice-versa is de-

scribed by equation 2.5.

As a final note, for the case where the camera model is unknown, Scaramuzza

[199, 198] considers a generalised central projection catadioptric camera model (and

method for calibration) where the radial distortion is described by a Taylor polynomial.
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(a) Image formation with a parabolic catadioptric camera. Two stage mapping is perspective

projection to the parabolic mirror followed by orthographic projection to the camera sensor

(b) Image formation under the unified image model. Two stage mapping is perspective projection

to the sphere followed by stereographic projection to the camera sensor

Figure 2.8: Equivalent image formation using a parabolic catadioptric camera and the

unified image model.

Xf

B

u

η

l

m

ℓ

Figure 2.9: Nomenclature for the unified image model. The model is dependent on

two parameters; the point of projection l, and the distance m from the centre of the

sphere (single effective viewpoint) to the camera sensor ℓ.

Non-central Catadioptric

Although central catadioptric cameras are typically preferred over non-central, as

discussed previously, a number of novel non-central designs have been developed by

Gaspar et al [81] which may be tailored to specific needs. These include designs capa-
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Eccentricity ε Conic Variables

0 < ε < 1 ellipse
l = 2ε

1+ε2

m = 2ε(2p−1)
1+ε2

ε = 1 parabola
l = 1

m = 2p−1

ε > 1 hyperbola
l = 2ε

1+ε2

m = 2ε(2p−1)
1+ε2

Table 2.2: Relationship between the unified image model parameters m and l and the

eccentricity ε of the reflective surface (swept conic section).

Figure 2.10: Points of projection for central catadioptric cameras under the unified

image model.

ble of producing images with constant vertical, horizontal or angular resolution which

may be useful for some image processing applications. Chahl and Srinivassan [37]

have also proposed a number of catadioptric cameras capable of obtaining omnidi-

rectional images. They derived a number of different mirrors, which coupled with a

perspective camera, produce images where the radius r of a point x(r,ζ) on sensor

plane is proportional to the angle of colatitude θ of the corresponding ray in space —

often referred to as an equiangular camera.

Even when using theoretically central catadioptric cameras (elliptical, hyperbolic

and parabolic), slight imperfections in manufacturing and assembly of the camera can
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Figure 2.11: Equiangular catadioptric camera model. Although the camera is slightly

non-central, accurate structure from motion using this model has been obtained by

Corke et al [48] under the assumption of central projection.

result in a non-central camera. A model designed specifically for non-central cameras

can therefore be used to obtain more accurate modelling of image formation. Exam-

ples include the non-central models of Grossberg and Nayar [93], Swaninathan et al

[216], and Mičušı́k and Pajdla [163] — a comprehensive review of these models is

not presented here. Alternately, for practical purposes slightly non-central cameras are

often assumed to be central. An example is the use of a non-central equiangular cata-

dioptric camera used for structure from motion of a planetary rover by Corke, Strelow

and Singh [48]. Images obtained by this camera are used in later experiments where it

is assumed to also be a central projection camera. Referring to figure 2.11, the assumed

central projection model is

r = f tan

(
θ

α

)
, ζ = φ. (2.11)

where x(r,ζ) is the coordinate of a point on the camera sensor.

To recap, for both the central and non-central catadioptric cameras the models can

be considered as describing the projection of scene points X to points x(r,ζ) on the

camera sensor. Equation 2.5 can then be used to find the image plane coordinates u.
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2.2.2.3 Wide-Angle Dioptric (fisheye)

Wide-angle dioptric cameras are typically equipped with a fisheye lens and referred to

simply as fisheye cameras. In a sense, a fisheye camera is similar to the human visual

system where a lens is used to achieve high spatial resolution at the fovea (centre of

image), and low spatial resolution towards the periphery [14], which typically deceases

non-linearly [251].

Fleck [72] discusses that the design of fisheye lenses is a compromise between

a number of factors including size, cost, geometry and focus of the image, and illu-

mination considerations such as vignetting (intensity drop off towards the periphery).

This has resulted in numerous fisheye lens designs by different manufacturers so it

can not be assumed that a single standard model is suited for all. Due to the complex

design of fisheye lenses it is not possible to derive an exact camera model — most

models proposed in the literature are empirical. Therefore, the most suitable model

for a particular camera would ideally be selected through experimental comparison.

This would require first that for each camera model, the intrinsic parameters can be

obtained via calibration. Secondly, some error metric would need to be specified so

that the accuracy of the camera models could be compared quantitatively. This metric

would be specific to the calibration algorithm used.

Before discussing in detail camera calibration methods, the remainder of this sec-

tion describes a number of central projection fisheye camera models proposed in the

literature. As mentioned earlier, fisheye cameras are frequently assumed to be central

projection. With reference to figure 2.12, fisheye camera models can be classified into

two classes. The first class are the pinhole models which define a direct transform from

the fisheye image to an undistorted perspective image. The second class are the ray-

based models which define the mapping from scene points to the fisheye image. For

the ray-based models, each pixel in the image is associated with a ray in space origi-

nating from the viewpoint — the scene point X imaged at a pixel location u is known

to lie somewhere on this ray. As each ray intersects the view sphere at some point η,

the central projection ray-based models can be used to map a wide-angle fisheye image

to the unit view sphere.

Pinhole Models

Wide-angle images are sometimes converted to undistorted perspective images for

image processing3. Pinhole-based models describe a direct transform from distorted

3As a perspective image has less than a hemispherical field of view, not all pixels in an omnidirec-

tional wide-angle image can be mapped to a perspective image.
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Pinhole−based Models

Image mapped to sphere

Fisheye Image Undistorted Perspective View

Ray−based Models

Figure 2.12: Pinhole-based and ray-based camera models. Pinhole models define a

direct mapping from a fisheye image to an undistorted perspective image. Ray-based

models define a mapping from world points to the fisheye image. This can be simplified

as a mapping from the view sphere to the fisheye image and vice-versa. The dashed

line indicates that for any ray-based model, the fisheye image can be mapped to a

perspective view via the sphere.

wide-angle image coordinates to undistorted perspective image coordinates without

requiring any knowledge of the 3D coordinates of the scene points X. For this discus-

sion, x(r,ζ) = (r cosζ,r sinζ)T = (x,y)T is the coordinate of a point in a fisheye image

relative to the principal point u0, and xp(rp,ζp) = (rp cosζp,rp sinζp)
T = (xp,yp)

T is

the coordinate of a point in a perspective image relative to the principal point u0p
. A

summary of the models discussed in this section are given in table 2.3.

Early modelling of variable resolution fisheye images is presented by Schwartz [66]

using a complex logarithmic model based on biological vision systems, more specifi-

cally the cortical magnification which exists in humans and other primates. However,

the fisheye image described by the model is not ideal as it is disjoint along the vertical

centre axis, as shown by Basu and Licardie [14]. To overcome this problem, Basu and

Licardie [14] proposed two fisheye camera models which they refer to as fisheye trans-

forms (FET’s). Both models are representative of real fisheye cameras as they achieve

continuity in both axes. The first was the logarithmic model

r = s log(1+λrp), ζ = ζp (2.12)
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Model Mapping Function

Log Polar - (Schwartz [66])
x = logrp

y = ζp

Logarithmic - (Basu and Licardie [14]) r = s log(1+λrp), ζ = ζp

Polynomial - (Basu and Licardie [14]) r = ∑4
i=0 kir

i
p, ζ = ζp

Field of View (FOV) - (Devernay and

Faugeras [61])

rp = tan(r ω)
2tan ω

2
, ζp = ζ

Division - (Fitzgibbon [71],
rp = r

1+kr2 , ζp = ζ

Bräuer-Burchardt and Voss [25])

Division - (Thirthala and Pollefeys [221]) rp = r
(1+k1r2+k2r4+k3r6+...)

, ζp = ζ

Polynomial - rp = k1r + k2r2 + k3r3 + k4r4 + k5r5

(Shah and Agrawal [206, 207]) ζp = a1r +a2ζ2 +a3ζ3 +a4ζ4 +a5ζ5

xp = x+ cos(φ)∆r(x)+∆Tx(x)
yp = y+ sin(φ)∆r(x)+∆Ty(x)

Polynomial - ∆r(x) = C3r3 +C5r5

(Swaminathan and Nayar [217]) ∆Tx(x) = [P1r2(1+2cos2(ζ))+
2P2r2 sin(ζ)cos(ζ)]

∆Ty(x) = [P2r2(1+2sin2(ζ))+
2P1r2 sin(ζ)cos(ζ)]

Table 2.3: Summary of pinhole camera models. x(r,ζ) denotes the coordinate of a

point on the fisheye image from the principal point, and xp(rp,ζp) denotes the coordi-

nate of a point on the perspective image relative to the principal point.

which is based on that of Schwartz [66], and the second the quadratic polynomial

model

r = k0 + k1rp + k2r2
p + k3r3

p + k4r4
p, ζ = ζp. (2.13)

Although they observed that the polynomial model gave improved accuracy in their

experiments with a real fisheye camera, they suggest that the logarithmic mapping is

more ideal. The logarithmic mapping has fewer variables in general (s,λ) which vary

the magnitude of distortion and the scale respectively. In contrast, the distortion and

scale can not be easily adjusted for the polynomial FET as they are complex functions

of the parameters k which presents challenges using non-linear methods of calibra-

tion [14] — without an accurate initial estimate for the coefficients of the polynomial,

non-liner methods can potentially converge on solutions for which the calibration ob-



2.2. Image Formation 47

jective function is a local minima. The inverse mapping from a fisheye to a perspective

image using the logarithmic FET is also far easier than with high-order polynomials

which often require iterative techniques to solve the roots of the polynomial.

A novel model was proposed by Devernay and Faugeras [61] termed the field of

view model which describes image formation by the function

rp =
tan(r ω)

2tan ω
2

ζp = ζ. (2.14)

They state that the model is based on the ideal fisheye model where the radius r on

the fisheye image plane is roughly proportional to the angle of colatitude θ of the

corresponding ray in space from the principal axis (r ∝ θ). The model is dependent on

a single parameter ω, which is the field of view of the ideal fisheye lens, and can be

varied to model deviations from the ideal model. Although the model is simplistic with

only a single variable, they consider that if it is not sufficient to model the distortion

then the additional polynomial

x′ = x(1+ k2r4 + . . .) (2.15)

y′ = y(1+ k2r4 + . . .) (2.16)

r =
√

x′2 + y′2, ζ = arctan(y′/x′), (2.17)

can be used before applying equation 2.14.

Another single parameter model, referred to as the division model, was proposed

separately by both Fitzgibbon [71] and Bräuer-Burnchardt and Voss4 [25] of the form

rp =
r

1+ k r2
, ζp = ζ (2.18)

where the radial lens distortion is described by a single parameter k. However, Fitzgib-

bon notes that the primary advantage of the simplistic single parameter model is the

fact that it permits linear calibration using keypoint correspondences between two im-

age. Fitzgibbon states that while this is useful for obtaining a rough calibration, more

sophisticated models may be required to more accurately describe the process of im-

age formation with many cameras. The inability for this division model to accurately

calibrate many fisheye cameras is due to the fact that it assumes image formation is de-

scribed by stereographic projection [244]. A point at radius r on the wide-angle image

maps via inverse stereographic projection to a point η on the view sphere with angle

4The division model presented in the work of Bräuer-Burnchard and Voss defines the radial distortion

in the form rp = r/(1− k r2), which is different from equation 2.18 only in the sign of the constant k.
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of colatitude

θ = arctan
( r

m

)
, (2.19)

where m is the distance of the image plane to the view sphere. The same point with

angle of colatitude θ on the view sphere would then project to a point on the perspective

plane at a distance mp from the view sphere at a radius

rp = mp tan(θ) (2.20)

=
2mp

m+1

(
r

1− 1
(m+1)2 r2

)
(2.21)

from the principal point. This equation is of the same form as equation 2.18, and as

a result the division model has since been included in a unified framework for central

catadioptric cameras by Barreto [11] and Barreto and Daniilidis [13].

In an attempt to more accurately calibrate fisheye cameras, an extension of the

division model was considered by Thirthala and Pollefeys [221] who introduced in the

denominator a higher order polynomial in r

rp =
r

(1+ k1r2 + k2r4 + k3r6 + . . .)
, ζp = ζ. (2.22)

A polynomial model was also first proposed by Shah and Agrawal in [206] and

discussed in further detail in [207]. Unlike the model of Basu and Licardie [14] in

2.13, the perspective radius rp is a polynomial in r. Their model includes both radial

and decentering distortions and is given as

rp = k1r + k2r2 + k3r3 + k4r4 + k5r5 (2.23)

ζp = a1r +a2ζ2 +a3ζ3 +a4ζ4 +a5ζ5, (2.24)

which they used to calibrate a stereo fisheye camera pair used for vision-based lo-

calisation of a mobile robot [208]. Swaminathan and Nayar [217] also proposed the

following fisheye camera model which accounts for both radial and decentering distor-

tions:

xp = x+ cos(φ)∆r(x)+∆Tx(x) (2.25)

yp = y+ sin(φ)∆r(x)+∆Ty(x), (2.26)
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where

∆r(x) = C3r3 +C5r5 (2.27)

∆Tx(x) = [P1r2(1+2cos2(ζ))+2P2r2 sin(ζ)cos(ζ)] (2.28)

∆Ty(x) = [P2r2(1+2sin2(ζ))+2P1r2 sin(ζ)cos(ζ)], (2.29)

and P and C are the camera model parameters.

To recap, pinhole models define a mapping from a wide-angle image to a perspec-

tive image. As a perspective image is restricted to less that a hemispherical field of

view, pinhole models are not ideal for use with omnidirectional wide-angle cameras

with greater than a hemispherical field of view image. One could always discard the

regions on the wide-angle image which do not map to the perspective image, how-

ever, as discussed in chapter 1 the extended field of view of wide-angle images is their

primary advantage. A more suitable alternative is the class of ray-based models as

many of them can be used to model omnidirectional cameras. As a final note, any

pinhole model can in effect be converted to a ray based model by substituting φ = ζp

and θ = arctan(rp/m), where m is a scale factor that would need to be resolved during

calibration.

Ray-based Models

Numerous ray-based models have been proposed and a summary of those discussed

in this section is given in table 2.4. Ray-based models are more flexible than pinhole

models as many are able to model cameras with an arbitrary field of view. The models

in table 2.4 are for central projection cameras where the mapping is defined with re-

spect to the spherical polar coordinates θ,φ of scene points X. These can be obtained

by first projecting a point X to the unit view sphere, centred at the single effective view-

point, to find the point η(θ,φ) = X/||X || and then solving for θ,φ from equation 2.6.

The ray-based models typically define for the spherical polar coordinates of a point X

the corresponding polar coordinates of the point x(r,ζ) on the camera’s sensor.

Fleck discusses a number of ray-based models suited to fisheye cameras [72], in-

cluding stereographic, equidistant, sine law, and equisolid angle models defined in

table 2.4. These ray-based models discussed by Fleck are often considered as being

ideal, where the radial distortion of many fisheye cameras is designed to follow one of

these, in particular the equiangular model. Interestingly, Fleck [72] argues that stereo-

graphic projection is the most preferred model due to a number of factors. One factor

is the ability of stereographic projection to model cameras with field of view in excess
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Model Mapping Function

Stereographic - (Fleck [72]) r = k tan θ
2
, ζ = φ

Equiangular (equidistant) -

(Fleck [72])

r = kθ, ζ = φ

Sine Law - (Fleck [72]) r = k sinθ, ζ = φ

Equisolid angle - (Fleck [72]) r = k sin θ
2
, ζ = φ

Combination - (Bakstein and Pa-

jdla [9])

r = a tan
(

θ
b

)
+ csin

(
θ
d

)
, ζ = φ

Mičušı́k 1 - (Mičušı́k and Pa-

jdla [164, 162])

r = a−
√

a2−4bθ2

2bθ , ζ = φ

Mičušı́k 2 - (Mičušı́k [162]) r = a
b

sin(bθ), ζ = φ

Polynomial - (Xiong and

Turkowski [243])

r = k1θ+ k2θ2 + k3θ3, ζ = φ

Polynomial - (Ho [101]) r = k1θ+ k2θ3 + k3θ5, ζ = φ

Unified - (Geyer and Daniilidis) r = (l+m)sin(θ)
l+cos(θ) , ζ = φ

Rational - d = Aχ(u′,v′), u′(u′,v′) = u−u0

(Claus and Fitzgibbon [45]) A3×6, χ(u′,v′) = (u′2,u′v′,v′2,u′,v′,1)T

θ = arccos(dz/||d||), φ = arctan(dy,dx)

Kannala and Brandt [118, 119]

x(x,y) = (r + ∆r(θ,φ))ur(φ) + ∆t(θ,φ)uφ(φ),
where

r = k1θ+ k2θ3 + k3θ5 + k4θ7 + k5θ9

∆r(θ,φ) = (l1θ+ l2θ3 + l3θ5)
(i1 cosφ+ i2 sinφ+ i3 cos2φ+ i4 sin2φ)

∆t(θ,φ) = (m1θ+m2θ3 +m3θ5)
( j1 cosφ+ j2 sinφ+ j3 cos2φ+ j4 sin2φ)

Table 2.4: Summary of ray-based camera models. A point on the camera’s sensor has

a coordinate x(r,ζ) = (r cosζ,r sinζ)T = (x,y)T . A ray in space from a scene point X

is parameterised by spherical coordinates θ,φ, and intersects the unit sphere, centred

at the viewpoint, at the point η(θ,φ) = X/||X||.

of a hemisphere (omnidirectional), which applies also to the equiangular and equisolid

angle models. Another factor is that stereographic projection is a conformal mapping

— a more detailed discussion relating to the conformal nature of stereographic pro-

jection will be presented in chapter 4. This means that straight lines in space project

to circles on the image plane, a property which has permitted simple calibration algo-
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rithms to be developed for these cameras [83]. It also means that the image produced

by a camera whose process of image formation is described by stereographic projec-

tion is locally perspective. This property is of significance when considering image

processing and is the inspiration for one of the methods of keypoint detection with

wide-angle images proposed in chapter 4. In reality many of the ideal models are not

capable of describing image formation with real fisheye cameras with a high degree of

accuracy. Many alternates have been proposed as a result.

As was the case for some of the pinhole models, polynomials have also been

used for ray-based models. An example is the cubic polynomial model of Xiong and

Turkowski [243]:

r = k1θ+ k2θ2 + k3θ3, ζ = φ. (2.30)

They state that the equidistant model r = kθ is a good approximation for many cameras,

however, the higher order polynomial terms are able to more accurately model radial

distortion towards the periphery of a wide-angle camera’s field of view. In the same

work, they validated their model with a real fisheye camera where they were able to

seamlessly register multiple images obtained by a rotating camera.

A novel hybrid model was presented by Bakstein and Pajdla [9] which is a combi-

nation of stereographic and equisolid angle projections and has the form

r = a tan
θ

b
+ csin

θ

d
, ζ = φ. (2.31)

They initially considered the the model r = a tan θ
b
, but found improved accuracy ex-

tending it to that given in equation 2.31. A limitation of the model is that it is not

algebraically invertible (as is the case with some higher order polynomials).

In the work of Mičušı́k and Pajdla [164] and Mičušı́k [162], two models for fisheye

cameras were presented which are given in equations 2.32 and 2.33 respectively:

r =
a−

√
a2 −4bθ2

2bθ
, ζ = φ, (2.32)

r =
a

b
sin(bθ), ζ = φ. (2.33)

In both cases, the variable b models distortions from the ideal equiangular projection

(as b approaches zero, each model converges to ideal equiangular projection). They

also model and calibrate for the affine transform in the sensor to image coordinate

conversion given in equation 2.5 which accounts for uneven scaling in x,y sensor co-

ordinates and shear.
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Ying and Hu [244] suggested that the unified image model for central catadioptric

cameras derived by Geyer and Daniilidis [86] (equation 2.9) could be extended to

include many fisheye cameras. Referring to figure 2.9, they proposed that many fisheye

cameras could be modelled for a point of projection l ≥ 1. They showed using this

model that line images, which are the projection of straight lines in space onto the

camera sensor, are constrained to be either circles for l = 1 (stereographic projection)

or ellipses for l > 1. As noted in their work, the use of a single model for both central

catadioptric and fisheye cameras has advantages during calibration where techniques

developed for central catadioptric cameras can be applied [245].

Ho [101] argues that there is no evidence to support the claim that image formation

with fisheye cameras is described by the extension of the unified model proposed by

Ying and Hu [244] as the complex design of fisheye lenses makes it difficult to derive

an exact camera model. They suggest therefore that modelling fisheye cameras using

the extended unified model can be of limited accuracy. For this reason, similarly to

Xiong and Turkowski [243] they proposed a generalised polynomial of the form

r = k1θ+ k2θ3 + k3θ5,ζ = φ. (2.34)

They compared this model to two other polynomials (including the polynomial of

Xiong and Turkowski [243] in 2.36)

r = k1 + k2θ+ k3θ2 + k4θ3 (2.35)

and

r = k1θ+ k2θ2 + k3θ3 (2.36)

for calibration of eight different fisheye cameras. They found that their polynomial

in 2.34 was able to achieve the smallest residual reprojection errors of grid points for

each camera. It is of interest to note here that the modelling of image formation with a

fisheye camera is an inherently empirical process, and there is no evidence that polyno-

mial functions are ideal. For many calibration algorithms it could be possible to simply

select a high order polynomial which could in theory obtain ‘perfect’ calibration for

the cost function used.

A novel model was proposed by Claus and Fitzgibbon [45] which they refer to as

the rational model. They define for each pixel u′(u′,v′) = u−u0 in the fisheye image

the corresponding ray in space denoted as d(u′,v′) by

d(u′,v′) = A3×6 χ(u′,v′). (2.37)
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χ(u′,v′) is a monomial in u′ and v′,

χ(u′,v′) =
[

u′2 u′v′ v′2 u′ v′ 1

]T

, (2.38)

which they refer to as the lifted image points, and A3×6 contains the 18 camera model

parameters. The angle of colatitude θ and longitude φ of a ray are related to d by

θ = arccos

(
dz

||d||

)
, (2.39)

φ = arctan

(
dy

dx

)
. (2.40)

A number of ray-based models include decentering distortions. An example is the

model proposed by Kanalla and Brandt [118]. The radial distortion is modelled using

the polynomial

r = k1θ+ k2θ3, (2.41)

where higher order powers are not included as the polynomial would not be analytically

invertible. However, in later work [119] they extend the polynomial

r(θ) = k1θ+ k2θ3 + k3θ5 + k4θ7 + k5θ9, (2.42)

which they claim is able to model stereographic, equidistant, equisolid angle, and or-

thogonal projection with a ‘moderate’ level of accuracy. Unlike radial distortion, de-

centering distortion is not symmetric and is a function of both θ and φ. They model

decentering distortion with two additional distortion terms; one acting radially ∆r(θ,φ)

and the other tangentially ∆t(θ,φ) which are defined as

∆r(θ,φ) = (l1θ+ l2θ3 + l3θ5)(i1 cosφ+ i2 sinφ+ i3 cos2φ+ i4 sin2φ) (2.43)

and

∆t(θ,φ) = (m1θ+m2θ3 +m3θ5)( j1 cosφ+ j2 sinφ+ j3 cos2φ+ j4 sin2φ), (2.44)

where l, i,m and j are the camera model parameters. The relationship between a ray is

space and the corresponding point x on the camera’s sensor is

x = (r(θ)+∆r(θ,φ))ur(φ)+∆t(θ,φ)uφ(φ), (2.45)

where ur(φ) and uφ(φ) are unit vectors in the radial and tangential directions respec-
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tively. Referring to equation 2.5, they account for uneven scaling in the sensor to image

coordinate transform using a matrix A of the form

A =

[
mu 0

0 mv

]
. (2.46)

To summarise, the pinhole and ray-based camera models discussed are for central

projection cameras. In reality most fisheye cameras are not central projection as a re-

sult of the complex nature of the lens design. A number of non-central camera models

have been proposed as a result. Examples include the model of Grossman and Na-

yar [93], and the CAHVORE model of Gennery [82] which has been used to model

image formation for a range of cameras (narrow and wide-angle field of view) on the

Mars exploration rovers. However, in most circumstances fisheye cameras are assumed

to be central projection for practical purposes, and this assumption is made for the the

fisheye camera used throughout the thesis. Although only some of the fisheye camera

models discussed account for uneven scaling and shear by the affine matrix A in equa-

tion 2.5, it can be included with all the models discussed to further improve accuracy

if required.

2.3 Review of Camera Calibration

Camera calibration is the process of estimating the parameters of the camera model

which describe image formation. This includes the intrinsic camera model parameters,

and for some calibration algorithms, the extrinsic parameters which define the pose of

the camera with respect to a world coordinate frame of reference (the pose with respect

to a calibration target for example). There is extensive literature relating specifically

to camera calibration, and a comprehensive review of notable historical developments

is presented by Clarke and Fryer in [44]. This section provides a review of some

fundamental approaches to calibration which focuses primarily on methods used with

wide-angle cameras.

Methods of camera calibration can be broadly categorised into the following groups:

1. Full-range: resolve camera intrinsic and extrinsic parameters using known rela-

tive Euclidean coordinates of calibration control points. These control points are

typically points on a calibration target such as a checkerboard pattern.

2. Auto-calibration: uses keypoint correspondences between multiple views to cal-
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ibrate camera parameters.

3. Plumb-line: calibrate camera using the fundamental projective invariant that

straight lines in space project to straight lines in the perspective plane. This

method can be applied to any central projection pinhole or ray-based camera

model.

2.3.1 Full-range

Full-range calibration algorithms use the precise relative 3D Euclidean coordinates

of calibration control points, for example the corners a checkerboard pattern. For an

estimate of both the camera intrinsic and extrinsic parameters, these control points are

projected to pixel locations in the image. The reprojection errors are the Euclidean

distances, measured in the image with units of pixels, between these points and the

locations of the control points detected in the image. The sum of the reprojection

errors can then be used as a quantitative objective function to be minimised during

calibration. Importantly, full-range calibration algorithms can operate using only a

single input image.

A full-range calibration algorithm was introduced in the seminal work of Tsai

[227]. Two versions of the algorithm exist for the case where either coplanar or non-

planar control points are used whose relative Euclidean coordinates are known pre-

cisely. The algorithm operates in two steps. The first step obtains an initial linear

estimate of the camera extrinsic parameters, and the second step a non-linear estimate

of both the extrinsic and intrinsic parameters (including a radial distortion coefficient)

— the initial estimates of the extrinsic parameters are used in this stage. The second

stage minimises the reprojection errors of the control points measured in the image.

Bakstein and Pajdla [8] also introduced a full-range calibration algorithm which

they used for calibration of a fisheye camera using their model in table 2.4. Unlike

Tsai, their camera had a near hemispherical field of view. They used for control points

a calibration target inside a circular tube, where the reprojection error of these points

in the image plane was used to calibrate the camera parameters using a non-linear

iterative refinement. An interesting part of their algorithm was the technique used to

estimate the affine matrix A and position of the principal point u0 which defined the

sensor to image plane transform in equation 2.5. Rather than estimate these parameters

during iterative refinement, they were found by fitting an ellipse to the boundary of the

camera’s field of view in the image. This boundary encloses the area in an image in

which regions of the scene can be imaged (see figure 2.13, pg. 63). However, as noted
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by Li and Hartley [128], this approach is most suited when the full boundary of the

camera’s filed of view is visible in the image. Kang [117] also notes that the methods

used to fit contours to these boundaries, for example using binary thresholding, are not

always robust as a single threshold cannot account for the large illumination variations

across the wide field of view of the camera.

Mei and Rives [153] also considered a full-range calibration algorithm which they

implemented with a variety of central projection catadioptric and (assumed) central

projection fisheye cameras. The camera models used included both radial and tan-

gential distortions. They used as control points the corners of a planar checkerboard

pattern and calibrate the camera’s intrinsic and extrinsic parameters by minimising the

reprojection errors using iterative refinement. The boundary of the camera’s field of

view was used to obtain an initial estimate of the position of the principal point u0

whose accuracy was improved during the iterative refinement. Full-range calibration

has also been performed by Kannala and Brandt [118] using their model in table 2.4

for calibration of a fisheye camera with an approximately hemispherical field of view.

They use circular control points on a planar calibration target and calibrate for the cam-

era parameters by minimising the sum of squared distances of reprojection errors in the

image plane. To prevent convergence on local minima, they fit an ellipse to boundary

of the cameras field of view and use manufacturer data to obtain an initial estimates of

the camera’s intrinsic parameters.

Although most full-range calibration algorithms are applied to central projection

cameras, full-range calibration has also been used successfully for non-central cam-

era models with the CAHVORE model by Gennery [82]. As is the case with most

full-range methods, the camera parameters are estimated using non-linear iterative re-

finement.

2.3.2 Auto-calibration

Auto-calibration is also referred to as self-calibration and is typically characterised

by the ability to calibrate for the camera intrinsic parameters using keypoint corre-

spondences between two or more views. Numerous algorithms have been developed

using different constraints on relative position of the scene points associated with the

correspondences (arbitrary position or coplanar) and/or the change in pose between

viewpoints. In all cases, the scene points are assumed to remain rigid between views.

The advantage of some auto-calibration algorithms is their ability to obtain a linear

solution for the camera model parameters.
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A number of algorithms have been developed that can calibrate a camera using

images separated by a change in camera rotation. One example is the algorithm of

Hartley [97] that can obtain a linear estimate of a perspective camera’s intrinsic pa-

rameters using corresponding keypoints in a minimum of three views, where the scene

points associated with these corresponding keypoints can be at any arbitrary position

in space. Zhang [250] has also proposed a method of calibration using keypoint cor-

respondences between images of the same scene separated by a change in camera

rotation that is suited for cameras with radial distortion. Although the method requires

a minimum of only two views (tested with up to 16 in experiments), unlike the algo-

rithm of Hartley [97], the scene points associated with the keypoint correspondences

must be coplanar, and a solution for the camera model parameters is obtained using

a non-linear iterative refinement. Xiong and Turkowski [243] also proposed a novel

auto-calibration algorithm which they used to calibrate a fisheye camera with an ap-

proximately hemispherical field of view modelled with the cubic polynomial in table

2.4. Given four images taken by a camera at different orientations (single-axis rota-

tion), they use iterative techniques to estimate the camera model parameters by min-

imising registration errors (difference in pixel intensity values) in overlapping regions

of the images. Although the position of the cameras principal point is found during

calibration, they use a similar approach to Mei and Rives [153] and fit a circle to the

boundary of the camera’s field of view to obtain an initial estimate for the position of

the principal point before calibration.

A number of potentially more versatile methods have been developed using corre-

spondences between views which differ in pose by a rotation and translation. These

again include cases using coplanar scene points (planar scenes), and for scene points

at arbitrary location. An example of the former is the algorithm of Triggs [226] which

requires a minimum of 5 views and solves for the camera intrinsic parameters and

the extrinsic parameters which relates any two views by a planar homography5. For

the latter, epipolar constraints have been used frequently for auto-calibration from two

views6(although Thirtahlla and Pollefeys have developed a method for three views us-

ing the trifocal tensor [221]). An early example is given by Zhang [249] for calibration

of a narrow field of view camera with both radial and tangential distortions modelled

using polynomial functions. Using epipolar constraints, a keypoint in one view maps

to a curve in the second view, where the error in this mapping (epipolar error) measured

in the image plane was used as the objective function for non-linear calibration. For

cameras with radial distortion, this epipolar error is a point to curve distance. Kang

5The reader is referred to chapter 5 for a detailed discussion about planar homographies.
6The reader is referred to chapter 5 for a detailed discussion on epipolar geometry.
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[117] also proposed a method using epipolar constraints suited specifically to wide-

angle catadioptric cameras. Again, the epipolar error measured in the image plane was

used for calibration which was implemented using non-linear iterative techniques.

A notable work relating to auto-calibration using epipolar constraints is that of

Fitzgibbon [71]. Although the algorithm developed by Fitzgibbon was specific to the

single parameter division model proposed by the same author (refer to table 2.4), the

camera’s radial distortion coefficient was essentially built into the equations (funda-

mental matrix) defining the epipolar constraints. The equations were reformulated as a

quadratic eigenvalue problem from which a linear solution could be obtained. Mičušı́k

and Pajdla [164] generalised the approach of Fitzgibbon to obtain a linear solution

for the two parameter model proposed by the same authors (refer again to table 2.4)

which they used to calibrate a fisheye camera with excess of a hemispherical field of

view. As only the radial distortion was incorporated into the equations which define the

epipolar constraints, they fitted an ellipse to the boundary of the camera’s view field to

estimate the affine transform and position of the principal point in equation 2.5 which

defines the sensor to image coordinate transform — this is used to correct the position

of the correspondences before auto-calibration. However, as noted by Li and Hartley

[128], Mičušı́k and Pajdla [164] use knowledge of the cameras known field of view,

which combined with the fitted ellipse, reduces the radial distortion model to a sin-

gle parameter model. Li and Hartley also present an auto-calibration algorithm using

epipolar constraints in [128] using methods developed in earlier works by Hartley and

Kang [98]. They use two-view invariants derived from the epipolar geometry between

views, and in contrast to the methods of both Fitzgibbon and Mičušı́k and Pajdla, does

not require them to solve explicitly for the fundamental matrix between views. An

advantage of this is the the removal of potentially difficult interactions that can occur

when simultaneously estimating both camera intrinsic and extrinsic parameters which

leads to inaccurate estimates [236]. Furthermore, Li and Hartley’s algorithm [128] can

obtain a linear estimate of a camera’s intrinsic parameters for models with more than

one parameter which they validated experimentally with synthetic and real wide-angle

cameras. Further improvements of these methods is presented again by Li and Hart-

ley in [130], where methods specific for correspondences associated with planar and

non-planar scene points are given.

2.3.3 Plumb-line

Plumb-line calibration algorithms exploit the projective invariant that straight lines in

space project to straight lines in the perspective plane. The term ‘plumb-line’ originates
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from early works relating to camera calibration of Brown [27], where plumb blobs

attached to strings were used as reference straight lines to calibrate a narrow field of

view camera modelled as having both radial and tangential distortion.

Recall that the pinhole based models in table 2.3 describe a mapping a distorted

wide-angle image to the perspective image plane. Plumb-line calibration algorithms

can be used to find the camera model parameters for which the images of straight

lines in space in the distorted image (which appear curved) map as closely as possi-

ble to straight lines in a perspective image. A general method used for this purpose

by both Devernay and Faugeras [61] and Swaminathan and Nayar [217] is to first de-

tect edges in the image associated with straight lines in space. These edges are then

mapped to a reconstructed perspective image for a given estimate of the camera in-

trinsic parameters. The error between these edges in the perspective image and fitted

straight lines is used to define the error to be minimised during calibration using itera-

tive techniques. For some camera models, the appearance of straight lines in space in

the distorted image can be derived from the camera model. Using the division model

of Bräuer-Burchardt and Voss [25] for example, straight lines in space are known to

project to circles in the wide-angle image [11, 13] (the division model assumes im-

age formation is described by stereographic projection). The calibration algorithm of

Bräuer-Burchardt and Voss [25] therefore calibrates for the camera model parameters

using iterative techniques by fitting directly circles to the detected lines in the images

associated with straight lines in space.

The principles of plumb-line methods have also been used for central projection

catadioptric camera calibration. They are formulated on the constraint that a straight

line in space projects to a great circle on the unit view sphere centred at the viewpoint,

which in turn projects to conic section on camera’s sensor [86, 12] — this conic sec-

tion is a circle for a parabolic catadioptric camera. If there is equal scaling and zero

shear in the sensor to image coordinate transform, a straight line in space will project

to a conic section in the image. Geyer and Daniilidis [83] showed that the intrinsic

parameters of a parabolic catadioptric camera could be calibrated using only two pairs

of parallel lines. In their experiments circles were fitted to points in the image known

to be collinear in space. For each pair of parallel lines, the fitted circles intersect at

two points on the image which project by inverse stereographic projection to antipodal

points on the view sphere. These antipodal points are the vanishing points of the paral-

lel lines. The vanishing points found for the two pairs of parallel lines was sufficient to

estimate the camera intrinsic parameters. Interestingly, this method shares similarities

with the perspective camera calibration algorithm described by Hartley and Zisser-

man [96] in which the vanishing points of the edges of a cube detected in a perspective
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image are sufficient to calibrate the camera intrinsic parameters. Geyer and Daniilidis

improved on their method and showed that calibration of a parabolic catadioptric cam-

era could be achieved using the image of as few as three lines [87] assuming that the

affine matrix A in the image to sensor coordinate transform is known (e.g. A = I2×2,

see equation 2.5). Barreto and Araujo [12] later proved that hyperbolic and ellipti-

cal catadioptric cameras could be calibrated using the image of only two lines which

project to conics on the camera’s assuming again that the affine matrix A in the image

to sensor coordinate transform is known.

The calibration algorithm of Geyer and Daniilidis [83] uses the intersection of par-

allel lines (vanishing points) for calibration. Becker and Bove [20] have also formu-

lated a calibration algorithm, suited for use with central projection cameras, which uses

the intersection of parallel lines. They detect in an image three mutually orthogonal

sets of parallel lines in space. These are then projected to the unit sphere for a given

estimate of the camera intrinsic parameters at which point great circles are fitted to

them — a straight line in space projects to a great circle on the unit view sphere cen-

tred at the viewpoint. The calibration algorithm operates on the constraint that a set of

parallel lines in space project to a set of great circles on the sphere that all intereset at

two antipodal points. For an incorrect estimate of the camera intrinsic parameters, the

set of fitted great circles corresponding to a set of parallel lines in space detected in the

image will not intersect exactly at two antipodal points. Each pairwise combination of

great circles in the set will intersect at two unique antipodal points resulting in a ‘dis-

persion’ of antipodal points (vanishing points) for the set. The calibration algorithm

uses a non-linear iteration to find the camera intrinsic parameters which minimises the

dispersion of the vanishing points for all sets of parallel lines.

2.3.4 Discussion

As just discussed there are a range of different calibration algorithms suitable for use

with central projection wide-angle cameras. If one wanted to compare empirically the

accuracy of a number of different camera models used to describe image formation

for a given camera, the same calibration algorithm would need to be used to find the

camera intrinsic parameters for each model. The objective function minimised during

calibration can then be used to make this quantitative comparison. A number of differ-

ent ray-based camera models will be compared for the fisheye camera used throughout

the thesis. This is necessary as, unlike central catadioptric cameras, the model describ-

ing image formation cannot be easily derived geometrically. The following discussion

considers which calibration algorithms would be most suited for comparing different
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camera models.

The auto-calibration algorithms of Fitzgibbon [71], Mičušı́k and Pajdla [164], and

Li and Hartley [128] have been used to calibrate fisheye cameras. They are able to

obtain a linear estimate of the camera intrinsic parameters which avoids many limi-

tations of iterative techniques that include [128]: lack of convergence, convergence

on local minima, requirement for selecting an accurate initial estimate, requirement

for selecting a stop criteria and computational expense. Kang [117] also suggests that

auto-calibration algorithms using epipolar constraints are well suited for calibration of

wide-angle cameras with a large field of view as they are able to find more accurately

estimate camera egomotion than narrow field of view cameras. However, the algo-

rithms of Fitzgibbon [71] and Mičušı́k and Pajdla [164] are suited only for specific

camera models. The limitations of auto-calibration algorithms using epipolar con-

straints are also noted by Fitzgibbon [71]. Fitzgibbon states that although the methods

are suitable for some computer vision applications, full-range calibration algorithms

using known control points and bundle adjustment (iterative refinement) are preferred

for accurate calibration. As previously mentioned, auto-calibration algorithms using

epipolar constraints are also subject to the potentially harmful interactions which exists

in the simultaneous estimation of both intrinsic and extrinsic camera parameters [236].

The algorithm of Li and Hartley [128] avoids this problem, and although it can include

more radial distortion parameters, it does not easily generalise to any arbitrary model.

Full-range calibration algorithms have been used extensively for wide-angle cam-

era calibration and require that the precise relative 3D Euclidean coordinates of the

control points be found. Most use non-linear iterative techniques which require that

good initial estimates of the camera extrinsic and extrinsic parameters are found prior

to calibration to avoid convergence on local minima of the calibration objective func-

tion. With the exclusion of the algorithms of Geyer and Daniilidis [83, 87] and Barreto

and Araujo [12], many plumb-line methods also use non-linear iterative techniques

and can be used with any camera model. Unlike the full-range algorithms, plumb-line

algorithms do not require the precise relative Euclidean coordinates of control points

to be found. The calibration algorithm developed in the next section is based on the

plumb-line calibration algorithms discussed and is used to select the most suitable ray-

based camera model for the fisheye camera used throughout the thesis.
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2.4 Camera Calibration Algorithm and Results

A novel calibration algorithm is developed in this section. It is based on the plumb-

line calibration algorithms discussed previously, and it is suited for central projection

catadioptric and central projection fisheye (with ray-based models) camera calibration.

The algorithm uses similar constraints on intersections of parallel lines is space used by

Geyer and Daniilidis [83] and Becker and Bove [20], and fundamentals of projective

geometry on the sphere discussed in [86, 12]. The algorithm uses the constraint that

a set of parallel lines in space project to great circles on the sphere which all intersect

at two antipodal points. The algorithm is novel in the sense that this constraint is

enforced strictly during calibration. Becker and Bove [20] used a similar constraint for

calibration, but as discussed in the previous section, they minimise the dispersion of the

antipodal points during calibration. Furthermore, the algorithm enforces the constraint

that if two sets of coplanar parallel lines in space are orthogonal to each other, and

each of these sets project to great circles on the sphere which intersect at two antipodal

points, then the four antipodal points of intersection lie on another great circle which

is the fronto-parallel horizon of the plane in space containing the lines [83]. These

constraints will be illustrated more clearly in the following sections.

The calibration algorithm is used to calibrate the fisheye camera used throughout

this work using a selection of the ray-based camera models in table 2.4, where the ac-

curacy of each model is defined by a quantitative calibration objective function to be

minimised. These results are used to select the model (and camera intrinsic parame-

ters) most suited for the fisheye camera which is used for the remainder of the thesis.

The calibration algorithm proposed operates offline using multiple images of a planar

checkerboard calibration target. A sample image obtained by the fisheye camera used

throughout the thesis is shown in figure 2.13 (1024 × 768 pixels).

2.4.1 Preliminaries

Referring to figure 2.14, define the set of grid points as the corners of the checkerboard

squares. For a rectangular checkerboard target with ni rows and n j columns of grid

points, let Xi, j = (X ,Y,Z)T be the Euclidean world coordinate of a grid point. Define

a line Li as the subset of all points Xi, j∈{1,2,...,n j}, where all lines Li∈{1,2,...,ni} form the

set of parallel lines L . Define a line L ′
j as the subset of all points Xi∈{1,2,...,ni}, j, where

all lines L ′
j∈{1,2,...,n j} form the set of parallel lines L ′. If a unit sphere is centred at the

single effective viewpoint of a camera, and this viewpoint is at the origin of the world
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Figure 2.13: Example image (1024 × 768 pixels) of the planar checkerboard calibra-

tion target obtained with the fisheye camera used throughout this work. The camera

is a Point Grey Research Dragonfly firewire camera fitted with an OmniTech Robotics

fisheye lens with an approximate field of view of θ = ±190◦/2. The red dashed line

indicates the boundary of the camera’s field of view.

coordinate frame of reference containing the grid points X, then a ray from each point

Xi, j passing through the viewpoint intersects the sphere at a point ηi, j = Xi, j/||Xi, j||.
With reference to figure 2.15, the following constraints can be made regarding the

set of grid points η on the sphere which are used for both calibration and grid point

detection:

1. Each line Li projects to a great circle Gi on the unit sphere. As points Xi, j∈{1,2,...,n j}
are constrained to lie on the line Li, points ηi, j∈{1,2,...,n j} are constrained to lie

on the great circle Gi. Similarly, each line L ′
j projects to a great circle G′

j on the

unit sphere. As points Xi∈{1,2,...,ni}, j are constrained to lie on the line L ′
j, points

ηi∈{1,2,...,ni}, j are constrained to lie on the great circle G′
j.

2. Since the set of lines L are parallel, the set of great circles G will intersect at

antipodal points ±ηG on the unit sphere. Since the set of lines L ′ are parallel,

the set of great circles G′ will intersect at antipodal points ±ηG′ on the unit

sphere.

3. As all points X are coplanar in space, the sets of parallel lines L and L ′ are copla-

nar. The antipodal points of intersection ±ηG and ±ηG′ are therefore constrained
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Figure 2.14: The grid points of the calibration target are defined as the corner points

of the checkerboard squares with Euclidean coordinate Xi, j ∈ R3. There are a total

of ni rows and n j columns of grid points. A line Li is defined as the set of all points

Xi, j∈{1,2,...,n j}, where L is the set of parallel lines Li∈{1,2,...,ni}. A line L ′
j is the set of all

points Xi∈{1,2,...,ni}, j, where the set of parallel lines L ′ includes all lines L ′
j∈{1,2,...,n j}.

to lie on a single great circle GηG,ηG′ ; this great circle is the fronto-parallel hori-

zon of the plane in space in which the calibration target lies.

4. As the sets of parallel lines L and L ′ are orthogonal in space, the points ηG and

ηG′ satisfy the constraint ηT
G ηG′ = 0.

The calibration algorithm uses only the position of the grid points u = (u,v)T de-

tected in the image and not their exact relative Euclidean coordinates X in space. How-

ever, each detected point ui, j needs to be indexed correctly whereby Xi, j 7→ ui, j. This

ensures that the detected points in the image corresponding to any line Li or L ′
j are

known. Then for a given estimate of the camera intrinsic parameters (including the

image to sensor coordinate transform), each point ui, j can be mapped to a point ηi, j on

the view sphere. If the camera model and intrinsic parameters were known precisely,

constraints 1 through 4 would be satisfied. Using a simple plumb-line calibration al-

gorithm, only constraint 1 would be used for calibration — for each set of points u

known to be collinear in space, a great circle would be fitted to the points detected in

the image mapped to the sphere. However, the calibration algorithm described here is

novel as it fits great circles to these points and enforces strictly constraints 2 through 4.

To enforce constraints 2 through 4, the position of the great circle GηG ηG′ and one of

the antipodal pairs ±ηG or ±ηG′ needs to be known. Only one of these antipodal pairs

needs to be known as the other lies on the great circle GηG ηG′ and satisfies the constraint

ηT
G ηG′ = 0. This information is parameterised by the camera’s extrinsic rotation R f ∈

SO(3) which describes the relative orientation of the planar checkerboard calibration
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Figure 2.15: Constraints on grid points X projected to the unit sphere. The sphere

is centred at the origin of the calibration target coordinate frame of reference and the

single effective viewpoint of the camera. All great circles Gi form the set of great

circles G which intersect at antipodal points ±ηG. All great circles G′
j form the set of

great circles G′ which intersect at antipodal points ±ηG′ . The antipodal points ±ηG

and ±ηG′ are constrained to lie on a single great circle GηG,ηG′ where ηT
G ηG′ = 0. The

great circle GηG,ηG′ is the fronto-parallel horizon of the plane in space in which the

calibration target lies.

target with respect to the camera. The parametrisation of R f will be discussed in detail

in section 2.4.3. Note that position (translation) of the planar checkerboard pattern

with respect to the camera does not need to be known.

For an input image of the checkerboard pattern, the calibration algorithms estimates

the extrinsic rotation R f and the camera intrinsic parameters. The camera intrinsic

parameters include both the elements of affine matrix A and position of the principal

point u0 = (u0,v0)
T in equation 2.5 (sensor to image coordinate transform), and the

parameters specific to the camera model.The calibration algorithm can operate using

multiple input images of the same checkerboard pattern. When multiple images are

used, each image has its own unique extrinsic rotation R f .

2.4.2 Objective Function

A suitable objective function is presented here which measures quantitatively how ac-

curately the calibration constraints are satisfied for a given estimate of the camera
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intrinsic parameters and rotation R f .

As the unit vectors defined by the points ηG and ηG′ are orthogonal, ηT
G ηG′ = 0.

There exists then a rotation matrix R f ∈ SO(3) for which

ηG = R f (1,0,0)T = R f ηG̃, (2.47)

ηG′ = R f (0,1,0)T = R f ηG̃′ , (2.48)

since (1,0,0)(0,1,0)T = 0. This rotation matrix R f would rotate any point on the

equator of the sphere to a point on the great circle GηG,ηG′ . For an estimate of the

rotation matrix R f , let η̃ be the set of points η rotated to a new position on the sphere

by

η̃i, j = RT
f ηi, j, (2.49)

where each point ηi, j is found by projecting the detected grid point ui, j in the wide-

angle image to the sphere for the estimate of the camera’s intrinsic parameters. Denote

the sets of great circles associated with the points η̃ as G̃ and G̃′.

From equations 2.47 and 2.48, the sets of great circles G̃ and G̃′ correspond-

ing to the points η̃ will intersect at antipodal points ±ηG̃ = (±1,0,0)T and ±ηG̃′ =

(0,±1,0)T respectively. Each great circle G̃i can therefore be rotated to lie on the

equator by Ry(ζi)
T , and each great circle G̃′

j rotated to lie on the equator by Rx(ξ j)
T .

The rotation matrices Ry(ζ) and Rx(ξ) are rotations about the y and x axes respectively:

Ry(ζ) =




cosζ 0 sinζ

0 1 0

−sinζ 0 cosζ


 , (2.50)

Rx(ξ) =




1 0 0

0 cosξ −sinξ

0 sinξ cosξ


 . (2.51)

Great circles need to be fitted to the sets of points η̃. Perfect fits will not occur

due to: errors in the estimate of the grid point positions detected in the image plane,

inability of the camera model to describe perfectly the process of image formation, and

incorrect estimates for the camera intrinsic variables and extrinsic rotation R f . The set

of points η̃i, j∈{1,2,...,n j} are constrained to lie on the great circle G̃i. It is proposed

that the great circle G̃i which best fits the set of points η̃i, j∈{1,2,...,n j} is the one which

minimises the closest angular distance of the fitted great circle to these points. As G̃i

can be rotated to lie on the equator by Ry(ζi)
T , then the sum of squared distances of
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the points η̃i, j∈{1,2,...,n j} from G̃i is the angular distance from the equator of the points

η̃i, j∈{1,2,...,n j} rotated by Ry(ζi)
T . The sum of squared distances is

ρi =
n j

∑
j=1

[
arcsin((Ry(ζi)

T η̃i, j)z)
]2

(2.52)

=
n j

∑
j=1

[
arcsin

(
(sin(ζi),0,cos(ζi)) η̃i, j

)]2
. (2.53)

A similar analogy can be used to define the sum of squared distances of points η̃i∈{1,2,...,ni, j}
from the great circle G̃′

j, and it is

ρ′
j =

ni

∑
i=1

[
arcsin((Rx(ξ j)

T η̃i, j)z)
]2

(2.54)

=
ni

∑
i=1

[
arcsin

(
(0,−sin(ξ j),cos(ξ j)) η̃i, j

)]2
. (2.55)

For small angles, the errors defined in equations 2.52 and 2.54 are approximated re-

spectively as

ρi =
n j

∑
j=1

[
(sin(ζi),0,cos(ζi)) η̃i, j

]2
(2.56)

and

ρ′
j =

ni

∑
i=1

[
(0,−sin(ξ j),cos(ξ j)) η̃i, j

]2
. (2.57)

For any point η̃i, j on the great circle G̃i, the angle ζi defined in 2.50 which rotates

the point exactly to the equator is found from

η̃i, j(x)sin(ζi)+ η̃i, j(z)cos(ζi) = 0, (2.58)

and for any point η̃i, j on the great circle G̃′
j, the angle ξ j defined in 2.51 which rotates

the point exactly to the equator is found from

−η̃i, j(y)sin(ξ j)+ η̃i, j(z)cos(ξ j) = 0. (2.59)

For all points η̃i, j∈{1,2,...,n j} constrained to lie on the great circle G̃i, a solution for
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sin(ζi) and cos(ζi) is obtained from the set of simultaneous linear equations




η̃i,1(x) η̃i,1(z)

η̃i,2(x) η̃i,2(z)
...

...

η̃i,n j
(x) η̃i,n j

(z)




[
sin(ζi)

cos(ζi)

]
= 0 (2.60)

from which ζi = arctan(sin(ζi)/ cos(ζi)). For all points η̃i∈{1,2,...,ni}, j constrained to

lie on the great circle G̃′
j, a solution for sin(ξi) and cos(ξi) is obtained from the set of

simultaneous linear equations




−η̃1, j(y) η̃1, j(z)

−η̃2, j(y) η̃2, j(z)
...

...

−η̃ni, j(y) η̃ni, j(z)




[
sin(ξ j)

cos(ξ j)

]
= 0 (2.61)

from which ξ j = arctan(sin(ξ j)/ cos(ξ j)). Note that both equations 2.60 and 2.61

are of the form Ax = 0. Letting USV = svd(A) be the singular value decomposition

of the matrix A, the solution for x which minimises the sum of squared errors Ax is

the column vector of V corresponding to the smallest non-zero singular value diag(S)

subject to the condition ||x|| = 1. As ||x|| = 1, the values for sin(ζi) and cos(ζi) cor-

respond directly to the values of x as sin2(ζi) + cos2(ζi) = 1. The same is true for

the values sin(ξ j) and cos(ξ j). In both cases, the solutions for the angles ζi and ξ j

are found which minimise the sum of squared errors ρi and ρ′
j in equations 2.56 and

2.57 respectively. It is proposed that for the camera model selected, the most accu-

rate estimate for the camera intrinsic values and extrinsic rotation R f which satisfies

constraints 1 through 4 for a given image are those which minimise the quantitative

objective function error

ε =
ni

∑
i=1

ρi +
n j

∑
j=1

ρ′
j. (2.62)

In the following experiments the camera is calibrated using multiple images of the

same checkerboard pattern. Although the same camera intrinsic values apply to all

images, there will be a unique extrinsic rotation R f and objective function error εk

defined in equation 2.62 for each. For N input images, the overall objective function

error ε̂ is

ε̂ =
N

∑
k=1

εk. (2.63)
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2.4.3 Parametrisation and initialisation of camera extrinsic rota-

tion R f

The rotation matrix R f ∈ SO(3) is parameterised by Euler angles α,β,γ, where

R f = Rz(γ)Ry(β)Rz(α), (2.64)

and Ry and Rz are rotations about the y and z axes respectively. If desired, R f could

be parameterised using quaternions. Given an initial estimate of the camera intrinsic

parameters, the position of the detected grid points u in the image are mapped to the

points η on the unit sphere and an estimate for the Euler angles α,β,γ found. This

estimate is used for the first iteration of calibration. The position of the antipodal

points of intersection ηG and ηG′ are estimated using the four outermost grid points η

as

ηG = (η1,1 ×η1,n j
)× (ηni,1 ×ηni,n j

), ||ηG|| = 1 (2.65)

and

ηG′ = (η1,1 ×ηni,1)× (η1,n j
×ηni,n j

), ||ηG′|| = 1, (2.66)

where × denotes the vector cross product.

As both ηG and ηG′ are constrained to lie on the great circle GηG,ηG′ , which is the

intersection of the fronto-parallel plane in space containing the calibration target and

the sphere, the unit vector N = (Nx,Ny,Nz)
T normal to this plane is

N = ηG ×ηG′ , ||N|| = 1. (2.67)

An estimate of the Euler angles β and γ are obtained as

β = −arcsin(Nz)+
π

2
(2.68)

γ = arctan

(
Ny

Nx

)
. (2.69)

Define then the point η′
G as

η′
G = (Rz(γ)Ry(β))T ηG (2.70)
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which lies at some point on the equator. The estimate of the angle α obtained is

α = arctan

(
η′

G(y)

η′
G(x)

)
. (2.71)

2.4.4 Implementation

The calibration algorithm is implemented as follows, where the methods used for op-

timisation and criteria for terminating optimisation will be discussed in detail later:

1. For the current estimate of the camera intrinsic parameters, map the grid points

X detected at pixel locations u in each image to points η on the unit sphere.

2. If it is the first iteration, initialise for each image the estimate of the camera

extrinsic parameters (Euler angles) α, β, γ which defined the rotation matrix

R f = Rz(γ)Ry(β)Rz(α), otherwise use the estimate from the previous iteration.

3. For each image, find the rotation matrix R f which minimises the objective func-

tion error ε given in equation 2.62. This requires for each estimate of the rotation

matrix R f that each point ηi, j is rotated to a new position η̃i, j — see equation

2.49.

4. Set the error ε̂ for the current estimate of the camera intrinsic values as the sum

of all errors εk for each image — see equation 2.63.

5. Repeat from step 1 for a maximum of n iterations or until convergence of the

objective function error ε̂.

The Euler angles α,β,γ for each image and the camera intrinsic parameters are

found using a non-linear optimisation. For each estimate of the camera intrinsic pa-

rameters, the Euler angles are found using a non-linear optimisation with Matlab’s

‘lsqnonlin’ function (Levenberg-Marquardt). The default options are selected, and

iteration continues until convergence or a maximum of 2000 iterations is exceeded.

The camera intrinsic parameters are found using a non-linear optimisation with Mat-

lab’s ‘fminsearch’ function (Nelder-Mead Simplex). Again, the default options are

used, and the optimisation terminates when the error function ε̂ converges or a maxi-

mum of 5000 iterations is exceeded. These intrinsic parameters include the parameters

specific to the model being used, and the parameters of the affine matrix and principal

point which defines the sensor to image coordinate transform in equation 2.5.
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2.4.5 Grid Point Detection

The pixel position ui, j of each grid point needs to be found in an image for calibration.

Unfortunately, keypoint detectors such as the Harris corner detector [94] and SIFT

[142] (both discussed in chapter 3) were unable to reliably detect the grid points in the

image. The reason was the number of false positive produced, where without an initial

estimate of the grid points, they cannot be easily removed. If a perspective camera were

used, manually selecting the 4 outermost corners of the grid would allow the position

of the remaining grid points to be estimated easily. However, this is not possible in the

fisheye image due to the extreme radial distortion in the image.

A robust grid point detection algorithm is proposed here which is semi-supervised

and operates in parallel with camera calibration. The general procedure is illustrated in

figure 2.16 using a sample image of the checkerboard target obtained with the fisheye

camera. Given the initial image of the calibration target the estimated position of the

four outermost grid points are selected manually, as shown in figure 2.16a. These

four points are sufficient to define two orthogonal sets of parallel lines in space, each

containing two lines. A preliminary calibration step is implemented with these four

corner points using the calibration algorithm outlined previously. The unified image

model of Geyer and Daniilidis [86] is used as default for grid point detection, where

the image is assumed to have equal scaling in the u,v directions and zero shear (with

respect to equation 2.5, A = I2×2 is the 2 × 2 identity matrix). This model is selected as

it contains only two parameters l and m in addition to the position of the principal point

u0, and as will be shown in later experiments, is able to model the radial distortion

with excellent accuracy. Stereographic projection is selected as the initial estimate

(l = 1), and the distance from the sphere to the image plane m is selected given the

approximate field of view of the camera (obtained from manufacturer data as 190◦).

The position of the principal point is set simply as u0 = (nc/2,nr/2)T , where nc and

nr are the number of image pixels in the u and v directions respectively. If desired

a more accurate estimate could be obtained by fitting a circle to the boundary of the

camera’s field of view.

The initial calibration step finds an estimate of both the camera intrinsic parameters

and the extrinsic rotation matrix R f for the image. An orthonormal perspective image

is then produced using these estimates, where linear interpolation is used to sample

from the original image — the normal to the calibration target plane points directly out

of the page. This orthonormal perspective image is twice the size of the original image,

and a suitable uniform rescaling and translation is used to ensure the calibration target

extends to the boundaries in this image, as shown in figure 2.16b.



72 Chapter 2: Wide-Angle Image Formation and Calibration

(a) Initial image with 4 corner points selected

manually.

(b) Reconstructed orthonormal view obtained

from the first calibration step. The position of the

8 points used for the next calibration step selected

from this image are shown.

(c) Reconstructed orthonormal view after second

calibration step. The initial estimate of the grid

points (circles) and the final position of the grid

points found (crosses) are shown.

(d) Position of grid points mapped back to the

original image. This is the input data used for

full calibration.

Figure 2.16: General procedure of the semi-supervision grid point detection operating

in parallel with camera calibration.

The four outermost grid points at each corner of the calibration target are reselected

on this orthonormal perspective view. A grid point along each of the outermost edges

of the calibration target is also selected to give eight points in total. These eight points

are selected on two sets of orthogonal parallel lines, each set containing two lines. The

automatic corner detector described shortly is used for selecting these points, the user

needs to simply select manually a small local region surrounding each. The calibration

algorithm is run again and a new estimate for the camera intrinsic values and extrinsic

rotation R f found. A new orthonormal perspective view is then produced which is

again twice the size of the original image where a suitable rescaling and translation

is applied to ensure the target extends near the boundaries of this image, as shown in

figure 2.16c. It can be observed from the figure that a reasonably accurate orthonormal
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perspective image is produced after calibration using as few as eight points (two sets

of orthogonal parallel lines).

This final orthonormal perspective view is used to detect the grid point positions.

As the position of the four outermost corners of the grid are already known, then given

the number of grid points ni and n j in each direction a priori, the estimated position of

all remaining grid points can be easily found. For the example shown, the estimated

grid point positions are shown as red circles in figure 2.16c. The ability to estimate

these grid point positions with relatively high accuracy is the primary advantage of

the grid point detection algorithm as it permits a constrained local search space when

finding each individual grid point. Starting at the uppermost corner, the automatic grid

point detection algorithm is used to find the accurate position of the grid points.

The automatic grid point detection algorithm takes as input a small local patch

centred around the estimated position of a grid point. The size of this patch is taken

to be the estimated size of a single checkerboard square (measured in pixels) in the

orthonormal perspective image. A binary threshold is applied to the patch, where

the threshold is set as the mean intensity value to account for illumination variations

(assumes that there should be an equal distributions of light and dark regions). Dilation

is then applied and the resulting regions labelled using the Matlab image processing

toolbox of Corke [191]. A grid point is assumed found when a minimum of three or

a maximum of four unique regions are found. In the case of four, the grid point is

taken as the intersection of all regions. For the most common case where three regions

are found, the grid point is taken as the midpoint between the connecting line(s) of

minimum distance between the separated regions. If there are multiple lines, the mean

of the midpoints is taken as the grid point position. The automatic grid point detector

is demonstrated in figure 2.17 for the four corner points of the calibration target in

figure 2.16a. Notice that in each case the resolution of the local patch used for grid

point detection is high (approximately 100 × 100 pixels in most cases). This high

resolution ensures that although the image processing steps operate on a pixel-wise

basis, the position of the grid point found is of sub-pixel accuracy with respect to

the original fisheye image. The position of the grid points found using the automatic

method is shown by the green crosses in figure 2.16c. The position of each grid point is

then mapped back to a point u in the original fisheye image, as shown in figure 2.16d.
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(a) Grid point detection for corner 1
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(b) Grid point detection for corner 2
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(c) Grid point detection for corner 3
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(d) Grid point detection for corner 4

Figure 2.17: Example grid point detection for each of the four outermost grid points

given the local patch surrounding each. The left column shows the local regions on the

original fisheye image, the middle column shows the patch taken from the orthonormal

perspective view, and the right shows the labelled regions after binary thresholding

and dilation. The yellow lines in the right column are the line(s) of minimum distance

between the separated regions. The green cross in all images shows the final positions

of the grid points — this is taken to be the mean midpoint of the line(s) of minimum

distance between the regions. The axes have units of pixels.
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2.4.6 Calibration Example

The calibration algorithm is demonstrated here on the fisheye camera using the set of

ten 1024 × 768 pixel input images of the planar checkerboard pattern shown in figure

2.18. Ten input images have been used to ensure that data is available over the full

field of view of the camera. Using only image 1 for example would not include grid

points near the outermost periphery of the image. The position of the grid points in

each image defined by their pixel coordinates u = (u,v)T are found using the grid point

detection algorithm described in section 2.4.5. The camera was assumed to be central

projection and was calibrated using the unified image model. The intrinsic parameters

are the position of the principal point u0 and the parameters of the camera model l,m.

For this initial demonstration, the camera was modelled as having equal scaling in the

u,v directions and zero shear.

The results for camera calibration are depicted visually for image 6 in figure 2.19

and given in the top row of table 2.5 (pg.79). Figure 2.19a shows the sets of fitted great

circles G and G′ on the sphere which intersect at antipodal points ±ηG and ±ηG′ re-

spectively. The blue line is the great circle GηG,ηG′ on which the antipodal points ±ηG

and ±ηG′ are constrained to lie and defines the fronto-parallel horizon of the plane in

space containing the calibration target. The same set of great circles are represented

on the original fisheye image in figure 2.19b and on the reconstructed orthonormal

perspective view in figure 2.19c. In all figures, the green crosses indicate the positions

of the grid points found using the grid point detection algorithm. The same results

shown in figures 2.19b and 2.19c can be found for each of the input images in figures

A.1 through A.10 in appendix A. The relationship between the angle of colatitude θ

on the sphere versus radius r on the image plane from the principal point found from

calibration is shown in figure 2.20.

Although the calibration algorithm minimises the objective function error ε̂, which

is the sum of errors εk for each image defined in equation 2.62, the reprojection errors

for each image can be found which is useful for interpreting the results. These repro-

jection errors are the Euclidean distances measured in the fisheye image between the

position of the grid points found during detection, and the position of the grid points

defined as the intersection of the fitted great circles — the points of intersection of the

fitted great circles on the sphere need to be mapped to the fisheye image.

Given the rotation matrix R f and the set of all fitted great circles G̃ and G̃′ defined

by the angles ζ and ξ respectively, the intersections of all the great circles G and G′

can be found. Recall that any great circle Gi can be mapped backed to the equator by a
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Image 9 Image 10

Image 8Image 7Image 6

Image 5Image 4Image 3

Image 2Image 1

Figure 2.18: The 10 input fisheye images used for calibration. Each image is of size

1024×768 pixels.

rotation Ry(ζi)
T RT and any great circle G′

j by a rotation Rx(ξ j)
T RT . If any great circle

is defined as the intersection of a plane and the sphere, where the origin of the sphere

lies in the plane, then a great circle can be defined by the normal to this plane. For Gi

and G′
j these normals are

NGi
= (R f (Ry(ζi)(1,0,0)T ))× (R f (Ry(ζi)(0,1,0)T )), ||NGi

|| = 1 (2.72)
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(a) Calibration results depicted on the unit

sphere.

(b) Calibration results depicted on the original image

plane.

(c) Calibration results depicted on the orthonormal perspective plane.

Figure 2.19: Calibration results for image 6. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circles on the sphere. The blue line (GηG,ηG′ ) is the projection of the

front-parallel horizon of the plane containing the planar checkerboard pattern on the

sphere.
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Figure 2.20: Unified image model function found from calibration. The figures shows

the angle of colatitude on the sphere versus radius from the principal point in the fish-

eye image.

and

NG′
j
= (R f (Rx(ξ j)(1,0,0)T ))× (R f (Rx(ξ j)(0,1,0)T )), ||NG′

j
|| = 1. (2.73)

Note that it is necessary to define the normals using this approach since simply using

NGi
= R f (Ry(ζi)(0,0,1)T ) for example would be subject to ‘gimbal lock’ if ζi = 0 as

the first term of R f is a z-axis rotation.

The intersection of two planes defined by the great circles Gi and G′
j is a line which

passes through the centre of the sphere and intersects it at two antipodal points ηGi,G
′
j
.

These antipodal points are the intersections of the great circles Gi and G′
j:

ηGi,G
′
j
= ±(NGi

×NG′
j
), ||ηGi,G

′
j
|| = 1. (2.74)

To determine which antipodal point is the correct estimate of the grid point position,

both are mapped back to the wide-angle image (assuming this is possible) using the

camera intrinsic values obtained from calibration. The one which is nearest to the grid

point position found during detection is selected.

Figure 2.21 illustrates the reprojection errors of all grid points for each of the ten

input images. Each of the marks represents, in each of the fisheye images, the differ-

ence in the position of the reprojected grid point coordinates (intersections of the fitted

great circles) relative the coordinates of their corresponding grid points found during

detection. The results show good correspondence between the estimated and detected

grid point positions where the mean x,y difference in the relative positions for each
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Model Intrinsic values
Mean reprojection

Error (ε̂)
error (pixels)

Unified
u0 = 528.1214

l = 2.7899

median = 0.3568
0.00673

v0 = 384.0784

m = 996.4617

mean = 0.4170s = 0

sy = 1

Unified (affine)
u0 = 528.1214

l = 2.7902

median = 0.3578
0.00672

v0 = 384.0786

m = 996.4617

mean = 0.4167s = 1.4824×10−16

sy = 1.0000

Table 2.5: Summary of the calibration results for the unified and unified (affine) camera

models using the 10 input images in figure 2.18. Observe that a smaller error ε on the

sphere corresponds to a smaller reprojection error measured in the fisheye image.

image is very close to zero. The reprojection errors for all ten images are shown ver-

sus their distance from the principal point in figure 2.22a, and as a probability density

function in figure 2.22b. It is observed in figure 2.22a that the reprojection errors re-

main approximately uniform for all radii r. All of these results suggest that the method

of calibration is sound, and that the unified camera model is able to model the fisheye

camera with a high degree of accuracy. The specific camera intrinsic values, mean

reprojection error for all images, and the error ε̂ are given in the top row of table 2.5.

The example shown assumed equal scaling in the u,v pixel directions and zero

shear, where the matrix A in equation 2.5 is the 2 × 2 identity matrix. To determine if

there is some affine component in the sensor to image plane coordinate transform, the

camera was calibrated again with the unified image model, using the same set of grid

points, where an initial estimate for the affine matrix A was set to

A =

[
1 s

0 sy

]
=

[
1 0

0 1

]
, (2.75)

where both s and sy were included in the set of camera intrinsic parameters during

calibration. This will be termed the unified (affine) model. The camera intrinsic values

and errors ε̂ for each model are given in table 2.5. Figure 2.23 shows for each model

the boxplot of combined reprojection errors in all ten images.

The results in table 2.5 and figure 2.23 show that when compared to the unified

model, the unified (affine) model is only able to achieve a reduction in the mean re-

projection error of 0.0003 pixels. It can also be observed that the values s and sy

defined in equation 2.75 are very close to 0 and 1 respectively. For these reasons, in

the following experiments where numerous models are compared, the sensor to image

coordinate transform is assumed to have equal scaling and zero shear (matrix A defined
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Figure 2.21: The relative positions in the fisheye images of the estimated grid point

coordinates found during calibration (intersections of fitted great circles) relative to

the coordinates of their corresponding points found during grid point detection. The

red square in each is the mean difference in the relative positions — the mean x,y
differences are given in the upper right corners. All axes have units of pixels.
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Figure 2.22: Distribution of reprojection errors versus radius r from the camera’s prin-

cipal point, and the probability distribution of the reprojection errors.
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Figure 2.23: Boxplot comparison of the reprojection errors in the fisheye image plane

for the unified and unified (affine) camera models. The mean values are indicated by

the circle.

in equation 2.5 is fixed as the 2 × 2 identity matrix).

2.4.7 Experiments and Results

The aim of these experiments is to identify, the camera model most suited to the fisheye

camera. The most suitable model is determined to be the one with the smallest residual

objective function error ε̂ after calibration. In the following experiments only the ray-

based models are considered, and camera is assume to have only radial distortion.

Therefore, referring to table 2.4, the models consided and are:

1. Stereographic 4. Combination ([9]) 7. Polynomial (1,3) (r = k1θ+ k2θ3)

2. Equiangular 5. Mičušı́k 1 ([164, 162]) 8. Polynomial (1,3,5) ([101])

3. Equisolid angle 6. Mičušı́k 2 ([162]) 9. Unified ([86])
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The sine-law model is not used as it is not suited for a camera with in excess of

a hemispherical field of view. The rational model [45] is also not considered as it

requires calibrating for 16 variables — as many of the other models with fewer pa-

rameters in the table have been used with success for accurate camera calibration, only

these are considered. A similar argument can be made for the model of Kanalla and

Brandt [118, 119] which contains a high number of variables and includes both radial

and tangential distortions. Although the radial component could be used by itself, it

includes polynomial terms up to the ninth power. As noted by Basu and Licardie [14],

this requires the use of iterative techniques to solve the roots of the polynomial and

it becomes difficult to obtain an accurate initial estimate using non-linear calibration.

With respect to polynomials, the model used by Xiong and Turkowski [243] is not

used as Ho [101] was able to find more accurate calibration using their model for a

number of different wide-angle cameras. However, to validate the claim that higher

order polynomials are able to more accurately model the radial distortion, the results

for the polynomial r = k1θ+ k2θ3 are also found.

2.4.7.1 Initial Model Estimates

The calibration algorithm attempts to find the camera intrinsic parameters and the ex-

trinsic rotation R f for each image which minimises the objective function error ε̂. This

is achieved using non-linear optimisation, and a potential limitation of this approach

is convergence on solutions for which ε̂ is a local minima. Since the results using the

unified image model appear to model the camera with high accuracy (albeit without

comparison to other camera models), the extrinsic rotations R f for each image and

the position of the principal point u0 found from calibration are used as the initial es-

timates for all other models. Furthermore, the radial distortion function found using

the unified image model shown in figure 2.20 is used to initiate the estimates of the

intrinsic parameters (specific to the radial distortion) for the remaining models before

calibration. This is of particular importance for the polynomial models.

The initial estimates for each camera models intrinsic parameters are found as fol-

lows. For n = 200 equally spaced radii on the image r ∈ [0,rmax], the angles of co-

latitude θ(r) are found using the unified image model results found in the calibration

example. The maximum radius rmax is the radius on the image corresponding to an an-

gle of colatitude of θ = 190◦/2 (190◦ being the cameras maximum field of view). Then

for any of the remaining camera models, define θ̃(ri) as the angle of colatitude corre-

sponding to radius ri on the image for the estimate of the model parameters. The initial

estimates of the camera model parameters are found prior to calibration by minimising
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the sum of squared errors

ε =
n

∑
i=1

(θ(ri)− θ̃(ri))
2. (2.76)

This is implemented as a non-linear optimisation. The initial estimates for each camera

model are shown as a function of the angle of colatitude θ versus radius on the image

plane r in figure 2.24. The original function obtain from calibration using the unified

image model is included in each figure for reference. Given that the unified image

model was able to calibrate the camera with high accuracy, this is a valid means for

obtaining an initial estimate of the camera model parameters prior to calibration.

2.4.7.2 Results and Discussion

The fisheye camera was calibrated for each camera model considered using all ten

input images in figure 2.18. Table 2.6 shows for each model the calibrated values

of the camera intrinsic parameters, the minimised objective function error ε̂, and the

mean and median reprojection error in the fisheye image for all ten input images (the

reprojection errors in each image are combined into a single set before finding the

mean and median). A box plot comparison of the reprojection errors for each camera

model is presented in figure 2.25. Note that the ranking of the camera models using

the calibration objective function error ε̂ corresponds to the same ranking using either

the mean or median of the reprojection error measured on the fisheye image.

The calibration results suggest that the accuracy of the camera model defined by the

minimised objective function error ε̂ in general improves with an increasing number

of camera model intrinsic parameters. The stereographic, equiangular and equisolid

models for example have only a single intrinsic parameter (excluding the position of

the principal point u0) and model the camera’s radial distortion with the least accuracy.

This observation is well supported in the literature and suggests that the ‘ideal’ pin-hole

models described by Fleck [72] are not suited for real wide-angle fisheye cameras.

The two camera models of Mičušı́k [164, 162] include a parameter b which models

deviations from the ideal equiangular model, and each of these converges to equian-

gular as b approaches zero. As expected, the addition of this term b gave improved

accuracy over the ideal equiangular model. The combination model of Bakstein and

Pajdla [9] models deviations from either the ideal stereographic or equisolid models.

Again, as expected, this model gave improved accuracy over both the stereographic

and equisolid models.

The three models found to most accurately model the fisheye camera in these ex-
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(a) Stereographic
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(b) Equiangular
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(c) Equisolid
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(d) Mičušı́k 1
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(e) Mičušı́k 2
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(f) Combination
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(g) Polynomial (1,3)
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(h) Polynomial (1,3,5)

Figure 2.24: Initial estimates of the camera model functions obtained prior to calibra-

tion. These initial estimates for each model are found with respect the the calibration

results for the unified image model in the example in section 2.4.6. Refer to table 2.4

for the specific camera model functions.
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Figure 2.25: Boxplot of the calibration results for each ray-based fisheye camera model

considered. The entries are sorted with respect to accuracy defined by the error ε̂. No-

tice that this ranking would be the same using either the mean or median reprojection

distance errors measured in the fisheye images.

periments were the two polynomial models and the unified image model. This result

supports arguments for the use of polynomial based models as they are capable of

modelling a wide-range of cameras. The results indicate that there were improvements

in accuracy using polynomial(1,3,5) over polynomial(1,3) which suggests that the ad-

dition of the higher order polynomial coefficient was able to better model the radial

distortion. The polynomial(1,3,5) model outperformed all other models in these exper-

iments followed closely by the unified image model. This validates the claim of Ying

and Hu [244] that the unified model is able to accurately model image formation for

many fisheye cameras.

When considering which model to use with the fisheye camera, one may simply

argue that the model which the lowest error ε̂ should be selected, which in this case

in the polynomial(1,3,5) model. However, the inverse mapping from a radius on the

image plane to the angle θ requires the roots of the polynomial to be determined using

iterative techniques. The unified image model in contrast can obtain a direct solution

as seen in equation 2.10. Since there is only a very small improvement in accuracy
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Model Intrinsic values
Mean reprojection

Error (ε̂)
error (pixels)

Stereographic
u0 = 521.2630

k = 388.1975
median = 2.5220

0.60046
v0 = 380.3094 mean = 3.4097

Equiangular
u0 = 532.1770

k = 235.7712
median = 1.4936

0.15560
v0 = 378.9425 mean = 1.7401

Equisolid
u0 = 530.0230

k = 514.9977
median = 0.7713

0.04121
v0 = 382.0045 mean = 0.8894

Mičušı́k 1
u0 = 528.5584 a = 3.6088e−3 median = 0.6739

0.03040
v0 = 384.1524 b = −1.2540e−6 mean = 0.7805

Bakstein
u0 = 528.4148

a = 0.0037

median = 0.4555
0.01318

v0 = 384.2398

b = 0.5143

mean = 0.5320c = 427.9583

d = 1.5663

Mičušı́k 2
u0 = 528.2029 a = 273.9097 median = 0.4497

0.01291
v0 = 384.5021 b = −0.6453 mean = 0.5312

Polynomial (1,3)
u0 = 528.1757 k1 = 272.8297 median = 0.4269

0.01108
v0 = 384.4817 k2 = −17.7261 mean = 0.4978

Unified
u0 = 528.1214 l = 2.7899 median = 0.3568

0.00673
v0 = 384.0784 m = 996.4617 mean = 0.4170

Polynomial (1,3,5)
u0 = 528.1716

k1 = 264.9471
median = 0.3515

0.00665
v0 = 384.1241

k2 = −10.1055
mean = 0.4100

k3 = −1.9437

Table 2.6: Summary of the calibration results for each ray-based fisheye camera model

considered. The entries in the table are sorted with respect to accuracy defined by the

error ε̂. Notice that this ranking would be the same using either the mean or median

reprojection distances (error) defined in the fisheye image plane.

using the polynomial (1,3,5) model over the unified model, the unified model will be

used for this fisheye camera for the remainder of this work.

2.5 Conclusions

A review of image formation with wide-angle central catadioptric and dioptric (fish-

eye) cameras was presented in this chapter. This review was focused primarily on

central projection cameras where all incoming rays intersect at a single effective view-

point, and where the image can be back projected to a function on the unit view sphere.

For central projection catadioptric cameras, the process of image formation is derived

geometrically from the shape of the reflective surface (mirror). In contrast, the pro-

cess of image formation for fisheye cameras cannot be easily derived from a geometric

standpoint due to the complex nature of fisheye lens design. As a result, there are

numerous empirical models used for describe image formation with fisheye cameras.

These include pinhole models which define a mapping from the fisheye image to an

undistorted perspective view, and ray-based model which define the mapping of scene
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points to the fisheye image. The ray-based models were identified as being more flexi-

ble as they allow any pixel in the image to be back projected to a ray in space directly.

Furthermore, an undistorted perspective image can be obtained for all ray-based mod-

els using a two step mapping via the sphere.

A review of some fundamental methods of camera calibration was then presented,

including full-range, auto-calibration and plumb-line algorithms. A novel calibration

algorithm was proposed based on plumb-line methods which uses the the position of

vanishing points of coplanar sets of parallel lines in space for additional constraints.

The calibration algorithm operates on the unit view sphere and was used to calibrate

the fisheye camera used extensively in experiments throughout this work with a range

of different ray-based camera models. From these results, the unified image model was

selected as the ideal candidate and is used for the remainder of this work.
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Chapter 3

Keypoint Detection, Description and

Matching with Applications to

Wide-Angle Images

A review of keypoint detection, description and matching is presented in

this chapter starting with the ‘classical’ methods suited for small-baseline

motion. This follows with the wide-baseline methods which are suited

for large change in camera pose and becoming increasingly popular for

use in vision-based localisation applications. A review of the suitability

of these wide-baseline methods is presented with respect to vision based-

localisation applications, and the keypoint detection algorithms using scale-

space analysis are identified as ideal candidates, in particular the Scale-

Invariant Feature Transform (SIFT) of Lowe [142]. Both the classical and

wide-baseline methods are designed primarily for use with perspective

cameras and frequently applied ‘blindly’ to wide-angle images without

accounting for the radial distortion. In many cases they are also applied

directly to rectified log-polar and cylindrical panoramic images. The lim-

itations of these approaches are discussed, and a potentially more ‘ideal’

approach is proposed based the suggestion of Daniilidis et al [56] that

wide-angle image processing algorithms should be formulated as opera-

tions on the sphere. Re-formulating existing wide-baseline keypoint detec-

tion and description algorithms as operations on the sphere could there-

fore make them more suited for wide-angle image processing — this is the

subject of chapter 4.

89
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3.1 Introduction

Camera egomotion can be estimated by observing the change in appearance of the

environment between two images. As discussed in chapter 1, this can be measured

quantitatively from the dense or sparse optical flow obtained from a set of keypoint

correspondences between views. Many classical algorithms can be used for this pur-

pose which are both designed and suited for small-baseline motion where there is a

minimal change in appearance of the environment between views — the optical flow

vectors may be only a few pixels in magnitude.

The ability to find correspondences across a wide-baselines change in camera pose

has potential advantages for vision odometry and visual place recognition applications.

However, this is a challenging task due to the large projective changes in the appear-

ance of the environment between images. These include changes in rotation, scale,

affine transformations (for planar objects) as well as large illumination variations. For-

tunately there is an impressive body of literature which addresses specifically this prob-

lem, and there are a number of algorithms capable of detecting and describing key-

points in a manner invariant to rotation, scale and in some cases affine transformations.

These include a number based on a scale-space framework [142, 64, 158, 160, 159, 17],

using a family of scale-space images obtained via convolution of an image with sam-

pled Gaussian functions of increasing scales [123, 134]. A number of alternative ap-

proaches have also been proposed by Kadir and Brady [112, 115, 113, 114], Tuytelaars

and Van Gool [230], and Matas et al [151].

Wide-baseline keypoint detection algorithms are designed almost exclusively for

use with perspective cameras and frequently use operators that are shift-invariant in

the image plane. This means that if an image were to be smoothed for example, then

the image would be convolved with a fixed shape smoothing kernel (e.g. a sampled

Gaussian kernel of fixed size and scale). In many cases these algorithms are applied

‘blindly’ to wide-angle images without accounting for the radial distortion. However,

the appearance of objects change considerably depending on their position in a wide-

angle images due to the radial distortion of the camera. Applying operators that are

shift-invariant in the image plane to wide-angle images is therefore not ideal. For a

calibrated central projection wide-angle camera one could always convert it to a per-

spective image and process this perspective image using existing algorithms designed

for perspective images (i.e. shift-invariant in the image plane). As noted by Daniilidis

et al [56] the problem with this approach twofold. First, perspective projective is lim-

ited to less than a hemispherical field of view. Second, the interpolation required for
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this mapping is computationally expensive and introduces artifacts. Another approach

which has been used is to process the image using shift-invariant operators on a recti-

fied log-polar or cylindrical panoramic image. This is again not ideal as the image is

not perspective. Daniilidis et al [56] proposed that the ideal domain in which to for-

mulate shift-invariant image processing algorithms is the sphere, where shift refers to

a rotation. As any central projection wide-angle camera can be effectively mapped to

the sphere, this approach is suited for all and is invariant to the radial distortion in an

image. Furthermore, they discuss how these image processing algorithms formulated

on the sphere can be implemented on the wide-angle image itself avoiding the need

for interpolation of the original image function. Although they used this approach to

find small-baseline optical flow, it is proposed that this general approach to image pro-

cessing can be used for wide-baseline keypoint detection, description and matching

with wide-angle images. More specifically, existing wide-baseline algorithms includ-

ing those based on the scale-space framework can be reformulated as image processing

algorithms on the sphere. This is made possible by the work of Bülow who derived the

scale-space for functions on the sphere [31].

This chapter commences with a review of some popular classical methods used

to find both dense and sparse optical flow. The limitations of these methods with re-

spect to wide-baseline change in camera pose between views is then discussed. This

follows with a review keypoint detection and description methods used to find corre-

spondences across images separated by wide-baseline (large change in camera pose).

This includes those based on the scale-space framework and a number of alternative

approaches. A review of a number of comparative works is presented where it is con-

cluded that the methods using scale-space analysis are well suited for applications to

vision-based localisation. A discussion on the limitations of applying these blindly to

wide-angle images, rectified perspective and various panoramic (cylindrical and log-

polar) images is discussed. The ‘ideal’ approach proposed by Daniilidis et al [56] is

discussed where image processing is formulated as an operation on the unit sphere.

It is proposed that existing wide-baseline algorithms could be adapted to follow this

approach. This paves the way for chapter 4 where an existing wide-baseline keypoint

detection and description algorithm, the Scale-Invariant Feature Transform [142], is

formulated as an image processing operation on the sphere and used for wide-baseline

keypoint detection and matching with wide-angle images.
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3.2 Classical (small-baseline) Techniques

3.2.1 Sparse Optical Flow

Camera egomotion can be estimated from the sparse optical flow, which is the change

in position of a select group of keypoints between two images. There are two funda-

mental methods used to find the sparse optical flow:

1. Keypoint registration: Keypoints are detected in the first image. For each key-

point the image function in the local region surrounding it is selected as a tem-

plate. The position in the second image where this template is most similar to the

image is used to find the estimate of the keypoint location in the second image.

Cross-correlation methods are popular for assessing this similarity.

2. Keypoint detection and matching: Keypoints are found independently in both

images. A image function in the local region surrounding each keypoint is taken

again as a template for matching. A similarity between a keypoint in the first

image and all those in the second image is found, the most similar taken to be

the corresponding keypoint (assuming the similarity is above some predefined

threshold). This similarity can be found using directly the greyscale intensity

values in the template and cross-correlation for example, or by producing a de-

scriptor for each keypoint, which is a distinctive representation of the local image

content in the template.

For both cases it is necessary to detect keypoints in an image, where a keypoint is

defined as any salient point and often referred to as an interest point, feature or cor-

ner. With reference to figure 3.1, the general procedure for many keypoint detection

algorithms is as follows. Take an input image, calculate the saliency of each pixel,

then select keypoints as local extrema of the saliency function with values above some

threshold. In many cases subpixel accuracy is achieved by interpolating the saliency

values in the local region surrounding a keypoint. The algorithms used to detect key-

points differ primarily in their definition of saliency.

3.2.1.1 Keypoint Detection

This section reviews a number of popular classical keypoint detectors. Although each

differs in their definition of pixel saliency, a common theme for all is to assign a higher

saliency to corner points in an image. Corner points have a large change in intensity
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(c) Keypoints detected as local maxima

of the saliency with a value above some

threshold.

Figure 3.1: Example keypoint detection using the Harris/Plessey keypoint detection al-

gorithm [94] discussed in section 3.2.1.1. The algorithm finds for each pixel a saliency

measure (lighter values indicate higher saliency). A keypoints is as local maxima of

the saliency function with a value above some predefined threshold. Notice that homo-

geneous regions and points along lines have small saliency values. Most algorithms are

designed to find ‘corners’ such as the intersections of the checkerboard pattern used in

this example.

values in orthogonal directions and are more distinctive than points in the image which

lie on edges or homogeneous regions. This can be illustrated with respect to figure

3.2. The top image in figure 3.2a shows a point on a corner, edge, and homogeneous

region. The square around each indicates a small local region (template). The results

of zero normalised cross-correlation (see section 3.2.1.2) of each template is shown in

figure 3.2b. Observe that the corner point is the most distinctive as it has only a high

similarity at a small number of points in the second image. In contrast, the edge point

has a high similarity along all vertical edges in the second image and the homogeneous

region at many locations.

There is a large number of keypoint detection algorithms, and an exhaustive review

will not be given here. Intensity based methods are most frequently used which oper-

ate directly on the greyscale image (i.e. the example in figure 3.1). However, there are
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(a) Two images separated by a change in viewpoint. Image 1 (left) shows a corner

point (blue), edge point (red) and homogeneous point (green). The square region

surrounding each is used for the cross-corelation
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(b) The results of zero normalised cross-correlation of the templates with image two for the corner

point (left), edge point (middle) and homogeneous point (right).

Figure 3.2: Zero normalised cross correlation of a corner, edge and homogeneous

point. Observe that the homogeneous point attains high similarity in many regions in

the image, the edge point on many vertical edges, and the corner point at only a few

regions. Corner points are preferred as they are generally more distinctive than edge

and homogeneous points when finding correspondences via registration or matching.

a range of alternatives such as contour based methods. An example is the Curvature

Scale-Space (CSS) algorithm of Mokhtarian and Suomela [165] which uses edge de-

tection to find contours (isophotes) in the image from which the keypoints are found

— the keypoint detector effectively operates on the contour image and not the original

greyscale values. A review of some of these alternatives is given by Schmid et al [203].

One of the earliest keypoint detection algorithms was developed by Moravec [168].

Moravec proposed that for an image function I, a pixel at position u,v with image value

I(u,v) is distinct if the minimum variance of the autocorrelation function centred about

the pixel is above some threshold. The autocorrelation function f (u,v), which is the

cross correlation of the image function with itself, is

f (u,v) = ∑
W

[I(ui,vi)− I(ui +∆u,vi +∆v)]2 , (3.1)

where ui,vi are the coordinates of a pixel within a window function W, and ∆u,∆v are

discrete pixel shifts in the u and v directions respectively. The saliency of a pixel is

defined as the minimum of the autocorrelation function shifted in eight cardinal direc-
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tions (vertical, horizontal and diagonal) using a fixed sized binary window function W

in the order of 4 to 8 pixels half width. Keypoints are selected as pixels whose saliency

value is a local extrema above some threshold.

Harris and Stephens [94] note that Maoravec’s approach to keypoint detection is

anisotropic as the autocorrelation function at a pixel is evaluated in only eight direc-

tions — simply rotation the image by some angle could alter considerably the key-

points found. A point on an edge for example may be assigned a high saliency value

unless the autocorrelation function were assessed in the direction of the edge. They

proposed an alternate keypoint detection algorithm which attempts to find an isotropic

saliency metric. This method is frequently referred to as either the Plessey or Harris

corner detector, the later being most frequently used in the literature and used for the

remaining discussions. The key to their method is the use of the autocorrelation ma-

trix A from which the approximate autocorrelation function can be evaluated in any

arbitrary direction. This autocorrelation matrix, also referred to as the second mo-

ment matrix, has since been used as the basis for numerous keypoint detection algo-

rithms [94, 76, 77, 209]. The autocorrelation matrix is derived based on the assumption

that the image function I(ui + ∆u,vi + ∆v) at some small shift ∆u,∆v in the u,v direc-

tions respectively from point I(ui,vi) can be approximated by the first order Taylor

expansion about the point ui,vi:

I(ui +∆u,vi +∆v) ≈ I(ui,vi)+(Iu(ui,vi) Iv(ui,vi))

(
∆u

∆v

)
, (3.2)

where Iu(ui,vi) and Iv(ui,vi) are the first order derivatives in the u and v directions

respectively evaluated at the pixel position ui,vi. Substituting into equation 3.1 gives

f (u,v) ≈ ∑
W

[
I(ui,vi)− I(ui,vi)− (Iu(ui,vi) Iv(ui,vi))

(
∆u

∆v

)]2

, (3.3)

where W is some window function. After expanding, equation 3.3 can be written as

f (u,v) ≈ (∆u ∆v)

(
∑W Iu(ui,vi)

2 ∑W Iu(ui,vi)Iv(ui,vi)

∑W Iu(ui,vi)Iv(ui,vi) ∑W Iv(ui,vi)
2

)(
∆u

∆v

)
, (3.4)

f (u,v) ≈ (∆u ∆v)A

(
∆u

∆v

)
. (3.5)
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Harris and Stephens use a Gaussian window function

W = G(u,v;σ) = exp(−(u2 + v2)/2σ2) (3.6)

and compute the first order derivatives as

Iu =
∂I

∂u
= I ∗ (−1,0,1) Iv =

∂I

∂v
= I ∗ (−1,0,1)T (3.7)

where ∗ is the convolution operator. The eigenvalues λ1,λ2 of the autocorrelation ma-

trix give the principal variance of the autocorrelation function in orthogonal directions,

where the direction of each is defined by the corresponding eigenvectors. If the values

of both eigenvalues are large, then a corner point or highly textured region has been

found [209]. If only one is large, then there is a large variance in only one direction

which indicates an edge response. If both are small, the local image function in the

neighbourhood of the pixel is approximately homogeneous. The Harris detector de-

fines the saliency of a pixel based on the eigenvalues of the autocorrelation matrix.

Rather than compute the eigenvalues explicitly, the saliency, or ‘cornerness’, C of a

pixel is evaluated as

C = det(A)− ktrace(A)2 (3.8)

where det(A) = λ1λ2 is the determinant of A, trace(A) = λ1 +λ2 is the trace of A, and

k is an empirical constance (0.04 for greyscale intensity values in the range 0-255).

A high value of C is a corner response, negative value a edge, and a small value a

pixel lying in a homogeneous region. A pixel whose saliency value C is above some

threshold, and whose value is greater than that of its 8 neighbouring pixels, is selected

as a keypoint.

Although the Harris corner detector has been used extensively for many computer

vision applications, Schmid et al [203] suggest that there is still some anisotropic bias

in the computation of the partial derivatives in equation 3.7. They propose and alterna-

tive improved Harris detector which computes the partial derivatives via convolution

with derivative of Gaussian kernels G(σ) of standard deviation σ:

Iu =
∂I

∂u
= I ∗ ∂G(σ)

∂u
Iv =

∂I

∂v
= I ∗ ∂G(σ)

∂v
. (3.9)

The autocorrelation matrix has also been used for keypoint detection in a method

first outline by Tomasi and Kanade in [223] and formalised by Shi and Tomasi in [209].

This method is frequently referred to as either the Shi-Tomasi keypoint detector, or the

KLT keypoint detector named after the authors of a series of works relating to methods
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of optical flow estimation [209][223] — for this discussion the former is used. The

Shi-Tomasi detector finds the eigenvalues of the autocorrelation matrix and uses as a

saliency metric C the value of the minimum eigenvalue:

C = min(λ1,λ2). (3.10)

A pixel is selected as a keypoint if C > λ, where λ is a predefined threshold. Although

the Shi-Tomasi keypoint detector does not distinguish between corner and edge re-

sponses based on the ratio of eigenvalues, the authors argue that any pixel with a

minimum eigenvalue above some threshold is salient, being either a corner or highly

textured local region which may be reliably tracked. In some respects the Shi-Tomasi

algorithm can be considered an isotropic version of Morevec’s algorithm as only the

minimum eigenvalue of the autocorrelation matrix (the approximate minimum vari-

ance of the autocorrelation function) is used to define saliency.

Another early keypoint detector was proposed by Beaudet [195]. Rather than use

the autocorrelation matrix as the basis for keypoint detection, the Hessian matrix H

was used, which is the square matrix of second order partial derivatives computed from

the local image function surrounding each pixel:

H =

[
∂2I
∂u2

∂2I
∂u∂v

∂2I
∂u∂v

∂2I
∂v2

]
=

[
Iuu Iuv

Iuv Ivv

]
. (3.11)

Beaudet’s method was termed DET, an isotropic measure of saliency defined as the

determinant of the Hessian matrix

DET = det(H ) = IuuIvv − I2
uv = λ1λ2 (3.12)

where λ1 and λ2, the eigenvalues of the Hessian matrix, are the principal curvatures of

the image function (greyscale intensity values) in orthogonal directions. This metric

can be interpreted geometrically as the Gaussian curvature of the image function cen-

tred about a pixel, where the Gaussian curvature is proportional to the product of the

eigenvalues1. If DET is positive and large then the pixel is a corner point; local minima

if both eigenvalues are positive and local maxima if both eigenvalues are negative. If

DET is negative, then the local curvature is a saddle point. If DET is close to zero, the

local region surrounding the pixel is either a homogeneous region with near constant

image values or an edge response. Pixels are selected as keypoints if the DET value

1If λ1 and λ2 are the eigenvalues of the Hessian matrix, the Gaussian curvature is frequently defined

as the product λ1λ2. As noted by Derich [60], the Gaussian curvature is often defined as λ1λ2/(λ2
1 +λ2

2).
Irrespective of the choice, the sign of the DET would not change as the denominator is always positive.
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computed at the pixel is above some threshold.

Both first and second order partial derivatives are also been used in the early key-

point detector of Kitchen and Rosenfeld [122]. The Kitchen-Rosenfeld detector defines

the saliency of each pixel as the rate of change of curvature of a contour line (isophote)

passing through the pixel. This rate of change of curvature is the change of gradi-

ent direction multiplied by the local gradient magnitude and sometimes referred to as

the level curve curvature [132, 134]. They derived the analytical expression for this

curvature which is used to define the saliency C of a pixel as

C =
IuuI2

v + IvvI2
u −2IuvIuIv

I2
u + I2

v

. (3.13)

The first and second order partial derivatives computed at each pixel are obtained using

the facet model computed from a second order polynomial fitted to the image function

in the local 3, 5 or 7 pixel square region surrounding the pixel. Non-maxima suppres-

sion of the gradient magnitudes is applied before multiplication (computing C). Those

pixels with a saliency value C above some threshold are selected as keypoints. As

discussed by Schmid et al [203], an identical saliency metric C in equation 3.13 was

derived for keypoint detection in a separate work by Dreschler and Nagel [62].

The use of image derivatives is prone to errors due to noise, particularly for the

keypoint detectors of Beaudet and Kitchen-Rosenfeld which use second order partial

derivatives. This can result in false positive keypoint detection which limits the ability

to find correct and reliable keypoint correspondences between views. Smith and Brady

[171] proposed a novel keypoint detector termed ‘SUSAN’ which operates without

using derivatives making the method less sensitive to image noise — SUSAN is an

acronym for Smallest Univalue Segment Assimilating Nucleus. A circular mask is

taken about each pixel, the centre pixel being the ‘nucleus’ of the mask. The USAN

for the mask is then found which contains all pixels of similar greyscale intensity as the

nucleus. The USAN contains important properties used for keypoint detection. If the

USAN is large, the pixel lies within a near homogeneous region. If it is approximately

half the size of the mask, the pixel is on an edge. If it is small, the pixel lies on a

corner. The saliency of each pixel is defined by the size of the USAN, where keypoints

are found by finding the Smallest USAN’s.

Although an exhaustive review of classical keypoint detectors has not been pre-

sented here, the Harris corner detector has ranked consistently well in comparative

works and used successfully in visual odometry applications [181, 46]. Tissainayagam

and Suter [222] compared the performance of the Kitchen-Rosenfeld, Plessey, Shi-
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Tomasi and Smith (SUSAN) keypoint detectors with respect to keypoint stability and

localisation accuracy using indoor and outdoor scenes. Keypoint stability is the ability

to detect the same keypoint in different images, and localisation accuracy is a measure

of a keypoint’s pixel position found relative to that of its estimated true position. Using

both static and moving image sequences with and without added Gaussian noise (and

illumination variations for the outdoor scene resulting from change in intensity and

viewpoint of the natural light source), the Harris and Shi-Tomasi keypoint detectors

performed best with respect to both stability and localisation accuracy.

Another comparison of keypoint detectors was made by Schmid, Mohr and Bauck-

age [203, 204], comparing the Harris keypoint detector and their modified version

discussed previously to a number of other classical methods not discussed here — a

summary of each can be found in their work. The comparison was based on two crite-

ria, and these were the repeatability of the keypoints and the image content of the local

regions surrounding the keypoints. Repeatability was measured as the percentage of

keypoints found between two images, and information content by the entropy of the

greyscale intensity function in the local region surrounding each keypoint. Keypoints

with high information content (entropy) are desirable as the local region is in general

very distinctive permitting accurate keypoint registration or matching between views.

Results were found for changes in rotation, scale, illumination variations, viewpoint

change and camera (image) noise. Their improved Harris detector detector discussed

previously was found to perform better than the original and shown to give improved

or comparable performance to the others with respect to both repeatability and image

content.

To summarise, the Harris keypoint detector remains one of the most robust and

popular keypoint detectors for small-baseline applications. As will be seen in later

discussions in section 3.3.1, the principles it uses for keypoint detection have since

been adapted for scale-invariant keypoint detection. Hessian based methods such as

that of Beaudet have also since been adapted for scale-invariant keypoint detection.

3.2.1.2 Finding Keypoint Correspondences: Registration and Matching

As discussed, there are two methods that can be used to find sparse optical flow. The

first is registration, detecting keypoints in the first image and searching in the other

image for their most likely position based on the similarity of local regions. The second

is matching, detecting keypoints in both images separately and then finding the most

similar keypoint in the other image.
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Area based methods are typically used to measure similarly for registration, and

as noted by Banks [10] have a number of advantages compared to other methods used

to describe local image content. They are simple to implement, fast and suited to

textured regions. Area based methods use the image pixel values (typically greyscale)

in the template to obtain a similarity measure. Let T1 be the template of a keypoint

in the first image with local coordinates x,y, and T2 be the second image with pixel

coordinates u,v — the template T1 is the local image function surrounding a keypoint.

One of the simplest similarity measures is the sum of squared distances SSD which is

computed at any pixel location u,v in the second image as

SSD(u,v) = ∑
x,y

(T1(x,y)−T2(u+ x,v+ y))2, (3.14)

where ∑x,y is the summation over all pixels in the template. From the inner product of

SSD the general expression for cross-correlation CC is derived:

CC(u,v) = ∑
x,y

T1(x,y)T2(u+ x,v+ y). (3.15)

A limitation of general cross correlation is a lack of invariance to changes in intensity

offset and scale across images resulting from lighting variations and viewpoint change,

a problem most evident in outdoor environments. Normalised cross correlation NCC

attempts to provide illumination scale invariance by dividing with the variance in the

templates being matched to give

NCC(u,v) =
∑x,y T1(x,y)T2(u+ x,v+ y)√

∑x,y T1(x,y)2 ∑x,y T2(u+ x,v+ y)2
. (3.16)

A further improvement which accounts for effects of illumination variation, illumina-

tion scale change and offset is zero mean normalised cross correlation ZNCC. Let T1

be the mean intensity value in the template T1, and T2
′

be the mean intensity value in

the local template T ′
2 — this local template is simply the region in the second image

spanned by the template T1 when assessing similarity. ZNCC subtracts from each tem-

plate the mean intensity values and divides by the normalised variance of the templates

to give

ZNCC(u,v) =
∑x,y(T1(x,y)−T1)(T2(u+ x,v+ y)−T2

′
)√

∑x,y(T1(x,y)−T1)2 ∑x,y(T2(u+ x,v+ y)−T2
′
)2

. (3.17)

Although the methods of cross correlation described use pixel intensity values, these
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methods are applicable to any information contained within the local region templates.

Intensity gradients or colour information for example could be used. Furthermore, in

many practical applications with small change in appearance between images it is not

necessary for a keypoint to obtain a similarity metric for all pixels in the second image.

A more computationally efficient approach is to obtain a similarity measure around the

estimated position of the keypoint in the second image. Jung and Lacroix [111] for

example predict the position of each keypoint in the second image given the known 3D

position obtained with stereo vision. They obtain the ZNCC similarity measure using a

9×9 template within a 41×41 region centred around the predicted position. They note

that this reduces both the computational expense of registration and potential of finding

an incorrect estimate of the keypoints position. If the expected change is within only

a few pixels then the predicted position could simply be set as the keypoint position

in the first image. If subpixel accuracy is required in the estimate of the final keypoint

position the similarity function can be interpolated [111].

The second approach used to find the sparse optical flow is keypoint detection

and matching which requires a means for assessing similarity between two keypoints.

Methods of cross-correlation can again be used for this purpose, the cross-correlation

being between the templates for each keypoint taken as a fixed sized local region

around each. For example, keypoint matching using Harris corners and ZNCC has

been used by Corke [46] and Jung and Lacroix [110], and Harris corners and NCC

used by Nistér [181]. An alternate approach for assessing similarity is to produce first

for each keypoint a descriptor, which is a vector that encodes the local image content

in the template surrounding the keypoint. The similarity is then found by comparing

descriptors. One advantage of using descriptors is a greater invariance to viewpoint

change between images when assessing similarity. In particular, many descriptors are

invariant to the orientation of the template. A more detailed discussing on keypoint

descriptors is reserved for section 3.3.3, however, it is important to recall again that

the size of the template is set as some fixed size for all keypoints when using classical

(small-baseline) methods.

3.2.2 Dense Optical Flow

Dense optical flow finds for each pixel in the first image an estimate of its position

in the second (assuming it is within the image). This can be achieved by registration

of every pixel in the first image for example using methods of cross-correlation. A

more elegant method of registration was proposed by Lucas and Kanade [144] using

greyscale intensity gradients. Their method is based on the assumption that the local
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image content surrounding the same scene point in two images are related by a trans-

lation, the magnitude and direction of this translation being the optical flow vector for

the scene point.

Let I and J be images 1 and 2 respectively with greyscale intensity values I(u)

and J(u) at coordinate u = (u,v)T . If both images were related by a linear translation

h = (hu,hv)
T , then I(u) would be equal to J(u + h). Lucas and Kanade [144] define

the error ε for the estimate of the translation h as the L2 norm

ε = ∑
W

[J(u+h)− I(u)]2, (3.18)

where W is a local region surrounding the pixel location u in image 1 and u + h in

image 2. They assume that the local image function J(u) in the region surrounding

u is linear, where J(u + h) can be approximated from the first order Taylor series

expansion of J about u:

J(u+h) ≈ J(u)+hT ∂J

∂u
(u) where

∂J

∂u
(u) =

(
∂J

∂u
(u),

∂J

∂v
(u)

)T

. (3.19)

An estimate for h is obtained by substituting 3.19 in 3.18 and setting the derivative to

zero:

0 =
∂ε

∂h
≈ ∂

∂h
∑
W

[
J(u)+hT ∂J

∂u
(u)− I(u)

]2

(3.20)

= ∑
w

2
∂J

∂u
(u)

[
J(u)+h

∂J

∂u
(u)− I(u)

]
(3.21)

(3.22)

from which

h =
∑W

(
∂J
∂u

(u)
)T

[I(u)− J(u)]w(u)

∑W

(
∂J
∂u

(u)
)T (

∂J
∂u

(u)
)

w(u)
. (3.23)

The value w(u) is a weighting factor evaluated at each point u in the window defined in

one dimension as w(u) = (|J′(u)− I′(u)|)−1. An iterative scheme is used to converge

on a solution for h.

The problem with computing reliable dense optical flow was illustrated previously

in figure 3.2. Points within homogeneous regions in the image are similar to many

regions in the other image within a close proximity. As a result a reliable estimate for

h is difficult to obtain. For points on an edge a reliable estimate for h can be found
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only in the direction orthogonal to the edge. For this reason, the Shi-Tomasi keypoint

detector has been used to select only a small set of salient points to track. This forms

the so called Kanade-Lucas-Tomasi (KLT) keypoint tracking algorithm [144, 209, 223]

which finds sparse optical flow. KLT is a robust method for obtaining sparse optical

flow and can be used to successfully track keypoints over multiple frames. Although

the authors suggest several means for including more generalised projective changes

than a simple translation [144], KLT is most suited for small viewpoint changes be-

tween images.

3.2.3 Limitations for Wide-baseline Motion

The classical methods used to detect keypoints and find optical flow via registration

or matching are suited for small-baseline motion where there is minimal change in

the appearance of the scene between views. For wide-baseline motion there can be

considerable projective changes between views, including rotation, affine transforms

(for planar objects) and scale change where the apparent size of regions in the scene

change in the image.

Scale change in particular becomes problematic when attempting to find reliable

optical flow between views using classical algorithms. This occurs as classical meth-

ods use fixed sized operators to find keypoints, and fixed sized support regions (tem-

plates) for keypoint registration, description and matching. To illustrate, figure 3.3a

shows the result of keypoint detection and matching using the Harris corner detector

and ZNCC matching (threshold 0.7) between local 31×31 templates surrounding each

keypoint for two images. For this example the second image is a half resolution lin-

ear interpolation of the first (scale change factor or 2). Notice that only a minimal

number of correct correspondences are found. Even if the same keypoints were found

in the two images, the size of the template (keypoint support region) surrounding each

keypoint is the same size in both images. As no account is made for the change in reso-

lution, the templates for the same keypoint in image 1 and 2 can span different regions

of the scene. Figure 3.3b shows the result using the Scale-Invariant Feature Trans-

form (SIFT) of Lowe [142], which is a wide-baseline algorithm including a method of

keypoint detection and description, and will be discussed in section 3.3. Observe that

SIFT is capable of finding many correct correspondences irrespective of the change in

image resolution.

One could argue that keypoint tracking could be used to increase the change in pose

between views used for egomotion estimation, that is, rather than find correspondences
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(a) Keypoint detection and matching using Harris corners and ZNCC (31

x 31 pixel template).

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300

50

100

150

200

Image 1 (640 x 480)

Image 2 (320 x 280)

(b) Keypoint detection and matching using SIFT.

Figure 3.3: Keypoint detection and matching results using Harris corners and ZNCC

(a) and SIFT (b). The leftmost column shows the keypoints detected in the images, and

the rightmost column shows the set of keypoint correspondences. Only the position of

the SIFT keypoints is shown — each keypoint has a unique ‘characteristic’ scale which

defines the size of its support region.
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over a wide-baseline the keypoints are tracked over multiple small-baselines before

computing camera egomotion. For methods using keypoint detection and matching in

particular, the ability to track keypoints requires that the same keypoint are found in

all images which is difficult. Although tracking may be applicable for visual odom-

etry applications, the ability to find keypoint correspondences across wide-baselines

is required for visual place recognition. Consider a camera returning to previously

visited location. Unless the camera returns to almost exactly the same location and

pose, there will be significant projective differences between the images taken by the

camera at each of these locations. As discussed, the classical methods of keypoint de-

tection and matching are not suited for this scenario. Most algorithms used for visual

place recognition use methods of keypoint detection and description that are suited

for finding correspondences between images separated by wide-baseline changes in

pose [50, 51, 52].

3.3 Wide-Baseline Techniques

The key to finding corresponding keypoints between two images separated by a wide-

baseline is the ability to detect and describe the same keypoints in a way that is invariant

to the apparent change of appearance of the scene between the images. As discussed

scale change is one of the greatest challenges.

It is beneficial to discuss here the concept of scale described by Koenderink [123]

using as an example a scene containing a group of buildings. At a fine scale the fea-

tures in the scene may be the corners of windows and buildings, at a higher scale the

windows and doors themselves, and at an ever higher scale the buildings. With respect

to an image of the scene, the ‘outer scale’ is the highest scale at which features can be

found and is dependent on the cameras field of view. The ‘inner scale’ is dependent

on the image resolution and dictates the features observable in the image. Consider

then two images of the scene, one taken close to the buildings and one far away. As

the Harris corner detector uses fixed sized image operators to compute the greyscale

gradients, it operates on only one level of resolution. It may therefore only be able

to find keypoints on the corners of windows and doors in the first image and only the

entire windows and doors in the second. The limits the ability to find keypoint corre-

spondences between the images. Koenderink [123] considers that unless one knows

which features need to be found, to retain all relevant information an image needs to

be considered simultaneously on all levels of resolution — applying the Harris corner

detector to a blurred version of the first image for example would potentially allow the
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doors and windows to be detected. The success of wide-baseline methods is primarily

their ability to find features (keypoints) in the image over a range of scales, that is, at

different levels of resolution. These are often referred to as scale-invariant keypoint

detectors. As will be seen, they are able to also set the keypoint support region used

for description in a scale-invariant manner. Note also that they are invariant to image

rotations about the cameras principal axis. In some cases these methods can also detect

and describe keypoint in an affine invariant manner. These are termed scale and affine

invariant keypoint detectors.

Wide-baseline keypoint detection and description algorithms can be broadly clas-

sified into two categories. The first are those which utilise scale-space theory [133],

an embedding of an image in a one parameter family of scale-space images (Gaussian

smoothed versions of the original image). Those to be discussed include:

• Scale-space primal sketch and automatic scale selection of Lindeberg et al [132,

134, 136, 137]

• Scale Invariant Feature Transform (SIFT) of Lowe [142]

• Multi-scale Harris of Schmid et at [64]

• Harris-Laplace and Hessian-Laplace of Mikolajczyk et al [158]

• Harris-Affine and Hessian-Affine of Mikolajczyk et al [160, 159]

• Speeded-Up Robust Features (SURF - ‘Fast Hessian’) of Bay et al [19, 17]

The second use alternate image processing algorithms without the use of scale-space

images. Those to be discussed include:

• Scale-saliency of Kadir and Brady [112, 115, 113, 114]

• Tuytelaars and Van Gool [228, 229, 230]

• Maximally Stable Extremal Regions (MSER) of Matas et al [151]

This section starts with a review of the scale-space approaches followed by the

alternate approaches with respect to keypoint detection. This follows with a review of

keypoint descriptors and matching. Finally, a number of works comparing the relative

performance of keypoint detection and description algorithms is presented from which

those most suited for visual-based localisation are identified.
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Figure 3.4: Example set of derived scale-space images L(u,v; t) with scale parameter

t derived from the primal image I(u,v). As the scale parameter t increases the fine

detailed features in the image are suppressed and large features become more apparent.

3.3.1 Scale-Space Approaches

An image can be represented at multiple levels of scale by deriving a one parameter

family of scale-space images L(u,v; t) from an original ’primal’ image I(u,v) [134].

These scale-space images are obtained by convolving the primal image with a Gaussian

of scale (variance) t. Figure 3.4 shows a series of scale-space images derived from an

input primal image for increasing scales t. Observe that as the scale increases the fine

detail in the image is suppressed. The scale-space approaches to image processing use

this family of derived scale-space images for keypoint detection.
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The term scale-space was popularised in western literature by Witkin [242] and

Koenderink [123] who derived the unique solution as Gaussian convolution for one and

two dimensional continuous signals respectively. However, as noted by Weickert et al

[237] the same solution for 1D signals was first proposed in the work of Iijima (1959

— transcript in Japanese) [106]. Two dimensional signals are of interest here, and

Koenderink [123] derived that the linear scale-space representation of some continuous

two-dimensional signal L(x,y)∈R2 satisfies the heat diffusion equation (with constant

thermal conductivity)

∂tL =
1

2
∆L. (3.24)

The variable t is a reference to time and ∆ the Laplacian operator

∆L =
∂2L

∂x2
+

∂2L

∂y2
. (3.25)

The Green’s function (fundamental solution) of the heat equation at time t is the Gaus-

sian

g(x,y; t) =
1

2πt
e
−

(
x2+y2

2t

)

,
Z

x,y
g(x,y; t) = 1, (3.26)

and is the unique scale-space operator. Given some continuous function f ∈ R2, if

the initial condition L(·; t = 0) at time t = 0 is the original function f , the scale-space

representation L(·; t) of f at time t is the convolution of f with the Gaussian g(·; t):

L(·; t) = g(·; t)∗ f , (3.27)

where ∗ is the convolution operator. The same notation as Lindeberg [134] is used here

where L(·; t) is defined to mean L(x,y;σ) ∀ x,y ∈ R2. This solution states that some

2 dimensional heat distribution f evolves to L(·; t) after time t. With respect to image

processing, the function f is an image, and the parameter t is frequently referred to as

scale and not time.

The unique solution for the Gaussian function has been derived from a range of

scale-space axioms by a number of authors, including Witkin [242], Koenderink [123],

Babaud et al [6], Yuille and Poggio [246] and Florack et al [74, 73], and Lindeberg

[134, 135, 133] who provides a comprehensive review in his work. These axioms are

a set of fundamental requirements for the scale-space representation of a signal. The

solution of Koenderink [123] was based on the following axioms:

1. Causality: No spurious detail is created for increasing scale. Any image at higher

scale is a simplification of another at a lower scale — all values can be derived
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(traced) from the primal image.

2. Homogeneity: The convolution (diffusion) process is shift-invariant — with re-

spect to the heat equation the function is assumed to have constant thermal con-

ductivity. The scale-space operator remains fixed during convolution.

3. Isotropy: The diffusion process has no preferred direction — the diffusion kernel

needs to be rotationally symmetrical

A number of other axioms have been used. Lindeberg presents two axioms which,

coupled with the requirement of a continuous scale parameter, are sufficient for deriv-

ing the Gaussian as the unique scale-space operator [135, 134]. The first is a modified

formulation of causality referred to as ‘non-enhancement of local extrema’, and the

second the semigroup property. The former states that for linear scale-space, any non-

degenerate local minima or maxima does not decrease or increase respectively under

diffusion. This property can be formalised using the Laplacian ∆ of a function eval-

uated at some point, which is the product of the principal curvatures λ1,λ2 of the

function and equal to the trace of the Hessian matrix H . If both curvatures are positive

or negative the point is a local minima or maxima respectively. The non-enhancement

of local extrema constraint can then be written

Minima: ∂t L < 0 i f ∆L < 0 (3.28)

Maxima: ∂t L > 0 i f ∆L > 0, (3.29)

whereby sign∂t L = sign∆L ⇒ ∂t L∆L > 0. This has as the simplest solution

∂t L = α ∆L (3.30)

for some α > 0, and has the same form as the heat diffusion equation in 3.24.

The semi-group property is the other axiom used by Lindeberg to derive the Gaus-

sian as the unique scale-space operator [135, 134], the Gaussian being a commutative

semigroup operator. In short, it states that performing successive diffusion operations

should be the same as performing a single diffusion. This is written by Lindeberg as:

L(·; t2)
de f
= h(·; t2)∗ f (3.31)

=(h(·; t2 − t1)∗h(·; t1))∗ f (semi-group) (3.32)

=h(·; t2 − t1)∗ (h(·; t1)∗ f ) (associative) (3.33)

=h(·; t2 − t1)∗L(·; t1). (3.34)
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The semi-group property is useful for efficient computation of scale-space images dur-

ing image processing [142]. As the scale-parameter increases so does the size of the

Gaussian function and computational expense of convolution with the primal image.

Using the semigroup property, the scale-space representation of an image can be ob-

tained via convolution of any scale-space image at a smaller scale with a Gaussian of

scale t = t2−t1, where t2 is the required scale and t1 the scale of some other scale-space

image L(·; t1).

Most derivations of scale-space is for continuous signals. A formal treatment for

discrete signals was studied by Lindberg [131] which is of significance for image pro-

cessing. Lindeberg derives the discrete analog of the Gaussian function as the unique

scale-space kernel for discrete functions. The scale-space representation of a discrete

function is the convolution of the function with this kernel. This kernel differs from the

sampled Gaussian function which does not adhere to the semi-group property for all

ratios of scales t1 and t2. However, in practice the sampled Gaussian is most frequently

used for image processing, and was the method used to obtain the scale-space images

in figure 3.4. Define G(x,y; t) as the sampled Gaussian function g(x,y; t) at integer

(pixel) positions x,y. In image processing literature, the sampled Gaussian function is

more frequently parameterised as G(x,y;σ), where σ =
√

t is the standard deviation of

the sampled Gaussian function:

G(x,y;σ) =
1

2πσ2
e
−(x2+y2)

2σ2 . (3.35)

The scale-space representation L(u,v;σ) of some primal image I is

L(·;σ) = G(·;σ)∗ I, (3.36)

which is evaluated at each pixel position u,v as

L(u,v;σ) =
x=n

∑
x=−n

y=n

∑
y=−n

G(x,y;σ) I(u+ x,v+ y), x,y ∈ {−n,−n+1, . . . ,n−1,n},

(3.37)

where n is the integer support size of the sampled Gaussian. A suitable normalisation

is applied to the sampled Gaussian such that ∑x,y G(x,y;σ) = 1. In addition to the

semi-group property, the separability of the sampled Gaussian is exploited for efficient

computation of scale-space images. Convolution of an image with a sampled 2D Gaus-

sian can be implemented more efficiently with respect to computation by successive

convolutions with a one-dimensional sampled Gaussian Gy(·;σ) in the y direction and
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a one-dimensional sampled Gaussian Gx(·;σ) in the x direction as

L(·; t) = Gx(·;σ)∗ (Gy(·;σ)∗ I). (3.38)

3.3.1.1 Scale-Space Primal Sketch and Automatic Scale Selection

In additional to his work regarding scale-space theory, Lindeberg proposed a number

of scale-space keypoint detection algorithms. One is the scale-space primal sketch

[132, 134], a method which uses a small set of primitives for the detection of salient

blob-like structures in scale-space corresponding to salient (significant) structures in

an image. With respect to a greyscale image, a blob is any distinctive region of light

or dark greyscale intensity value with respect to the surrounding image function. Light

blobs can be found for example by applying a binary threshold to the grey level values

of an image. The appearance of large blob like structures in an image is enhanced with

increasing scale. See for example the appearance of the dark diagonal blob towards the

right of figure 3.4 which is most distinctive with respect to the other image structure in

the scale-space images at the largest scale.

Lindeberg finds the ‘base-level’ and spatial extent of all blobs in a given scale-

space image via binary thresholding of the grey level values, as illustrated in figure 3.5.

Notice in the figure that blobs merge and create new blobs as the threshold is reduced.

The base-level is the greyscale threshold at which the blob merges with another, and

the spatial extent is its boundary (edge), both of which define for each a 3D volume.

This information is used to construct a grey-level ‘blob-tree’ for the scale-space image.

Rather then identify salient blobs using only one scale-space image which is sensitive

to image noise, Lindeberg finds blob-trees for a number of scale-space images and

constructs a blob-tree in scale-space — each blob is a 4D entity having a volume at

each scale. For the set of blobs found in a scale-space image, one would expect to

see the same blobs in the scale-space images at a slightly higher or lower scale, that is,

they are ‘connected’ in scale-space. Lindeberg considers that a singularity occurs when

this is not the case and is the result of annihilation, merging, splitting and creation of

blobs. The range of scales over which a blob is connected in scale-space is used to

define its scale-space lifetime, and coupled with its spatial extent and contrast, is used

to define its saliency. This saliency can then be used to select the n most salient blobs

in the image. For each detected blob, the scale at which the normalised volume is a

maximum is found and the spatial extent of the blob at this scale used to define the

support region.

The scale-space primal sketch is used for focus-of-attention. The blobs found sig-
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Original Image I >= 224 I >= 192 I >= 160 I >= 128

I >= 96 I >= 64 I >= 32 I >= 0

Figure 3.5: Detection of blob like structures in a greyscale image via binary threshold-

ing of the grey level value. As the threshold level is reduced, light blobs appear and

merge to create new blobs. In this example, I is the greyscale threshold level where the

input image has greyscale intensity values in the range 0-255.

nify interesting regions in the image and are not keypoints themselves. These inter-

esting regions can for example be used for focused edge detection and segmentation.

More relevant to this discussion is their use for keypoint detection (Lindeberg uses the

term junction). For a blob whose normalised volume is a maxima at some scale σ,

Lindeberg [132, 134] finds the grey level curvature k for the scale-space image L(·;σ)

as

k = |LuuL2
v +LvvL2

y −2LuvLuLv|. (3.39)

Keypoints are found by detecting ‘curvature blobs’ in this curvature image, where the

spatial extent of each blob defines its support region. Lindeberg notes that this process

is suited mainly to finding potential candidate keypoints as the localisation accuracy

of blobs is poor. Alternate methods for keypoint localisation need to be used at finer

scales for improved accuracy.

In later work Lindeberg considers automatic scale selection for keypoints [136,

137] which has since become the basis for many scale-invariant keypoint detection al-

gorithms [142, 158, 160, 156]. The idea is to select keypoints as local extrema in scale

for some some scale-normalised saliency metric assessed from differential operators.

Scale normalisation is necessary since the magnitude of the gradients computed in a

scale-space image at a large scale will in general be smaller than those computed in

a scale-space image at a small scale. This property is related to the non-enhancement

of local extrema principle. Lindeberg derives then a normalised measure of image

derivatives which are invariant to scale. Consider two images I(x) = I′(x′) where the

coordinates are related by some scale factor s: x′ = sx. The scale space images are

then related by L(x; t) = L′(x′; t ′) where t ′ = s2t. For perfect scale-invariance under a
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rescaling of the image, the nth order spatial derivatives satisfy the constraint

∂xnL(x; t) = sn∂x′nL′(x′; t ′), (3.40)

where σ = s.

A number of keypoint detectors based on this principle were proposed by linde-

berg [136, 137]. The first is used to finding keypoints associated with corner and edge

points using a scale-normalised version of the Kitchen-Rosenfeld metric, a measure of

the rate of change of curvature of a contour line defined by the saliency metric knorm

computed at some scale σ as

knorm = σ2
(
LuuL2

v +LvvL2
u −2LuLvLuv

)
. (3.41)

For each candidate keypoint found as a local extrema in knorm over scale, a secondary

step is used to improve the localisation of the keypoint in scale-space where full details

are given in [136]. The second method is used for detection of keypoints associated

with blob like structures using the scale-normalised Laplacian of Gaussian ∆G to de-

fine the saliency knorm at scale σ as

knorm = σ2 I ∗∆G(·;σ) = σ2 [Luu(·;σ)+Lvv(·;σ)] . (3.42)

For either saliency, the scale at which the extrema occurs is the ‘characteristic’ scale

σ of the keypoint which is used to assign the keypoint support region radius. To il-

lustrate, figure 3.6a shows for two images of the same scene the absolute value of the

scale-normalised Laplacian for each calculated over a range of scales. These two im-

ages have a viewpoint change differing in rotation about the cameras principal axis and

scale change. Figure 3.6b shows, for the same keypoint (i.e. the same scene point) in

the two images, the scale-normalised Laplacian of Gaussian computed at each scale

for this point. The square mark is the interpolated position of the local extrema of the

function in scale which defines the characteristic scale for each keypoint. The circular

support region has been overlaid for each keypoint with a radius r proportional set pro-

portional to the characteristic scales of the keypoints. Observe that although the radii

are different, each support region encloses the same region of the scene. This concept

of automatic scale selection is a powerful tool for wide-baseline keypoint detection and

matching and is the basis for many state of the art algorithms.
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(a) For each image, the left column is the set of scale-space images

and the right column is the scale-normalised Laplacian evaluated at

the same scales as the scale-space images (the absolute values are

shown for illustrative purposes).
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(b) Automatic scale selection for the same keypoint in the two images.

Figure 3.6: Automatic scale-selection using the scale-normalised Laplacian. The char-

acteristic scale is found by searching for local extrema in the scale-normalised Lapla-

cian over scale. The blue square is the interpolated position of the extrema.



3.3. Wide-Baseline Techniques 115

3.3.1.2 Multi-scale Harris, Harris-Laplace, Hessian-Laplace, Harris-Affine and

Hessian-Affine

An approach to matching images with different resolutions (scales) was presented by

Dufournaud, Schmid and Horaud in [64]. They developed a multi-scale Harris key-

point detector which is used to find scale-normalised Harris keypoints independently

in a number of scale-space representations of a high resolution image. These keypoints

are matched to a set of Harris corners found in a low resolution image using a homog-

raphy between images to evaluate the correct correspondences. The scale at which

the greatest number of correct correspondences is found represents the relative scale

(resolution) between the images. A limitation of this method is the inability to index

features, that is, store feature descriptors which may be compared to any other image

at any resolution without having to compute first the relative scale.

Mikolajczyk and Schmid [158] developed the Harris-Laplace keypoint detection al-

gorithm, an extension of the multi-scale Harris detector with automatic scale selection

[136]. The algorithm was initially applied to object recognition and image retrieval,

where the use of automatic scale selection eliminated the need to store a unique set

of keypoints at each level of scale-space. For some input image, they find the scale-

space representation of the image at 17 scales, starting at σ = 1.5 and increasing by a

value of 1.5. They search first for candidate keypoints as being local extrema in the

scale-normalised Harris corner strength above some threshold compared to the near-

est 8 neighbours in the current scale-space image, as illustrated in figure 3.7a. The

scale-normalised Harris corner strength is

C(σL,σ) = det(A(σL,σ))− k× trace(A(σL,σ))2, (3.43)

where A is the auto correlation matrix

A(σL,σ) = σ2G(·;σl)∗
[

L2
u(·;σ) LuLv(·;σ)

LuLv(·;σ) L2
v(·;σ)

]
. (3.44)

The Gaussian G(·;σl) of integral scale σl is used to integrates the values of the auto-

correlation matrix over a small local region surrounding each pixel.

For each candidate keypoint, the scale-normalised Laplacian is used to assess if the

candidate keypoint is a local extrema in scale by comparing it to the same pixel position

in the adjacent scale space images, as shown in figure 3.7b. The scale-normalised

Laplacian is

∆ = σ2(Luu(·;σ)+Lvv(·,σ)). (3.45)
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Figure 3.7: Local extrema for the Harris-Laplace and the Hessian-Laplace algorithms.

Keypoints are found first as local extrema compared to their nearest neighbours in the

current space-image (a). A keypoint is a local extrema in scale if the scale-normalised

Laplacian of the keypoints is a local extrema compared to the scale-normalised Lapla-

cian of the same pixel in the adjacent scale-space images (b).

Assuming the candidate keypoint is a local extrema, the characteristic scale is σ. The

radius of the support region for the keypoint is set proportional to this characteristic

scale. They state that the scale normalised Harris corner measure is used to find the

position of candidate keypoints as it provides high repeatability for 2D localisation in

images subject to image rotations, illumination transformations, and perspective de-

formation. It is not used for automatic scale selection as it rarely attains a maxima

over scales. The Laplacian is more robust for this purpose with respect to the re-

peatability of keypoints found between different images of the same scene. A similar

keypoint detector termed Hessian-Laplace was proposed by Mikolajczyk [157] using

the scale-normalised determinant of Hessian to select candidate keypoints as local ex-

trema above some threshold with respect to the nearest 8 neighbours in the current

scale-space image. Automatic scale-selection is achieved again using the Laplacian of

Gaussian with respect to the same pixel location in the adjacent scales.

A scale and affine invariant version of the Harris-Laplace and Hessian-Laplace al-

gorithms, termed Harris-Affine and Hessian-Affine respectively, were developed by

Mikolajyzck et al [159, 160, 156]. Keypoints are first found using the Harris-Laplace

or Hessian-Laplace keypoint detectors. Affine-invariance is then found using an iter-

ative normalisation of the autocorrelation matrix A first explored and used for scale

and affine invariant keypoint detection by Lindeberg and Garling [138] and later by

Baumberg [16]. The iterative normalisation scheme is analogous to a local search in

affine scale-space (convolution of an image with an elliptical Gaussian having differ-

ent scales in orthogonal directions [133]) for which the ratio of eigenvalues λ1,λ2 of

the computed autocorrelation matrix are unity. The approximate scale and location of

keypoints are found first using the Harris-Laplace or Hessian-Laplace algorithms as a

full search in affine scale-space is not practical with respect to computational expense.
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The ratio of eigenvalues is used as it is an estimate of the anisotropic shape of the

local image function [138], where any anisotropic region is assumed to be an affine

transformed version of an isotropic region [160]. Hence, the search in affine scale-

space finds the affine transform which converts the anisotropic image structure to an

isotropic structure. Unlike the circular support region for scale-invariant methods, the

support regions for the Harris-Affine and Hessian-Affine algorithms are ellipses.

Scale and affine invariant keypoint detection algorithms have also been developed

by Baumberg [16] and Schaffalitzky and Zisserman [201]. Baumberg finds Harris cor-

ners independently in scale space-images and then uses the iterative normalisation of

the autocorrelation matrix to achieve affine invariance. However, this normalisation is

only for the shape of the affine transform and not the scale or position of the keypoint.

The fact that only the shape of the affine transform and not the scale or keypoint loca-

tion are adjusted during this normalisation limits the performance [230], particularly

for large affine deformations where the position of the keypoint can be affected sig-

nificantly as a result of the initial location being found using circular operators [160].

As no automatic scale selection is used the same keypoints can be found in neighbour-

ing scale-space images which has disadvantages during matching [160]. The method

of Schaffalitzky and Zisserman [201] accounts for this by finding keypoints using the

Harris-Laplace algorithm. However, similarly to Baumberg only the shape of the affine

transform is found using the iterative normalisation of the autocorrelation matrix which

limits its performance with respect to keypoint localisation for large affine deforma-

tions. In contrast, the Harris-Affine and Hessian-Affine iterative for the shape and scale

of the affine deformation as well as the position of the keypoint during normalisation

making it more robust for large affine deformations. The Harris-Affine algorithm has

been shown to provide a greater repeatability of keypoints in planar images subject to

viewpoint change than both the method of Baumberg in [159] and Schaffalitzky and

Zisserman in [160].

3.3.1.3 The Scale-Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform (SIFT) was first proposed by Lowe in [143]

and refined in following works by Brown and Lowe [29] with the final algorithm given

in [142]. SIFT has been used for a range of applications including vision-based SLAM

[205], augmented reality [211] and construction of scenes mosaics [28]. Although

SIFT includes both a means of scale-invariant keypoint detection and description, this

section will discuss only the keypoint detection phase.



118 Chapter 3: Keypoint Detection, Description and Matching with Applications to Wide-Angle Images

scale

u

v

Figure 3.8: SIFT selects candidate keypoints as local extrema compared to the 26

nearest pixels in the current and adjacent DoG images.

SIFT uses as a saliency metric difference of Gaussian (DoG) images D(·;σ) ob-

tained by subtracting neighbouring scale space images

D(·;σ) = (G(·;kσ)−G(·;σ))∗ I (3.46)

= L(·;kσ)−L(·;σ) (3.47)

where k is some multiplicative factor. A pixel is selected as a candidate keypoint if it

has an absolute DoG value above some threshold and is a local extrema in the DoG

images compared to the nearest 26 neighbouring pixels in the current and adjacent

scales, as shown in figure 3.8.

Lowe [142] shows that the difference of Gaussian function G(·;kσ)−G(·;σ) is a

close approximation to the scale-normalised Laplacian σ2 ∆G [136, 134] which finds

predominantly significant blob like structures in an image. This approximation was

illustrated by Lowe [142] by writing the heat diffusion equation parameterised by σ =√
t as

∂G

∂σ
= σ∆G (3.48)

which can be approximated from the difference of nearby functions as

∂G

∂σ
≈ G(·;kσ)−G(·;σ)

kσ−σ
(3.49)

at scales kσ and σ. From back substitution Lowe shows that

G(·;kσ)−G(·;σ) ≈ (k−1)σ2∆G, (3.50)

where the approximation error converges to zero as k approaches 1. As the factor

(k− 1) is constant for all scales, Lowe argues that if scale-space images are used for

increasing scales separated by a constant factor k then the approximation will have no

influence on the robustness on keypoint detection. Selecting local extrema in the DoG
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images is therefore similar to selecting local extrema in the scale-normalised Lapla-

cian. This has been validated in experiments of Mikolajczyk and Schmid [158] with

respect to the repeatability of scale-invariant keypoint detection for each respective

method.

For efficient computation of scale-space images, an octave based approach to image

processing is used as illustrated in figure 3.9. An octave is a halving of a scale-space

image which increases the scale σ by a factor of two. The original image is first

doubled in size and pre-smoothed by a Gaussian with standard deviation σ = 1.6.

An octave is a doubling of the standard deviation of the initial convolution 2σ. An

integer number of s = 3 scales per octave is used where k = 21/s. For the purpose of

extrema detection, a total of six scale-space images are found per octave from which

5 difference of Gaussian images are found. The middle 3 are then used for extrema

detection. The third scale-space image from the top is then subsampled by a factor or

two (taking every second pixel in row and column) and is the start image for the next

octave. The number of octaves used is dependent on the size of the original image.

The process is terminated when the size of the images in a given octave falls below

some threshold.

The location and scale of each candidate keypoint is refined using a method of 3D

quadratic interpolation introduced by Brown and Lowe in [29] which they state im-

proves significantly the repeatability of keypoints found between images of the same

scene. The interpolated position is found by finding the position of the extrema of the

second order Taylor expansion of the 3×3×3 DoG function about the candidate key-

point position. To illustrate this process, consider the local 1D difference of Gaussian

(DoG) function D about a pixel at the origin. The approximate DoG function evaluated

at some shift x from the pixel can be estimated from the second order Taylor expansion

D(x) = D+D′x+D′′x2 (3.51)

where D′ = ∂D
∂x

and D′′ = ∂2 D
∂x2 are the first and second order derivatives of D evaluated

at the origin. Setting the derivative of equation 3.51 to zero, the interpolated position x̂

at which the function D is a maxima can be found:

0 = D′ +D′′x̂, x̂ = − D′

D′′ , (3.52)
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Figure 3.9: Octave approach use by SIFT for efficient image processing. SIFT uses

three scales per octave which requires 6 scale-space image to be produced each octave.

Five DoG images can then be found for each octave, and the middle three are used to

select candidate keypoints.

where, using 3.51, the estimated maxima of D evaluated at x̂ is

D(x̂) =D+D′x̂+
1

2
D′′x̂2 (3.53)

=D+D′x̂+
1

2
D′′

(
− D′

D′′

)2

(3.54)

=D+D′x̂− 1

2
D′x̂ (3.55)

=D+
1

2
D′x̂. (3.56)

The second order Taylor expansion of the three dimensional DoG function D about a

candidate keypoint is

D(x) = D+
∂D

∂x

T

x+
1

2
xT ∂2D

∂x2
x, (3.57)
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where x = (x,y, t)T is an offset from the position of the candidate keypoint in scale-

space. ∂D
∂x

and ∂2D
∂x2 are the 3×1 matrix of first order partial derivatives and 3×3 matrix

of second order partial derivatives of the DoG function respectively, both evaluated at

the position and scale of the candidate keypoint. By setting the derivative of equa-

tion 3.57 to zero, the position x̂ of the extrema in scale-space relative to the candidate

keypoint position in scale-space is evaluated as

x̂ = −∂2D

∂x2

−1
∂D

∂x
, (3.58)

and the estimate of D(x̂) is

D(x̂) = D+
1

2

∂D

∂x

T

x̂. (3.59)

This new estimate is then used to test again if the absolute DoG value of the keypoint

is above the required threshold. SIFT uses an iterative scheme for the quadratic inter-

polation of a keypoint. If either of the pixel coordinates of x̂ exceed 0.5, the candidate

keypoint position is shifted accordingly and the process is repeated.

As the DoG images are a close approximation to the scale-normalised Laplacian,

the saliency metric used to select the candidate keypoints considers only the sum of

principal curvatures of the image function. The candidate keypoints can therefore be

found on edges which is not desirable. A means for rejecting keypoints on edges (edge

removal) was presented by Lowe in [142] using the Hessian matrix H of the DoG

function computed at each candidate keypoint position u and scale σ, where

H (u;σ) =

[
Duu(u;σ) Duv(u;σ)

Duv(u;σ) Dvv(u;σ)

]
. (3.60)

The eigenvalues λ1,λ2 of the Hessian matrix are the principal curvatures of the DoG

function evaluated at D(u;σ). Using the property trace(H (u;σ))= λ1+λ2 and det(H (u;σ))=

λ1λ2, SIFT considers that a keypoint is not on an edge if the ratio of the maximum to

minimum eigenvalues are below a threshold r = λ1

λ2
:

trace(H )2

det(H )
=

(λ2 + rλ2)
2

λ2
2r

=
(1+ r)2

r
. (3.61)

A value r = 10 is used where a keypoint is assumed not to be an edge response if

trace(H )2

det(H )
<

(1+ r)2

r
. (3.62)
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(a) Original. (b) Approximate.

Figure 3.10: Box filter approximates of second order derivative of Gaussians Guu and

Guv used by SURF.

Those candidate keypoints that are not edge responses are selected as SIFT keypoints

and are defined by a pixel location and scale σ. The radius of the support region for

each keypoint is set proportional to its scale σ.

3.3.1.4 Speeded up Robust Features (SURF) - ‘Fast Hessian’

A scale-invariant keypoint detection and description algorithm was developed by Bay

et al [19, 17] called Speeded-Up Robust Features (SURF). The keypoint detection stage

discussed here is often referred to as the ‘fast Hessian’ keypoint detector. The saliency

metric used for keypoint detection is based on the Hessian matrix H (u;σ), evaluated

at some pixel position u and scale σ as

H (u;σ) =

[
Luu(u;σ) Luv(u;σ)

Luv(u;σ) Lvv(u;σ)

]
. (3.63)

One way to find the values Lvv(·;σ) would be to convolve the image with the sampled

and cropped second order derivative of Gaussian Gvv(·;σ). The fast Hessian detector

finds approximate estimates for the values of the Hessian matrix using integral im-

ages [235] and box filters. These box filters are approximations of the sampled and

cropped second order derivative of Gaussian functions computed at scale σ as illus-

trated in figure 3.10 for a scale σ = 1.2. Using simple box filters and integral im-

ages allows fast correlation of the image with the box filters to obtain the estimates

of Luu(·;σ),Luv(·;σ) and Lvv(·;σ), denoted by L̃uu(·;σ),L̃uv(·;σ) and L̃vv(·;σ) respec-

tively, whose processing time is independent of the size of the box filters. This elim-

inates the need for the octave based approach of SIFT where the image size is halved

each octave, a process that can limit the accuracy of keypoint localisation at high oc-

taves.

The approximate Hessian matrix Happrox is found at a number of scales, obtained
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at any scale σ as

Happrox(u;σ) =

[
L̃uu(u;σ) L̃uv(u;σ)

L̃uv(u;σ) L̃vv(u;σ)

]
. (3.64)

This is used to find the saliency metric C, referred to as the blob response map, based

on its determinant as

C(·;σ) = L̃uuL̃vv − (wL̃2
uv) ≈ det(Happrox), (3.65)

where w = 0.9 is a weighting factor. As all box filters used are normalised to have equal

Forbenius norm, no scale-normalisation (i.e. multiplication of C by σ2) is required

[19, 17]. A keypoint is selected as a local maxima in C compared to the 26 nearest

pixels in the current and adjacent scales. A Hessian based saliency metric is used as it

was found in [160, 161] to give good repeatability with respect to keypoint detection

in scale-space. The location and scale of each keypoint is then interpolated using the

same 3D quadratic scheme proposed by Brown and Lowe [29] which was used for

SIFT. The keypoint support region is set proportional to the characteristic scale σ. As

a final note, there are two versions of the fast-Hessian keypoint detector; FH-9 which

uses the original sized image, and FH-15 which first doubles the image size. These

numbers denote the width of the box filters used at the lowest scale.

3.3.2 Alternate Approaches

3.3.2.1 Scale-Saliency

A novel scale-invariant keypoint detector developed for target tracking and recognition

was presented by Kadir and Brady in [113] and the dissertation of Kadir [112]. Their

method, referred to here as scale-saliency, was inspired by the work of Gilles [88] who

suggested that the complexity of the local image content within the neighbourhood of

a pixel could be used as a measure of its saliency. Gilles used as a quantitative measure

of the complexity of this region the Shannon entropy of the probability distribution

function (PDF) of greyscale intensity values. A region with high complexity has a

near uniform PDF with high entropy and is therefore assigned a large saliency value.

This idea was extended to scale-invariant keypoint detection by Kadir and Brady.

The scale-saliency algorithm operates as follows. For each pixel in the image at

some position u = (u,v)T , a series of PDF’s of the greyscale intensity values within

circular regions of scale s surrounding the pixel are found, where s is the diameter of

the region with values in the range 7-43 pixels. The PDF’s have descriptor (bin) values
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Figure 3.11: Automatic scale-selection for the scale-saliency keypoint detector. The

PDF’s of the greyscale intensity values surrounding a pixel within circular regions

of scale (diameter) s are found. The entropy of the PDF’s is then obtained, and a

characteristic scale found as an extrema of the entropy function over scale.

D, and pD(s,u) is the PDF value at some scale s for a descriptor value D. The entropy

E is measured from the PDF at each scale s as

E(s,u) ,

Z

i∈D
pD(s,u) log2 pD(s,u).di. (3.66)

A type of automatic scale-selection is used which finds a vector of scales S for which

the entropy E is a local maxima over scale:

S ,

{
s :

∂2E(s,u)

∂s2
< 0

}
, (3.67)

as illustrated in figure 3.11. If S is not empty, then the pixel is assigned a saliency value

Y (S,u) ∈ R3 (scale and image space) defined as

Y (S,u) , E(S,u)×W (S,u) (3.68)

where W (S,u) is a weighing function which measures the dissimilarity of pD(s,u)

over scale:

W (s,u) , s.
Z

i∈D

∣∣∣∣
∂

∂s
p(s,u)

∣∣∣∣ .di, (3.69)

where s is an element of the vector S. The final set of keypoints are found by thresh-

olding and clustering the sparse population of saliency values Y in scale-space. A

scale and affine invariant version of this algorithm was developed later by Kadir and

Brady in [114] which uses elliptical support regions parameterised by scale, rotation

and aspect ratio.
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Figure 3.12: Geometry based method. A parallelogram is used to enclose an affine in-

variant region based on the greyscale intensity function along line segments originating

from corner points.

3.3.2.2 Tuytelaars and Van Gool

Two scale and affine invariant feature detectors have been proposed by Tuytelaars and

Van Gool [230], both of which may be used together in an opportunistic way to in-

crease the number of keypoints detected and matched between images. The first is

the geometry-based method first described in [228], and the second the intensity-based

method first described in [229].

The geometry-based method detects in an image Harris corner points and edges

using the Canny edge detector [36]. The Harris corners are consider to be ‘anchor

points’. For a Harris corner p = (u,v)T detected on or near an edge, let p1 and p2

be two points moving away from the corner point in different directions along the

edge. The two vectors p1 − p and p2 − p define a region in the image enclosed by

a parallelogram with corners p,p1,p2,q and centre of gravity pg, as shown in figure

3.12. The position of the points p1 and p2 are selected over some fixed interval by

searching for the minima of several functions for which the centre of gravity is close

to, or cooincident with, the diagonals of the parallelogram — there are some variations

in this process dependent on the edge being straight or curved. The final parallelogram

defines a scale and affine invariant region in the image. Unlike most wide-baseline

keypoint detection algorithms discussed, the geometry-based method uses edges which

have also been used for alternate wide-baseline keypoint detection algorithms by Bay

et al [18] and Goedeme et al [90].

A potential limitation of the geometry-based method is the fact that the Harris cor-

ners and Canny edges are detected at a single scale. If there is a large scale change

between images there is no guarantee that the same corner points and edges would be

found. This may limit the overall ability to find keypoint correspondences between im-

ages. Tuytelaars and Van Gool note that the ability to find the same edges in particular
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Rays

Final Ellipse

Fitted Ellipse

Figure 3.13: The intensity-based algorithm finds the point on each ray originating from

an anchor point for which fI(t) in 3.70 is a maxima. These points are then connected

and an ellipse is fitted. This ellipse if then doubled in size, and this final ellipse defines

the support region for the keypoint.

is the greatest source of error [230]. Furthermore, the use of the Harris corner detector

in general finds keypoints near depth discontinuities in the scene [230].

The intensity-based algorithm is designed for keypoint detection on planar surfaces

and does not require the detection of Harris corners or edges. It selects as anchor points

local extrema of the greyscale image function which they claim occur predominantly

on planar surfaces. They extend rays from the anchor point and assess the intensity

function fI(t) along each ray:

fI(t) =
abs(I(t)− I0)

max
(

R t
0 abs(I(t)−I0)dt

t
,d

) , (3.70)

where t is the Euclidean arc-length along the ray, I(t) the intensity at position t, I0 the

intensity extrema and d a small number used to prevent division by zero. A scale and

affine invariant region for the keypoint is found by connecting the points along each

ray at the distance t for which the function fI(t) is a maxima. This maxima typically

occurs when there is a large variation in the intensity function along a ray. An ellipse

is then fitted to this region using moments and doubled in size, as illustrated in figure

3.13. The intensity function within this ellipse is then used to produce a descriptor

for the keypoint. They note that the intensity-based method is not able to localise the

position of the anchor points as accurately as the geometry-based method which uses

Harris corners capable of subpixel accuracy. However, they found that inaccuracies in

the anchor point positions has little effect on the shapes of the final ellipses.
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(a) Input image (640×480). (b) Two MSER’s detected in the image.

Figure 3.14: Example of two MSER keypoints detected in the image on the left. The

position of each keypoint is marked with a cross. The ellipses are the scale and affine

invariant support regions of the keypoints.

3.3.2.3 Maximally Stable Extremal Regions (MSER’s)

Matas et al [151] proposed a means for scale and affine invariant keypoint detection.

They define keypoints as Maximally Stable Extremal Regions (MSER’s), which are

regions in the image that remain connected over a margin (range) of greyscale intensity

thresholds. The effect of thresholding the greyscale intensity values of an image was

illustrated previously in figure 3.5 (pg. 112). As the greyscale intensity threshold is

reduced blobs appear in the image. MSER’s are blobs which remain stable with respect

to shape and size over a margin of thresholds and can be very small or large regions

in the image. As the threshold is varied from high to low the blobs are light regions

in the image (MSER+), and as the threshold is varied from low to high the blobs are

dark regions in the image (MSER-). A convex hull (ellipse) is fitted to each MSER

which defines the scale and affine invariant support region for the keypoint whose

position is located at the centroid of the ellipse. Although the original MSER algorithm

was designed for use with greyscale images, the concept has been extended to MSER

detection in colour images using each of the red, green and blue colour channels by

Forssén [75].

3.3.3 Keypoint Descriptors

A keypoint descriptor encodes the local image content within a keypoint’s support re-

gion. They are used to assess similarity between keypoints in different images which

is used to find correspondences via matching. Descriptors are also used for many

visual place recognition algorithms which will be discussed in chapter 5. Although
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some descriptors use colour information [230, 21, 167, 187], they most frequently use

information derived from the greyscale image function. Distribution based descrip-

tors operating on greyscale images are used extensively for both scale and scale and

affine invariant keypoint description. They describe the local image content using his-

tograms, popular choices being the SIFT descriptor of Lowe [142], Gradient Location

Orientated Histogram (GLOH) of Mikolajczyk and Schmid [126] and the SURF de-

scriptor of Bay et al [17], each detailed in this section. The popularity of these methods

is well founded due to their performance in comparative works.

SIFT was found to perform best in the comparison in [155] with respect to a range

of greyscale descriptors including steerable filters, differential invariants, moments,

complex filters and cross correlation. These descriptors were generated using a vari-

ety of keypoints (Harris, Harris-Laplace, DoG, Harris-Affine) for viewpoint changes

between planar images subject to changes in image rotation, scale, affine transforms

and illumination changes. The performance metric used was Receiver Operator Char-

acteristics (ROC), a measure of the detection rate of correct keypoint correspondences

versus false detection rate for varying thresholds on the distance between descriptors

(Euclidean for SIFT, Mahalanobis distance for the rest). The ROC statistics were found

by comparing an image to all others in a database. Correct correspondences were found

between different images based on the position and shape of the keypoint support re-

gions and the known homography between the images.

A more extensive comparison was made in [161] with additional descriptors in-

cluding PCA-SIFT [120] shape context and spin-images — a brief summary of each

can be found in [161]. The GLOH descriptor developed in [161] was also compared

to the others. Recall vs 1-precision statistics were used to assess the performance of

each descriptor with respect to their ability to match correctly keypoints between im-

ages detected using a range of algorithms including Harris-Affine and Hessian-Affine.

Recall is the ratio of the number of correct correspondences versus the total number

of correct correspondences for changing threshold on descriptor similarity. The metric

1-precision is the ratio of the number of false correspondences versus the number of

total correspondences. They used again planar scenes and different image transforma-

tions including changes in scale, rotation, viewpoint, image blur, JPEG compression

and illumination. The same method used in [155] was used to validate correct cor-

respondences. GLOH was found to give the best performance followed closely by

SIFT.

Although similar detailed comparisons have not been made with SURF descriptors,

Bay et al [17] reported improvements over SIFT and GLOH descriptors evaluated for
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SURF keypoints using a subset of the dataset and same experimental procedure of

Mikolajczyk et al in [161].

Before discussing the details of SIFT, GLOH and SURF, each could be applied to

any scale or scale and affine invariant keypoint. The size and shape of this support

region is dependent on the keypoint detection algorithm used. The support region for

scale-invariant keypoints such as SIFT and SURF is a circle whose size is set pro-

portional to the characteristic scale σ of the keypoint. For scale and affine-invariant

keypoints such as Harris-Laplace, Hessian-Laplace, and MSER, the support region is

an ellipse. For the scale and affine invariant keypoints the local image content within

the support region is typically mapped to a fixed sized patch by an affine transform,

as illustrated in figure 3.15a for two MSER keypoints. Although the conversion to a

fixed sized patch is not always required when computing descriptors for some scale-

invariant keypoints, this step is sometimes used. When this is the case, the mapping to

the fixed sized patch is a simple rescaling of the local image content as shown in figure

3.15b for two SIFT keypoints. A fixed sized patch of size 41×41 pixels is frequently

used [120, 155, 161].

3.3.3.1 SIFT descriptor

As discussed, SIFT includes a means for scale-invariant keypoint detection and de-

scription. For a SIFT keypoint detected in the DoG image D(·;σ), the gradient mag-

nitude m and orientation θ are calculated at any given pixel location u = (u,v)T in the

scale space image L(·;σ) as

m(u,v) =
√

(L(u+1,v)−L(u−1,v))2 +(L(u,v+1)−L(u,v−1))2, (3.71)

θ(u,v) = arctan

(
L(u,v+1)−L(u,v−1)

L(u+1,v)−L(u−1,v)

)
. (3.72)

A gradient orientation histogram is then constructed which contains 36 bins with an-

gles spanning 360 degrees. Each pixel within the local region surrounding the keypoint

contributes to the histogram, where each sample is weighted by its gradient magnitude

and distance from the keypoint by a Gaussian function with standard deviation equal to

1.5 times the characteristic scale σ of the keypoint. The peak of the histogram defines

the keypoint orientation which is used to make the descriptor rotationally invariant. A

keypoint can have multiple orientations if any other non-adjacent peaks are within 80

percent of the maxima. If this occurs a separate descriptor is obtained for each ori-

entation. A parabolic interpolation of the orientation histogram is used to counterfeit
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(a) MSER keypoints (scale and affine-invariant).
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(b) SIFT keypoints (scale-invariant).

Figure 3.15: The local image content within a keypoint’s support region is frequently

mapped to a fixed sized patch from which the keypoint’s descriptor is evaluated. For

scale and affine invariant keypoints such as MSER (a), this mapping is an affine trans-

form. For scale invariant keypoint such as SIFT (b), it is a rescaling.

quantisation errors in the estimate of the keypoint orientations(s).

A SIFT descriptor is found for each keypoint orientation using the procedure il-

lustrated in figure 3.16. The local region surrounding a keypoint is divided up into a

4x4 array of cells centred at the position of the keypoint and aligned with the keypoint

orientation. A gradient orientation histogram is found for each cell in the array, each

histogram having 8 bins spanning angles from 0 to 360 degrees. Each pixel contributes

as a sample value its gradient magnitude weighted by its distance from the keypoint

by a Gaussian with standard deviation set proportional to the characteristic scale of the

keypoint — the gradient orientation is found with respect to the keypoint orientation.

Each sample contributes to the histograms in the nearest 4 cells using a linear inter-
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Figure 3.16: The general procedure used to evaluate a SIFT descriptor. The local

region within a keypoint’s support region is divided up into a 4× 4 index cell array

aligned with orientation of the keypoint (black arrow). An 8 bin gradient orientation

histogram is found in each cell (right figure) from the gradient magnitudes and orienta-

tions (red arrows in middle figure) computed for each pixel within the support region.

The 128 element SIFT descriptor is the concatenation of the histograms in each cell.

polation to improve robustness to errors in keypoint scale and location and projective

variations in the local image content. Each sample added to a histogram is also linearly

interpolated to reduce quantisation errors. Concatenating the 4x4 array of 8 element

histograms yields the 128 element SIFT descriptor. To account for affine illumina-

tion variations, the descriptor is normalised to unit length. These illumination changes

affect all pixels uniformly so normalisation to unit length accounts for this constant

multiplication of the gradients as they are found from pixel differences. Non-uniform

illumination is more problematic and can cause saturation. In an attempt to account

for this, after the first normalisation any elements with values greater than 0.2 (empir-

ical) are set to 0.2 and the vector re-normalised to unit length. The SIFT descriptor

can also be computed for a keypoint mapped to a fixed sized patch. In such a case,

the width of the cells and the standard deviation of the Gaussian functions used for

distance weighting are set relative to the size of the fixed sized patch.

3.3.3.2 Gradient Location-Orientation Histogram (GLOH)

Mikalajczyk and Schmid [161] proposed a modified SIFT descriptor using a log-polar

index bin array as shown in figure 3.17. Their descriptor is called GLOH, and acronym

for Gradient Location-Orientation Histogram which they have used for keypoint de-

scription with Hessian-Affine and Harris-Affine keypoints, converting first the local

support region to a fixed sized 41x41 patch — see for example figure 3.15a. The log-

polar array is dived into 17 index cells using radii of 6,11, and 15 pixels and 8 uniform

orientations (the middle cell is not divided). This log-polar array is then orientated with
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(a) SIFT Cartesian index

cell array.

(b) GLOH log-polar index

cell array.

Figure 3.17: In contrast to SIFT which uses a Cartesian index cell array, GLOH uses a

log-polar index cell array.

respect to the keypoint orientation which is found using the same method as SIFT. A

gradient orientation histogram is found in each cell using the same method as SIFT,

however, GLOH uses 16 orientation bins for each histogram. Concatenating all of the

16 bin histograms in each of the 17 cells gives a 272 bin histogram. The size of this

histogram is reduced using principal component analysis where the covariance matrix

is learned offline using training images. The 128 eigenvectors corresponding to the

128 largest eigenvalues of the covariance matrix are selected as the patch eigenspace.

Projecting the 272 bin histogram onto the patch eigenspace produces the 128 element

GLOH descriptor, which is the same length as the SIFT descriptor. Although GLOH

was found to perform better than SIFT in [161], dimensionality reduction using PCA

adds increased computational expense.

3.3.3.3 SURF descriptor

As is the case for SIFT, SURF includes both a method of keypoint detection and

description [19, 17]. The SURF descriptor shares similarities with both the SIFT

and GLOH descriptors as it is based on the distribution of intensity change within

a keypoint’s support region. However, SURF uses the distributions of first order Haar

wavelet responses rather that gradients as they are efficient to compute using the same

integral images used during SURF keypoint detection. Figure 3.18 illustrates two Haar

wavelets used to compute a response du and dv in the u,v coordinates respectively.

The SURF descriptor finds first an orientation for a keypoint having some charac-

teristic scale σ. The first order Haar wavelet responses du,dv are found within the 6σ

region surrounding the keypoint at sample points on a Cartesian grid spaced σ apart.

The size of the Haar wavelet is 4σ. These responses du,dv are then weighted with

a sampled Gaussian, centred at the keypoint position, with standard deviation 2σ. A
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Figure 3.18: First order Haar wavelets used to compute a response du (left) and dv

(right) in orthogonal directions.

sliding circular window is rotated about the keypoint position with an angular range

of π/3 radians. The sum of responses du,dv within the window at any position defines

an orientation vector. The keypoint orientation is determined by the longest of these

vectors.

Given the keypoint orientation, an equally space 4x4 cell index array (figure 3.17a)

centred at the keypoint position is constructed and aligned with the keypoint orien-

tation. The outermost square of this cell array has width 20σ. The Haar wavelet

responses dx and dy relative to the keypoint orientation are then found at 5x5 equally

spaced sample points on a Cartesian grid in each of the cells using first order Haar

wavelets of width 2σ. These responses are then weighted based on their distance from

the keypoint with a sampled Gaussian of standard deviation 3.3σ. A 4 element vector

v for each cell is found as

v = [Σdu,Σdv,Σ |du|,Σ |dv|] (3.73)

where |du| and |dv| are the absolute values of du and dv respectively. Concatenating the

vectors for all cells produces the 64 element SURF descriptor which is normalised to

a unit vector for invariance to image contrast.

An alternate version of the SURF descriptor was also considered in the same

work [17]. By finding the summations of the responses du and |du| separately for

dv < 0 and dv ≥ 0, and the summations of dv and |dv| separately for du < 0 and du ≥ 0,

an 8 element vector for each cell is found. The resulting SURF descriptor is then 128

elements in length. The standard SURF descriptor is frequently referred to as SURF-

64, and the extended version just described SURF-128. Although they observed in

comparisons SURF-128 to be more distinctive, its increased length adds to compu-

tation time during keypoint matching. As part of their matching scheme, they index

keypoints based on the sign of the Laplacian. A keypoint can only be matched to

another if they have equal signed Laplacians — this relates to the non-enhancement

of Local extrema principle in scale-space theory [134]. This indexing improves both

matching speed and robustness to false positives [17].
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3.3.4 Keypoint Matching

Keypoint matching is the process by which corresponding keypoints in different im-

ages are found. A keypoint is matched to another if their descriptors are sufficiently

similar. Let a and b be any two n element column vector descriptors. A popular simi-

larity score is the Euclidean distance d between descriptors

d =

√
n

∑
i=1

(ai −bi)2, (3.74)

although other similarity metrics based on Chi-squared (χ2) statistics, Kullback-Liebler

divergence and cosine angle between vectors can be used. Only corresponding entries

in each vector are compared using each of these similarity metrics.

For histogram based descriptors there can be sources of errors due to quantisation

of the bins. Similarity measures such as Earth Movers Distance (EMD) [197] and

diffusion distance [139] consider inter bin correlations. EMD treats each element of

the descriptor as a pile of dirt, the amount of dirt being proportional to the descriptor

value. EMD defines the dissimilarity of two descriptors as the energy required to move

the piles of dirt in one descriptor to resemble exactly the other, where the energy is the

product of the amount of dirt moved by the distance. The diffusion distance proposed

by Ling and Okada [139] has improved computation efficiency compared to EMD. It

defines first the difference between the descriptors d0 = a−b as an isolated heat field

at time t = 0. The dissimilarity of descriptors is the integral

d =
Z t̂

0
(dt)L1 dt, (3.75)

where (dt)L1 is the L1 norm of the diffused heat field d at time t. However, EMD

and diffusion distance are not ideally suited for descriptors such as SIFT, which is the

concatenations of several histograms, as the dissimilarity measure would be dependent

on the order in which the histograms in each cell are concatenated.

The elements of some descriptor are different measurable properties of the infor-

mation content within a keypoint’s support region. Each element of the SIFT descriptor

for example is the same measurable property (i.e. the first order gradient magnitudes).

A descriptor using steerable filters for example could contain information including the

first, second and higher order greyscale intensity gradients. In such cases the Maha-

lanobis distance is a more suitable metric compared to Euclidean distance for example.

Assuming that the covariance matrix Σ of descriptor values has been learned offline,
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the Mahalanobis distance is

d =
√

(a−b)T Σ−1 (a−b). (3.76)

Irrespective of the distance measure used, some threshold needs to be used to de-

cide if a corresponding keypoint has been found. Thresholding Euclidean distance for

example becomes problematic in the case where the scene contains repeatable patterns.

Keypoints may be found on the upper left corner of all windows given an image of a

building for example, where the appearance of the local region, and hence the descrip-

tor, for each keypoint is very similar. A keypoint in one image can therefore be very

similar to many others in another image, and this makes it difficult to determine with

a high degree of certainty if a correct keypoint correspondence has been found. An

approach that has become popular is to use an ambiguity metric to measure keypoint

similarity. For a keypoint in one image, the nearest two keypoints in the other im-

age are found based on the Euclidean distances between their descriptors, where the

nearest of these is taken to be the potential keypoint correspondence. The ambiguity

(dissimilarity) of this potentially corresponding pair of keypoints is the ratio of small-

est to largest of these two distances. This approach has been used by Baumberg [16],

who state that in their experience, the ambiguity of a match is more important than the

matching strength based solely on the original similarity measure (e.g. Euclidean dis-

tance) for the purposes of finding sparse optical flow used for egomotion estimation.

The use of the ambiguity metric based on Euclidean distance has also been suggested

by Lowe [142] as the ideal approach when using SIFT keypoints and descriptors, and

by Bay et al [19, 17] when using SURF keypoints and descriptors. Additionally, a mu-

tual consistency check can also be used to improve the robustness of matching [181],

whereby a keypoint match is accepted only if keypoint 1 is most similar to keypoint 2

in the other image compared to all others and vice-versa.

Keypoint correspondences found between two different images can be used to es-

timate the epipolar geometry between the views from which camera egomotion and

the position of scene points can be recovered. Although a more detailed discussion re-

garding epipolar geometry is reserved for chapter 5, it is described by the fundamental

matrix F for uncalibrated cameras, and the essential matrix E for calibrated cameras.

The accuracy of the estimates of F and E are affected by the presence of incorrect

correspondences. To obtain an accurate estimate for F or E in the presence of outliers,

RANSAC (RANdom SAmple Consensus) [70] is typically used. A random set of

correspondences is selected and F or E estimated — the number of correspondences

selected is the minimum number required to estimate F of E. The remaining set of
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correspondences which agree with the estimate F or E are then found. A new estimate

for F or E is then estimated and the process iterated. Figure 3.19a illustrates, for a set

of initial correspondences, those found to be correct (blue) and those found to be in-

correct (red) using RANSAC and epipolar constraints. The reason for discussing here

epipolar constraints is the fact that it can be used for guided matching. With respect to

figure 3.19b, the fundamental matrix F found defines a mapping for each point in the

first perspective image to an epipolar line in the second perspective image. Each point

in image 2 maps also to an epipolar line in image 1. After an estimate of the epipolar

geometry between views has been found, a guided matching process can be used. For

a keypoint in image 1, only those keypoints in the second image within the vicinity of

its epipolar line in the second image would be considered as potential candidates.

(a) Correct (blue) and incorrect (red) corre-

spondences.

(b) Epipolar constraints. Each keypoint in

image 1 is constrained to lie on its epipolar

line in the second image.

Figure 3.19: The epipolar geometry between views can be used for guided matching.

A keypoint in image 1 is constrained to lie on its corresponding epipolar line in the

second image. For a keypoint in image 1, only those keypoint in the second image

near its epipolar line in the second image would be considered as potential candidates.

3.3.5 Suitability for vision-based localisation

From the range of wide-baseline keypoint detection, description and matching algo-

rithms discussed, it is of interest to identify those most suited for vision based local-
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isation applications. This section reviews a number of comparative works that have

compared primarily the relative performance of keypoint detection algorithms.

Mikolajczyk et al compared a number of wide-baseline keypoint detection algo-

rithms in [160]. They used as a performance metric the repeatability score between

image pairs introduced in [203] for image pairs subject to changes in zoom (scale

and rotation), viewpoint, illumination and jpeg compression. The repeatability score

is defined as the ratio of the number of correct correspondences and the minimum

of the number of keypoints detected in the images. Images of either planar scenes

or 3D scenes with fixed camera position were used such that all image pairs were

related by a homography. Using a homography allowed the position and support re-

gion of a keypoint in image 1 to be transferred to the second image — both keypoints

are in the same frame of reference. A correspondence was considered correct if, in

the same frame of reference, the Euclidean distance between keypoint positions was

within a specified tolerance and the overlap of keypoint support regions was within

some threshold. A number of scale invariant detectors were compared, including the

automatic scale selection methods of Lindeberg [136, 137] using the scale-normalised

Laplacian and Hessian, difference of Gaussian (DoG) proposed by Lowe [143]2, and

the Harris-Laplace algorithm. Additionally, the scale and affine invariant Harris-Affine

algorithm was also used. For images subject to change in scale and rotation, overall all

the scale-invariant algorithms outperformed the Harris-Affine keypoint detector, with

Harris-Laplace having the best performance followed closely by Hessian. The Lapla-

cian and DoG algorithms were found to provide similar performance. This is expected

as expected as the DoG function is an approximation of the Laplacian of Gaussian

function. Both the Laplacian and DoG algorithms include no means for edge removal

which limits their performance with respect to Hessian-Laplace for example. They at-

tributed the relatively poor performance of Harris-Affine to the fact that it is designed

to handle complex image transformations. In contrast, the scale-invariant algorithms

are designed specifically to handle scale change only. For the case of large viewpoint

change, Harris-Affine and Harris-Laplace were found to have a similar performance

for viewpoint changes up to 40 degrees. In excess of 40 degrees the performance of

Harris-Laplace degraded much more significantly than Harris-Affine.

A comparison of scale and affine invariant keypoint detectors is given by Miko-

lajczyk et al in [156]. They used a similar experimental procedure to that in [160],

measuring performance based on the repeatability of keypoints between planar or 3D

2This is the original version of Lowe, using simply the Difference of Gaussian images for keypoint

detection in scale-space without keypoint interpolation or edge removal. A pyramid structure is used for

efficient computation and not the octave based approach used in [142].
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scenes related by a homography. A keypoint correspondence is considered correct if

the overlap between the regions in the same frame of reference is within some thresh-

old. Results were obtained for image transformations including changes in viewpoint,

scale, blur, jpeg compression and illumination. The scale and affine invariant key-

point detectors compared were Harris-Affine, Hessian-Affine, the geometry-based and

intensity-based methods of Tuytelaars and van Gool, MSER, and the affine scale-

saliency method of Kadir and Brady. Overall, for many of the image sequences and

transformations MSER was found to provide the best performance (with the exception

of image blur) with affine scale-saliency ranking consistently low. However, with re-

spect to the number of absolute correct correspondences between views, MSER was

found to perform relatively poorly to many of the others. In contrast, Harris-Affine

and Hessian-Affine ranked consistently high in performance and were able to find

many more overall correct correspondences between views than MSER which is of

benefit with respect to visual odometry applications. As a final note, as the change in

viewpoint between images was increased, the performance of all keypoint detectors

degraded at similar rates.

The comparisons of Mikolajczyk et al in [160, 156] use planar scenes and im-

age pairs related by a homography. Fraundorfer and Bischop compare the relative

performance of a number of wide-baseline keypoint detection algorithms using more

complex non-planar scenes in [78]. As the images used were not related by a ho-

mography, they used as ground truth viewpoint constraints derived from image triplets

(trifocal tensor). The same repeatability metric used in [160, 156] was used, where

correct keypoint correspondences were identified based on the Euclidean distance be-

tween keypoint positions in the image plane and the overlap between keypoint support

regions in the image plane (this requires transferring the positions and support regions

of keypoints in one image to the other). The keypoint detectors compared included the

standard Harris detector, MSER, DoG (version in [143]), Harris-Affine and Hessian-

Affine. The first test used two sequences of images with viewpoint changes ranging

from 0 to 90 degrees. The first sequence used predominantly planar objects (boxes

on a turntable) and the second a complex scene (room). MSER was observed to give

superior perform to other scale and affine invariant algorithms such as Harris-Laplace

and Harris-Affine with the box sequence, although Harris-Affine and Hessian-Affine

found many more correspondences. For the complex room sequence, the relative per-

formance of MSER, Harris-Affine and Hessian Affine were similar with respect to

repeatability. MSER found fewer correspondences again which supports the observa-

tions in [156]. The second experiments used larger sequences of images subject to

arbitrary viewpoint change. MSER was observed to be superior to Harris-Affine and
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Harris-Laplace which differs from the observations made in [156] and suggest there

may be some bias using predominantly planar scenes related by a homography.

It is of benefit here to summarise the comparisons discussed. There are two dis-

tinctive wide-baseline keypoint detection methods; those which are scale-invariant, and

those which are scale and affine invariant. Of the scale and affine invariant methods

evaluated in [156, 78], MSER, Hessian-Laplace and Harris-Laplace ranked consis-

tently well. Although MSER appears to be the most robust with respect to keypoint

repeatability, an observation most evident in the comparison in [78], it is unable to find

as many correct correspondences between views as Harris-Affine and Hessian-Affine.

This is a disadvantage with respect to visual odometry applications were it is important

to obtain a sufficiently large number of correspondences for accurate egomotion esti-

mation. The relative results between the scale invariant and Harris-Laplace algorithm

in [160] is of interest here. They observed that in general the scale invariant algorithms

gave improved performance over Harris-Laplace for viewpoint changes less than 40

degrees. Even for wide-baseline visual odometry the viewpoint change between im-

ages is highly unlikely to exceed 40 degrees. Furthermore, the results for viewpoint

change used images of planar scenes, and the scale and affine-invariant keypoint detec-

tion algorithms are designed specifically for this. Fraundorfer [78] for example found

differing results for predominantly planar versus 3D scenes.

Moreels and Perona [169] also observed that the performance of scale and affine-

invariant keypoint detectors such as Harris-Affine and Hessian-Affine (both coupled

with various descriptors) deteriorated quickly for viewpoint changes in excess of 30

degrees for keypoint matching in 3D scenes from image databases. They used two per-

formance criteria, both evaluated with respect to matching of keypoints in one image

to a database of keypoints found in many other images. The first was the stability rate

of a keypoint versus viewpoint change, where the stability is the fraction of keypoints

in an image successfully matched. The second was Receiver Operating Characteris-

tics (ROC), using as ground truth the epipolar geometry between triplets of calibrated

images. In both cases, the similarity metric used during matching was the ambiguity

ratio of Euclidean and Mahalanobis distances. As noted by Lowe [142], one limitation

of the scale and affine-invariant methods is the fact that they are not truly affine invari-

ant. Harris-Affine for example selects the approximate scale and position of a keypoint

in a non-affine manner using Harris-Laplace and then searches locally in affine-scale

space. Lowe also argues that the affine frames used during detection are more sensi-

tive to image noise which limits their repeatability with respect to the scale-invariant

algorithms. This is evident in the results of Mikolajczyk et al in [160] where Harris-

Laplace gave improved performance compared to Harris-Affine for viewpoint changes
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less than 40 degrees. The scale-invariant methods can therefore be considered then as

suitable choices for general use.

Unfortunately, the comparison of scale-invariant keypoint detectors in [160] does

not include the SIFT detector or Fast-Hessian detector used by SURF. A difference

of Gaussian (DoG) method is compared, but does not include the keypoint interpo-

lation or edge removal schemes used by SIFT in [142]. A comparison of the SIFT

and Fast Hessian (FH-9 and FH-15) keypoint detectors as well as Harris-Laplace and

Hessian-Laplace is presented by Bay et al in [17]. The same experimental methodol-

ogy, repeatability measure and image sequences used in [160] were used. For change

in image viewpoint, FH-15 was found to show some improvements over the other

methods for one of the two the image sequences used. For changes in both image scale

and blur, FH-15 in general outperformed the other keypoint detectors. For changes in

viewpoint and scale between images, FH-9, SIFT and Hessian-Laplace gave compa-

rable performance. Harris-Laplace was observed to perform poorly compared to the

others for all image transformations (viewpoint, scale and blur). In the same work the

accuracy of keypoint localisation for each of the detectors were also compared with

respect to calibration and 3D scene reconstruction. The relative rankings were FH-

15,FH-9, SIFT, Harris-Laplace and Hessian-Laplace. This results can be explained by

the fact that, unlike the other detectors, fast Hessian and SIFT both interpolate the po-

sition and scale of keypoints. SIFT uses an octave based approach to image processing

which limits the accuracy of interpolation for keypoints detected at high octaves. Fast

Hessian on the other hand does not suffer from this problem.

The full versions of SIFT and SURF both include a method of keypoint detection

and description, and a relative comparison of these full versions was presented by

Bauer et al in [15]. Although several implementations of SIFT were used, the results

discussed here refer to the binary version of Lowe [142]3. Two versions of SURF

were used, one using the original sized images (SURF) and the other using the double

sized images (SURF-d). They compared the performance with respect to the total

number and ratio of correct correspondences found between image pairs using the

Euclidean distance between descriptors for matching. These image pairs were taken

from a small sequences of images in outdoors scenes subject to changes in rotation,

scale, image noise, lighting and viewpoint. Overall, SIFT was found to give slightly

better performance compared to both SURF and SURF-d with respect to the ratio of

correct correspondences and the total number of correct correspondences. However,

the authors consider both version of SURF to be superior to SIFT as they they have

3Available http://people.cs.ubc.ca/˜lowe/keypoints/



3.3. Wide-Baseline Techniques 141

φ

θ

φ

θ

Figure 3.20: A wide-angle catadioptric image converted to a log-polar panoramic im-

age. θ is an angle of colatitude and φ and angle of longitude (see figure 2.4, pg. 36).

considerably better runtime efficiency. They argue that this is an acceptable tradeoff

for a reduction in both the ratio and number of correct correspondences compared to

SIFT.

The relative performance of the full versions of SIFT and SURF was also com-

pared by Valgren and Achim in [233]. The experiments used 7 wide-angle catadioptric

image sequences taken in a university campus at different periods of the year. Each

image was first converted to a log-polar panoramic image, as illustrated in figure 3.20.

SIFT and SURF keypoints and descriptors were then found in each of the log-polar

panoramic images. The 64 element and 128 element SURF descriptors were found for

each of the SURF keypoints (SURF-64 and SURF-128). In the first experiments, one

of the sequences was taken as the reference sequence. Then for each image in all the

sequences, the most similar image in the reference sequences was found, the most sim-

ilar image being that with the maximum number of keypoint correspondences found

using the Euclidean ambiguity metric for the descriptors and the matching thresholds

recommended for SIFT by Lowe [142] and for SURF by Bay et al [17]. By using the

odometry logged for each sequence to validate if a correct image had been retrieved,

SURF-128 was shown overall to provide the best performance followed by SIFT. The

second experiment selected, in each sequence, images taken at the same location but

different viewpoints. The relative performance was judged based on the ratio of correct

correspondences and total number of correspondences found. SURF-128 was found

again to give the best performance, followed by SURF-64. However, when compared

to SURF-128 and SURF-64, SIFT was in general able to find at least twice as many

correct correspondences.

Without giving an exhaustive discussion of all the comparisons of the full versions

of SIFT and SURF presented in the literature, the general consensus is that both give

similar performance in many applications with respect to metrics such as repeatability

of keypoints, recall versus 1-precision and database image retrieval [17, 15, 233, 172].

SIFT in general detects more keypoints in an image which allows more correspon-
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dences to be found between image pairs. This is an advantage for visual odometry and

structure from motion applications as the accuracy of each in general improves with

the number of correspondences used. However, SURF has a distinct advantage with

respect to computation time. Although there is no way to answer exactly which is the

best, any of the scale-invariant methods based on the scale-space framework can detect

and match keypoints between images separated by a wide-baseline change in pose (i.e.

Harris-Laplace, Hessian-Laplace, SIFT and SURF). With respect to descriptors, the

selection is dependent to some extent on the keypoint detector used. Bay et al [17] for

example found the relative ranking of descriptors for SURF keypoints in their exper-

iments to be SURF, SIFT then GLOH. This contradicts the results of Mikolajczyk et

al [161] who found in their experiments the GLOH descriptor to outperform the SIFT

descriptor using scale and affine-invariant keypoints. If either SIFT or SURF were

used for keypoint detection, then it would be logical to use the descriptor designed

specifically for each. In addition, if the full versions of SIFT or SURF were used

for keypoint detection and description, then it would be logical to use the ambiguity

metric for keypoint matching as recommended by Lowe (SIFT) [142] and Bay et al

(SURF) [17].

3.4 Wide-baseline Keypoint Matching with Wide-angle

Images

As discussed in chapter 1, the ability to find keypoint correspondences between wide-

angle images separated by a wide-baseline change in camera pose has potential advan-

tages for vision-based localisation. The key to most wide-baseline keypoint matching

algorithms is use of scale, or scale and affine invariant keypoint detection and descrip-

tion algorithms — for convenience, these will simply be referred to as wide-baseline

keypoint detection and description algorithms. Unfortunately, the state of the art wide-

baseline keypoint detection and description algorithms such as SIFT and SURF are

designed for use with perspective images. Considering that wide-angle images are

characterised as having extreme radial distortion, it seems intuitive that some account

should be made for this distortion during keypoint detection and description. This

raises the question of how the radial distortion should be handled.
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(a) Original Parabolic Catadioptric Image. (b) Cylindrical Panoramic (top) and Log-polar

panoramic (bottom).

Figure 3.21: ‘Rectified’ log-polar and cylindrical panoramic images produced from a

calibrated parabolic catadioptric camera.

3.4.1 Existing Approaches

The most basic approach to wide-angle image processing is to apply directly existing

image processing algorithms to wide-angle images. This can be considered as a ‘blind’

application as no attempt is made to account for the radial distortion during keypoint

detection or description. Classical algorithms such as KLT have been applied blindly

to wide-angle images obtained with catadioptric cameras [48, 89, 234] and fisheye

cameras [213, 102, 57]. Wide-baseline keypoint detection and description algorithms

have also been applied blindly to wide-angle images. Scaramuzza et al for example

applied blindly SIFT to catadioptric images [200, 198], and they noted that the number

of false positive correspondences found between catadioptric images pairs exceeded

the number typically found using perspective images [200].

Another approach used is to apply existing algorithms to rectified log-polar or

cylindrical panoramic images. This approach is used almost exclusively for downward

facing catadioptric cameras and rarely used with fisheye cameras. An example log-

polar panoramic image was show previously in figure 3.20. A cylindrical panoramic

image is obtained as the perspective projection of the image on the view sphere to a

cylinder wrapped around the view sphere. It appears similar to a log-polar panoramic

image as shown in figure 3.21. Examples of classical methods such as KLT applied

to rectified panoramic can be found in [125, 32]. Examples of wide-baseline algo-

rithms applied to rectified panoramic images can be found for SIFT in [233, 172]

and for SURF in [233, 172]. Rectified panoramic images such as those shown in

figure 3.21b still contain some distortion from the ideal (non-deformed) perspective

projection. Converting any wide-angle image to a log-polar or cylindrical panoramic

image is simply a mapping from one deformed space to another.
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(a) Fisheye Image. (b) Perspective reconstruction.

Figure 3.22: A fisheye image converted to a perspective image of the same size. Ob-

serve that information near the centre of the fisheye image is lost. Information near the

periphery of the fisheye image becomes stretched out via interpolation with introduces

artifacts in the perspective image.

Recall that any calibrated wide-angle image can be mapped via the sphere to the

perspective plane. It seems a valid choice to then convert any wide-angle image to

a perspective image and apply existing wide-baseline keypoint detection and descrip-

tion algorithms to this perspective image. However, Daniilidis et al [56] note several

limitations of this approach. Firstly, perspective projection is limited to less than a

hemispherical field of view making this approach unsuited to omnidirectional wide-

angle cameras. Secondly, converting a wide-angle image to a perspective image is

computationally expensive and introduces severe artifacts due to interpolation of the

wide-angle image values. This is illustrated in figure 3.22 which shows a fisheye image

converted to the perspective image. To include most of the cameras field of view, the

pixels near the periphery of the fisheye image are effectively stretched out, and those

near the centre of the image compressed. If the perspective image has the same num-

ber of pixels as the wide-angle image, then much of the information near the centre

of the fisheye image is annihilated, and information near the periphery of the wide-

angle image is artificially created through interpolation. Daniilidis et al [56] argue that

image processing algorithms should always be applied to the original image values.

This suggests that, to account for image distortion, some specialist approach to image

processing designed specifically for wide-angle images is required.

It should be noted here that the discussions regarding alternate image processing

methods are limited to single image methods. For example, a wide-angle image could

be converted to multiple narrow angle of view perspective images, each covering dif-

ferent regions in the scene. Doing this would eliminate the 180 degree angle of view

constraint, and would also potentially limit interpolation artifacts. However, a more
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suitable option would be to use a specialised camera system which consists of an ar-

ray of multiple perspective cameras (these systems are commercially available). This

option is more suitable as no interpolation is required. As mentioned, the thesis is

focussed on single image methods, in which case converting a highly distorted wide-

angle image to a single perspective view is problematic for the reasons discussed. In

particular, even if specialised techniques could be used to minimise interpolation arti-

facts, there is no way to avoid the fact that the angle of view of a perspective image is

to limited to less than 180 degrees (i.e. limited to less than a full hemisphere).

3.4.2 Methods Designed for Wide-Angle Images

There are some examples in the literature of image processing algorithms designed

for use with wide-angle images. Briggs et al [26] considered scale-invariant keypoint

detection with wide-angle images. Their algorithm operates on a rectified panoramic

image. However, they note that constructing a linear scale-space as convolution of

the image with Gaussians of increasing scale is not correct as the image is not per-

spective. They choose to therefore first convert each rectified panoramic image to a

one-dimensional image I(φ) by averaging the pixel intensity values for each angle of

longitude φ over the middles rows of the rectified panoramic image. The scale-space

L(φ;σ) for the image I(φ) is then obtained by convolution with a one-dimensional

sampled Gaussian G(φ;σ):

L(φ;σ) = I(φ) ∗ G(φ;σ), G(φ;σ) =
1√
2πσ

e
−φ2

2σ2 . (3.77)

This convolution ‘wraps around’ at the edges of the one-dimensional image I(φ) at

angles 0 and 360 degrees. Keypoints are found in the scale-space images using the

difference of Gaussian (DoG) approach of Lowe [142], where the difference of Gaus-

sian image is D(φ;σi) = L(φ;σi+1)−L(φ;σi). Keypoints are selected as local extrema

in the 3x3 pixel neighbourhood in the set of DoG images. This local neighbourhood

includes the adjacent pixels at the current scale as well as the three nearest pixels in

each of the adjacent DoG images (similar to the neighbourhood in figure 3.8 for the

DoG function restricted to one spatial dimension). The limitation of this method is the

use of one-dimensional images which makes it most suited for planar camera motion.

They argue that the use of one-dimensional images is suitable when using a downward

facing catadioptric camera traversing through a flat indoor environment, where the en-

vironment contains minimal texture (e.g. corridor walls). However, the same is not

true for outdoor environments which are highly textured and information rich. The
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ability to capture an information rich representation of a scene is one of fundamental

reasons why vision is used, and it is critical to the success of tasks such as visual place

recognition. It can be concluded therefore that this is not the ideal approach.

As discussed, wide-baseline keypoint detection algorithms are designed almost ex-

clusively for use with perspective cameras. The image processing algorithms are shift-

invariant in the image plane, where the the local intensity gradient of an image for ex-

ample would be computed using the same derivative of Gaussian kernel at all positions

in the image. However, the appearance of objects in a wide-angle image can change

considerably depending on their position in the image due to the camera’s radial dis-

tortion. Applying operators that are shift-invariant in the image plane is therefore not

ideal. Daniilidis et al [56] noted that if a wide-angle image is mapped to the sphere,

the appearance of objects in the scene in this spherical image will not be affected by

camera distortion. Furthermore, if two wide-angle images taken by the same camera at

different orientations are mapped to spherical images, in theory these spherical images

differ only by a change in rotation (i.e. a rotational shift). This concept of rotational

shift-invariance is illustrated using a practical example in figure 3.23. They therefore

proposed that in order to account for image distortion, the ideal domain in which to

formulate shift-invariant image processing algorithms is the sphere, where shift refers

to a rotation. This concept is the inspiration for the methods of keypoint detection and

description with wide-angle images developed in chapter 4.

Daniilidis et al [56] used their concept of image processing on the sphere to com-

pute optical flow between catadioptric images separated by a small change in camera

pose. They found their approach to give improved accuracy in egomotion estimates

compared to the equivalent ‘blind’ method of image processing. Importantly, the image

processing operations were formulated on the sphere and implemented on the wide-

angle image itself which removes then need for any interpolation of the original image

function. This process can be illustrated by considering their approach to Gaussian

convolution which is illustrated in figure 3.24. They define first an equivalent Gaus-

sian function GS on the sphere as the stereographic projection of the two-dimensional

Gaussian to the sphere. The function centred at the pole is defined in polar coordinates

at angle of colatitude θ and longitude φ by

GS(θ,φ) =
1

2πσ2
e
−1 1

2σ2 cot2 θ
2 . (3.78)

The Gaussian smoothed image is defined as the convolution of the spherical image and

GS, where this convolution takes place on the sphere — a formal discussion regarding

the convolution of two functions on the sphere is presented in chapter 4. This con-
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(a) Original fisheye image plane

(b) Mapped to perspective image plane

(c) Mapped to the unit sphere

Figure 3.23: Rotational shift invariance for different image representations. (a) shows

two fisheye images separated by a change in camera rotation. (b) shows these fisheye

images converted to perspective images, and (c) shows these images mapped to the

unit radius sphere (the spherical image on right has been rotated by a small angle).

The spherical images are equivalent up to a change in rotation.
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volution is implemented on the image itself, and is evaluated at a pixel position u as

follows. For a central projection camera, the image function at pixel location u maps

to a unique point η(θ,φ) on the view sphere. GS is rotated so that it is centred at η and

is then projected to a kernel on the wide-angle image. The result of convolution is the

discrete summation of the pointwise product of this kernel and the wide-angle image

values within this kernel. Observe in figure 3.24 that the shape of the kernel used to

evaluate the convolution at two different positions in the image changes considerably

— this kernel is not shift-invariant in the image plane.

3.4.3 Proposed Approach to Wide-Baseline Matching with Wide-

Angle Images

It is proposed that the general approach to image processing on the sphere suggested by

Daniilidis et al [56] is ideal for wide-angle image processing. It accounts for the radial

distortion in the image, image processing is shift-invariant with respect to rotations on

the sphere, and it can be applied to any central projection camera assuming the camera

intrinsic parameters can be calibrated. This general approach to image processing on

the sphere has since been used for correspondenceless structure from motion in a series

of works by Makadia et al [148, 147, 146].

Recall from previous discussions that methods of scale-invariant keypoint detec-

tion using the scale-space framework, for example SIFT, are ideal candidates for use

with perspective images for vision-based localisation. It is logical to therefore con-

sider reformulating these methods of image processing as operations on sphere. This

is the approach taken in this work. The first step would be to construct a linear scale-

space for an image mapped to the sphere, which requires a definition for scale-space

on the sphere. Fortunately, Bülow derived the solution for the heat diffusion equa-

tion on the sphere in [31] and discussed its use for scale-space analysis of wide-angle

images in [30]. The scale-space operator for functions on the sphere is the ‘spheri-

cal Gaussian’ [30], and the scale-space representation of a function on the sphere is

the convolution of the function with the spherical Gaussian. The spherical Gaussian

is an isotropic function on the sphere, and it is applied uniformly at all points on the

sphere during convolution with a function on the sphere. These properties relate to

scale-space axioms discussed in section 3.3.1 that were used to derive scale-space for

two-dimensional signals, namely isotropy (the scale-space operator has no preferred

direction in the domain of the function) and homogeneity (the scale-space operator

is applied uniformly at all points in the domain of the function during convolution).
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(b) Shift-invariant convolution on the unit sphere implemented on the image.

Figure 3.24: (a) Shift-invariant convolution in the image plane, and (b) shift-invariant

convolution on the sphere implemented on the image. A pixel at position u = (u,v)T

projects to a point ηu,v on the sphere. The functions GS on the sphere in (b) are related

by a rotation R ∈ SO(3).
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The work of Daniilidis et al [56] and Bülow [31, 30] has made it possible to explore

suitable methods of wide-baseline keypoint detection and description with wide-angle

images.

In the next chapter, two variants of SIFT are developed that are suited for scale-

invariant keypoint detection and description with wide-angle images. Both reformu-

late SIFT as an image processing algorithm on the sphere, and they differ in their

implementations. The keypoints found using these variants can be used to find cor-

respondences in wide-angle images separated by a wide-baseline change in camera

pose.

3.5 Conclusions

A review of some classical methods of keypoint detection, description, matching and

registration were presented in this chapter that are used to find keypoint correspon-

dences in different images separated by a small-baseline change in camera pose. The

limitations of their use with images separated by a wide-baseline change in camera

pose were discussed, in particular their inability to handle large projective changes

between images. A review of methods suited for wide-baseline changes in camera

pose was presented next. The key to these methods is the use of scale, and scale and

affine invariant keypoint detection algorithms, including those using the scale-space

framework and a number of alternatives. A summary of numerous comparative works

was presented, where it was concluded that scale-invariant keypoint detection and de-

scription algorithms such as SIFT and SURF are ideal candidates for vision-based

localisation applications. From the review of the comparative works, it was found that

both perform similarly, however, in general SIFT is capable of finding more correspon-

dences between images than SURF. Algorithms such as SIFT and SURF are designed

for use with perspective images, and applying them directly to wide-angle images is

not ideal as no account is made for the image distortion. The approach to wide-angle

image processing proposed by Daniilidis et al [56] was identified as suitable means by

which image processing algorithms can be designed for use with wide-angle images.

They argue that to account for image distortion, image processing algorithms should

be formulated as shift-invariant operations on the sphere. It was proposed that by us-

ing the general approach to wide-angle image processing developed by Daniilidis et

al [56], and the foundations of scale-space analysis for functions on the sphere derived

by Bülow [31, 30], SIFT could be reformulated as an image processing algorithm on

the sphere. This would make it suitable for wide-baseline keypoint detection and de-
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scription in wide-angle images. Chapter 4 develops two variants of SIFT based on this

principle.



152 Chapter 3: Keypoint Detection, Description and Matching with Applications to Wide-Angle Images



Chapter 4

Wide-Baseline Keypoint Detection,

Description and Matching with

Wide-Angle Images

Two novel keypoint detectors named spherical SIFT (sSIFT) and parabolic

SIFT (pSIFT) are developed in this chapter that are variants of SIFT de-

signed for use with wide-angle images. Both define scale-space space for

wide-angle images as the convolution of the image, mapped to the sphere,

with the spherical Gaussian. sSIFT implements this convolution in the

spherical Fourier domain, and pSIFT approximates this convolution using

an efficient operation on the stereographic image plane. Both algorithms

detect keypoints as local extrema in the difference of scale-space (differ-

ence of Gaussian) images and define the support region for a keypoint as

a circle on the sphere, centred about the keypoint position on the sphere.

The SIFT descriptor for a keypoint is evaluated from the image content

within this support region. sSIFT and pSIFT are compared to SIFT in a

number of experiments using real and synthetic wide-angle images.

4.1 Introduction

As discussed in chapter 3, simply converting any wide-angle image to a single undis-

torted perspective image and applying existing image processing algorithms is prob-

lematic. Firstly, this approach is not suited for omnidirectional cameras with a field

of view in excess of a full hemisphere — although this constraint can be avoided by

153
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converting a wide-angle image to multiple perspective images, as discussed previously

this work is focussed on single image processing. Secondly, the undistorted perspec-

tive image would contain artificially interpolated image values which, as argued by

Daniilidis et al [56], have a negative effect during image processing. Applying blindly

existing keypoint detection methods to wide-angle images without accounting for the

radial distortion in the images is also problematic. The reason for this is that the ap-

pearance of the imaged region in the scene can appear very different depending on

its position in the image as a result of the camera distortion. However, if the image

obtained by any central projection camera is mapped to an image on the unit view

sphere, the appearance of regions in the scene are unaffected by the camera distortion.

It is only by reformulating image processing algorithms as (rotationally) shift invariant

operations on the sphere that they are invariant to camera distortion and suited for use

with central projection wide-angle images (i.e. images obtained with central projec-

tion wide-angle camera). This approach to wide-angle image processing was used by

Daniilidis et al [56] for optical flow computation in catadioptric wide-angle images

and is one of the inspirations for this work.

Two novel variants of the Scale-Invariant Feature Transform (SIFT) [142] are de-

veloped in this chapter, reformulated as image processing algorithms on the sphere,

that are suited for scale-invariant keypoint detection and description in central projec-

tion wide-angle images. Both define scale-space for wide-angle images as the the con-

volution of the image, mapped to the sphere, with the solution of the spherical heat dif-

fusion equation (spherical Gaussian). This solution was derived by Bülow [31] whose

work has made it possible to explore scale-space for wide-angle images. The first

variant, termed spherical SIFT, implements this convolution in the spherical Fourier

domain. The second variant, termed parabolic SIFT (pSIFT), approximates this con-

volution using an efficient operation on the stereographic image plane, and has similar

computation expense to the standard SIFT algorithm. As will be discussed in sec-

tion 4.4, this approximation, and the efficiency of its implementation, are related to

an important property of stereographic projection; it is a conformal mapping which

locally preserves shapes and distances when projecting functions from the sphere to

the stereographic image plane. sSIFT and pSIFT both detect keypoints as local ex-

trema in scale and space, using as a measure of saliency the difference of neighbouring

scale-space (difference of Gaussian) images. For a given sSIFT or pSIFT keypoint,

the keypoint support region is defined as a circle on the sphere that is centred at the

position of the keypoint on the sphere. The SIFT descriptor is then evaluated from the

local image content within this support region.

This remainder of this chapter is organised as follows. Section 4.2 discusses scale-
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space for wide-angle images and the solution of the heat diffusion equation on the

sphere. This includes a formal discussion regarding convolution of functions on the

sphere and its implementation in the spatial and spherical Fourier domains. Sec-

tion 4.3 formulates the sSIFT keypoint detector. A methodology used to estimate the

bandwidth of a wide-angle image is presented. This bandwidth is used to select the

minimum required sample rate that must be used when finding the spherical harmonic

expansion of an image without aliasing. In the case where the required sample rate

exceeds the maximum computationally feasible, a suitable anti-aliasing interpolation

filter is designed that can be used to counterfeit aliasing. Experiments are presented

which compare the relative performance of sSIFT to a ‘blind’ application of SIFT (op-

erating directly on wide-angle images without accounting for the camera distortion)

using synthetic wide-angle images. This performance is based on the percentage cor-

relation of keypoints detected in wide-angle image pairs. The relative performance of

pSIFT to both sSIFT and SIFT is then compared for the same experiments in section

The pSIFT keypoint detector is presented in section 4.4, where an approximation to the

convolution of the spherical Gaussian and the image mapped to the sphere is developed

that can be implemented efficiently on the stereographic image plane. The performance

of pSIFT is then compared to sSIFT and SIFT using the same experimental procedure

in section 4.3. Section 4.5 presents the method used to evaluate SIFT descriptors for

sSIFT and pSIFT keypoints. Section 4.6 then compares the relative performance of

sSIFT and pSIFT to a blind application of SIFT using three wide-angle images se-

quences — results for SIFT applied to rectified perspective views are also obtained.

The performance metric used is recall versus 1-precision, which is a measure of the

ability to recall the most correct correspondences between image pairs with the least

number of outliers. Finally, conclusions are presented in section 4.7.

4.2 Scale-Space for Wide-Angle Images

As discussed in chapter 3, for a perspective image I ∈ R2, the scale-space represen-

tation L(·; t) of the image at scale t is obtained as the solution of the heat diffusion

equation

∂t L(u,v; t) =
1

2
∆L(u,v; t), ∆L(u,v; t) =

1

k
∂tL(u,v; t), (4.1)

where ∆ is the Laplacian defined in R2. For initial condition L(·;0) = I, the scale-space

representation L(·; t) of an image at scale t is obtained as the convolution of the image
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I with the Gaussian G(·; t)1.

Recall from chapter 2 that a point η on the unit view sphere S2 is parameterised

as η(θ,φ) = [sinθ cosφ,sinθ sinφ,cosθ]T , where θ ∈ [0,π) is an angle of colatitude

and φ ∈ [0,2π) is an angle of longitude. Bülow [31] proposed that the scale-space

representation LS2(·; t) of a continuous function f ∈ L2(S2) is obtained as the solution

of the spherical heat diffusion equation

∆S2LS2(θ,φ; t) =
1

k
∂tLS2(θ,φ; t) (4.2)

with initial condition LS2(·;0) = f . The parameters k and t refer to thermal conductivity

and time respectively. The parameter ∆S2 is the Laplace operator restricted to the unit

sphere S2 [108]2:

∆S2 =
1

sinθ

∂

∂θ

(
sinθ

∂ f

∂θ

)
+

1

sin2 θ

∂2 f

∂φ2
. (4.3)

Bülow derived a solution to 4.2, where for initial condition LS2(·;0) = f , the scale-

space representation LS2(·;kt) of the function f is the convolution of f with the scale-

space operator for functions on the sphere GS2(·;kt). The parameter kt is defined as

the ‘scale’. Before discussing this solution, including the definition of GS2(·;kt) (sec-

tion 4.2.2) and convolution of functions on the sphere (section 4.2.3), it is necessary to

provide a brief introduction to spherical harmonics.

4.2.1 Spherical Harmonics

A function f is harmonic if the solutions to the second partial derivatives of Laplace’s

equation are continuous:

∆ f = 0, (4.4)

where ∆ is the Laplacian defined in the same domain as the function f . The eigen-

functions of the spherical Laplace operator ∆S2 in are the spherical harmonic functions

1G(·; t) is the Gaussian function sampled at discrete pixel positions, and whose scale is more fre-

quently defined by σ = t2, where σ is the standard deviation of the Gaussian.
2The Laplacian ∆ of a function u(θ,φ,r) defined in spherical polar coordinates is

∆u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sinθ

∂

∂θ

(
sinθ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
.

The Laplacian ∆
S2 restricted to the unit sphere is found by setting r = 1, ∂ f

∂r
= 0.
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Y m
l : S2 7→ C of degree l and order m [92]:

∆S2 Y m
l = −l(l +1)Y m

l . (4.5)

The spherical harmonic function Y m
l (η) evaluated at some point η(θ,φ) on the unit

sphere is

Y m
l (η) =

√
2l +1

4π

(l −m)!

(l +m)!
Pm

l (cos(θ))eimφ, l ∈ N, |m| ≤ l, (4.6)

where Pm
l are the associated Legendre polynomials

Pm
l (x) =

(−1)m(1− x2)
m
2

2ll!

dl+m

dxl+m
(x2 −1)l. (4.7)

Figure 4.1 displays the magnitude of the real components of the spherical harmonics

functions sampled on an equiangular θ,φ grid up to degree l = 5 and order 0 ≤ m ≤ l.

The values of the zonal harmonic functions (m = 0) are dependent only on the angle of

colatitude θ and are shown in the top row. The sectoral harmonic functions (m = ||l||)
are those in the diagonal from top left to bottom right, where the angle of colatitude

θ contributes only to an overall scale factor. All other cases (m 6= 0,m 6= ||l||) are the

tesseral harmonic functions.

Any square integrable function f ∈ L2(S2) on the unit sphere can be expanded as a

linear summation of spherical harmonics:

f = ∑
l∈N

∑
|m|≤l

f̂ m
l Y m

l , (4.8)

where the coefficients f̂ m
l are the spherical Fourier transform (spectrum) of f defined

as

f̂ m
l =

Z

S2
f (η)Y m

l (η)dη, (4.9)

where Y m
l denotes the complex conjugate. The integral dη in 4.9 is defined to mean

dη , sin(θ)dθdφ. As the image I obtained with any central projection camera can be

mapped to the the image IS2 on the sphere, it can be expanded into spherical harmonics

as

IS2 = ∑
l∈N

∑
|m|≤l

(ÎS2)m
l Y m

l , (ÎS2)m
l =

Z

S2
IS2(η)Y m

l (η)dη, (4.10)

where ÎS2 is the spectrum of the image.
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Figure 4.1: The magnitude of the real components of the spherical harmonic functions

Y m
l shown up to degree l = 5 and order 0 ≤ m ≤ l. The functions are shown on an

equiangular θ,φ plane with angles θ ∈ [0,π) and φ ∈ [0,2π).

4.2.2 Spherical Gaussian Function

As just discussed, a solution to the heat diffusion equation with initial condition LS2(·;0)=

f was first solved by Bülow [31]. Although the same solution was obtained using an

alternate derivation by Chung [40] who applied it to cortical data analysis [41], the

solution of Bülow is described here.

Assuming that LS2(θ,φ;kt) is separable, where kt is the scale, the spherical heat

diffusion equation in 4.2 can be expressed in the spherical Fourier domain using equa-

tion 4.8 as

∆S2Y
m
l (L̂S2)m

l (kt) =
1

k
∂tY

m
l (L̂S2)m

l (kt). (4.11)

Then, substituting 4.5 into 4.11 gives the first order ordinary differential equation

−l(l +1)k(L̂S2)m
l (t) = ∂t(L̂S2)m

l (t), (4.12)
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whose unique solution is

(L̂S2)m
l (kt) = (L̂S2)m

l (0)e−l(l+1)kt , (4.13)

where (L̂S2)m
l (0) is the spectrum of the initial condition.

The Green’s function of 4.13 is the scale-space operator GS2(·;kt) for functions

on the sphere, and can be considered as the Gauss function on the sphere [31]. For

convenience, GS2(·;kt) is referred to as the spherical Gaussian for the remainder of

the thesis. Bülow obtains the solution for GS2(·;kt) with initial condition

GS2(θ,φ;0) = δS2(θ,φ), (4.14)

where δS2 is the spherical Dirac (unit impulse) function at the north pole n = (0,0,1)T .

The spherical Dirac function δS2 is defined as

f (n) =
Z

η∈S2
f (η)δS2(θ,φ)dη, f ∈ L2(S2), (4.15)

and can be written as the spherical harmonic expansion

δS2 = ∑
l∈N

√
2l +1

4π
Y 0

l , (4.16)

where Y 0
l (θ,φ) are the zonal harmonic functions (refer to the top row of figure 4.1):

Y 0
l (θ,φ) =

√
2l +1

4π
Pl(cosθ). (4.17)

A derivation of the spherical harmonic expansion of δS2 is presented in appendix B.

As equation 4.16 defines the spectrum of the initial condition GS2(·;0), and equa-

tion 4.13 describes how the spectrum of a function on the sphere diffuses over time t

for some value of k, Bülow obtained as the solution for the spherical Gaussian

GS2(θ,φ;kt) = ∑
l∈N

√
2l +1

4π
Y 0

l (θ,φ)e−l(l+1)kt . (4.18)

The solution is the sum of only the zonal harmonic functions as the function is rota-

tionally symmetrical about the north pole n. The spherical Gaussian, which is also

known as the Gauss-Weierstrass kernel [80, 40], defines the evolution of a unit heat

source at the north pole of a thin spherical vessel with constant thermal conductivity k

over time t. The value of the heat profile at a given position η(θ,φ) can be obtained di-
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Figure 4.2: The spherical Gaussian function versus angle of colatitude θ.

rectly from 4.18. Again, as the spherical Gaussian is used in the context of scale-space

analysis, the parameter kt is referred to simply as ‘scale’. Figure 4.2 shows value of

the spherical Gaussian versus angle of colatitude θ for scale kt = 0.1.

As the solution for GS2(·;kt) was obtained having as initial condition the spherical

Dirac (unit impulse) at the north pole, one would expect the integral of GS2(·;kt) to

be unity for all scales kt. Bülow [31] shows that this property holds as the integral of

any square integrable function f ∈ L2(S2) on the sphere is dependent only on the DC

component of its spectrum f̂ 0
0 :

Z

S2
f (η)dη =

√
4π f̂ 0

0 . (4.19)

It follows from the definition of GS2(·;kt) in 4.18 that

Z

S2
GS2(·;kt) =

√
4π

(√
1

4π
e0

)
= 1, ∀kt. (4.20)

This property is important in later discussions regarding convolution of a function on

the sphere with the spherical Gaussian.

4.2.3 Spherical Diffusion by Convolution

The scale-space representation LS2(·;kt) of a function f on the sphere with initial con-

dition LS2(·;0) = f is the convolution of f with the spherical Gaussian GS2(·;kt). This
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section discusses the convolution of functions on the sphere.

For all rotations R ∈ SO(3), define the operator Λ(R) which rotates a point on the

sphere to a new position Λ(R) f (η) = f (R−1η). This operator could use, for example,

Euler rotations or quaternions. The former is used here where R is parameterised as

R = Rz(γ)Ry(β)Rz(α). Using this notation, Driscoll and Healy [63] define the convo-

lution of any two (square integrable) functions f and h on the sphere as

( f ∗h)(η) =
Z

R∈SO(3)
f (Rn)h(R−1η)dR, η ∈ S

2, (4.21)

where n is the north pole. For an image I 7→ IS2 mapped to the sphere, assuming that the

initial condition LS2(·;0) is IS2 , the scale-space representation LS2(·;kt) of the image at

scale kt can be obtained using 4.21 as

LS2(η;kt) =
1

2π
(IS2 ∗GS2(·;kt))(η) (4.22)

=
1

2π

Z

R∈SO(3)
IS2(Rn)GS2(R−1η;kt)dR, η ∈ S

2. (4.23)

The additional 1
2π factor is required as the convolution defined in 4.21 integrates over

all rotations R ∈ SO(3), whereas the integral of GS2 over S2 is unity as shown previ-

ously in equation 4.20. Adding the additional 1
2π ensures that the integral of GS2 over

SO(3) is unity.

The convolution in equation 4.22 can be implemented in the spatial or frequency

domains, and these implementations will be discussed in sections 4.2.3.1 and 4.2.3.2

respectively. However, before proceeding it is important to note that the scale-space

representation LS2(·;kt) of an image IS2 is a function on the sphere. As each pixel u

maps to a unique point η on the unit view sphere for a central projection camera, the

scale-space image LS2(·;kt) can be projected back to the scale-space image LS2(·;kt)

on the original image plane, LS2(η;kt) 7→ LS2(u,v;kt).

4.2.3.1 Spatial Domain

The definition of the convolution of two-functions on the sphere in 4.21 integrates over

all rotations R ∈ SO(3). Daniilidis et al [56] observed that if one if the functions is

symmetrical about the north pole, the integration can be restricted to the subgroup of

rotations R = Rz(γ)Ry(β) — the redundant rotation is the rotation about the symmet-

rical axis of the filter. They formulated a simplified form of the convolution defined

in 4.22, restricted to an integration over S2, which can be used to rewrite the convolu-
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tion defined in 4.22 as

LS2(β,γ;kt) = (IS2 ∗GS2(kt))(β,γ) =
Z

η∈S2
IS2(η)GS2(R−1η;kt)dη, (4.24)

where dη = sin(θ)dθdφ. Here, LS2(β,γ) is evaluated at the point η′ = Rn on the sphere,

where R = Rz(γ)Ry(β). The 1
2π factor is no longer required as the integral is taken over

S2. Interestingly, the convolution in 4.28 is similar to the definition of correlation on

the sphere [30, 247], where the correlation of IS2 and GS2(·;kt) would be

(IS2 ⋆GS2(·;kt))(α,β,γ) =
Z

η∈S2
IS2(η)GS2(R−1η;kt)dη, R ∈ SO(3), (4.25)

whose response in defined in SO(3). Equation 4.25 is equivalent to the correlation of

LS2 and GS2 defined for any fixed angle α.

The convolution in equation 4.28 can be implemented on the image plane [56]. To

simplify the discussions, a number of notations are used with reference to figure 4.3.

The spherical Gaussian GS2(·;kt) is by definition centred at the north pole n. For any

central projection wide-angle camera, it can be projected to the function GS2(·;kt) on

the image, centred at the principal point u0. The spherical Gaussian centred at the

point η′ = Rn, where R is some rotation matrix, is denoted GS2(η′)(·;kt) and projects

to the function GS2(η′)(·;kt) on the image, centred at the point u′ 7→ η′. The function

GS2(η′)(u,v;kt) has the values

GS2(η′)(u,v;kt) = ∑
l∈N

√
2l +1

4π
Y 0

l (θu′−u)e
−l(l+1)kt , (4.26)

where θu′−u is the angle on the sphere between the point η and η′

θu′−u = cos−1(ηT η′), (4.27)

where u 7→ η. The values of GS2(u,v;kt) can be obtained in the same manner by sub-

stituting u′ with u0, where η′ = n. Using these notations, the definition of correlation

in 4.28 can be rewritten as

LS2(η′;kt) = (IS2 ∗GS2(·;kt))(η′) (4.28)

=
Z

η∈S2
IS2(η)GS2(η′)(η;kt)dη, (4.29)

where η′ = Rn and R = Rz(γ)Ry(β). This convolution can be implemented to find the
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Figure 4.3: The spherical Gaussian GS2(kt) is defined centred at the north pole n. The

spherical Gaussian rotated to a new point η′ = Rn is denoted GS2(η′)(kt). GS2(·;kt)
projects for the given camera model to the kernel GS2(·;kt) on the image, centred at

the principal point u0 7→ n. GS2(η′)(·;kt) projects for the given camera model to the

kernel GS2(η′)(·;kt) on the image, centred at the point u′ 7→ η.

scale-space image value LS2(u′,v′;kt) 7→ LS2(η′;kt) at some pixel position u′ as

LS2(u′,v′;kt) = ∑
u,v

I(u,v) GS2(η′)(u,v;kt). (4.30)

Implementing the convolution on the image plane has the advantage that the orig-

inal image values are used. However, this method is computationally expensive as a

unique kernel GS2(η′)(·;kt) is required to evaluate LS2(u′,v′;kt) at each pixel position

u′. The change in appearance of GS2(η′)(·;kt) at different positions in the image is

evident in figure 4.3. If all kernels GS2(η′)(·;kt) at a given scale kt were precomputed

offline with size n× n, convolution with an m×m sized image would requires a to-

tal of 2n2m2 computations (O(n2)). In contrast, the convolution of an image with a

two-dimensional Gaussian G(·;σ) can be obtained efficiently as3

3The two-dimensional Gaussian G(·;σ) is a rank 1 matrix and can be written as the outer product
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I ∗G(·;σ) = (I ∗Gx(·;σ))∗Gy(·;σ) (4.31)

where Gx(·;σ) and Gy(·;σ) are one-dimensional Gaussians with equal scale σ and

length n in the x and y directions respectively. This requires a total of 4nm2 com-

putations (O(n)). Fortunately, an efficient approach to convolution in the frequency

(spherical Fourier) domain can be used.

4.2.3.2 Spherical Fourier Domain

From the definition of convolution in equation 4.21, Driscoll and Healy [63]prove the

following theorem for convolution of a square integrable function f and rotationally

symmetrical filter h on the sphere in the spherical Fourier domain:

Theorem 4.1 For functions f ,h ∈ L2(S2), the transform of the convolution is a point-

wise product of the transforms

( f̂ ∗h)m
l = 2π

√
4π

2l +1
f̂ m
l ĥ0

l (4.32)

where ĥ0
l are the zonal harmonics coefficients of the symmetrical filter h, and ( f̂ ∗h)m

l

is the spectrum of the convolution. This convolution theorem can be used to define

scale-space for functions on the sphere as a response in the spherical Fourier domain

by

(L̂S2)m
l (kt) =( ̂LS2(·;0)∗GS2(·;kt))m

l (4.33)

=

√
4π

2l +1
(L̂S2)m

l (0)(ĜS2)0
l (kt) (4.34)

=(L̂S2)m
l (0)e−l(l+1)kt , (4.35)

which is the same as equation 4.13. As before, an additional 1
2π factor has been added

as the convolution in 4.1 is derived from the definition of convolution in 4.21 which

integrates over all rotations R ∈ SO(3). If the initial condition L̂S2(0) = ÎS2 is the

spectrum of the image IS2 , this convolution theorem can be used to find the scale-space

representation L̂S2(kt) of an image IS2 as a response in the spherical Fourier domain as

(L̂S2)m
l (kt) = (ÎS2)m

l e−l(l+1)kt . (4.36)

of two one-dimensional Gaussians Gx(σ) and Gy(σ) in the x and y directions respectively, G(·;σ) =
Gy(σ)Gx(σ) (i.e.. G(·;σ) is separable). The convolution of an image with G(·;σ) is therefore equal to

the successive convolutions of the image with Gx(σ) and Gy(σ).
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As a final note, from the definition of convolution in equation 4.33, Bülow [31]

shows that the scale-space for functions on the sphere satisfies the semi-group property:

(
(L̂S2)m

l (kt)
)
(ks) =(L̂S2)m

l e−l(l+1)kt e−l(l+1)ks

=(L̂S2)m
l e−l(l+1)k(t+s)

=(L̂S2)m
l (k(t + s)). (4.37)

4.3 Scale-Invariant Keypoint Detection: spherical SIFT

(sSIFT)

The spherical SIFT (sSIFT) keypoint detector is developed in this section. sSIFT finds

for a given image IS2 the set of scale-space images LS2(·;kt) by convolving IS2 with

GS2(·;kt) in the spherical Fourier domain using the method outlined in section 4.2.3.2.

This requires finding the spectrum ÎS2 of the the image. The set of all scale-space

images LS2(·;kt) are then mapped back to the set of scale-space images LS2(·;kt) on

the original image plane. Keypoints are detected as local extrema in the difference of

scale-space (difference of Gaussian) images DS2(kti) = LS2(kti)−LS2(kti−1), where

the same principles of edge removal and quadratic interpolation of keypoint location

and scale used by SIFT are utilised. The support region for a keypoint is defined as a

circle on the sphere, centred about the keypoint position on the sphere, whose size is

set relative to the characteristic scale kt of the keypoint.

This section starts by describing the practical procedure used to find the spectrum

ÎS2 of a wide-angle image. A means for estimating the bandwidth of a wide-angle

image from the camera intrinsic parameters is developed which is used to find the

minimum sample rate required to obtain the spectrum of the image without aliasing

artifacts. A suitable anti-aliasing interpolation filter is then designed, and can be used

to minimise aliasing when the required sample rate exceeds the maximum compu-

tationally feasible. A method to select a suitable set of scales kt is then developed

which is based on the camera intrinsic parameters and the scales σ used by SIFT. The

specific details of keypoint detection are then discussed, where the definition of a key-

points support region is introduced. Finally, the percentage correlation and outright

number of keypoints detected in synthetic wide-angle images using SIFT and sSIFT

are compared— SIFT operates directly on the wide-angle images without making any

account for the cameras radial distortion.
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4.3.1 Spherical Fourier Transform (spectrum) of a Wide-Angle Im-

age

The discrete spherical Fourier transform (SFT) of a wide-angle image is used to obtain

the spectrum ÎS2 = SFT (IS2). The s2kit4 is used to find the SFT of the image, and

requires sampling the image function IS2 at a predefined set of sample points η(θ,φ).

4.3.1.1 Sample Scheme

The sample points η(θ,φ) used by s2kit are based on the sample scheme described by

Driscoll and Healy [63]. Driscoll and Healy [63] show that for a bandlimited function

f on the sphere (i.e. a function with a bandwidth of b f ), f̂ m
l = 0 for l ≥ b f , where l is

some integer value. The bandwidth of a function on the sphere can be visualised from

inspection of figure 4.1, where it can be seen that for a given degree l, the maximum

number of cycles of the spherical harmonic functions per 2π radians is equal to l. As

f̂ m
l = 0 for l ≥ b f , the bandwidth b f of a function on the sphere is the number of cycles

per 2π radians.

To recover exactly the original signal, the frequency of sampling 2b must be at least

2b f — b is defined as the sample rate. The reader is referred to Driscoll and Healy [63]

for a discussion on the selection of the sampling scheme with respect to computational

efficiency. For sample rate b, s2kit samples an image at the points η(θi,φ j), where5

θi =
π(2i+1)

4b
i∈{0,1, . . . ,2b−1} and φ j =

π j

b
j ∈{0,1, . . . ,2b−1}, (4.38)

The sample points and are illustrated in figure 4.4 for sample rate b = 8.

As the density of the sample points in the direction of longitude φ decreases as

one moves away from the poles, the discrete SFT of equation 4.9 used by Driscoll and

Healy is [63]:

f̂ m
l =

√
2π

2b

2b−1

∑
i=0

2b−1

∑
j=0

a
(b)
i f (θi,φ j)Y

m
l (θi,φ j), (4.39)

where a
(b)
i is used to weight the samples to account for the variable sample density in

4Available http://www.cs.dartmouth.edu/˜geelong/sphere/
5The angles θ used by Driscoll and Healy are θi = (πi/2b) — s2kit adds a half sample offset.
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Figure 4.4: The sampling scheme used by s2kit (b=8)

the direction of longitude φ which varies with angle of colatitude θ:

a
(b)
i =

2
√

2

n
sin

(
πi

n

) n
2−1

∑
l=0

1

2l +1
sin

(
[2l +1]

πi

n

)
, i ∈ {0,1, . . . ,n−1}. (4.40)

In practice, this weighting is implemented automatically using s2kit. The input to s2kit

is simply the image values sampled at the points η(θi,φ j), where θi and φ j are given

in equation 4.38.

The bandlimit (bandwidth) of a wide-angle image needs to be known to select an

appropriate sample rate b. If b is less than the bandwidth of the image, there is the

potential that the spectrum ÎS2 will contain some form of aliasing. If the required sam-

ple rate b needed to prevent aliasing exceeds the maximum computationally feasible,

which is b = 512 for the hardware used in this work, some approach to minimise or

prevent aliasing needs to be considered.

4.3.1.2 Spherical Bandwidth of a Wide-Angle Image

Referring to equation 4.38, the function on the sphere is sampled at 2b points over

the range of angles of longitude φ = [0,2π). The greatest angular separation between

sample points φ j occurs at the equator θ = π/2, where the change in angle dψ along

the great circle (equator) per change in sample position ds is

dψ

ds
=

π

b
. (4.41)

Assume that there exists some function f on the sphere whose values are known only

at a set of sample points s. If the change in angle dψ between and two samples points

is known (i.e.
dψ
ds

is known), then the bandwidth b f of the function can be locally
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Figure 4.5: Coordinate system of image plane. The vector dP represents a small shift

at angle α from a point on the image at radius r from the image centre.

estimated as

b f =
π

dψ
ds

. (4.42)

The term locally is used here as the distribution of the sample points on the sphere may

be non-uniform, in which case
dψ
ds

, and consequently b f defined in equation 4.42, will

be different at different positions on the sphere.

For a wide-angle image, the set of sample points can be defined as the pixels them-

selves, where a change in sample point ds is related to a change in pixel position dP.

As a wide-angle image can be mapped to the sphere, the change in angle dψ corre-

sponding to a change in pixel position dP between two pixels can be found. By doing

this, it is possible to locally estimate the spherical bandwidth bI of a wide-angle image.

With reference to figure 4.5, let dP(r,α) be the unit pixel shift from the pixel

x(r,ζ) = u− u0 at radius r from the principal point u0, where α is the angle from

the line passing through u and u0. If u maps to the point η on the sphere, and u′ is the

pixel position at shift dP(r,α) from u which maps to the point η′ on the sphere, then

dψ

dP(r,α)
= cos−1(ηT η′), (4.43)

where dψ is the angle along the great circle passing through η and η′. The band-

width bI of a wide-angle image at some radius r from the principal point can then be

estimated in the sample direction α as6

bI(r,α) =
π

dψ
dP(r,α)

. (4.44)

An algebraic derivation of the image bandwidth can be obtained for some camera

6At a given pixel position x relative to the principal point, the distance dP to neighbouring pixels is

dependent on the position of the pixel x and the sample direction α— the distance dP can be as low as

1 pixel, and as high as
√

2 pixels. As the bandwidth is estimated using a unit pixel shift dP = 1, the

estimate obtained is the minimum possible bandwidth at a given radius r and sample direction α.
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models. The result for the unified image model is presented here, which is used to

model the fisheye camera used throughout this work, and can model the entire class of

central projection catadioptric cameras. The only assumption made is that the camera

model C : M 7→ Ω defines a mapping between the manifolds M and Ω, here the unit

sphere S2 and the image respectively. At any point on the sphere η(θ,φ) = (x,y,z)T =

(sinθcosφ,sinθsinφ,cosθ)T , the Euclidean line element on the sphere is dl2 = dx2 +

dy2 +dz2, where dψ2 ≡ dl2 for small angles dψ. The change in angle dψ2 can then be

parameterised by a change in spherical polar coordinates as

dψ2 = dθ2 + sin2 θ dφ2. (4.45)

To avoid confusion with the parameters l and m which denote the degree and order

of the spherical harmonic functions respectively, the unified image model parameters

given in equation 2.9 (chapter 2, pg. 40) are denoted lc and mc. At a given point

x(r,ζ) on the image plane defined with respect to the principal point, the variables dθ2,

sin2 θ and dφ2 can be derived for a change in the polar coordinates dr and dζ. Letting

nc = mc + lc, they are

dφ2 = dζ2 (4.46)

sin2 θ =

(
lcnc +

√
r2(1− l2

c )+n2
c

r +
n2

c

r

)2

(4.47)

dθ2 =




(
r2(1−l2

c )√
r2(1−l2

c )+n2
c

)
−

(
lcnc +

√
r2(1− l2

c )+n2
c

)(
r2−n2

c

r2+n2
c

)

(r2 +n2
c)

√
1− r2

(
lcnc+

√
r2(1−l2

c )+n2
c

r2+n2
c

)2




2

dr2, (4.48)

and can then be substituted directly into 4.45 to obtain the expression for change in

angle dψ2 as a function of the change in polar coordinates r,ζ on the image at a some

radius r from the principal point. Referring to figure 4.5, as a small shift dP(r,α) at

radius r from the principal point at angle α corresponds to the following changes in

polar coordinates in the image plane:

dr2 =

{
dP2 if r = 0

dP2 cos2 α if r > 0
, (4.49)

dζ2 =

{
0 if r = 0
dP2 sin2 α

r2 if r > 0
, (4.50)

an expression for dψ2/dP2(r,α) can be obtained and the image bandwidth bI(r,α)
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estimated from equation 4.44. One should observe that when r = 0, sin2 θ = 0. There-

fore, the equation for dψ2 reduces to dψ2(r = 0) = dθ2 +0 = ((lc +1)/nc)
2

dP2 which

states that, as expected, dψ2(r = 0) is independent of the sample direction α.

The estimated bandwidths of the fisheye camera (1024× 768 pixel images) cali-

brated in chapter 2 and a theoretical parabolic catadioptric camera are shown in fig-

ures 4.6a and 4.6b respectively. The camera intrinsic parameters for the parabolic

catadioptric camera were selected so that a point on the equator of the view sphere

projects to the same radius from the principal point in both the fisheye and parabolic

catadioptric images. The angle of colatitude θ versus radius r on the image plane is

shown in figure 4.7 for each camera.

It is interesting to observe that the bandwidth for the parabolic catadioptric cam-

era in figure 4.6b appears to be independent of the sample direction α. Recall that

when using the unified image model, a parabolic catadioptric camera is modelled us-

ing a point of projection lc = 1. Substituting lc = 1 into equations 4.46,4.47 and 4.48

simplifies the formulas considerably and gives

dφ2 = dζ2, (4.51)

sin2 θ =
4r2n2

c

(r2 +n2
c)

2
, (4.52)

dθ2 =
4n2

c

(r2 +n2
c)

2
dr2, (4.53)

where nc = mc + lc = mc +1. Substituting equations 4.51, 4.52 and 4.53 into 4.45 gives

dψ2 =
4n2

c

(r2 +n2
c)

2

(
dr2 + r2dζ2

)
. (4.54)

Finally, substituting equations 4.49 and 4.50 into 4.54 gives

dψ2(r,α)l=1 =
4n2

c

(r2 +n2
c)

2

(
dP2 cos2 α+ r2 dP2 sin2 α

r2

)
(4.55)

=
4n2

c

(r2 +n2
c)

2
dP2. (4.56)

This result shows that the change in angle dψ along any great circle on the sphere for

a small shift dP(r,α) is independent of the sample direction α, and confirms that the

bandwidth for a parabolic catadioptric camera is independent of the sample direction

α. As will be discussed in more detail in section 4.4, the reason for this is the fact that
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parabolic catadioptric image formation is equivalent to the stereographic projection of

an image on the sphere to the image plane. Stereographic projection is a conformal

mapping, and because conformal mappings preserve shapes and distances locally, the

bandwidth is independent of α.

It can be observed in figure 4.6 that both cameras have a maximum image band-

width in excess of the maximum computationally feasible sample rate of b = 512.

Therefore the spectrum of the images ÎS2 obtained using a sample rate b = 512 may

contain some form of aliasing.

4.3.1.3 Anti-aliasing

The simplest solution to prevent aliasing is to reduce the resolution of the image so that

the maximum image bandwidth bI is less than the maximum computationally feasible

sample rate (b = 512). However, for the examples shown in the previous section, this

would require reducing the size of the images by a factor greater than 2. Reducing

the image resolution is not ideal as it penalises regions in the image with a bandwidth

below bI = 512. It is proposed that an anti-aliasing interpolation filter can be used to

sample the image points and minimise potential aliasing.

For a function f on the sphere with bandwidth b, f̂ m
l = 0,∀l ≥ b. Making use of

the convolution theorem 4.1, the function f can be bandlimited to b by convolving it

with a symmetrical filter h with zonal harmonic coefficients

ĥ0
l =





1
2π

√
2l+1

4π if l < b

0 if l ≥ b
. (4.57)

The ideal low-pass filter Bb obtained from equation 4.57 is

Bb(θ,φ) = ∑
l≤b

h0
l Y 0

l (θ,φ) (4.58)

= ∑
l≤b

√
2l +1

16π2
Y 0

l (θ,φ), (4.59)

where b is the ‘stop band’ frequency. Figure 4.8 shows the filter values versus angle

of colatitude θ for b = 128,256,512. The filter is centred at the north pole n and is

similar in appearance to the one-dimensional sinc filter defined in R1.

The anti-aliasing interpolation filter can be used to obtain the set of sample points

IS2(θi,φ j), used to find the spectrum ÎS2 of the image, where the sample angles θi and
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(a) Fisheye

(b) Parabolic

Figure 4.6: The estimated image bandwidths bI(r,α) of the fisheye and parabolic cata-

dioptric cameras.
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Figure 4.7: Camera model for the fisheye and parabolic catadioptric cameras
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Figure 4.8: Values of the anti-aliasing filer Bb versus angle of colatitude θ for stop

band frequencies b = 128,256,512.

θ j are given in equation 4.38 for a sample rate b. By definition Bb is a function on the

sphere centred at the north pole n. Using a similar analogy described in section 4.2.3.1,

let Bb(η
′) be the filter centred at the point η′, which projects to the function Bb(η′) on

the wide-angle image centred at the pixel u′ 7→ η′. The sample measurement IS2(θi,φ j)

defined at the point η′(θi,φ j) can be obtained as

IS2(θi,φ j) = ∑
u,v

I(u,v)Bb(η′)(u,v), ∑
u,v

Bb(η′)(u,v) = 1, (4.60)

which is a convolution operation on the sphere that is implemented on the image.

The integration (discrete summation) would need to be taken over all pixel values

u,v to obtain ideal frequency response. As discussed previously in section 4.2.3.1,

implementing this type of convolution is computational expensive as a unique kernel

Bb(η′) is required for each sample point η′(θi,φ j). To reduce the size of the kernel
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B ′
b(η′), a Blackman window function

w(i) = 0.42−0.5cos

(
2πi

N −1

)
+0.08cos

(
4πi

N −1

)
(4.61)

is applied to the filter Bb to obtain the new windowed filter B′
b(i) = Bb(i)w(i), where

N is selected to include all points up to the fourth zero crossing of the Bb. The sample

measurement IS2(θi,φ j) at the point η′(θi,φ j) is in practice calculated as

IS2(θi,φ j) = ∑
u,v∈B ′

b(η′)

I(u,v)B ′
b(η′)(u,v), ∑

u,v

B ′
b(η′)(u,v) = 1, (4.62)

where B ′
b(η′) is the windowed filter B′

b(η′), centred at η′, projected to the image plane.

The integral in 4.62 is only taken over the pixels u,v within the the kernel B ′
b(η′) and

not all possible pixel positions. Figure 4.9 shows the comparison of the ideal low pass

filter and the windowed filter B′
b for a bandwidth b = 256. The theoretical frequency

response of the filter is shown in figure 4.10. Using the windowed filter B′
b gives

improved computational efficiency at the expense of non-ideal frequency response.

The magnitude of the spectrum ÎS2 of a fisheye image obtained with and without

the anti-aliasing filter with is shown in figure 4.11. When the filter is not used, the

image values are sampled using a simple linear interpolation in the image plane. The

spectrums were obtained using a sample rate b = 512, and the ‘stop band’ frequency

of the filter B′
b was set to 256. The bandwidth of the 1024× 768 pixel fisheye image

was shown previously in figure 4.6a. The magnitude of the spectrum for each spherical

harmonic degree l is

mag(l) = ∑
|m|≤l

√
4π

2l +1
(ÎS2)m

l (ÎS2)m
l . (4.63)

Although ideal frequency response cannot be achieved, there is a considerable reduc-

tion in the magnitude above the stop band. Later experiments will compare the relative

performance of keypoint detection in wide-angle images using sSIFT with and without

the use of the anti-aliasing filter.

4.3.2 Scale Selection

The scales σ used by SIFT define the standard deviation of the Gaussians G(·;σ) used

to obtain the set of scale-space images L(·;σ). As σ is a measure of the standard

deviation in pixels, the scales σ used are appropriate for an image of arbitrary size. The
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Figure 4.9: The (a) window function and (b) the ideal filter before and after the appli-

cation of the window function.
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Figure 4.10: Theoretical zonal harmonic coefficients of the windowed anti-aliasing

filter.

scale kt of the spherical Gaussian GS2(·;kt) can be interpreted as a value proportional

to the variance of the spherical Gaussian measured in radians. Selecting some fixed set

of scales kt for sSIFT is not suitable as no account is made for the size of the original

image or field of view of the camera. The scales used by sSIFT are therefore selected

as a function of the scales σ used by SIFT and the camera intrinsic parameters.

The scales σ used by SIFT are defined by four parameters; an assumed initial scale

σinput of the original image I, a starting scale σ0, a scale multiplication factor (number

of scales per octave nspo), and the number of octaves noct used. SIFT first doubles

the original image size and assumes that this image has a starting scale σinput = 0.5.

The starting scale is set to σ0 = 1.6, where the first scale-space image is obtained by
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(a) Input fisheye image.
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Figure 4.11: The effect of the anti-aliasing interpolation filter on the magnitude of the

spectrum of the fisheye image in (a). The ‘stop band’ frequency b was set to b = 256.

pre-smoothing the double size image to this scale:

L(·;σ0) = G(·;σ0−input)∗ I, (4.64)

where σ0−input =
√

σ2
0 −σ2

input . SIFT selects nspo = 3 scales per octave and used the

scales

σi = σ0 2
i

nspo i ∈ {0,1,2, . . . ,noctnspo +2}, (4.65)

where noct is dependent on the original image size. The scales kt used by sSIFT are

selected using a similar method.

4.3.2.1 Input and Initial Scale

For the Gaussian function, the ratio of the amplitude G(x = σ,σ) / G(0,σ) is

G(x = σ,σ)

G(0,σ)
=

e
−

(
σ2

2σ2

)

e
−

(
0

2σ2

) (4.66)

= e−0.5 ∀ σ > 0. (4.67)

It is of interest to then consider is a similar property holds for the spherical Gaussian

for which
GS2(θ = f (kt);kt)

GS2(0;kt)
= e−0.5, ∀ kt > 0, (4.68)

where f (kt) is some function of the scale kt. If a point in a wide-angle image at a

distance xs = 1 pixel from the principal point projects to a point on the sphere with
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an angle of colatitude θs, then finding a solution to equation 4.68 will provide some

means for comparing the shapes of G and GS2 with respect to the values xs and θs

respectively. This can then be used to select suitable scales kt based on the values used

by SIFT.

Although a closed for solution to 4.68 has not been found, the relationship θ =

f (kt) can be obtained empirically using a non-linear optimisation. Referring to equa-

tion 4.68, it is more efficient to try and evaluate the function kt = f (θ) for which

GS2(θ;kt = f (θ))

GS2(0;kt = f (θ))
= e−0.5. (4.69)

Recalling that the spherical Gaussian can be written as the spherical harmonic expan-

sion

GS2(θ,φ;kt) = ∑
l∈N

√
2l +1

4π
Y 0

l (θ,φ)e−l(l+1)kt , (4.70)

the condition in 4.69 can be written as

GS2(θ;kt = f (θ))

GS2(0,φ;kt = f (θ))
=

∑l∈N

√
2l+1

4π Y 0
l (θ,φ)e−l(l+1)kt= f (θ)

∑l∈N

√
2l+1

4π Y 0
l (0,φ)e−l(l+1)kt= f (θ)

= e−0.5, (4.71)

and can be simplified to

∑l∈N
2l+1

4π P0
l (cos(θ))e−l(l+1)kt= f (θ)

∑l∈N
2l+1

4π e−l(l+1)kt= f (θ)
= e−0.5. (4.72)

For some angle θ, the scale kt is found as

argmin
kt>0

f (kt) =

(
e−0.5 − ∑l∈N

2l+1
4π P0

l (cos(θ))e−l(l+1)kt

∑l∈N
2l+1

4π e−l(l+1)kt

)2

. (4.73)

Figure 4.12 shows the resulting scale
√

kt found for a range of initial angles θ. The

results were found for the spherical Gaussian computed up to b = 2048. A straight

lines passing through the origin was fitted using a least squares minimisation. The

gradient of the line was found to be m = 0.707 ≈ 1√
2
, where kt = θ2

2
.

As SIFT first doubles the image size and sets σinput = 1.0 and σ0 = 1.6, these

scales are 0.5 and 0.8 with respect to the original sized image. The input scale ktinput

and starting scale kt0 used by sSIFT are set as

ktinput =
(σinput θs)

2

2
, σinput = 0.5, (4.74)
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Figure 4.12: Fitted line obtained via least squares minimisation

and

kt0 =
(σ0 θs)

2

2
, σ0 = 0.8, (4.75)

where the angle of colatitude θs corresponding to a point in the wide-angle image at

a distance xs = 1 pixel from the principal point is dependent on the camera intrinsic

parameters.

Figure 4.13 compares the appearance of the Gaussian G(·;σ) and the spherical

Gaussian GS2(·;kt) projected to the function GS2(·;kt) on the image plane for the fish-

eye and parabolic catadioptric cameras in figure 4.7 (the angle θs is different for each

camera). The results are shown using two different scales of σ = 1 and σ = 20. In

both cases, the scales kt were obtained from equations 4.74 and 4.75 as kt = (σθs)
2

2
.

The similarity in the appearance of G(·;σ) and GS2(·;kt) for each camera and scale σ

suggests that this is an appropriate way to select the input scale ktinput and initial scale

kt0 for sSIFT. It is interesting to note that the inverse stereographic projection of the

Gaussian G(·;σ) to the sphere has been used as a smoothing kernel on the sphere [56].

The inverse stereographic projection of the Gaussian and its derivatives to the sphere

have also been used for wavelet based analysis of functions on the sphere [5, 247, 152].

4.3.2.2 Scales per octave and number of octaves

sSIFT uses the same noct = 3 number of scales per octave as SIFT. The set of scales kt

used by sSIFT are

kti =
(√

kt02
i

nspo

)2

, i ∈ {0,1, . . . ,noctnspo +2}, (4.76)
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(b) σ = 20 (parabolic catadioptric)
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Figure 4.13: Comparison of G(·;σ) and GS2(·;kt = (σθs)
2/2) for the parabolic cata-

dioptric (top row) and fisheye (bottom row) cameras for two different scales σ.

where noct is the number of octaves used. Although the same octave based approach

used by SIFT is not implemented (keypoints are detected using the set of scale-space

images LS2(·;kt) that are all the same size as the original wide-angle image I), it is still

convenient to use this term. In all proceeding experiments, sSIFT detects keypoints in

the first noct = 5 octaves of scale-space. This means that keypoints are detected in a

total of noct × nspo difference of Gaussian images. As keypoints are local extrema in

scale and space, this requires finding n = noct ×nspo +2 difference of Gaussian images

from a total of n = noct ×nspo +3 scale-space images.

4.3.3 Obtaining the Scale-Space Images

The procedure used to find the set of scale-space images LS2(·;kt) from a wide-angle

image I is illustrated in figure 4.14 and includes the following steps:

1. Sample the image at points IS2(θi,φ j) defined in equation 4.38 for a sample rate
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b. If the maximum image bandwidth bI exceeds the maximum permissible sam-

ple rate, use the anti-aliasing interpolation filter B′
b to obtain the sample points.

2. Use s2kit to obtain the spectrum of the image ÎS2 = SFT (IS2).

3. Set L̂S2(0) = ÎS2 as the initial condition.

4. For the set of all scales kt0,1,...,noctnspo+2, find the scale-space representation L̂S2(kt)

of the image as a response in the spherical Fourier domain from equation 4.36.

5. Find the inverse SFT of all L̂S2(kt) to obtain LS2(·;kt) = ISFT (L̂S2(kt)). The

output is the set of scale-space images LS2(·;kt) on an equiangular θ,φ grid —

the angles θ,φ are the same sample points in equation 4.38.

6. Map each scale-space image LS2(·;kt) back to the original image plane to obtain

LS2(·;kt). The scale-space images LS2(·;kt) are the same size as the original

wide-angle image I irrespective of the scale kt.

It is important to observe that sSIFT defines the initial condition L̂S2(0) = ÎS2 ,

whereby (L̂S2)m
l (kt0) = (ÎS2)m

l e−l(l+1)kt0 — the input scale ktinput is set to zero. If the

input scale defined in equation 4.74 were used, then (L̂S2)m
l (kt0)= (ÎS2)m

l e−l(l+1)kt0−input ,

where kt0−input = kt0 − ktinput . The former is used as it equates to the convolution of

the image with a spherical Gaussian of increased scale. This has the ability to suppress

more aliasing artifacts which may exist in the high frequency components of the spec-

trum ÎS2 — recall that the anti-aliasing filter B′
s is unable to achieve ideal frequency

response.

4.3.4 Keypoint Detection

Candidate keypoints are selected as local extrema in the difference of Gaussian (scale-

space) images DS2(·;kti) = LS2(·;kti+1)−LS2(·;kti) with absolute value DS2(u,v;kt)

greater than 0.8 times the difference of Gaussian threshold. In the following experi-

ments a range of thresholds are used. The 0.8 factor is used as the locations of the

extrema and difference of Gaussian values at the extrema are interpolated later. A can-

didate keypoint is a local extrema if the magnitude of its difference of Gaussian value

is greater than the magnitude its nearest 26 pixels in the current and adjacent difference

of Gaussian images (see figure 3.8, pg.118).

Edge responses are removed by enforcing a minimum ratio redge between the mag-

nitudes of the maximum and minimum principal curvatures of DS2(·;kt) evaluated at
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l
e
−l(l+1)kt1 (L̂S2)m

l
(kt2) = (ÎS2)m
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Figure 4.14: General procedure used by sSIFT to find the scale-space images LS2(·;kt).
SFT is a forward discrete spherical Fourier transform, and ISFT is an inverse discrete

spherical Fourier transform.
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the pixel positions u of the candidate keypoints. The difference of Gaussian image

DS2(·;kt) is assumed to be locally perspective during edge removal, where the ratio of

principal curvatures are obtained from the Hessian matrix H :

H =

[
DS2(u,v;kt)uu DS2(u,v;kt)uv

DS2(u,v;kt)uv DS2(u,v;kt)vv

]
(4.77)

where

DS2(u,v;kt)uu = DS2(u+1,v;kt)+DS2(u−1,v;kt)−DS2(u,v;kt), (4.78)

DS2(u,v;kt)vv = DS2(u,v+1;kt)+DS2(u,v−1;kt)−DS2(u,v;kt), (4.79)

and

DS2(u,v;kt)uv =
1

4
[(DS2(u+1,v+1;kt)−DS2(u−1,v+1;kt))− (4.80)

(DS2(u+1,v−1;kt)−DS2(u−1,v−1;kt))]. (4.81)

A candidate keypoint is deemed not to be an edge response, and is retained if

trace(H )2

det(H )
<

(r +1)2

redge

(4.82)

for the threshold redge = 10.

The accuracy of a keypoint’s scale and location is improved using the quadratic

interpolation scheme developed by Brown and Lowe [29], and is the same scheme used

by SIFT. If the position and scale of the keypoint lies at the origin of the difference of

Gaussian function DS2 , the difference of Gaussian function is estimated at an offset

x = (u,v, i)T from the origin, where i is the scale index, from the quadratic Taylor

expansion

DS2(x) = DS2 +
∂DS2

∂x

T

x+
1

2
xT ∂2DS2

∂x2
x, (4.83)

where the pixel values used to compute both
∂D

S2

∂x
and

∂2D
S2

∂x2 are given in appendix C.

Note that the difference of Gaussian function DS2 is assumed to be locally perspective

when computing the derivatives. The estimated offset x′ = (u′,v′, i′)T at which the

difference of Gaussian function DS2 is an extrema is found by taking the derivative of

equation 4.83,

∂DS2(x′)
∂x

=
∂DS2

∂x
+

∂2DS2

∂x2
x′, (4.84)
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and setting the value to zero to obtain

x′ = −∂2DS2

∂x2

−1
∂DS2

∂x
, (4.85)

which is solved using Gaussian elimination. If either of the pixel offset values u′ or

v′ exceed ±0.5, the location of the keypoint position u is shifted accordingly and the

process repeated up to a fixed number of trials. The estimate of the difference of

Gaussian function at the offset x′ is

DS2(x′) = DS2 +
1

2

∂DS2

∂x

T

x′. (4.86)

The keypoint is retained if the absolute value of DS2(x′) is above the initial set thresh-

old. The final position of the keypoint is u + u′,v + v′, and the characteristic scale kt

is

kt =

(√
kt0

i+i′
nspo

)2

, (4.87)

where kt0 is the initial scale, and i is the index for the difference of Gaussian image

DS2(·;kti) in which the keypoint was detected.

Figure 4.15a illustrates the first 15 scale-space images LS2(·;kt) obtained for a

fisheye image. The sSIFT keypoints detected in the difference of Gaussian images

DS2(·;kt) are shown in figure 4.15b. No keypoints can be detected in the first or last

difference of Gaussian images as they need to be local extrema compared to the ad-

jacent difference of Gaussian images. Although only the position of the keypoints is

shown, each keypoint has some characteristic scale kt.

4.3.5 Keypoint Support Region

A descriptor for an sSIFT keypoint is evaluated from the local image content within the

keypoint’s support region. For a keypoint detected at a pixel position u, which maps

to the point η on the unit sphere, the boundary of this support region is defined by an

angle ψs, as illustrated in figure 4.16. This is an angle from the axis passing through

the centre of the sphere and the point η. A circular support region on the sphere is used

as the spherical Gaussian is an isotropic function on the sphere. The angle ψs is set

relative to a keypoint’s characteristic scale kt as

ψs = c
√

2kt, (4.88)



184 Chapter 4: Wide-Baseline Keypoint Detection, Description and Matching with Wide-Angle Images

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

LS2(kt5)LS2(kt4)LS2(kt3)LS2(kt2)LS2(kt1)

LS2(kt10)LS2(kt9)LS2(kt8)LS2(kt7)LS2(kt6)

LS2(kt15)LS2(kt14)LS2(kt13)LS2(kt12)LS2(kt11)

(a) The set of scale-space images L
S2(θ,φ;kt) 7→ L

S2(u,v;kt) mapped to the original fisheye image

plane.
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(b) The difference of Gaussian (neighbouring scale-space) images D
S2(u,v;kt) used for keypoint de-

tection. The red dots are the location of the detected keypoints.

Figure 4.15: Keypoint detection using sSIFT in a fisheye image. The set of differ-

ence of Gaussian images DS2(·;kt) are obtained from the set of scale-space images

LS2(·;kt), where DS2(·;kti) = LS2(·;kti+1)−LS2(·;kti). The red dots show the position

of the sSIFT keypoints — keypoints cannot be detected in the first and last difference of

Gaussian images. The absolute values of the difference of Gaussian images DS2(·;kt)
have been shown for visualisation purposes.
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y

z

x

ψ
s

η

Figure 4.16: The boundary of the support region for an sSIFT is defined as a circle

on the sphere, centred about the position η of the keypoint. The size of the circle

is parameterised by the angle ψs = c
√

2kt, where kt is the characteristic scale of the

keypoint and c is some constant.

where c is some constant. The factor
√

2kt is used as it was observed in section 4.3.2.1

that
G(x = σ,σ)

G(0,σ)
≈ GS2(θ =

√
2kt;kt)

GS2(0;kt)
. (4.89)

Therefore, for any scale-invariant keypoint detection algorithm which sets the support

region as a circle on the image with radius rs = cσ, where σ is the characteristic scale

of the keypoint, substituting the same value for c in 4.88 gives some guide to selecting

a suitable sized support region on the sphere.

Figure 4.17 illustrates the keypoint support regions for a subset of the sSIFT key-

points detected in the example in figure 4.15. The support regions are shown on the

fisheye image in figure 4.17a, and on the unit sphere in figure 4.17b. The value of the

constant used was c = 10.

4.3.6 Experiments

The experiments in this section compare the percentage correlation and number of

correct keypoint correspondences found between synthetically generated wide-angle

images pairs using SIFT and sSIFT. This comparison serves as an initial guide to the

relative performance of sSIFT versus SIFT without dependence on the type of keypoint

descriptor used or the method of keypoint matching (i.e. the distance metric used to

assess descriptor similarity).
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(a) Keypoint support regions as they appear on the fisheye image.

(b) Keypoint support regions as they appear on the unit view sphere. The figure on the right is taken

at a different viewpoint (change in rotation) to the figure on the left.

Figure 4.17: A subset of sSIFT keypoints detected in the example in figure 4.15 and

their associated support regions. The support regions are shown on the fisheye image

in (a), and on the view sphere in (b). The size of the support regions has been set

to ψs = 10
√

2kt, where kt is the characteristic scale of a keypoint. ψs is an angle as

indicated in figure 4.16.
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4.3.6.1 Input Data

The images used in the experiments are wide-angle parabolic catadioptric and fisheye

images generated synthetically from the set of 40 high resolution (2272× 1704pixel)

reference images shown in figure 4.18. Synthetically generated images are used to

ensure that correct keypoint correspondences can be identified reliably — the exact

transformation (homography) between any two of the synthetically generated wide-

angle images is known exactly. Furthermore, results can be found for any wide-angle

camera.

The wide-angle images are obtained as follows. Each pixel u on the wide-angle

image is mapped to a point η on the sphere. This point is then rotated to a new position

η′ = Rη by a rotation R = Ry(β)Rx(α), where Ry(β) and Rx(α) are rotations about the

y and x axes respectively:

Ry(β) =




cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ


 Rx(α) =




1 0 0

0 cosα −sinα

0 sinα cosα


 . (4.90)

Each point η′ is then projected to the point xp on the perspective plane by

xp = d




η′
x

η′
z

η′
y

η′
z


 , (4.91)

where d is the distance of the perspective plane from the centre of the sphere. Each

point xp corresponds to a pixel position up on the reference image by up = xp +

(nc/2,nr/2)T , where nc and nr are the number of columns and rows of pixels in the

reference image respectively. This process is analogous to a wide-angle camera ob-

serving some planar region (reference image) in space. Rather than sample the value

on the reference image at position up using a linear interpolation, the mean value of all

pixels on the reference image that project within the pixel u on the wide-angle image is

used. This technique is used to more closely simulate the acquisition of images using

a digital camera.

For each reference image, wide-angle images are generated for five different dis-

tances d, and nine different rotations R at each distance (a total of 45 images are gen-

erated for each reference image). The distances d and rotation angles α and β used at

each distance are given in table 4.1.

The parabolic catadioptric and wide-angle images all have a resolution of 1024×
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Figure 4.18: The data set consisting of 40 input images of size 2272×1704 pixels.
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Rotation distance d

R 550 1150 1750 2350 2950

R1(α,β)
α = 0 α = 0 α = 0 α = 0 α = 0

β = 0 β = 0 β = 0 β = 0 β = 0

R2(−α,β) α = 0.372 α = 0.726 α = 0.912 α = 1.023 α = 1.116

R3(α,β) β = 0 β = 0 β = 0 β = 0 β = 0

R4(α,−β) α = 0 α = 0 α = 0 α = 0 α = 0

R5(α,β) β = 0.488 β = 0.837 β = 1.023 β = 1.116 β = 1.209

R6(−α,−β)
α = 0.186 α = 0.363 α = 0.456 α = 0.512 α = 0.558

R7(−α,β)
R8(α,−β)

β = 0.244 β = 0.419 β = 0.512 β = 0.558 β = 0.605
R9(−α,β)

Table 4.1: Distances and rotation angles R = Ry(β)Rx(α) used to generate the wide-

angle images. The angles α and β have units of radians.

768 pixels. The parabolic catadioptric and fisheye camera model functions that were

used are shown in figure 4.7. The wide-angle images all have equal pixel scaling in

the u and v coordinates, zero shear, and exhibit only radial distortion. Figures 4.19 and

4.20 show the set of synthetically generated parabolic catadioptric and fisheye images

respectively for one of the reference images.

4.3.6.2 Keypoints

For each reference image, SIFT and sSIFT keypoints are detected in each of the 45

parabolic catadioptric and 45 synthetic fisheye images using three different difference

of Gaussian thresholds of 0.01, 0.02 and 0.03 (images have greyscale intensity values

in the range 0-1). The SIFT and sSIFT keypoints are detected in the first noct = 5 oc-

taves of scale-space using nspo = 3 scales per octave. The same edge removal threshold

redge = 10 is used by both SIFT and sSIFT.

The SIFT keypoints are found by first doubling the size of the original wide-angle

image and pre-smooting to a starting scale of σ0 = 1.6 assuming the double sized image

has an input scale of σinput = 1. Although the original SIFT algorithm halves the im-

age after each octave of scale-space for computational efficiency, in these experiments

the image size is only halved after the first octave to ensure accurate interpolation of

keypoint position and scale. The support region for a keypoint is defined as a circle

on the wide-angle image centred about the keypoint position with radius equal to the

characteristic scale σ of the keypoint. No account for the camera distortion is made

during SIFT keypoint detection.
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R4

R5

R6

R7

R8

R9

Figure 4.19: The set of synthetically generated wide-angle parabolic catadioptric im-

ages for one of the reference images. The parameters R and d refer to rotation and

depth respectively (see table 4.1).
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d1 d2 d3 d4 d5
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Figure 4.20: The set of synthetically generated wide-angle fisheye images for one of

the reference images. The parameters R and d refer to rotation and depth respectively

(see table 4.1).
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The sSIFT keypoints are detected using the method described previously. The

sample measurements θs for the parabolic catadioptric and fisheye camera models are

θs = 0.0038 and θs = 0.0056 radians respectively. These sample measurements are

used to find the initial scale kt0 as described in section 4.3.2.1, and the set of remaining

scales as described in section . The sSIFT keypoints were found using four different

methods to obtain the image spectrum ÎS2 = SFT (IS2):

1. Sample rate b = 256, linear interpolation - sSIFT(256)

2. Sample rate b = 256, anti-aliasing interpolation filter B′
b=256 - sSIFT(256∗)

3. Sample rate b = 512, linear interpolation - sSIFT(512)

4. Sample rate b = 512, anti-aliasing interpolation filter B′
b=512 - sSIFT(512∗)

In all cases, the set of scale-space images LS2(·;kt) were all the same size as the origi-

nal wide-angle images (1024×768 pixels). The support region for each keypoint was

defined as circle on the sphere parameterised by the angle ψs =
√

2kt, where kt is the

characteristic scale of the keypoint.

4.3.6.3 Performance Metrics

The performance metrics used to compare SIFT and sSIFT are the outright number

and the percentage correlation of keypoint correspondences found between wide-angle

image pairs. If n1 and n2 are the number of keypoints detected in two different wide-

angle images, the percentage correlation is

%correlation =
n1,2

1
2
(n1 +n2)

× 100%, (4.92)

where n1,2 is the number of correspondences. For all discussions regarding these ex-

periments, the term correspondences refers to correct correspondences.

The correspondences are identified based on the position and support regions for

each keypoint using the methodology of Mikolajczyk et al [161]. Let k′(u′,µ′) be the

set of keypoints detected in a wide-angle image, where u′ and µ′ are the coordinates

and support region contours of the keypoints respectively mapped to the reference im-

age — this is possible as the exact transform between the wide-angle image and the

reference image is known. Similarly, let k′′(u′′,µ′′) be the set of keypoints detected in

another wide-angle image, where u′ and µ′ are the coordinates and support region con-

tours of the keypoints respectively mapped on the reference image. A corresponding
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pair of keypoints k′i(u
′,µ′) ↔ k′′j (u

′′,µ′′) is found if a number of criteria are satisfied.

Firstly, the Euclidean distance d(u′
i,u

′′
j ) must be less than 5 pixels (reference image

size is 2272×1704 pixels) and be the smallest of all Euclidean distances d(u′
i,u

′′) and

d(u′,u′′
j ). Secondly, the error ε between the support region contours µ′i and µ′′j (on the

reference image) must be below some threshold. This error ε is [161]:

ε = 1−
n(µ′i ∩µ′′j )

n(µ′i ∪µ′′j )
(4.93)

where n(µ′i ∩µ′′j ) and n(µ′i ∪µ′′j ) are the number of pixels in the intersection and union

of the regions enclosed by the support region contours respectively. A threshold of 0.2

is used in these experiments.

It is important to note here again that the support regions for SIFT keypoints are

defined as circles on the wide-angle images, and the support regions for sSIFT key-

points are defined as circles on the sphere. The support region contours for the SIFT

keypoints must be mapped from the wide-angle image to the sphere, rotated by R, and

then mapped to the reference image to find the contour µ. The support region contours

for the sSIFT keypoints are simply rotated by R, and then mapped to the reference

image to find the contour µ.

The set of sSIFT(512∗) keypoint correspondences found in a pair of wide-angle

fisheye images used in these experiments is shown in figure 4.21. The images in the

left column are the fisheye images, and the images in the right column show the set

of all keypoints k′(u′,µ′) and k′′(u′′,µ′′) on the reference image. The corresponding

keypoints are joined with lines.

4.3.6.4 Results

For each reference image, the number of correspondences and the percentage correla-

tion of correspondences were found for all image pairs subject to change in rotation

(R), and change in both scale (distance d) and rotation (R) for which there are 180

and 810 unique image pairs respectively. The results for all 40 reference image sets

were combined and the mean and median values were found. In total, there is a total

of 40×180 = 72000 image pairs subject to change in rotation, and 40×810 = 32400

image pairs subject to change in both scale and rotation. The mean and median re-

sults are presented in table 4.2 for the parabolic catadioptric camera, and table 4.3 for

the fisheye camera. The median results are displayed as a bar graph for for change in

rotation in 4.22, and for change in both scale and rotation in figure 4.23.
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Table 4.2: Median percentage correlation and number of correspondences for the

parabolic catadioptric camera using SIFT and sSIFT (mean values shown in brackets).

DoG is the difference of Gaussian threshold.
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Table 4.3: Median percentage correlation and number of correspondences for the fish-

eye camera using SIFT and sSIFT (mean values shown in brackets). DoG is the differ-

ence of Gaussian threshold.
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Figure 4.21: Keypoint correspondences found between two synthetic wide-angle fish-

eye images. The images on the left are the synthetic images. The keypoint positions

and support regions are shown mapped to the reference image in the right column. The

lines indicate the correspondences.

4.3.6.5 Discussion

Several aspects of the results are discussed in this section, and include: the effect

of the DoG threshold on the performance of SIFT and sSIFT, the effect of the anti-

aliasing filter on the performance of sSIFT, the effect of sample rate selection on the

performance of sSIFT, and the relative performance of SIFT and sSIFT.

DoG Selection: The results in figures 4.22 and 4.23 indicate that for each keypoint

detector, camera and image transformation (change in rotation, and change in both

scale and rotation), increasing the DoG threshold increases the percentage correlation

and decreases the number of correspondences. The decrease in the number of corre-

spondences was expected as only a limited number of keypoints can be detected using

a large DoG threshold. The increase in the percentage correlation can be attributed to

the fact that the ability to reliably detect and interpolate keypoint position and scale is

affected by image noise — image noise will produce noise in the difference of Gaus-

sian images. As the magnitude of the difference of Gaussian function increases, the
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Figure 4.22: Median percentage correlation and number of correspondences for images

subject to change in rotation for SIFT and sSIFT. The difference of Gaussian thresholds

are DoG1 = 0.01, DoG2 = 0.02 and DoG3 = 0.03.
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Figure 4.23: Median percentage correlation and number of correspondences for images

subject to change in both rotation and scale for SIFT and sSIFT. The difference of

Gaussian thresholds are DoG1 = 0.01, DoG2 = 0.02 and DoG3 = 0.03.
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Figure 4.24: Percentage increase in the percentage correlation of keypoints and the

number of correspondences using the anti-aliasing filter for each sample rate b = 256

and b = 512.

signal to noise ratio increases, hence the ability to reliably detect and interpolate key-

points with a large absolute DoG value is less sensitive to image noise than keypoints

with a small absolute DoG value.

Anti-aliasing: As the maximum bandwidth bI of both cameras exceeds the sample

rates b = 256 and b = 512 used to find the sSIFT keypoints, it was anticipated that the

anti-aliasing interpolation filter would improve the performance of sSIFT. Figure 4.24

shows the percentage increase in performance of sSIFT(256∗) over sSIFT(256), and

sSIFT(512∗) over sSIFT(512).

For the sample rate b = 256, the results in figures 4.24a and 4.24c indicate signif-

icant improvements in the percentage correlation of keypoints for the parabolic cata-
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dioptric and fisheye camera respectively for both image transformations and each DoG

threshold. These improvements reduce as the DoG threshold is increased. This occurs

as the sensitivity of keypoint detection to image noise (i.e. aliasing artifacts) increases

as the DoG threshold is reduced, as discussed previously. Referring again to the results

for sample rate b = 256, figures 4.24b and 4.24d show a small decrease in the number

of correspondences for each camera and DoG threshold for change in rotation. Except

for the highest DoG threshold (DoG = 0.03), there is a small improvement in the num-

ber of correspondences for each camera subject to change in both rotation and scale.

Overall, although there are some small reductions in the number of correspondences,

the large improvements in the percentage correlation observed from the result suggest

that for these experiments, the anti-aliasing filter improves the performance of sSIFT

keypoint detection for a sample rate b = 256 (i.e. sSIFT(256∗) gives improved results

over sSIFT(256)). This is particularly true for the smallest difference of Gaussian

threshold DoG = 0.01.

The results in figures 4.24a and 4.24c indicate, for each camera, much smaller over-

all improvement in the percentage correlation using the anti-aliasing filter for sample

rate b = 512. The only reduction in performance is for a change in both scale and rota-

tion for the fisheye camera. This is due to the fact that the sample rate b = 512 is much

closer the the maximum camera bandwidths than the sample rate b = 256. However,

in contrast to the results for the sample rate b = 256, figures 4.24b and 4.24d indicate

an increase in the number of correspondences for both image transformations and each

DoG threshold for the parabolic catadioptric camera and fisheye camera respectively.

Although there was a very small decrease in the percentage correlation for the fisheye

camera subject to change in both scale and rotation, the increase in the number of cor-

rect correspondences suggests that, for these experiments, the use of the anti-aliasing

filter is still beneficial for the sample rate b = 512 (i.e. sSIFT(512∗) gives improved

results over sSIFT(512)).

Sample Rate Selection: As it was concluded previously that the anti-aliasing filter

in general improves the performance of sSIFT, the effect of sample rate selection on

the performance of sSIFT is made between sSIFT(256∗) and sSIFT(512∗). The per-

centage improvement in performance of sSIFT(512∗) over sSIFT(256∗) is shown in

figure 4.25.

A large increase in the percentage correlation for change in both rotation and scale

is observed for each DoG threshold in figures 4.25a and 4.25c for the parabolic cata-

dioptric and fisheye camera respectively. In contrast, a small reduction in the percent-
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Figure 4.25: Percentage increase in the percentage correlation of keypoints and the

overall number of keypoint correspondences of sSIFT(512∗) over sSIFT(b = 256∗).

age correlation is observed for change in rotation for each DoG threshold for both

cameras. Figures 4.25b and 4.25d show an increase in the number of correspondences

for each image transformation and DoG threshold for both cameras. Except for a

change in rotation with the parabolic camera, this increase in the overall number of

correspondences is significantly large, with at least twice as many correspondences

found. These results give strong evidence that, in these experiments, the performance

of sSIFT improves as the sample rate increases.

It is of interest to discuss here a potential explanation for the large increase in the

percentage correlation for change in both scale and rotation, and only a small negative

increase for a change in rotation. Decreasing the sample rate b is in effect a filtering

operation, and suppresses the fine scale structures in the image (i.e. the high frequency

components). This limits the ability to detect keypoints at small scales kt, and is the

reason why there is a significant increases in the number of correct correspondences
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(a) Global scale overlap for pure rotation. (b) Global scale overlap for scale change.

Figure 4.26: Variations in the global scale overlap for different sample rates and im-

age transformations. The hatched region shows the range of ‘useful’ scales in which

keypoint can be detected — as the sample rate is reduced, the number of keypoints

detected at the smallest scales is limited.

using the higher sample rate b = 512 — in general, the majority of keypoints detected

using sSIFT(512∗) are found at the smallest scales kt. Consider then the set of key-

points detected in two different wide-angle images separated by a large scale change.

For a large scale change, there is a limited global overlap in the set of scales kt used

in each image. A keypoint in the first image for example, detected in the difference

of Gaussian image DS2(·;kt8), may correspond to the same keypoint detected in the

difference of Gaussian image DS2(·;kt1) in the other image. By reducing the sample

rate, the range of ‘useful’ scales in which keypoints can be detected is reduced. This

reduces the global scale overall between the images and the percentage correlation of

keypoints that can be found between the images, as illustrated in figure 4.26b. For

images separated only by a change in rotation, there is a perfect global overlap in the

range of scales kt between the two images. Assuming that the range of ‘useful’ scales

in the two images remains the same as the sample rate decreases, there will still be

a perfect global overlap of these ‘useful’ scales, as illustrated in figure 4.26a. This

is why there are only small variations in the percentage correlation results between

sSIFT(256∗) and sSIFT(512∗) for change in rotation.

SIFT vs sSIFT: To date, the results suggest that overall sSIFT(512∗) gives the best

performance compared to the other sSIFT keypoints. Therefore, the relative perfor-

mance of SIFT and sSIFT(512∗) is compared here. The percentage improvement in

performance of sSIFT(512∗) over SIFT is shown in figure 4.27.

The results in figures 4.27c and 4.27d show, for the fisheye camera, a significant

increase in the percentage correlation and number of correspondences respectively for

both image transformations and all DoG thresholds. It is concluded from these results
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Figure 4.27: Percentage increase in the percentage correlation of keypoints and the

overall number of keypoint correspondences for spherical SIFT with bandwidth b =
512∗ relative to SIFT.

that for the experiments conducted, sSIFT(512∗) is more suited for keypoint detection

in the fisheye images than SIFT.

For the parabolic catadioptric camera, the results in figure 4.27a show an increase

in the percentage correlation for change in rotation, and a decrease in percentage corre-

lation for change in both rotation and scale change for all DoG thresholds. Figure 4.27b

also indicates a decrease in the number of correspondences for change in rotation, and

change in both rotation and scale for all DoG thresholds. These results suggest that

in these experiments, SIFT was more suited for keypoint detection in the parabolic

catadioptric images than sSIFT(512∗).

The explanation for the overall decrease in performance of sSIFT (512∗) compared

to SIFT is quite detailed. Recall from chapter 2 that image formation with a parabolic

catadioptric camera can be modelled as the perspective projection of a scene point to
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the sphere, followed by a stereographic projection of the point to the image plane. As

stereographic projection is a conformal mapping which locally preserves angles, an

isotropic kernel at any position on the image, such as the Gaussian, maps via inverse

stereographic projection to an approximately isotropic function on the sphere. As the

Gaussian and the stereographic projection of the spherical Gaussian to the the function

GS2(·;kt) are similar in shape (see figure 4.13, pg. 179), convolution of a parabolic

catadioptric image with the Gaussian is approximately equal to the convolution of

the image, mapped to the sphere, with the spherical Gaussian GS2(·;kt) with variable

scale kt — the scale kt of GS2(·;kt) changes depending on its position on the sphere.

Furthermore, as SIFT defines a keypoint support region as a circle on the image, for

the parabolic catadioptric camera it maps via inverse stereographic projection to an

approximately circular region on the sphere. In a nutshell, applying SIFT to a parabolic

catadioptric image is approximately invariant to the camera distortion and not limited

by the same sample rate issues as sSIFT. This approximation forms the basis of the

pSIFT keypoint detector developed in section 4.4, where all the concepts discussed

here will be described in greater detail.

To recap, the steps used to detect SIFT keypoints in a parabolic catadioptric image

are approximately invariant to the camera distortion. As SIFT keypoints are found

using the original image values without the need to obtain the spectrum ÎS2 of the

image, which as discussed can introduce aliasing artifacts, in some respects it is suited

for keypoint detection in parabolic catadioptric images. The decrease in the number of

correct correspondences using sSIFT(512∗) compared to SIFT is also due to the fact

that sSIFT maps each scale-space image LS2(·;kt) back to the the set of scale-space

images LS2(·;kt) on the original image plane. This requires a linear interpolation of

the values LS2(·;kt) which introduces an additional smoothing operating. This can

reduce the overall number of keypoints detected in an image, and consequently reduce

the number of correspondences between images.

4.3.7 Conclusions

The spherical SIFT (sSIFT) keypoint detector was developed in this section, which is

a variant of the SIFT keypoint detector designed for wide-angle image. Scale-space

images are obtained by convolving the image, mapped to the sphere, with the spherical

Gaussian. This convolution is implemented in the spherical Fourier domain and re-

quires finding the spectrum of the wide-angle image using a discrete spherical Fourier

transform with sample rate b. A method to estimate the bandwidth of a wide-angle

image was formulated which defines the minimum sample rate b required to prevent
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aliasing in the image spectrum. In the case where this required sample rate exceeds

the maximum computationally feasible value, a practical approach to minimise alias-

ing was presented in the form of an anti-aliasing interpolation filter used to sample the

image values for the discrete spherical Fourier transform. A methodology for selecting

a suitable set of scales kt was then presented based on the scales used by SIFT and

the camera intrinsic parameters. The practical procedure used to find the set of scale-

space images LS2(·;kt) was then outlined. Each scale-space image LS2(·;kt), which is

a function on the sphere, is mapped back to the scale-space image LS2(·;kt) defined

on the original image plane. Candidate keypoints are then detected in the difference

of Gaussian (scale-space) images DS2(·;kt). After removing edge responses, the accu-

racy of the position and scale of the remaining keypoints are improved using the same

interpolation scheme as SIFT. The support region for a keypoint is then defined as a

circle on the sphere, centred at the position of the keypoint on the sphere, whose size

is set relative to the keypoint scale kt.

Experiments were conducted to compare the percentage correlation and number of

correspondences of keypoints detected in synthetic wide-angle images using SIFT and

sSIFT. Overall, the results gave evidence that the the performance of sSIFT improves as

the sample rate b increase, and that the anti-aliasing filter improves performance when

the required sample rate exceeds the maximum computationally feasible value. It was

concluded that overall, the best performance of sSIFT in the experiments was obtained

for a sample rate b = 512 with the anti-aliasing interpolation filter (i.e. sSIFT(512∗)).

For the fisheye camera, the results indicated that sSIFT(512∗) gave significantly better

results than SIFT. However, for the parabolic catadioptric camera, SIFT outperformed

sSIFT(512∗). This result for the parabolic catadioptric camera was attributed to the

fact that applying SIFT to stereographic images (the images obtained by a parabolic

catadioptric camera) is in some respects invariant to camera distortion. In particular,

the convolution of a stereographic image with a Gaussian is approximately equal to

the convolution of the image on the sphere with the spherical Gaussian with chang-

ing (non-uniform) scale. SIFT also has the advantage that the original image intensity

value are used. sSIFT in contrast requires sampling the intensity values to obtain the

spectrum ÎS2 of the image. The sample rate that needs to be used by sSIFT to prevent

aliasing when finding the spectrum of an image using a discrete spherical Fourier trans-

form can exceed the capabilities of the hardware used. This was the case when finding

sSIFT keypoints in the fisheye and parabolic catadioptric images in the experiments in

this section.
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4.4 Scale-Invariant Keypoint Detection: parabolic SIFT

(pSIFT)

The second variant of SIFT developed in this chapter is parabolic SIFT (pSIFT). As

was the case for sSIFT, pSIFT defines scale-space for wide-angle images as the con-

volution of IS2 with the spherical Gaussian GS2(·;kt). An approximation to this convo-

lution is used that is implemented efficiently in the spatial domain with stereographic

images Ip. It was observed in the previous experiments that SIFT performed rela-

tively well for the parabolic catadioptric camera. As was recently discussed in sec-

tion 4.3.6.5, the reason for this is probably due to the fact that image formation for a

parabolic catadioptric camera is described by the stereographic projection of an im-

age, on the sphere, to the stereographic image plane. This projection is a confor-

mal mapping which locally preserves shapes, and as a result an isotropic Gaussian on

the stereographic image back projects to an approximately isotropic function on the

sphere. Therefore, if the spherical Gaussian on the sphere is projected to the image

plane, using stereographic projection, the resulting function in the image plane will be

approximately isotropic. This is the fundamental property that pSIFT uses to derive an

approximate spherical diffusion process which can be implemented efficiently in the

spatial domain. Performing the convolution in the spatial domain removes the need to

obtain the spectrum of the image and the sample rate problems encountered by sSIFT.

4.4.1 Conversion to a Stereographic Image

A stereographic image is defined to be the image that would be obtained if image

formation were described by a perspective projection of scene points to the sphere,

followed by a stereographic projection from the south pole to the image plane. This

is the same image that would be obtained by a parabolic catadioptric camera, hence

the name parabolic SIFT. As the image I obtained with any central projection wide-

angle camera can be mapped to the image IS2 on the sphere, it can be converted to a

stereographic image Ip, as illustrated in figure 4.28. The projection of a point η on the

sphere to a pixel position u on the stereographic image is

u =

(
1+mp

1+ηz

)[
ηx

ηy

]
+u0, (4.94)

where mp is the distance of the stereographic image plane from the centre of the sphere.

The polar coordinates of a point x(r,ζ) = u−u0 on the stereographic image can also
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S2 on the sphere, the stereographic image Ip (right) is produced as the stereo-

graphic projection of I
S2 from the south pole to the stereographic image plane.

Figure 4.28: An image (a) obtained with a calibrated central projection fisheye camera

can be mapped to the image IS2 on the unit sphere. (b) shows the process for obtaining

the stereographic image Ip. The image IS2 is mapped by stereographic projection from

the south pole to the stereographic image plane.

be obtained from the spherical polar coordinates of the point η(θ,φ) as

r = (mp +1) tan

(
θ

2

)
ζ = φ, (4.95)

where the inverse is

θ = 2tan−1

(
r

m+1

)
, φ = ζ. (4.96)

In later experiments, all wide-angle images are converted to stereographic image

using the same approach. The size of the stereographic image is made equal to the

size of the original wide-angle image. A 1024×768 pixel fisheye image for example

is converted to a 1024× 768 pixel stereographic image. The position of the principal



208 Chapter 4: Wide-Baseline Keypoint Detection, Description and Matching with Wide-Angle Images

point u0 is also set at the exact same position as in the original wide-angle camera.

Finally, if a point on the equator of the sphere projects to a point at a radius rπ/2 from

the principal point in the original wide-angle image, the distance mp is set so that a

point on the equator of the sphere projects to a point on the stereographic image at the

same radius rπ/2 from the principal point:

mp = rπ/2 −1. (4.97)

A simple linear interpolation of the original wide-angle image values is used when

converting it to a stereographic image.

As was the case when using sSIFT, pSIFT requires resampling (i.e. interpolating)

the original wide-angle images values. For sSIFT, this sampling is needed when find-

ing the SFT of an image (i.e. mapping the image to an equiangular θ,φ grid). For

pSIFT, this resampling is needed when converting the original wide-angle image to

a stereographic image. However, it is evident from figures 4.14 (pg. 181) and 4.28

that the degree by which the appearance of the original wide-angle changes is less for

pSIFT than sSIFT, which means that the magnitude of interpolation artifacts will be

less. Referring to figure 3.23 (pg. 147), it can also be seen that the degree by which the

appearance of the original wide-angle changes is less for pSIFT than if the wide-angle

image were converted to a wide-angle of view perspective image.

4.4.2 Approximate Spherical Diffusion using Stereographic Pro-

jection

Recall from previous discussions that the spherical Gaussian GS2(·;kt) is by defini-

tion centred at the north pole n and projects for the given camera model to the ker-

nel GS2(·;kt) on the image, centred at the principal point u0. The spherical Gaus-

sian rotated by some rotation matrix R to be centred at the point η′ = Rn was de-

fined as GS2(η′)(·;kt). GS2(η′)(·;kt) projects for the given camera model to the kernel

GS2(η′)(·;kt) on the image, centred at the pixel coordinate u′ 7→ η′. Figure 4.29 il-

lustrates the appearance of the kernels GS2(·;kt) and GS2(η′)(·;kt) as they appear on a

stereographic image. GS2(η′)(·;kt) is centred at the same point η′ used in the previous

example in figure 4.3.

pSIFT approximates spherical diffusion as a convolution operation on the stereo-

graphic image plane. This approximation is based on two key assumptions which are

not mutually exclusive:
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Figure 4.29: Appearance of the spherical Gaussian kernels GS2(·;kt) and GS2(η′)(·;kt)
as they would appear on a stereographic image. The dashed circle represents the field

of view of the camera.

1. As stereographic is a conformal mapping which locally preserves angles, the

spherical Gaussian GS2(η′)(·;kt) is assumed to be isotropic for all η′ and scales

kt.

2. If the kernel GS2(·;kt) were shifted so that it was centred at the point u′ 7→ η′,

then there exists some scale kt(r), which is a function of the scale kt and ra-

dius r of the point u′ from the principal point, for which GS2(·;kt) is equal to

GS2(η′)(·;kt(r)).

Using both these assumptions, which will be discussed in detail in this section,

pSIFT first finds an isotropic version of the kernel GS2(·;kt) (GS2(·;kt) would only be

circular symmetrical if the principal point were defined at an integer pixel position).

This w×w kernel is denoted G̃S2(·;kt) and has values

G̃S2(x,y;kt) = ∑
l∈N

√
2l +1

4π
Y 0

l (θx,y)e
−l(l+1)kt , x,y ∈ {−w,−w+1, . . . ,w−1,w},

(4.98)

where

θx,y = 2arctan

(√
x2 + y2

mp +1

)
. (4.99)

Assuming that LS2(·;0) = fp is the initial condition, where fp is a function on the

stereographic image plane, pSIFT obtains for a given scale kt the scale-space image

LS2(·;kt(r)) by convolving fp with G̃S2(·;kt):

LS2(·;kt(r)) = fp ∗ G̃S2(·;kt), (4.100)

where LS2(·;kt(r)) is a function on the stereographic image plane. As will be shown,

kt(r) is some function of the scale kt and the radius r of the pixel from the principal
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point. This means that the scale-space image LS2(·;kt(r)) has a non-uniform scale kt.

It is important to note that the convolution in 4.100 differs from the definition in 4.28.

The convolution in 4.100 is implemented on the stereographic image plane, where

LS2(·;kt(r)) evaluated at a pixel position u′,v′ is

LS2(u′,v′;kt(r)) =
x=w

∑
x=−w

y=w

∑
y=−w

fp(u
′ + x,v′ + y) G̃S2(x,y,kt), (4.101)

where x,y are integer values and w is the size of the kernel G̃S2(·;kt).

As discussed, it is assumed that if the kernel GS2(·;kt) where shifted so that it was

centred at a point u′ 7→ η′, then there is some scale kt(r) for which GS2(η′)(·;kt(r)) is

equal to GS2(·;kt(r)). Therefore, it is assumed that there is some scale kt(r) for which

G̃S2(x,y;kt) = GS2(η′)(u
′ + x,v′ + y;kt(r)), ∀x,y. (4.102)

To find a scale-space image LS2(·;kt) with a uniform diffusion scale kt, LS2(u′,v′;kt)

would be evaluated as

LS2(u′,v′;kt) = ∑
u

∑
v

fp(u,v)GS2(η′)(u,v,kt). (4.103)

pSIFT assumes that the value of LS2(u′,v′;kt(r)) obtained from 4.101 is approximately

equal to

LS2(u′,v′;kt(r)) =
x=w

∑
x=−w

y=w

∑
y=−w

fp(u
′ + x,v′ + y) G̃S2(x,y,kt)

≈ ∑
u

∑
v

fp(u,v)GS2(η′)(u,v,kt(r)), (4.104)

which is similar to 4.103 except that the scale kt(r) of the spherical Gaussian varies

depending on the distance r of the point u′ from the principal point. Despite the fact

that the non-uniform diffusion scale would not make the method suitable for uniform

diffusion, for the purposes of scale-invariant keypoint detection this is not a limiting

factor as the image is analysed across a wide range of scales.

4.4.2.1 Scale correction

For reasons which will become clear in later discussions, it is necessary to find the scale

kt(r) for which G̃S2(·;kt), centred at the point u′, and GS2(η′)(·;kt(r)) are most similar.

This similarity could for example be a measured by the Frobenius norm ||G̃S2(·;kt)−
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GS2(η′)(·;kt(r))||F . Unfortunately, a closed for solution to find the scale kt(r) which

minimises this Frobenius norm has not been found. However, it is proposed that a

suitable estimate of the scale kt(r) can be obtained by comparing the local sample

rates
dψ
dP

(r = 0,α) and
dψ
dP

(r,α) evaluated at the principal point and at the point u′

respectively, where r =
√

(u′−u0)2 +(v′− v0)2 — see section 4.3.1.2, pg. 167 for a

definition of the sample rate
dψ
dP

(r,α).

The local sample rate
dψ
dP

(r,α) was derived for the unified camera model in sec-

tion 4.3.1.2, and the solution for a parabolic catadioptric camera (i.e. a stereographic

projection) with lc = 1 was given in equation 4.56 (pg. 170)7, where nc = mc +1. This

equation can be rewritten using mc = mp as

dψ2(r,α) =
4(mp +1)2

(r2 +(mp +1)2)
2

dP2. (4.105)

The ratio of the sample rate at a distance r from the principal point to that at the

principal point itself is
dψ2

dP2 (r)

dψ2

dP2 (0)
=

(mp +1)4

((mp +1)2 + r2)
2
. (4.106)

Since it was shown that kt ∝ dψ2 in section 4.3.2 (pg. 174), the estimate of the ‘cor-

rected’ scale kt(r) is

kt(r) =
kt(mp +1)4

((mp +1)2 + r2)
2
, (4.107)

and is shown in figure 4.30 as a function of r for a range of scales kt.

Using this scale correction, the assumption made in equation 4.102 becomes

G̃S2(x,y;kt) = GS2(η′)

(
u′ + x,v′ + y;

kt(mp +1)4

((mp +1)2 + r2)
2

)
, ∀x,y. (4.108)

where u′ 7→ η and r =
√

(u′−u0)2 +(v′− v0)2. Therefore, referring to equation 4.104,

pSIFT assumes that the value of the scale-space image LS2(u′,v′;kt(r)) is approxi-

mately equal to

LS2(u′,v′;kt(r)) ≈ LS2

(
u′,v′;

kt(mp +1)4

((mp +1)2 + r2)
2

)
. (4.109)

7The same result can be obtained by deriving the parameters dφ,sin2(θ) and dθ2 in equations 4.51,

4.52 and 4.53 algebraically from equation 4.96, and then substituting into equation 4.45.
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Figure 4.30: Corrected scale at a given radius on the image plane. The value rθ=π/2 is

the radius on the image plane which projects via inverse stereographic projection to a

point η on the equator of the sphere.

4.4.2.2 Approximation Error

The difference between GS2(η′)(·;kt(r)) and G̃S2(·;kt) centred at u′ 7→ η′ can be con-

sidered as the pSIFT approximation error ε. For a given scale kt, this error can be

measured at any pixel position u′ from equation 4.108 as

ε =




x=w

∑
x=−w

y=w

∑
y=−w

[
G̃S2(x,y;kt)−GS2(η′)

(
u′ + x,v′ + y;

kt(mp +1)4

((mp +1)2 + r2)
2

)]2



1/2

,

(4.110)

where r is the distance of the point u′ from the principal point. Figure 4.31a shows the

error ε as a function of the radius r for a range of scales kt using the parabolic cata-

dioptric camera model in figure 4.7. The same error ε found without scale correction

(kt(r) = kt,∀r) is shown in figure 4.31b. The errors in both figures were obtained using

the kernels GS2(η′)(·;kt(r)) and G̃S2(·;kt) computed up to b = 2048 and normalised to

have unit volume. Figure 4.32 illustrates the difference between GS2(η′)(·;kt(r)) and

G̃S2(·;kt) with and without the scale correction for the largest scale
√

kt = 0.04 and

radius r/rθ=π/2 = 1 (the radius on the image plane which corresponds to a point on the

equator of the sphere).

As expected there is a significant reduction in the approximation error using the

scale correction factor. The results using the scale correction in figure 4.31a indicate

that the error increases as the radius r increases and remains approximately equal for



4.4. Scale-Invariant Keypoint Detection: parabolic SIFT (pSIFT) 213

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

−4

Radius on Image Plane − r/r
θ = π/2

F
ro

b
e
n
iu

s
 N

o
rm

 (
e
rr

o
r 

ε)

 

 

√
kt = 0.005√
kt = 0.010√
kt = 0.020√
kt = 0.040

(a) With scale correction.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Radius on Image Plane − r/r
θ = π/2

F
ro

b
e
n
iu

s
 N

o
rm

 (
e
rr

o
r 

ε)

 

 √
kt = 0.005√
kt = 0.010√
kt = 0.020√
kt = 0.040
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Figure 4.31: pSIFT approximation error versus radius r from the principal point for a

range of scales kt. (a) shows the results with scale correction (equation 4.107), and (b)

shows the results without scale correction. The value rθ=π/2 is the radius on the image

plane corresponding to a point on the equator of the sphere.

all scales kt. The largest error is less than 0.1% of the volume of G̃S2(·;kt). It is

concluded from this result that the scale correction factor given in equation 4.107 is

suitable. This scale correction factor is used later to correct the characteristic scale of

pSIFT keypoints.

4.4.3 Scale-selection

The input scale ktinput and set of remaining scales kt used by pSIFT are selected using

the method described in section 4.3.2 for nspo = 3 scales per octave. The original wide-

angle camera model is used find the angle of colatitude θs of a point on the sphere that

projects to a point in the image at a radius of 1 pixel from the principal point. In all

remaining experiments, pSIFT keypoints are detected in the first noct = 5 octaves of

scale-space.

4.4.4 Efficient Computation of Scale-Space Images

This section explores a number of the techniques, used by SIFT, that can be used by

pSIFT to compute a set of scale-space images LS2(·;kt(r)) efficiently . These include

separable convolution, cascade filtering, and an octave based approach to image pro-

cessing which halves the image size after each octave of scale-space.
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S2(·;kt).

−50

0

50

−50

0

50

0

0.5

1

1.5

x 10
−3

x (pixels)y (pixels)

A
m

p
lit

u
d
e

(b) GS2(η′)(·;kt(r)) centred at point u′ 7→ η′ ob-

tained without scale correction (kt(r) = kt).
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(c) GS2(η′)(·;kt(r)) centred at point u′ 7→ η′ ob-

tained with scale correction.
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Figure 4.32: The kernel (a) G̃S2(·;kt), and the kernel GS2(η′)(·;kt(r)) obtained (b) with-

out scale correction, and (c) with scale correction— all kernels have been normalised

to have unit volume. (d) and (e) illustrate the difference G̃S2(·;kt)−GS2(η′)(·;kt(r))
without and with scale correction respectively. All coordinates x,y are defined relative

to the pixel at the centre of the kernel. The results are shown for a scale
√

kt = 0.04

and a radius rθ=π/2 (the radius on the image plane which corresponds to a point η′ on

the equator of the sphere).
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4.4.4.1 Separable Convolution

The two-dimensional discrete Gaussian G(·;σ) is the only circular symmetrical kernel

that is separable. It is a rank 1 matrix that can be written as the outer product of two

one-dimensional Gaussian of the the same standard deviation σ:

G(σ) = Gy(σ)Gx(σ), (4.111)

where Gx(σ) a row vector and Gy(σ) is a column vector. This property enables the

convolution of an image with the Gaussian to be implemented efficiently by successive

convolutions with Gx(σ) and Gy(σ):

I ∗G(·;σ) = Gx(·;σ)∗ (I ∗Gy(·;σ)). (4.112)

This is referred to here as a ‘separable convolution’.

It was observed previously in figures 4.13a and 4.13b that the kernel GS2(·;kt) on

the stereographic image plane is similar in shape the the Gaussian G(·;σ). To the

best of the author’s knowledge these two functions are not equivalent. This suggests

that the square symmetric kernel G̃S2(·;kt) is close to being a rank 1 matrix. This is

confirmed with reference to figure 4.33a which shows the ratio of the second to first

largest eigenvalues λ of G̃S2(·;kt) computed up to b = 2048 on a square 241× 241

pixel region for a range of scales kt. These scales correspond to the first 15 scales used

by pSIFT for the fisheye camera calibrated in chapter 2. It is proposed that G̃S2(·;kt)

can be approximated as the outer product of a row and column vector. The convolution

of Ip with G̃S2(·;kt) can then be approximated by successive convolutions with these

vectors, that is, using a separable convolution.

There are three ways that the row and column vectors could be selected whose

outer product approximates G̃S2(·;kt):

1. Find G̃ ′
S2(·;kt), the best rank 1 estimate of G̃S2(·;kt) which minimises the Frobe-

nius norm ||G̃S2(·;kt)− G̃ ′
S2(·;kt)||F . The matrix G̃ ′

S2(·;kt) can be found from

the eigen-decomposition of the square symmetric w×w matrix G̃S2(·;kt). If Λ

is the w×w matrix whose diagonal values {λ1,λ2, . . . ,λw} are the eigenvalues

of G̃S2(·;kt) in decreasing order of magnitude, and U is the w×w matrix whose

columns are the corresponding eigenvectors, then G̃S2(·;kt) = U ΛUT . The best

rank 1 estimate of G̃S2(·;kt) is U1 λ1UT
1 , where U1 is the first column of U . Then

Ip ∗ G̃S2(·;kt) ≈ λ1U1 ∗ (Ip ∗UT
1 ).
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2. Simply select the middle row G̃S2(umid;kt) and column G̃S2(vmid;kt) of the ker-

nel G̃S2(·;kt). Then G̃S2(·;kt) ≈ G̃S2(vmid;kt)G̃S2(umid;kt), and the error of this

approximation can be measured as the Forbenius norm

||G̃S2(·;kt)− G̃S2(vmid;kt)G̃S2(umid;kt)||F .

Convolution would then be approximated as Ip ∗ G̃S2(·;kt)≈ G̃S2(umid;kt)∗ (Ip ∗
G̃S2(vmid;kt)).

3. Out of interest, the best estimate of the Gaussian G(·;σ) which approximates

G̃S2(·;kt) could also be found, where best could be defined to mean the one

which minimises the Frobenius norm ||G̃S2(·;kt)−G(·;σ)||F . The convolution

with G(σ) would then be approximated from equation 4.112 as Ip ∗ G̃S2(·;kt) ≈
Gx(σ)∗ (Ip ∗Gy(σ)).

In all cases, the vectors used for the separable convolution would need to be normalised

to have unit volume.

Figure 4.33b shows, for each of the kernels GS2(·;kt) used in figure 4.33a (nor-

malised to have unit volume), the Frobenius norm for each of the three methods dis-

cussed. The estimate of the Gaussian G(·;σ) for method 3 was obtained using a non-

linear optimisation. The results suggest that all methods provide an accurate estimate

of G̃S2(·;kt). Although the first method gives the most accurate results, the second

method is used by pSIFT. The reason for selecting the second method over the first is

the decreased computational cost as only the middle row or column needs to be found

and not the whole kernel G̃S2(·;kt) — the values of the middle row and column vectors

are identical as G̃S2(·;kt) is symmetrical.

4.4.4.2 Cascade Filtering

Many scale-space keypoint detection algorithms such as SIFT use a cascade filtering

approach to find scale-space images as

L(·;σ2) = G(·;σ2)∗ I (4.113)

= G(·;σ2−1)∗ (G(·;σ1)∗ I) (4.114)

= G(·;σ2−1)∗L(·;σ1), (4.115)

where σ2−1 =
√

σ2
2 −σ2

1. The same approach can be used to obtain scale-space images

for wide-angle images as convolution with the spherical Gaussian satisfies the semi-
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Figure 4.33: Error in the approximation of G̃S2(·;kt) as the outer product of a two

vectors.

group property, as shown in equation 4.37:

LS2(·;kt2(r)) = GS2(·;kt2)∗ fp (4.116)

= GS2(·;kt2−1)∗ (GS2(·;kt1)∗ fp) (4.117)

= GS2(·;kt2−1)∗LS2(·;kt1(r)), (4.118)

where kt2−1 = kt2−kt1. pSIFT can therefore use a cascade filtering approach to obtain

scale-space images by

LS2(·;kt2(r)) = G̃S2(·;kt2−1)∗LS2(·;kt1(r)). (4.119)

The advantage of this approach is that the size of the kernels used to find the scale-

space images LS2(·;kt(r)) remain as small as possible.

4.4.4.3 Octave-based Approach

The final method that pSIFT uses to increase the speed of keypoint detection is the

octave based approach used by SIFT, where the image size is halved after each oc-

tave. pSIFT doubles the size of the original stereographic image and finds the first

scale-space image LS2(·;kt0(r)) by pre-smoothing the image to the starting scale kt0

with the the kernel G̃S2(·;kt0−input) (pSIFT does not assume that LS2(·;0) = IS2). The

next nspo + 2 = 5 scale-space images are then found to obtain the set of six scale-

space images LS2(kt0,1,...,5) for the octave. The five difference of Gaussian images
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DS2(kt0,1,...,4) are obtained from these scale-space images from which the keypoint are

detected in the middle three. Keypoints can only be detected in the middle three as

they must be local extrema in scale and space. The fourth image in the stack, LS2(kt3),

is then halved in size. This scale-space image is twice the scale of the first scale-space

image in the stack (
√

kt3 = 2
√

kt0). This halved image becomes the first scale-space

image in the next octave of scale-space. The process is then repeated for noct octaves of

scale-space. This octave based approach, coupled with both the approximate separable

convolution and cascade filtering, enables keypoints to be detected efficiently with the

same computational order as SIFT.

Before proceeding, it is important to note that the position of the camera’s principal

point u0 and the distance mp of the stereographic image plane from the centre of the

view sphere need to be updated each octave. This ensures that the correct kernels

G̃S2(·;kt) are used, and that the correct scale-correction factor derived in section 4.4.2.1

can be calculated.

4.4.5 Keypoint Detection and Support Region

The keypoint detection stage of pSIFT is the same as sSIFT (see section 4.3). For each

octave of scale-space, candidate keypoints are selected as local extrema in the differ-

ence of Gaussian images DS2(·;kt(r)). Edge responses are then removed using the

same edge removal threshold of redge = 10. Finally, the same quadratic interpolation

is used to refine the position and scale of the keypoints. During keypoint detection,

the non-linear diffusion scale kt(r) is effectively ignored. The initial characteristic

scale of the keypoint is interpolated assuming that the difference of Gaussian images

have a uniform diffusion scale — the difference of Gaussian images DS2(·;kt(r)) are

treated as DS2(·;kt). It is only after the characteristic scale has been found, assuming

that the difference of Gaussian images have a uniform diffusion scale kt, that the scale-

correction factor described in section 4.4.2.1 is applied to find the corrected scale kt(r).

This value is then used to update the characteristic scale kt = kt(r) of the keypoint. The

support region for a keypoint is defined as a circle on the sphere, centred at the key-

point position on the sphere, whose size is parameterised by the angle ψs = c
√

2kt (see

figure 4.16, page 185).

One may argue that since stereographic projection is conformal, it would be suit-

able to define the support region for a pSIFT keypoint as a circle on the stereographic

image. The problem with doing this is the fact the stereographic projection only lo-

cally preserves angles. To illustrate, figure 4.34 shows two views of the same scene
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at different camera orientations. Figure 4.34a shows the original fisheye images, and

figure 4.34b shows the fisheye images converted to stereographic images. With ref-

erence to the circular pattern, although the appearance remains more similar in the

stereographic image compared to the fisheye image (up to a scale factor), there are still

noticeable variations in the appearance. However, the appearance of the pattern on the

view sphere would be identical up to a change in rotation. It is for this reason that the

keypoint support region is set as a circle on the sphere.

4.4.6 Implementation

The details of pSIFT keypoint detection are summarised here. The original stereo-

graphic image’s principal point and distance of the stereographic image from the view

sphere are denoted u0 and mp respectively. The corrected values at a given octave are

denoted u′
0 and m′

p.

1. Use the original wide-angle camera model to obtain the sample measurement θs

from which the input scale ktinput and set of remaining scales kt0,1,...,noctnspo+2 are

found, where noct = 5 and nspo = 3 (see section 4.3.2).

2. Use the method described in section 4.4.1 to convert the wide-angle image I

to an equal sized stereographic image Ip. The stereographic camera intrinsic

parameters are the position u0 of the principal point, and the distance mp of the

stereographic image from the centre of the view sphere.

3. Double the size of the stereographic image and find the new values for u′
0 and

m′
p.

4. Find the pre-smoothing kernel G̃S2(·;kt0−input) and convolve the double sized

stereographic image with this kernel to obtain the first scale-space image LS2(·;kt0(r))

in the octave. The pre-smoothing kernel must be found using the correct distance

m′
p for this octave. The starting scale for this octave is ktκ, where κ = 0.

5. For i = 0 : noct +2, compute the kernel G̃S2(·;kti+1+κ−kti+κ) and convolve with

LS2(·;kti+κ(r)) to find the scale-space image LS2(·;kti+1+κ(r)). Use the correct

value of m′
p for this octave.

6. For i = 0 : noct + 1, find the difference of Gaussian image DS2(·;kti+κ(r)) =

LS2(·;kti+1+κ(r))−LS2(·;kti+κ(r)).



220 Chapter 4: Wide-Baseline Keypoint Detection, Description and Matching with Wide-Angle Images

(a) Fisheye Image.

(b) Stereographic Image.

Figure 4.34: The change in appearance of a circular pattern in images of the same scene

at different camera orientations. This change is shown as it appears in (a) the original

fisheye image and (b) in the stereographic images. Although stereographic projection

is conformal, and the appearance of the circular pattern in (b) remains approximately

equal up to a scale change, there are still noticeable variations in the appearance. How-

ever, the appearance of this circular pattern on the view sphere would be identical up

to a change in rotation.
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7. Detect in the middle three of these difference of Gaussian images the pSIFT

keypoints (see section 4.3). Obtain the corrected characteristic scale kt = kt(r)

for each keypoint using the method described in section 4.4.2.1. The correct

values of the principal point u0
′ and distance m′

p for this octave must be used to

find the corrected scale. Set the support region angle as ψs = c
√

2kt.

8. Take the fourth (nspo + 1) scale-space image in the octave, LS2(·;kt3+κ), and

halve it — kt3+κ = 2ktκ. This becomes the first scale-space image LS2(·;kt3+κ)

in the next octave of scale-space.

9. Increment the scale index, κ = κ+nspo.

10. Repeat from step 5 for the required number of octaves.

Although not explicitly stated, the separable approach to convolution is used which

requires finding only the middle row or column vector of the kernel G̃S2(·;kt) for the

required scale kt. These vectors are precomputed offline for l ∈ {0,1, . . . ,2048} (see

equation 4.98, pg. 209).

4.4.7 Experiments: percentage correlation and number of corre-

spondences

The experiments in section 4.3 were repeated using pSIFT. Note that only the fisheye

images needed to be converted to stereographic images for pSIFT keypoint detection.

For both the parabolic catadioptric and fisheye cameras, the input scale ktinput and set

of scales kt were obtained as outlined in section 4.3.2 using the original parabolic cata-

dioptric and fisheye camera models. The angle of the support region for the keypoints

was set to ψs =
√

2kt. Although a full octave based approach can be used with pSIFT,

in these experiments the image size was only halved after the first octave of scale-space

to ensure the position and scale of keypoints were found accurately — the first octave

still operates on the double sized image. In later experiments the full octave-based

method is used which improves the speed of the algorithm.

4.4.7.1 Results

The results for change in rotation and change in both rotation and scale are shown in

figures 4.35 and 4.36. A summary of the results is presented in tables 4.4 and 4.5 for

the parabolic catadioptric and fisheye camera respectively. The SIFT and sSIFT results

have also been included for reference.
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Table 4.4: Median percentage correlation and number of correspondences for the

parabolic catadioptric camera using SIFT, sSIFT and pSIFT (mean values shown in

brackets). DoG is the difference of Gaussian threshold.
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Table 4.5: Median percentage correlation and number of correspondences for the fish-

eye camera using SIFT, sSIFT and pSIFT (mean values shown in brackets). DoG is

the difference of Gaussian threshold.
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Figure 4.35: Median percentage correlation and number of correspondences for images

subject to change in rotation for SIFT, sSIFT and pSIFT. The difference of Gaussian

thresholds are DoG1 = 0.01, DoG2 = 0.02 and DoG3 = 0.03.
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Figure 4.36: Median percentage correlation and number of correspondences for images

subject to change in both rotation and scale for SIFT, sSIFT and pSIFT. The difference

of Gaussian thresholds are DoG1 = 0.01, DoG2 = 0.02 and DoG3 = 0.03.
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Figure 4.37: Percentage increase in the percentage correlation of keypoints and the

overall number of correspondences for sSIFT(512∗) and pSIFT relative to SIFT.

4.4.7.2 Discussion

The increase in the percentage correlation and number of correspondences for each

camera using pSIFT over SIFT is shown in figure 4.37. This figure also shows the

results for sSIFT (512∗) presented in figure 4.27. Overall, the results obtained in these

experiments show that for both cameras, pSIFT gave improved or comparable perfor-

mance to SIFT.

The results in figures 4.37a and 4.37b show that there was almost no increase in

performance using pSIFT for the parabolic catadioptric camera. This result is not

surprising considering that the G̃S2(·;kt) and G(·;σ) are similar in shape on a stereo-

graphic image, as shown previously in figure 4.13. Furthermore, as stereographic pro-

jection is a conformal mapping, setting a circular support region for SIFT keypoints on

a parabolic catadioptric image closely approximates a circular support region defined
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on the sphere. With the exception of the percentage correlation for change in rotation,

pSIFT outperforms sSIFT(512∗) for all DoG thresholds. The most likely explanation

as to why sSIFT(512∗) has an improved percentage correlation for change in rotation

is the fact that the scale-space images LS2(·;kt) obtained by sSIFT have a uniform

diffusion scale kt. This means that for any two images obtained at different camera

orientations, a keypoint can be detected in the same range of scales kt irrespective of

its position in the image. In contrast, the set of scale-space images LS2(·;kt(r)) ob-

tained by pSIFT having a non-uniform diffusion scale kt(r) (see figure 4.30, pg. 212).

This reduces the range of scales kt in which the same keypoint can be detected at any

position in the image.

The results for the fisheye camera in figures 4.37c and 4.37d indicate that when

compared to SIFT, an increase in both the percentage correlation and the number of

correspondences is found using pSIFT for all DoG thresholds and each camera trans-

form. Although the results show that pSIFT outperforms sSIFT in the percentage cor-

relation and number of correspondences for change in both rotation and scale, the op-

posite is true for change in rotation. This can again be attributed to the fact that pSIFT

detects keypoints in the set of scale-space images LS2(·;kt(r)) having a non-uniform

diffusion scale.

4.4.8 Experiments: performance versus image position

It is of interest to compare how reliably SIFT, sSIFT and pSIFT can detect correspond-

ing keypoints in different wide-angle images of the same scene as a function of image

position. For example, can one keypoint detector find correspondences towards the

peripheries of the images more reliably than the others. The experiments in this sec-

tion consider how this performance varies versus distance from the principal point in

a wide-angle image, which is represented as an angle of colatitude θ on the sphere.

Given any two images, this reliability is measured as the ratio of the number of corre-

spondences in an image versus the number of all keypoints in an image within a range

of angles of colatitude.

In the previous experiments, SIFT, sSIFT and pSIFT keypoints were detected in

different synthetically generated wide-angle images. The correspondences were then

found between images separated by a change in rotation, and both rotation and scale-

change using the methodology in section 4.3.6.3. This same data set is used in these

experiments (i.e. the keypoints and the correspondences found). Note that the angle of

colatitude of all keypoints is known, and the set of corresponding keypoints between
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image pairs in a given reference image set is also known.

For each camera and keypoint detector, each pair of images in a reference image

set separated by a change in rotation, or a change in both rotation and scale was taken.

For each of these images, the number of keypoints with an angle of colatitude within

some fixed interval was found, and the number of correspondences with and angle of

colatitude within this same fixed interval was found. These results were accumulated

for all 40 reference image sets separately for each camera, keypoint detector and image

transform (rotation, and rotation and scale change). The probability distribution of the

angles of colatitude of all the keypoints was then be found. For each of the angle of

colatitude intervals, the ratio of the number of correspondences versus the number of

all keypoints was then found. Ten equal sized intervals were used within the range of

angles θ = 0 to θ = π/2. The centres of the n = 10 intervals are

θi =
π

2n
i+

π

4n
, i ∈ {1,2, . . . ,n}. (4.120)

4.4.8.1 Results

The results are presented in figure 4.38 for the parabolic catadioptric camera and fig-

ure 4.39 for the fisheye camera. Note that the probability distributions are shown as

line plots for convenience. The values in the figures are marked at the centre of the

angle of colatitude intervals.

4.4.8.2 Discussion

For both cameras and image transforms (rotation, and both rotation and scale), the

probability distributions of all keypoints are very similar. However, there are signifi-

cant variations in the reliabilities of the keypoint detectors (i.e. the ratio of the number

of correspondences versus the number of keypoints).

The first observation that can be made is that in general, the use of the anti-aliasing

interpolation filter used by sSIFT improves the results for all angles of colatitude.

The exception is for a change in both rotation and scale for the fisheye camera in

figure 4.39b where sSIFT(512) performs better than sSIFT(512∗).

For change in rotation for the parabolic camera, overall the reliability of sSIFT (ex-

cluding sSIFT(256)) is better than SIFT and pSIFT for large angles of colatitude, that

is, for points near the periphery of the image. Although sSIFT(256∗) outperforms all

other keypoint detectors for a change in rotation with the parabolic camera across all
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Figure 4.38: The probability distribution of all the keypoints (left) and the ratio of the

number of correspondences versus the number of all keypoints as function of angle

of colatitude (right) for the parabolic catadioptric camera. Observe that the results for

SIFT and pSIFT are nearly identical.

angles of colatitude, the results for a change in both scale and rotation in figure 4.38b

are very different, and SIFT and pSIFT perform consistently well compared to all oth-

ers for all angles of colatitude — it is only for the largest angles of colatitude that they

are less reliable than sSIFT(512) and sSIFT(512∗). It can also be seen in figure 4.38b

that overall the reliability of all keypoint detectors decreases with increasing angle of

colatitude. As was the case in the previous experiments, SIFT and pSIFT have nearly

identical results for the parabolic camera for both image transforms.

The results for the fisheye camera in figure 4.39 show that overall SIFT performs
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Figure 4.39: The probability distribution of all the keypoints (left) and the ratio of the

number of correspondences versus the number of all keypoints as function of angle of

colatitude (right) for the fisheye camera.

poorly in comparison to sSIFT and pSIFT for both image transforms, especially for

large angles of colatitude where the reliability of SIFT is significantly less than that

of sSIFT and pSIFT. The results in figure 4.39a show that, for a change in rotation,

sSIFT overall outperforms pSIFT for all angles of colatitude. As discussed previously,

pSIFT finds scale-space images with a non-uniform diffusion scale, and this can limit

its ability to find correspondences between images separated by a change in camera

rotation. However, for changes in both scale and rotation, figure 4.39b shows that,

compared to the other keypoint detectors, pSIFT ranks consistently high for the fisheye

camera.
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4.4.9 Conclusions

The pSIFT keypoint detector was developed in this section. As was the case for sSIFT,

the scale-space representation of a wide-angle image is defined as the convolution

of the spherical Gaussian with the wide-angle image mapped to the sphere. pSIFT

approximates this convolution operation efficiently as a convolution operation on the

stereographic image plane. Although the resulting approximating produces scale-space

images with a non-uniform diffusion scale, this is not a major problem as keypoints are

detected in the image across a wide range of scales. Unlike, sSIFT, pSIFT is not limited

by sample rate problems. pSIFT detects keypoints as local extrema in the difference

of scale-space images, and uses the same edge removal and keypoint interpolation

schemes used by sSIFT. The support region for a keypoint is a circle on the sphere that

is centred at the position of the keypoint on the sphere, and whose size is set relative

to the characteristic scale of the keypoint.

The results to date give evidence that both sSIFT(512∗) and pSIFT are more suited

to scale-invariant keypoint detection in wide-angle images than SIFT. However, only

the keypoint detection stages has been compared. The next section describes the

method used to evaluate SIFT descriptors for both sSIFT and pSIFT keypoints. By

matching sSIFT or pSIFT descriptors, correspondences can be found between two im-

ages of the same scene.

4.5 sSIFT and pSIFT Keypoint Descriptors

For any sSIFT or pSIFT keypoint, the greyscale intensity values within the keypoint’s

circular support region on the sphere are projected to a fixed sized patch. A SIFT

descriptor for the keypoint is then evaluated for this patch. Figure 4.40 illustrates the

circular support region, parameterised by the angle ψs = c
√

2kt, for a keypoint with

characteristic scale kt. This angle is measured from the axis that passes through the

centre of the sphere and the keypoint’s position η on the sphere. Referring to the same

figure, ψ is any angle from this axis within the support region, and β as an angle of

rotation about this axis.

It is necessary to find a suitable method for projecting the greyscale intensity val-

ues within a keypoint’s support region to the fixed sized patch. On solution would be

to align the planar patch orthogonal to the axis that passes through the centre of the

sphere and the keypoint’s position η on the sphere, and then project the intensity val-

ues to the patch using either a perspective projection (from the centre of the sphere)
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Figure 4.40: The radius of the support region for an sSIFT or pSIFT keypoint ψs =
c
√

kt, where kt is the characteristic scale of the keypoint. This angle is measured from

the axis that passes through the centre of the sphere and the position of the keypoint on

the sphere. ψ is any angle from this axis within the support region, and β is an angle

of rotation about this axis.

or stereographic projection (from the point −η). To determine which projection is

most suitable, it is argued that for any keypoint with characteristic scale kt detected at

position η, the appearance of the spherical Gaussian GS2(η′)(·;kt) centred at η should

appear identical when projected to the fixed sized patch.

It was observed from the results in figure 4.12 (pg.178) that the ratio GS2(θ =√
2kt,φ;kt)/GS2(0,φ;kt) remains constant for all scales kt. It is assumed then that,

with reference to figure 4.40, the spherical Gaussian GS2(η′)(ψ,β;kt) can be written in

scale-normalised coordinates as

GS2(η′)

(
ψ′,α′;

1

c2

)
= GS2(η′)(ψ,α;kt), (4.121)

where ψs = c
√

2kt, ψ′ = ψ
ψs

and α′ = α. To ensure that the spherical Gaussian appears

the same when projected to the fixed sized patch, the projection needs to be a function

of the scale normalised coordinates ψ′,β′:

rp = f (ψ′), (4.122)

ζp = β′ +N, (4.123)

where rp and ζp are the polar coordinates of a point on the patch, and N is any real

constant.
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If a perspective projection were used to map the greyscale intensity values within

the support region to the patch, where the patch is orthogonal to the axis passing

through the centre of the sphere and the keypoint position η on the sphere, then

rp =
1

2
(p−1)

(
tan(ψ)

tan(ψsupport)

)
, ζp = β′. (4.124)

If a stereographic projection from the point −η were used, then

rp =
1

2
(p−1)

(
tan

(ψ
2

)

tan
(ψsupport

2

)
)

, ζp = β′. (4.125)

Both perspective and stereographic projection are not ideal as rp cannot be written as

a function of the scale normalised coordinate ψ′. Perspective projection would also

be unsuitable if ψs ≥ π/2. It is proposed that an equiangular projection can be used,

where

rp =
1

2
(p−1)

(
ψ

ψsupport

)
(4.126)

=
1

2
(p−1)ψ′ (4.127)

ζp = β′. (4.128)

This projection is termed equiangular as the sample rate ∂ψ/∂rp is constant.

Up to now, the angle β has been defined simply as an angle about the axis that

passes through the centre of the view sphere and the keypoint position η. If R = RyRz is

the rotation matrix that rotates the north pole n to the point η = Rn, then RT η′(ψ,β) =

η′′(θ,φ). Here, η′(ψ,β) is a point on the sphere parameterised by the angles ψ,β from

η, and η′′(θ,φ) is the point on the sphere at an angle of colatitude θ and angle of

longitude φ. For a keypoint detected in the difference of Gaussian image DS2(·;kti),

for each pixel on the patch, the point η′(ψ,β) is found. The position u′ of the point

η′(ψ,β) in the scale-space image LS2(·;kti) is then found, and a linear interpolation

used to sample the greyscale intensity value LS2(u′,v′;kti).

The size of the support region for an sSIFT or pSIFT keypoint is set to ψs =

10
√

2kt, where kt is the characteristic scale of the keypoint. The size of the patch

used is 41×41 pixels, which was the same size used to evaluate keypoint descriptors

by Ke and Sukthankar [120] and Mikolajczyk et al [203]. The 128 dimensional SIFT

descriptor is evaluated from the greyscale intensity values on the patch, and consists

of 4× 4 histograms of weighed gradient orientations, each with 8 histogram bins —
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refer to section 3.3.3.1 (pg.129) for a detailed description of the SIFT descriptor. The

gradient magnitudes and orientations used to find the SIFT descriptor are calculated at

each point x on the patch p as8

dx(x,y) = p(x+1,y)− p(x−1,y)

dy(x,y) = p(x,y+1)− p(x,y−1)

φ(x,y) = arctan

(
dy(x,y)

dx(x,y)

)
.

(4.129)

4.5.1 Experiments

Experiments were conducted to determine empirically which of the perspective, stere-

ographic and equiangular projections is most suited for mapping the greyscale intensity

values within a keypoint’s support region to the fixed sized patch.

4.5.1.1 Data

For each of the sSIFT(512∗) keypoints detected in the wide-angle images in the pre-

vious experiments, the size of the support region for each keypoint was set to ψs =

10
√

2kt. A separate SIFT descriptor was then evaluated for each keypoint using a

perspective, stereographic and equiangular projection to map the greyscale intensity

values within the keypoint’s support region to the fixed sized 41×41 pixel patch. The

size of the support region ψs never exceeded π/2, so the perspective projection could

be used for all keypoints.

For each of the 40 reference images, keypoint correspondences were found be-

tween all image pairs in the set using the SIFT descriptors (there are 45 parabolic

catadioptric and 45 fisheye images for each reference image). For a pair of images,

the correspondences were found as follows. For each keypoint in the image with the

fewest number of keypoints, the Euclidean distances between its SIFT descriptor and

the descriptors of all the keypoints in the other image were found. The corresponding

keypoint in the other image was selected as the one with the smallest Euclidean dis-

tance between the descriptors. The similarity of this correspondence was then defined

using the ambiguity metric, which is the ratio of the smallest to second smallest of the

Euclidean distances. The smaller the ambiguity, the more similar the keypoints are

8It is possible to compute the derivatives of the scale-space function L
S2(·;kt) in orthogonal direc-

tions on the sphere using directional filters [247]. However, this is far more computationally expensive

then simply evaluating the derivatives from the greyscale intensity values on the patch.
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(a) Parabolic catadioptric camera.
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(b) Fisheye camera.

Figure 4.41: Recall versus 1-precision results for each camera using a perspective,

stereographic and equiangular projection to map the greyscale intensity values within

a keypoint’s support region to a fixed sized patch.

considered to be. The correct correspondences were then identified using the exact

same method used in the previous experiments (see section 4.3.6.3, pg.192).

4.5.1.2 Performance Metric

For each camera and projection mode (perspective, stereographic and equiangular), the

set of all correspondences for all image pairs and reference images were combined into

a single set and ordered in descending order of similarity. The threshold on the simi-

larity was then incrementally decreased to obtain the recall versus 1-precision results,

where

recall =
number of correct correct correspondences

total number of correct correspondences
(4.130)

and

1−precision =
number false correspondences

total number of all correspondences
. (4.131)

The number of correct and false correspondences refers to the number in the subset of

correspondences with a similarly score above the threshold.

4.5.1.3 Results

Figures 4.41a and 4.41b show, for each of the projection modes, the recall versus 1-

precision results for the parabolic catadioptric and fisheye camera respectively. Ideally,

a recall value of 1 would be found for all values of 1-precision.
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4.5.1.4 Discussion and Conclusions

Although it was anticipated that the equiangular projection would outperform the per-

spective and stereographic projections, no significant differences between the results

for each projection mode are observed in figure 4.41. This is most likely due to the

fact that the majority of keypoint are detected at small scales kt, which means that the

size of their support regions defined by the angle ψs is relatively small. As tanψ is

approximately linear for small angles ψ, the perspective and stereographic projections

in equations 4.124 and 4.125 respectively are approximately equivalent to the equian-

gular projection in equation 4.126. The similarity in the projection modes for small

support regions ψs is illustrated in figure 4.42, which shows the appearance of the lo-

cal region within a keypoint’s support region mapped to a fixed sized patch using each

projection mode for a range of support region sizes ψs. It is only when the size of the

support region ψs is increased that the variations between the appearance of the image

content on the patch for each sample mode becomes apparent.

The equiangular projection is used for the remainder of the thesis to find descrip-

tors for sSIFT and pSIFT keypoints. It was argued that it is theoretically more suited

than a perspective or stereographic projection, and it is the most efficient of the three

projections to compute.

4.6 Experiments: Keypoint Detection, Description and

Matching

The experiments in this section compare the abilities of SIFT, sSIFT and pSIFT to de-

tect, describe and correctly match corresponding keypoints between successive images

in three wide-angle image sequences for a number of different frames rates. A frame-

rate of 1 finds correspondences between every consecutive image in the sequences, a

frame-rate of two finds correspondences between every second second image in the se-

quence and so on. The ability to reliably find correct correspondences between image

pairs is necessary in many vision-based localisation tasks such as visual odometry.

4.6.1 Keypoint Types

To summarise, the keypoints types compared are:

1. SIFT (wide-angle): SIFT keypoints detected in the original greyscale wide-angle
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(b) The appearance of patches using a perspective (left column), stereographic

(right column) and equiangular (right column) projection.

Figure 4.42: The appearance of the image content (greyscale intensity) within a key-

point’s support region when mapped to a fixed sized patch using a perspective, stereo-

graphic and equiangular projection.



238 Chapter 4: Wide-Baseline Keypoint Detection, Description and Matching with Wide-Angle Images

images using David Lowe’s binary code [142]9.

2. SIFT (perspective): SIFT keypoints detected in rectified greyscale perspective

images using David Lowe’s binary code [142]9. The method used to convert the

wide-angle images to perspective images will be discussed.

3. sSIFT: sSIFT keypoints detected in the first noct = 5 octaves of scale-space using

nspo = 3 scales per octave. For each image sequence, the original wide-angle

camera intrinsic parameters are used to select the set of scales kt as outlined in

section 4.3.2. The difference of Gaussian threshold used is 0.01 (images have

greyscale values in the range 0-1), and the edge removal threshold used is redge =

10. The spectrum ÎS2 of the greyscale wide-angle image is found using a sample

rate b = 512. For each image sequence, the bandwidth of the camera is estimated

using the method described in section 4.6.3. This bandwidth is used to determine

if the anti-aliasing interpolation filter is used. The size of the support region for a

keypoint is set to ψs = 10
√

2kt, where kt is the characteristic scale of a keypoint.

4. pSIFT: pSIFT keypoints detected in the first noct = 5 octaves of scale-space using

nspo = 3 scales per octave. The full octave based approach is used, halving the

image size after each octave of scale-space. The difference of Gaussian thresh-

old used is 0.01 (images have greyscale values in the range 0-1), and the edge

removal threshold used is redge = 10. For each image sequence, the method

outlined in section 4.4.1 is used to convert the original wide-angle images to

greyscale stereographic images. In previous experiments the input scale ktinput

and remaining scales kt were selected using the original wide-angle camera in-

trinsic parameters. The experiments in this section find pSIFT keypoints using

the scales ktinput and kt obtained with the stereographic camera intrinsic param-

eters (the camera model that would produce the stereographic images), and with

the original wide-angle camera intrinsic parameters. The support region for a

keypoint with characteristic scale kt is set as ψs = 10
√

2kt.

4.6.2 Producing Perspective Images

For each image sequence, it was necessary to convert each of the wide-angle images

to a perspective image to find the SIFT (perspective) keypoints. As the wide-angle

cameras used in each image sequence all have in excess of a hemispherical field of

view, the wide-angle images in each sequence were converted to perspective images

9Available http://people.cs.ubc.ca/˜lowe/keypoints/
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with a diagonal field of view of f ov = 160◦. A larger field of view was not used as

the perspective images contained severe interpolation artifacts toward the periphery of

the image. The perspective images produced were all the same size as the original

wide-angle images, having nr rows of pixels and nc columns of pixels.

For a diagonal field of view of f ov = 160◦, the required distance d of the perspec-

tive image plane from the centre of the views sphere was obtained as

d =

√
nr2 +nc2

2tan( f ov/2)
. (4.132)

To produce the perspective image, each pixel u on the perspective image was projected

to the point η on the sphere:

θ = arctan

(√
(u−u0)2 +(v− v0)2

d

)
, (4.133)

φ = arctan

(
v− v0

u−u0

)
, (4.134)

where u0(u0,v0) is the position of the principal point. The position of the principal

point used for each image sequence will be specified in the next section. This point η

was then projected to a pixel position u′ on the original wide-angle image, and a linear

interpolation was used to sample the greyscale intensity value on the wide-angle image

at the position u′.

4.6.3 Wide-Angle Image Sequences

4.6.3.1 Fisheye: Fisheye Camera

The fisheye sequence includes 1100 colour images of size 1024×768 pixels captured

by a Point Grey Research firewire camera and OmniTech Robotics fisheye lens during

an approximately 2km walking tour of an outdoor industrial site (Queensland Centre

for Advanced Technologies — QCAT). Figure 4.43a shows and aerial view of the

QCAT site. The camera path is not show as no ground truth data was obtained.

Calibration and Image Transformations: The fisheye camera is the same camera

calibrated in chapter 2. It is modelled using the unified image model with equal scaling

in the u,v coordinates and zero shear. The camera intrinsic parameters can be found in

table 2.6 (pg.86).
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Each colour image was converted to a greyscale image I using the transform I =

(0.3R + 0.59G + 0.11B)/255, where R,B and B are the red, green and blue colour

channels respectively with values in the range 0 to 255. The greyscale image has

values in the range 0 to 1. The stereographic images used by pSIFT were obtained

using the method described in section 4.4.1 (pg. 206). The perspective images were

produced using the method just described in section 4.6.2, where the position of the

principal point on the perspective images was set to u0 = (nc/2,nr/2), where nr = 768

and nc = 1024 are the number of rows and columns of pixels in the image respectively.

Figure 4.43b shows an example of three of the consecutive greyscale fisheye images in

the sequence. These same images converted to stereographic images and perspective

images are shown in figures 4.43c and 4.43d respectively. The green region in the

images is the image mask. Any keypoints detected in the green regions were removed.

Image Bandwidth and anti-aliasing interpolation filter: The bandwidth of an im-

age captured by the fisheye camera was estimated previously in section 4.3.1.2, and

is shown in figure 4.6a (pg.172). The anti-aliasing filter was used to find the sSIFT

keypoints as the maximum image bandwidth exceeds the maximum computationally

feasible sample rate b = 512 (i.e. sSIFT (512∗) keypoints were found).

4.6.3.2 Hyperion: Equiangular Catadioptric Camera

The Hyperion sequence consists of 2000 colour images of size 640×480 pixels taken

by an equiangular catadioptric camera mounted on the mobile robot Hyperion. The

images were taken as the mobile robot traversed through the Atacama desert [48]10.

Figure 4.44a shows the x,y coordinates of the vehicle path obtained from GPS. Al-

though no GPS data is available in the z direction, the vehicle path is known to be

approximately planar.

Calibration and Image Transformations: The equiangular catadioptric camera model

is illustrated in figure 2.11 (pg.43) and given in equation 2.11 (pg.43). To recap, a pixel

u on the image at position x(r,ζ) = u−u0 relative to the principal point, where r and

ζ are the polar coordinates of x, is projected to a point η(θ,φ) on the sphere by

η(θ,φ) =




sin(ρ tan−1(R/ f ))cos(ζ)

sin(ρ tan−1(R/ f ))sin(ζ)

cos(ρ tan−1(R/ f ))


 , (4.135)

10This data set has been provided courtesy of Carnegie Mellon University and Peter Corke
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(a) Aerial view of Queensland Centre for Advanced

Technologies (QCAT). The scale in the upper right

corner is distance in metres.

(b) Greyscale fisheye images

(1024×768 pixels).

(c) Greyscale stereographic im-

ages (1024×768 pixels).

(d) Greyscale perspective im-

ages (1024×768 pixels).

Figure 4.43: The fisheye image sequence includes 1100 images obtained by a fisheye

camera on an approximately 2 kilometre outdoor walking tour of an outdoor industrial

environment (QCAT). The red dashed lines in 4.43b show the field of view of the

perspective images in figure 4.43d. The green highlighted regions are the image mask.
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where ρ and f are the camera intrinsic parameters. The camera intrinsic parameters

were obtained from [48] and are

u0 =

(
310.80

241.22

)
(4.136)

f =1433.15 (4.137)

ρ =10.60. (4.138)

As was the case for the fisheye sequence, the transform I = (0.3R + 0.59G +

0.11B)/255 was used to convert each colour image to a greyscale image I with values

in the range 0-1. Each image was then converted to greyscale stereographic image

using the method described in section 4.4.1 (pg. 206), and to a greyscale perspective

image using the method described in section 4.132. The position of the principal point

in the perspective images was set to u0 = (nc/2,50 + nr/2)T , where nr = 480 is the

number of rows in the image and nc = 640 is the number of columns in the image.

The additional 50 pixel offset was used to increase the region in the image where valid

keypoints could be detected (i.e. regions where the robot is not imaged). Three of the

consecutive greyscale equiangular catadioptric images in the sequence are shown in

figure 4.44b. Figures 4.44c and 4.44d show these same images converted to the stere-

ographic and perspective images. The green highlighted regions represent the image

mask. Any keypoints detected in green highlighted regions were removed.

Image Bandwidth: An estimate of the equiangular catadioptric image bandwidth

was derived algebraically using the general procedure outlined in section 4.3.1.2 (pg. 167).

Recall that the change in angle dψ on the sphere can be parameterised by the change

in polar coordinates on the sphere by dψ2 = dθ2 +sin2 θ dφ2. The variables dθ2, sin2 θ

and dφ2 were derived for the equiangular camera model, and are

dφ2 = dζ2, (4.139)

sin2(θ) = sin2

[
ρ tan−1

(
r

f

)]
, (4.140)

and

dθ2 =
ρ2 f 2

( f 2 + r2)2
dr2, (4.141)

where r,ζ are the polar coordinates of the point x(r,ζ) = u−u0 on the image. From the

equations which relate a small shift dP(α) to the polar coordinates (r,ζ) on the image

plane given in equations 4.49 and 4.50, the following estimate of the image bandwidth
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(a) x,y coordinates of the vehicle path obtained from GPS (non-

differential) measurements.

(b) Greyscale equiangular cata-

dioptric images (640×480 pix-

els).

(c) Greyscale stereographic im-

ages (640×480 pixels).

(d) Greyscale perspective im-

ages (640×480 pixels).

Figure 4.44: The Hyperion image sequence includes 2000 images captured by an

equiangular catadioptric camera mounted on the mobile robot Hyperion. The images

were taken as the robot traversed through the Atacama desert. The red dashed lines in

4.44b show the field of view of the perspective images in 4.44d. The green highlighted

regions are the image mask.
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Figure 4.45: Estimated bandwidth of the images captured by the equiangular catadiop-

tric camera (Hyperion sequence).

was obtained:

bI(r,α) = π/
dψ

dP
(r,α) (4.142)

= π/

[
ρ2 f 2

( f 2 + r2)2
dP2 cos2(α)+ sin2

(
ρ tan−1

(
r

f

))
dP2 sin2(α)

r2

]1/2

.

(4.143)

The estimate of the bandwidth is given in figure 4.45 for radii r extending to the limit of

the cameras field of view (the camera’s field of view extends to an angle of colatitude

of approximately 100◦ for all angles of longitude). No anti-aliasing interpolation filter

was used by sSIFT as the estimated bandwidth only exceeds the sample rate b = 512

towards the edge of the camera’s field of view (i.e. sSIFT (512) keypoints were found).

4.6.3.3 Tractor: Equiangular Catadioptric Camera

The Tractor sequence consists of several thousand greyscale images of size 1024×768

pixels taken by an equiangular catadioptric camera mounted on a mobile robotic trac-

tor11. The image were taken as the mobile robot moved outdoors through a university

11The ‘Tractor’ image sequence was provided courtesy of Kane Usher and Jonathan Roberts.
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campus. The approximate path of the robot is illustrated in figure 4.46a. The first 1000

images in the sequence were used in these experiments.

Calibration and Image Transformations: The equiangular camera model is the

same as that of the equiangular catadioptric camera in the Hyperion sequence. The

camera intrinsic parameters were obtained from the dissertation of Usher [232], and

are

u0 =

(
519.01

371.01

)
(4.144)

f =1411.02 (4.145)

ρ =7.142. (4.146)

Each equiangular catadioptric image was converted to a stereographic and per-

spective image using the methods described in sections 4.4.1 (pg. 206) and 4.132 re-

spectively. The position of the principal point in the perspective images was set to

u0 = (nc/2,100 + nr/2)T , where nr = 768 and nc = 1024. As was the case for the

hyperion sequence, an additional offset was added to the coordinate v0 to increase the

region in the image in which valid keypoints could be detected (i.e. regions where

the robot was not imaged). Figure 4.46b shows three of the original equiangular cata-

dioptric images in the sequence. These same images converted to stereographic and

perspective images are shown in figures 4.46c and 4.46d respectively. Again, the green

region is the image mask. A keypoint was not retained if it was detected in the green

region.

Image Bandwidth

As the camera model is the same as the equiangular catadioptric camera used in the

Hyperion sequence, an estimate of the equiangular catadioptric image bandwidth was

obtained from equation 4.142. This estimated bandwidth is shown in figure 4.47 for

all radii r on the image within the camera’s field of view (the camera’s field of view

extends to an angle of colatitude of approximately 110◦ for all angles of longitude).

The anti-aliasing interpolation filter was used by sSIFT as the estimated bandwidth

exceeds the maximum computationally feasible sample rate of b = 512 for all radii r

and sample directions α (i.e. sSIFT (512∗) keypoints were found).
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(a) Approximate path of the vehicle through university campus (University of

Queensland, Australia). The scale is distance in metres.

(b) Greyscale equiangular cata-

dioptric images (1024 × 768

pixels).

(c) Greyscale stereographic im-

ages (1024×768 pixels).

(d) Greyscale perspective im-

ages (1024×768 pixels).

Figure 4.46: The tractor image sequence includes several thousand images obtained

by a equiangular catadioptric camera mounted on a mobile robotic tractor. The images

were taken as the robot moved outdoors through a university campus. The red dashed

lines in 4.46b show the field of view of the perspective images in 4.46d. The green

highlighted regions are the image mask. The first 1000 images in the sequence were

used in the experiments.
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Figure 4.47: Estimated bandwidth of the images captured by the equiangular catadiop-

tric camera (Tractor sequence).

4.6.4 Performance metrics

The performance of a keypoint type is measured using recall versus 1-precision statis-

tics and the mean number of correct keypoint correspondences found between suc-

cessive image pairs in the sequence for a given frame-rate. For each keypoint type,

frame-rate and image sequence, keypoints are matched between the image pairs using

the keypoint descriptors. Four different methods used to match the keypoints and as-

sign a similarity to each of the correspondences was used, and these will be discussed

in section 4.6.5. The correct correspondences were then identified using epipolar con-

straints between the image pairs. This process will be described in section 4.6.6. The

set of all correspondences for all image pairs were then combined into a single set of

correspondences and ranked in descending order of similarity. By incrementally de-

creasing the similarity threshold, the recall versus 1-precision values were obtained,

where recall and precision were defined preciously in equations 4.130 and 4.131. Re-

call versus 1-precision is the same metric used in other similar studies used to compare

keypoint detectors and descriptors [120, 203], and is a more appropriate metric to use

in these experiments than receiver operating characteristics (ROC) as that the exact

number of false correspondences between image pairs cannot be determined exactly.

This is the case as only an estimate of the epipolar geometry between views is used to
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distinguish between correct and incorrect correspondences.

4.6.5 Similarity Metrics

Four different methods were used to match the correspondences and assign a similarity

score. To simplify the discussion, for a given pair of images, let k′ be the set of all

keypoints in the image with the fewest number of keypoints, and let k′′ be the set of

keypoints in the image with the largest number of keypoints. The notation d(k′i,k
′′
j ) is

defined to mean the Euclidean distance between the SIFT descriptors of keypoints k′i
and k′′j .

1.Euclidean distance (L2 norm) and 2.Ambiguity: For each keypoint k′i, find the

Euclidean distances d(k′i,k
′′) between k′i and all keypoints k′′. The corresponding key-

point k′′j is the one having the smallest Euclidean distance. The similarity score for

this corresponding pair of keypoints is assigned using two metrics. The first similarity

score is the Euclidean distance d(k′i,k
′′
j ) (1. Euclidean distance). The second similar-

ity score is the ambiguity ratio, which is the ratio of d(k′i,k
′′
j ) to the second smallest

Euclidean distance d(k′i,k
′′) (2. Ambiguity).

3.Mutual Euclidean distance (mutual L2 norm) and 4.Mutual Ambiguity: For

each keypoint k′i, find the Euclidean distances d(k′i,k
′′) between k′i and all keypoints

k′′. A corresponding keypoint k′′j is found only if the Euclidean distance d(k′i,k
′′
j ) ≤

d(k′i,k
′′), and d(k′i,k

′′
j ) ≤ d(k′,k′′j ). This is a ‘mutual consistency’ check and ensures

that a keypoint can only ever correspond to one other keypoint in the other image. If

a corresponding pair of keypoints is found, the similarity of the corresponding pair is

assigned again using two metrics. The first similarity score is the Euclidean distance

d(k′i,k
′′
j ) (3. Mutual Euclidean distance). The second similarity score is the ambiguity

ratio, which is the ratio of d(k′i,k
′′
j ) to the second smallest Euclidean distance d(k′i,k

′′)

(4. Mutual Ambiguity).

4.6.6 Selecting Correct Correspondences

Correct correspondences between image pairs were identified using epipolar constraints

and the assumption that scene points remain rigid between views. For each image pair,

the set of all calibrated keypoint correspondences for each keypoint type having a mu-

tual ambiguity score above the empirically selected value of 0.85 were combined into
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a single set of correspondences. The essential matrix E was then estimated using the

five-point algorithm of Nistér [212] and RANSAC [70] to remove outliers. Note that

more recently a simplified implementation of Nistér’s original algorithm was devel-

oped by Li and Hartley [129]. A pair of corresponding keypoints with coordinates η

and η′ in image 1 and 2 respectively were deemed correct if |η′E ηT | < 0.005. This

threshold was selected empirically. Using the combined set of correspondences for all

keypoint types enabled an accurate estimate of the essential matrix E to be obtained.

Furthermore, it ensured that the same estimate of the epipolar geometry between views

was used to identify the correct keypoint correspondences.

4.6.7 Results

Results were obtained for frame-rates 1 and 2 for the fisheye and tractor sequences,

and for frame-rates 1,2 and 4 for the Hyperion sequence. The magnitude of the camera

translation between consecutive images in the Hyperion sequence was in general less

than that for the fisheye and Tractor sequences.

The recall versus 1-precision results are shown for the fisheye sequence in fig-

ures 4.48 and 4.49 for frame-rates 1 and 2, for the Hyperion sequence in figures 4.50,

4.51 and 4.52 for frames rates 1,2 and 4, and for the Tractor sequence in figures 4.53

and 4.54 for frame-rates 1 and 2. The mean number of correct keypoint correspon-

dences between image pairs for each sequence, keypoint type and frame-rate are given

in table 4.6.

4.6.8 Discussion and Conclusions

Fisheye

The recall versus 1-precision results show that for each frame-rate and keypoint

type, when compared to the results using the L2 similarity metrics, improved perfor-

mance is found using the ambiguity metrics. These results validate to claim made

by Lowe [142] that the ambiguity of two SIFT keypoint descriptors is a more robust

means for assigning the similarity score between correspondences than the L2 norm

(Euclidean distance) between SIFT descriptors.

Overall sSIFT shows the best recall versus 1-precision results for each similarity

metric and frame-rate followed closely by pSIFT (parabolic scales). As with sSIFT

and pSIFT (parabolic scales), the recall versus 1-precision results show that overall

pSIFT (fisheye scales) outperforms both SIFT (wide-angle) and SIFT (perspective) for
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Figure 4.48: Recall vs. 1-precision results for the fisheye sequence (frame-rate 1).
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Figure 4.49: Recall vs. 1-precision results for the fisheye sequence (frame-rate 2).
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Figure 4.50: Recall vs. 1-precision results for the Hyperion sequence (frame-rate 1).
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Figure 4.51: Recall vs. 1-precision results for the Hyperion sequence (frame-rate 2).
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Figure 4.52: Recall vs. 1-precision results for the Hyperion sequence (frame-rate 4).
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Figure 4.53: Recall vs. 1-precision results for the tractor sequence (frame-rate 1).
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Figure 4.54: Recall vs. 1-precision results for the tractor sequence (frame-rate 2).
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all frame-rates and similarity metrics. The recall versus 1-precision results for SIFT

(perspective) and better than SIFT (wide-angle) using the L2 similarity metrics for

each frame-rate, however, the opposite is true for the ambiguity similarity metrics.

The mean number of correct correspondences found for each keypoint type reduces

as the frame-rate increases. There is also a small reduction in this number when the

mutual consistency constraint is used for both the L2 and ambiguity similarity metrics.

Overall, pSIFT (fisheye scales) finds the greatest number of correct correspondences

for each similarity metric and frame-rate, followed in descending order by sSIFT, SIFT

(wide-angle), pSIFT (parabolic scales) and SIFT (perspective). SIFT (perspective)

performs poorly in comparison to all other keypoints types as it finds less than half as

many average correct correspondences than all other keypoint types.

The results obtained suggest that SIFT (wide-angle) outperforms SIFT (perspec-

tive) for the fisheye sequence. Using the ambiguity similarity metrics, which overall

give improved performance compared to the L2 metrics, SIFT (wide-angle) shows

improved recall versus 1-precision results and finds a greater number of mean cor-

rect correspondences compared to SIFT (perspective). SIFT (wide-angle) also has the

added advantage that it can detect keypoints in the full field of view of the camera.

It is concluded from the results obtained that sSIFT, pSIFT (parabolic scales) and

pSIFT (fisheye scales) are more suited for keypoint detection and matching in the fish-

eye sequence than both SIFT (wide-angle) and SIFT (perspective). However, it is

interesting to observe that SIFT (wide-angle) still produced reasonable results, partic-

ularly when the ambiguity metrics were used. One explanation for this can be made

with reference to figure 4.43b. The change in appearance of the imaged scene be-

tween views is affected by both the change in pose and the radial distortion of the

camera. It is only when a region in the scene changes position between two images

that the change in appearance resulting from the camera’s radial distortion becomes

apparent. Regions in the scene near the centre of the first image in figure 4.43b for

example do not change position significantly in the other images — the camera motion

is predominantly forward translation, so these regions are near the focus of expansion.

Therefore, the change in appearance caused by the camera’s radial distortion is mini-

mal. However, for large camera rotation the effect of the camera’s radial distortion on

the appearance of the scene becomes more apparent. Figure 4.55 for example shows

the 50 most similar SIFT and sSIFT keypoint correspondences found between two im-

ages separated by a large change in camera rotation using the ambiguity metric. As

sSIFT is designed to be invariant to a camera’s radial distortion and shift invariant to

camera rotation, sSIFT finds a greater number of correct correspondences than SIFT
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Figure 4.55: The 50 most similar (a) SIFT (wide-angle) and (b) sSIFT(512∗) keypoint

correspondences found between two fisheye images separated by a large change in

camera pose. The ambiguity metric was used to find the keypoint matches.

(wide-angle).

Hyperion

As was the case for the fisheye sequence, when compared to the results found using

the L2 metrics, improvements in the recall versus 1-precision results for each frame-

rate and keypoint type were observed using the ambiguity metrics.

In contrast to the results for the fisheye sequence, in general the recall versus 1-

precision results for SIFT (perspective) are better than all other keypoint types for each

frame-rate and similarity metric. The exception is the results for frame-rate 1 using the

ambiguity metrics where pSIFT (equiangular scales) outperformed all other keypoint

types. This result can be explained by the fact that the mobile robot Hyperion traversed

over a near planar surface, and that the camera’s principal axis was approximately

orthogonal to this plane. Successive images in the sequence are therefore related by an

approximate Euclidean transform (shift and rotation of the image function). As SIFT

is designed to detect keypoints and produce a SIFT descriptor for each keypoint in a

manner invariant to these changes, SIFT (perspective) is well suited for the Hyperion
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sequence. However, the disadvantage of SIFT (perspective) is its inability to detect

keypoints in an image spanning the full field of view of the camera.

The recall versus 1-precision results show that both pSIFT (parabolic scales) and

pSIFT (equiangular scales) outperform SIFT (wide-angle) for all similarity metrics

and frame-rates, with pSIFT (parabolic scales) giving slightly better results than pSIFT

(equiangular scales). sSIFT performs well for small values of 1-precision, however, the

results deteriorate more quickly than the other keypoint types. sSIFT also finds sig-

nificantly fewer correct keypoint correspondences than the other keypoint types for all

frame-rates and similarity metrics. One possible explanation for this result is the fact

that the equiangular sequence contains predominantly fine detailed structure (rocks,

pebbles etc.). To implement sSIFT, the image needs to be sampled on an equiangular

θ,φ image to obtain the spectrum ÎS2 of the image. Once the set of scale-space im-

ages LS2(·;kt) are found, they are then mapped back to the set of scale-space images

LS2(·;kt) in the original wide-angle image plane. Both these steps require an interpola-

tion of image data, which is effectively a smoothing operation, that ‘destroys’ the fine

detailed structure in the image and introduces artifacts. This reduces the number of

keypoints detected in the image and the number of correct keypoint correspondences

found between image pairs.

sSIFT finds the smallest mean number of correct correspondences followed in as-

cending order by SIFT (wide-angle), SIFT (perspective), pSIFT (parabolic scales) and

pSIFT (equiangular scales). The fact that SIFT (perspective) finds on average more

correct correspondences than SIFT (wide-angle), coupled with the improvements in

the recall versus 1-precision results, suggests that SIFT (perspective) is a more suit-

able to use than SIFT (wide-angle) for this image sequence. Overall, pSIFT (equian-

gular scales) has the second best recall versus 1-precision results and finds on average

the most correct correspondences between image pairs. Although the recall versus

1-precision results for SIFT (perspective) are marginally better than those of pSIFT

(equiangular scales), it is concluded that pSIFT (equiangular scales) is more suited for

this sequence than SIFT (perspective) as it finds on average many more correct cor-

respondences between image pairs. Furthermore, it can detect keypoints in an image

spanning the full field of view of the camera. pSIFT (parabolic scales) also performs

well and is again able to find on average more correct correspondences between image

pairs than SIFT (perspective).

Tractor

For each frame-rate and keypoint type, the recall versus 1-precision results obtained
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using the ambiguity metrics are better than those obtained using the L2 metrics. The

fact that the same observation was made for the fisheye and Hyperion sequences gives

strong evidence that the ambiguity metrics are more reliable than the L2 metrics for

assigning a similarity score to keypoint correspondences.

The recall versus 1-precision performance of SIFT (perspective) is poor in compar-

ison to all other keypoint types for all similarity metrics and frame-rates. This is very

different to the results for the Hyperion sequence in which the recall versus 1-precision

performance of SIFT (perspective) ranked consistently high. The reason for this is the

fact that the Tractor traversed through a non-planar environment. Therefore, unlike the

Hyperion sequence, successive images in the Tractor sequence are not related by an

approximate Euclidean transform (shift and rotation of the image function). As SIFT

(perspective) also finds the smallest mean number of correct correspondences and is

unable to detect keypoints in images which span the full field of view of the camera,

the results suggest that SIFT (perspective) is the least suitable keypoint type for this

image sequence.

Of the remaining keypoint types, the recall versus 1-precision results for sSIFT,

pSIFT (parabolic scales) and pSIFT (equiangular scales) rank consistently higher than

SIFT (wide-angle) for all similarity metrics and frame-rates. Using the L2 similarly

metrics, sSIFT, pSIFT (parabolic scales) and pSIFT (equiangular scales) all show simi-

lar recall versus 1-precision performance. Using the ambiguity similarity metrics there

is a noticeable improvement in the recall versus 1-precision performance of both pSIFT

(parabolic scales) and pSIFT (equiangular scales) scales over sSIFT for each frame-

rate. The results for both pSIFT (parabolic scales) and pSIFT (equiangular scales) are

very similar.

As just mentioned, SIFT (perspective) finds the smallest mean number of cor-

rect correspondences between image pairs for each similarity metric and frame-rate,

followed in increasing order by sSIFT, pSIFT (equiangular scales), pSIFT (parabolic

scales) and SIFT (wide-angle). It is interesting to note that pSIFT (parabolic scales)

finds on average more correct correspondences than pSIFT (equiangular scales) which

contradicts the results for the Hyperion and fisheye sequences. In all sequences, the

initial scale kt0 found using the parabolic scales is higher then that found using the

original camera model scales (i.e. equiangular or fisheye).

Overall, the results suggest that pSIFT (equiangular scales) and pSIFT (parabolic

scales) are the most suitable keypoint types to used for the Tractor sequence in these

experiments. This is particularly true when the ambiguity metrics are used which, as

previously discussed, were found to be a more reliable means for assigning a keypoint
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similarity score than the L2 metrics (Euclidean distance). Although both found on

average fewer correct correspondences between image pairs than SIFT (wide-angle),

their recall versus 1-precision performance was significantly better than those of all

other keypoint types using the ambiguity metrics, in particular SIFT (wide-angle) and

SIFT (perspective).

4.7 Conclusions

Two variants of the Scale-Invariant Feature Transform (SIFT) were developed in this

chapter, termed sSIFT and pSIFT, that are designed for use with central projection

wide-angle cameras. Both reformulated SIFT as an image processing algorithm on

the sphere, and when applied to a wide-angle image mapped to the sphere, detect

scale-invariant keypoints in a manner invariant to the radial distortion in the image and

shift invariant to camera rotation. This approach to image processing with wide-angle

images was inspired by the work of Daniilidis et al [56].

sSIFT and pSIFT are required to find a set of scale-space representations of a wide-

angle image mapped to the sphere. The ability to do this was made possible by the work

of Bülow [31] who proposed the underlying scale-space for functions on the sphere as

the solution of the spherical heat diffusion equation and recommended its used for

scale-space analysis with wide-angle images [30]. For each method, the scale-space

representation of an image is the result of the convolution of the image mapped to the

sphere with the spherical Gaussian.

sSIFT implements this convolution in the spherical Fourier domain which requires

finding the discrete spherical Fourier transform (spectrum) of a wide-angle image us-

ing some sample rate b. A methodology to estimate the bandwidth of a wide-angle

image mapped to the sphere was presented. This bandwidth is dependent on the cam-

era intrinsic parameters and can be used to select a minimum required sample rate

b. An anti-aliasing interpolation filter was designed to be used when this sample rate

exceeds the maximum permissible value. pSIFT approximates the convolution of an

image mapped to the sphere with the spherical Gaussian as an efficient convolution op-

eration on the stereographic image plane. Although the scale-space images produced

have a non-uniform scale, this is not a limiting factor as the image is analysed across a

wide range of scales. A number of practical method used to further improve computa-

tional efficiency were implemented, including cascade filtering, approximate separable

convolution, and the same octave based approach to image processing used by SIFT.

The resulting computation expense of keypoint detection using pSIFT is equivalent to
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SIFT. A method to select a suitable set of scales for sSIFT and pSIFT was presented

based on the scales used by SIFT and the camera intrinsic parameters.

After sSIFT and pSIFT obtain a set of scale-space images, candidate keypoints

are detected as local extrema in the difference of scale-space (difference of Gaussian)

images. Edge responses are then removed using the same method as SIFT to find the

final set of keypoints. The accuracy of the position and characteristic scale of these

keypoints are then improved using the quadratic interpolation scheme developed by

Brown and Lowe [29], which is the same scheme used by SIFT. The support region for

an sSIFT or pSIFT keypoint is defined as a circle on the sphere, centred at the position

of the keypoint on the sphere, and whose size is set dependent on the characteristic

scale of the keypoint. The greyscale intensity values within this support region are then

mapped to a fixed sized patch using an equiangular projection. The SIFT descriptor is

then evaluated from greyscale intensity values on this patch. This process used to find

the descriptors is invariant to the camera’s distortion.

The suitability of the use of sSIFT and pSIFT with wide-angle images was vali-

dated through extensive experiments. The percentage correlation and number of corre-

spondences obtained using SIFT, sSIFT and pSIFT keypoints detected in synthetically

generated wide-angle parabolic catadioptric and fisheye images was compared. For

these experiments, SIFT was applied directly to the wide-angle images. Only the key-

point detection phase of each each algorithm was compared in these experiments, and

it was found that overall sSIFT and pSIFT gave either comparable or improved perfor-

mance over SIFT. SIFT was also found to perform poorly in comparison to sSIFT and

pSIFT with respect to the percentage of correct correspondences found towards the pe-

riphery of the fisheye images. The second set of experiments compared the abilities of

SIFT, sSIFT and pSIFT to correctly detect and match corresponding keypoints in three

real outdoor wide-angle image sequences. SIFT was applied directly to the wide-angle

images, and to the rectified perspective images produced from the original wide-angle

images. The performance metrics used to compare the relative performances were

recall versus 1-precision and the mean number of correct correspondences. Overall,

pSIFT was found to perform consistently well and on average better than that of SIFT

applied to both the wide-angle and perspective images. SIFT applied to the perspective

images outperformed all other keypoint types on one image sequence, but performed

poorly in comparison to sSIFT and pSIFT in the other sequences.

It is concluded that of all the keypoint types compared in the experiments, the

observations made give evidence that pSIFT was the ideal keypoint detector and de-

scriptor to use with the wide-angle images. It is efficient to implement, is not limited



264 Chapter 4: Wide-Baseline Keypoint Detection, Description and Matching with Wide-Angle Images

by the same sample rate issued faced by sSIFT, and can be used with any central pro-

jection wide-angle camera. The next chapter will further validate the pSIFT keypoint

detector by applying it fundamental vision based localisation tasks.



Chapter 5

Applications to Vision Based

Localisation

The new approach to keypoint detection in wide-angle images using pSIFT

is applied to vision based localisation tasks, including visual odometry

and vision-based place recognition. Experimental results for both visual

odometry and visual place recognition are given using real-world equian-

gular catadioptric and fisheye camera image sequences in unstructured

outdoors environments.

5.1 Introduction

Scale-invariant keypoint detection has numerous applications in computer vision, and

this chapters considers the particular problem of vision-based localisation. This chap-

ter demonstrates the use of the pSIFT keypoint detection algorithm for visual odom-

etry estimation and visual place recognition with wide-angle images in unstructured

outdoors environments.

As discussed in chapter 1, the significant advantage of using wide-angle images for

visual odometry applications is the ability to reliably decouple rotation and translation

in the estimation of camera egomotion. When using wide-angle images, this requires

corresponding keypoints to be both detected and correctly matched in different images

across the full field of view of the camera. As shown in chapter 4, the pSIFT key-

point detection algorithm is well suited for this purpose with wide-angle images and

is used throughout this chapter. Visual odometry estimates are found using pSIFT for

two wide-angle image sequences which have GPS ground truth synchronised with the

265
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0 100

Figure 5.1: Fisheye image Sequence used for visual odometry estimates and place

recognition. The length of the transit is approximately 4.4 kilometres. The scale in the

upper left is distance in metres.

images; the same Hyperion sequence described in detail in section 4.6.3.2 (pg.240),

and a fisheye image sequence. The GPS ground truth data for the fisheye sequence is

illustrated in figure 5.1. This is the same fisheye camera (with the same camera in-

trinsic parameters) that was used to obtain the separate image sequence described in

detail in section 4.6.3.1 (pg. 239). The sequence contains 1600 fisheye images of size

1028×764 pixels.

The visual odometry estimates are found using various constraints on the position

of keypoints and motion of the camera. For the Hyperion sequence, a ground plane

constraint is used which assumes that the world points associated with all keypoint

correspondences are coplanar. Two variations of the standard direct linear transform

(DLT), which is used to estimate camera egomotion using a ground plane constraint,

are developed that are tailored for use with pSIFT keypoints. They use the same pro-

cure as the ‘standard’ DLT to find an estimate of camera egomotion, and vary from the
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standard DLT only with respect to keypoint coordinates used. Both are shown through

extensive experiments to find more consistent egomotion estimates than the standard

DLT for different camera field of views.

It was argued previously that extending the baseline between incremental estimates

of camera egomotion has potential advantages for visual odometry. This was posed as

a signal to noise ratio problem. A variable frame-rate algorithm discussed in sec-

tion 5.2.2 is implemented, based on the algorithm of Mouragnon et al [170], which

automatically selects the number of frames between successive estimates of camera

egomotion based on a minimum number of keypoints that can be tracked through suc-

cessive frames. The aim of this approach is to increase the magnitude of the change in

pose between camera views from which the egomotion estimates are obtained. The ac-

curacy of visual odometry estimates found by integrating the incremental estimates of

camera egomotion using this method will be compared experimentally to those where

a fixed frame-rate is used.

Finally, applications related to visual place recognition, or vision based loop-closure,

are considered in section 5.3. Place recognition results are presented only for the fish-

eye sequence as it contains loop closure events. The advantage of using wide-angle

images is shown to be the ability to detect previously visited regions of the operating

environment despite very large differences in viewpoint. The place recognition algo-

rithm uses the appearance based “Video Google” algorithm [210] which is extended to

incorporate a visual word reliability metric that is validated through experiments. This

algorithm is selected as it is ideal for demonstrating the ability of the pSIFT keypoint

detector to find the same keypoints in different wide-angle images of the same scene

taken at different viewpoints. The results found using the pSIFT keypoint detector

suggest that it would be ideally suited for higher level visual SLAM algorithms [52].

5.2 Visual Odometry

A fundamental requirement of all visual odometry algorithms is the ability to esti-

mate the relative pose, to scale, between two camera views which defines the camera

egomotion. Using well established fundamentals of two view geometry in computer

vision [95], this can be achieved by measuring quantitatively the change in appearance

of the environment between views by first detecting keypoints in each image, finding

the keypoint correspondences between the images, and then finding the change in pixel

coordinates of the corresponding keypoints between the images.
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More formally, consider some camera which observes a scene at two different posi-

tions and refer to these as camera frame 1 and 2 respectively. Assume that there exists

a set of perfect keypoint correspondences u ↔ u′, where each ui and u′
i are the coor-

dinates of the keypoints in image. As each pair of corresponding keypoints xi ↔ x′i
implies the world point correspondence Xi ↔X′

i ∈R3, where Xi and X′
i are defined in

camera frame 1 and 2 coordinates respectively, the set of all correspondences X ↔ X′

are related by the rigid body transform

X′ = RX+ t, ∀Xi,X
′
i, (5.1)

where R ∈ SO(3) is a rotation and t ∈ R3 is a translation. This rotation and translation

describes the change in pose of the camera from frame 1 to 2.

Recall from chapter 2 that for a perspective camera, the camera matrix P is defined

by the camera’s intrinsic and extrinsic parameters. For simplicity, it is assumed from

now on that the camera matrix is defined only by the camera extrinsic parameters.

Then for any world point X, the position η of the world point on the unit view sphere

centred at the position of the camera is obtained as

x̌ = PX, η =
x̌

||x̌|| . (5.2)

The parameter x̌ = (x̌, y̌, w̌)T should not be confused with the coordinate x = (x,y)T =

u−u0 of a point in an image. When estimating the camera egomotion between views,

it is convenient to fix the position of the first camera P1 at the origin of the world

coordinate frame and let P1 = [I3×3|0], where I3×3 is the 3 × 3 identity matrix. Then,

for the rotation R and translation t defined in equation 5.1, the second camera matrix

P2 is

P2 = [R|t], (5.3)

which is often written as

P2 = R[I|−C′], (5.4)

where C′ = −R−1t is the position of the second camera in the world coordinate frame

— the position of the first camera is C = (0,0,0)T . By integrating incremental esti-

mates of the camera egomotion, the pose of the camera (position and rotation) relative

to some reference start position can be found. This is the core of visual odometry. As

a special note, although the relative pose between views described in equation 5.1 is

defined using the position of the world points X,X′, in general for monocular visual

odometry the position of these points cannot be recovered directly from the position of
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the keypoints u,u′ in the image. However, the change in position in the image plane

of corresponding keypoints is sufficient for deriving the relative pose between views

using standard methods [95], albeit often up to an unknown scale ambiguity in the

magnitude of the translation t.

Several methods are used to estimate visual odometry in this chapter, and they

differ in the constraints/assumptions made regarding the position of world points and

camera egomotion. They are:

Ground Plane - Euclidean (section 5.2.6): The set of keypoint correspondences be-

tween views are coplanar world points, lying in the ground plane. The camera

motion is assumed to be constrained to a translation in this plane, and rotation

about an axis orthogonal to this plane. The height of the camera from the plane

is used to resolve the correct scale of the camera translation. This method is used

to estimate visual odometry for the Hyperion sequence only.

Ground Plane - Triggs’ method (section 5.2.7): The set of keypoint correspondences

between views are coplanar world points, lying in the ground plane. No assump-

tions are placed on the camera motion. Again, the height of the camera from the

plane is used to resolve the correct scale of the camera translation. This method

is used to estimate visual odometry for the Hyperion sequence only.

Generalised (section 5.2.9): The world points associated with all keypoint correspon-

dences can lie anywhere in Euclidean space. No assumptions are placed on the

camera motion. This can be considered as the most generalised means for esti-

mating the visual odometry. Unlike the ground plane methods, the magnitude of

the translation t cannot be directly resolved. However, it can be found relative

to previous frames as will be discussed. This method is used to estimate visual

odometry for both the Hyperion and the fisheye sequences.

Before discussing how the visual odometry estimates are found using each of the

methods and presenting experimental results, the process used to find the keypoint

correspondences between frames is first discussed in section 5.2.1. This is followed

by an outline of the variable frame-rate selection method in section 5.2.2, and the

methodology used to measure the accuracy of the visual odometry estimates, for each

of the ground plane constraints, in section 5.2.4.
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5.2.1 Keypoint Detection and Matching

For each image in both the Hyperion and fisheye sequences, pSIFT keypoints were

detected in the first noct = 5 octaves of scale-space using nspo = 3 scales per octave.

The original wide-angle camera intrinsic parameters were used to select the scales, as

described in section 4.3.2 (pg. 174). The process described in section 4.4.1 was used to

convert each of the original greyscale wide-angle images in each image sequence to a

stereographic image, as required by pSIFT. The edge removal threshold used for each

image sequence was redge = 10, and the difference of Gaussian thresholds used for the

fisheye and Hyperion sequences was 0.01 and 0.0075 respectively (the stereographic

images have greyscale intensity values in the range 0-1). A smaller threshold was used

for the Hyperion sequence as the images contain predominantly fine detail structure,

for example small rocks. Although this threshold was set empirically, further research

could consider an adaptive threshold based on on-line learning.

In the following experiments, corresponding keypoints are found between image

pairs by matching the keypoint descriptors using the ambiguity metric, as described

previously in section 4.6.5 (pg.248). The ambiguity threshold score used was set to

0.9. False positives are removed using RANSAC [70] and Nistér’s five-point algo-

rithm [180] which solves for the essential matrix E between views from a minimum

of 5 keypoint correspondences — a detailed discussion of the essential matrix will be

reserved for section 5.2.9. Note that the essential matrix is suitable to use for rigid and

unstructured environments. For the case where the ground plane constraint is enforced,

a more specific error metric could be used. However, for generality the essential matrix

is used. When using RANSAC, given and estimate of the Essential matrix E, a corre-

sponding pair of keypoints with spherical coordinates η and η′ is considered correct if

|η′T E η| < threshE , where threshE is some threshold value.

5.2.2 Frame-Rate Selection for Egomotion Estimation

In the context of visual odometry, the frame-rate is defined to mean the number of im-

ages processed per second. Often the frame rate is set as fast as possible and typically

constrained by computation time. Although this may seem a logical approach, and has

been shown to provide reliable results in visual SLAM implementations [59], there are

two conflicting effects which need to be considered for visual odometry applications.

For a fast frame rate there will typically be a large number of keypoint correspon-

dences between successive images but poor signal to noise ratio in the change of key-
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point positions on the image. This has the potential to limit both the accuracy of

the egomotion estimates between frames and the accurate reconstruction of the scene

points (particularly in the depth direction). This is analogous to the case of trying to

reliably resolve the depth of a point from stereo correspondences with a small baseline

between the cameras. If the frame rate is reduced, although the signal to noise ratio

will be improved, there will in general be fewer keypoint correspondences between

images. In some instances, the number of keypoints could be less than the number

required to resolve the motion of the camera. Furthermore, the accuracy of the ego-

motion estimate may be more sensitive to outliers. The accuracy of visual odometry

estimates found using a fixed frame-rate and a variable frame-rate are compared in

this chapter. Those found using a fixed frame-rate integrate the egomotion estimates

between each successive frame in the sequence (i.e. with reference to the recall versus

1-precision experiments in chapter 4, the frame-rate is 1). The estimate found using a

variable frame-rate integrates the egomotion estimates between automatically selected

frames.

There are a number of different methods that can be used to select the frames for

the variable frame-rate approach. Nistér [181] for example simply selected every nth

frame, which is in effect a fixed frame-rate of n. The method used in later experiments

is based on the algorithm of Mouragnon et al [170], and selects the frames used to

compute camera egomotion based on a minimum number of correspondences that can

be tracked between them. This same approach was used more recently by Tardif et

al [218] with success for visual odometry estimation in a large scale outdoor environ-

ment. Keypoints are tracked from some start image I over multiple frames until the

number of tracked keypoints falls below a threshold of n = 150 at image I′. Any ad-

ditional correspondences between images I and I′ are then found by matching directly

the keypoints in images I and I′. If the number of total correspondences exceeds 2n

the tracking continues, otherwise the camera egomotion is estimated and the process

restarted from image I′. The second step is used to account for cases where the camera

remains stationary — the number of tracked keypoints degrades over time even if the

camera remains stationary. In the context of this work, a keypoint is tracked simply if it

can be repeatedly detected and matched (using the ambiguity measure) across multiple

frames and should not be confused with feature based tracking methods such as KLT.

Figure 5.2 shows, for each image sequence, the number of frames between each es-

timate of camera ego-motion using the variable frame-rate algorithm and pSIFT key-

points. Notice that for the Hyperion sequence the number of frames is in excess of

100 on two separate occasions which occurred when the robot was temporarily sta-

tionary. No constrains regarding the distribution of the tracked keypoints in the im-
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Figure 5.2: Number of frames between estimates of camera egomotion using the vari-

able frame-rate algorithm and parabolic SIFT keypoints for the Hyperion and fisheye

sequences. The parameter N is the current iteration of the egomotion estimate.

ages was used. The threshold used to to reject outliers in these examples were set

to threshE = 0.0025 and threshE = 0.005 for the fisheye and Hyperion sequences re-

spectively. The reason for selecting a larger threshold for the Hyperion sequence is

discussed in the next section.

5.2.3 Visual Odometry Trials

In the following visual odometry experiments for the Hyperion sequence, results are

found for multiple trials. Using the fixed frame-rate, the same set of keypoints are

used for each trial. However, the keypoint matching phase is implemented separately

for each trial. As RANSAC is a random process, this means that for each trial there

will potentially be a different set of corresponding keypoints between each pair of im-

ages. The threshold threshE used for each trial is set to 0.0025. Using the variable

frame-rate, the original set of keypoint correspondences between the automatically

selected frames are used. However, as the threshold threshE used to track the key-

points and automatically select these frames in the previous section used a threshold

of threshE = 0.005, there are multiple incorrect correspondences between the frames

used to compute the egomotion. For each trial using the variable frame-rate, RANSAC

is applied again to these sets of correspondences between the automatically selected

frames using a threshold of threshE = 0.0025 — the actual frames used to compute

the camera egomotion never change. Again, this means that for each trial there will

be differences in the final sets of keypoints used to compute the egomotion. Multiple

trials are used to increase the number of observations used to measure the accuracy of

the visual odometry estimates found using a particular method.
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5.2.4 Measuring Visual Odometry Accuracy

In the following experiments for the ground plane constraints (Euclidean and Triggs’

method), the accuracy of the visual odometry estimates obtained using various meth-

ods are compared. Rather than compare the accuracy qualitatively by plotting the

visual odometry estimates versus ground truth, a quantitative means for comparison is

utilised.

Quantitative analysis of visual odometry accuracy was introduced by Johnson et

al [109]. Given a visual odometry estimate and known ground truth (GPS), they mea-

sured the error in the visual odometry estimates over fixed length 100m segments.

With the first segment starting from the origin, the start point was incremented in 1

metre intervals and a new 100m segment used. The error between segments was found

by first shifting them to the same start point and then rotationally aligning them using

the nth observation in the visual odometry and GPS ground truth segments. The error

was defined as the maximum distance between the ground truth position and the cor-

responding visual odometry estimate over the segment. The advantage of using small

segments rather than the whole path is that it is less sensitive to any single inaccurate

measurement, particularly rotation, which is integrated over the remaining length of

the path.

Rather than simply used a single fixed length segment, the method of Johnson et

al [109] was utilised by Nourani et al [184, 185] to measure visual odometry accuracy

as a function of distance travelled, that is, by using a number of different length seg-

ments. For the ground plane constraint experiments using the Hyperion sequence, this

general approach is adopted using different length segments. However, in contrast to

Johnson et al and Nourani et al, a different means for measuring the error between a

visual odometry and ground truth segment is used. Before justifying the selection of

this method it will first be discussed.

Assume that a segment of the path has been selected where the corresponding vi-

sual odometry and ground truth data is available, as shown in figure 5.3a. This method

is only used to measure the accuracy of the visual odometry estimates using a ground

plane constraint, so the estimated visual odometry has only x,y coordinates in the

ground plane. Referring to figure 5.3b, each segment is first aligned to a canonical

orientation using the first and last observation in each and shifted so that the first and

last observation in each are at equal distance from the origin. Finally, referring to

figure 5.3c, each is then shifted in the y direction so that the centroid (mean) in the

y-direction is zero. Figure 5.3d shows the visual odometry and ground truth segment
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is overlaid where the error in the visual odometry estimate is taken to be twice the

maximum Euclidean distance between all observations in the the visual odometry and

the ground truth segments.

The reason for selecting this method over the metric used by Johnson et al [109]

is that the GPS data may have inaccuracies, and aligning two segments using only the

first few points in each segment will be sensitive to these inaccuracies. Furthermore,

both the fixed and variable frame-rate algorithms need to be compared in following

experiments. There will therefore be some bias in aligning the segments using only

the first n observations since the distance travelled over these first n observations can

be different for the fixed and variable frame-rates.

The comparisons made in the following experiments use segment lengths of 25, 50,

75, 100, 125, 150 and 175 metres. For each length, the start point for the first segment

is the start of the transit. Once the error for the segment has been found, the start point

is incremented to the next nearest observations two metres from the previous start point

and the next segment taken. This process is completed for the given length segment

over the total length of the path. The visual odometry errors are displayed as box

plots with an example from one of the following experiments shown in figure 5.6a.

When multiple trials are used, all observations (errors) for a given length segment

over all trials are combined into a single set of observations. The box plot values are

then found from this single set of observations. Any observations extending from the

lower (25%) or upper (75%) quartile by more than 1.5 times the interquartile range

are considered outliers and are removed. This is the quantitative means for comparing

the accuracy of visual odometry estimates and shows how the visual odometry errors

grow with distance travelled.

5.2.5 Ground Plane Visual Odometry with Coplanar World Points

A ground plane constraint is defined here to mean that the set of world points associ-

ated with the keypoint correspondences between views are coplanar; they lie in a single

ground plane. This constraint has been used with success to estimate the visual odome-

try of a wide-angle camera in an outdoor environment by Scaramuzza [198]. A ground

plane constraint is used to estimate visual odometry for the Hyperion sequence. As

the robot on which the camera is mounted is known to traverse over an approximately

planar environment, and the approximate orientation of the camera with respect to this

plane is known, the correspondences associated with world points assumed to lie in

this (ground) plane can be found. In the strictest sense this assumption is not correct



5.2. Visual Odometry 275

(a) Initial Segments — ground truth (blue) and visual odometry (red).
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(b) Initial alignment to canonical orientation and translation in the x direction so that the first and

last observations are at equal distance in the x direction from the origin — ground truth (blue)

and visual odometry (red).
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(c) Final alignment of the segments where each is translated in the y-direction so that the centroid

(mean) y value is zero — ground truth (blue) and visual odometry (red).
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(d) The two segments overlaid. The error in the visual odometry estimate for the

segment is twice the maximum pointwise Euclidean distance between the cor-

responding visual odometry and ground truth points in each segment — ground

truth (blue) and visual odometry (red).

Figure 5.3: Alignment of visual odometry and ground truth segments used to find the

error in the visual odometry estimate. The ground truth segments are shown in blue,

and the visual odometry segments shown in red. The error of the visual odometry

estimate for the segment is taken two be twice the maximum pointwise Euclidean

distance between all corresponding points in the aligned segments shown in (d).
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since many of the keypoints detected are small rocks (i.e. they are elevated above the

ground plane). However, for practical purposes it is a valid assumption and carries

with it one major advantage. Assuming that the camera remains at a fixed and known

height from the ground plane allows the scale ambiguity in magnitude of the transla-

tion to be resolved, as will be shown in further discussions. This remainder of this

section introduces the foundations for egomotion estimation using a ground plane con-

straint. Sections 5.2.6 and will describe how the egomotion is estimated using different

constraints on the vehicle motion and present experimental results.

Recall from equation 5.1 that the points X and X′ are related by a rigid body rota-

tion and translation whereby X′ = RX+t. Let np be the unit normal to the ground plane

containing the world points. From the definition of a plane the following relationship

can be written:

nT
p X = hp (5.5)

where hp is the distance of the plane from the camera. Equation 5.1 can then be re-

written using 5.5 as

X′ =

(
R+

tnT
p

hp

)
X (5.6)

= H X, ∀Xi,X
′
i , (5.7)

where H is the planar homography from frame 1 to 2, and H−1 is the planar homogra-

phy from frame 2 to 1 whereby X = H−1X′.

Unless the exact pose of the camera with respect to the ground plane is known,

the inhomogeneous coordinates X and X′ of the world points cannot be found directly

from the keypoint coordinates on the image. However, equation 5.6 can be rewritten

using the spherical coordinates η and η′ of the keypoints correspondences as

η′ ∼ H η, ∀ηi,η
′
i, (5.8)

where the notation ∼ defines an equivalence up to some unknown scale factor other

than 0. In most standard texts dealing with perspective cameras [95], the equivalence

in equation 5.8 is written using the homogeneous coordinates of keypoints detected

in a perspective image. Given the spherical coordinates η,η′ of keypoints detected in
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wide-angle images, then

x̌i =
ηi

η(z)i
= (x̌i, y̌i, w̌i)

T , (5.9)

x̌′i =
η′

i

η′(z)i

= (x̌′i, y̌
′
i, w̌

′
i)

T (5.10)

can be considered as the the homogeneous coordinates of these keypoints if they were

detected in a perspective image. Equation 5.8 is more commonly written using the

homogeneous coordinates x̌, x̌′ as

x̌′ ∼ H x̌, ∀ x̌i, x̌
′
i. (5.11)

For a set of keypoint correspondences x̌ ↔ x̌′, any two points H x̌i and x̌′i are known

to be equivalent up to an unknown scale factor from equation 5.11. This equivalence

can be expressed by the vector cross product x̌′i × Hx̌i = 0; this equation states that

for a perfect correspondence x̌i ↔ x̌′i, the vectors H x̌i and x̌′i are perfectly aligned

(although not necessarily the same length). This equivalence gives rise to, for each

keypoint correspondence, three linear equations in h:




0T −w̌′
ix̌

T
i y̌′ix̌

T
i

w̌′
ix̌

T
i 0T −x̌′ix̌

T
i

−y̌′ix̌
T
i x̌′ix̌

T
i 0T


h = 0, Ah = 0, (5.12)

where h is the column vector containing the elements of the homography H:

h = (h1,h2, . . . ,h9)
T , H =




h1 h2 h3

h4 h5 h6

h7 h8 h9


 . (5.13)

For the purposes of later discussions, it is important to note here that the equivalence

in equation 5.12 can be written as

x̌′i × H x̌i = ||x̌′i|| ||H x̌i|| sinθnx̌i,x̌
′
i
= 0, (5.14)

where nx̌i,x̌
′
i
is the unit vector orthogonal to both x̌′i and H x̌i.

Since equation 5.12 has only two linearly independent equations, typically the last

column is eliminated for the purposes of obtaining a solution from a minimum of

four non-collinear points (the homography can be resolved up to an arbitrary scale

factor such that there exist only eight degrees of freedom). A linear solution for h, and
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consequently the homography H, can be obtained from equation 5.12 using a minimum

of four non-collinear keypoint correspondences. This method is typically referred to

as the Direct Linear Transform (DLT) [95]. In most practical applications, the DLT

is used to find a first estimate of the homography H which is then further improved

through non-linear iterative refinement (optimisation).

5.2.6 Ground Plane Visual Odometry: Euclidean

The visual odometry estimates for the Hyperion sequence obtained in this section use a

ground plane constraint (scene points are coplanar), and enforce strictly the assumption

that the camera motion between frames is limited to translation t in the ground plane,

and rotation Rz(φ) about the axis orthogonal to the ground plane, where

t =




tx

ty

0


 , Rz(φ) =




cos φ −sin φ 0

sin φ cos φ 0

0 0 1


 . (5.15)

Furthermore, the constraint is made that the camera’s principal axis is parallel with the

normal to the ground plane np = (0,0,1)T , which is known to be approximately true

for the Hyperion sequence. By substituting np = (0,0,1)T and both the translation t

and rotation R given in equation 5.15 into equation 5.6, the homography H takes the

specific form

H =




cosφ −sinφ tx/hp

sinφ cosφ ty/hp

0 0 1


 . (5.16)

The homography H is a Euclidean transform.

Given both the normal np to the ground plane and height of the camera hp from

the ground plane, the position of any world point Xi can be found directly from the

coordinate of a pSIFT keypoint xi = (xi,yi) on the stereographic image relative to the

principal point. Letting n = mp + 1, where mp is the distance of the stereographic

image plane from the centre of the view sphere, the inhomogeneous coordinate of a

world point Xi in the first camera’s frame of reference is obtained as

Xi =
[

2hp n xi

n2−r2
i

,
2hp n yi

n2−r2
i

, hp

]T

= (Xi,Yi,Zi)
T , (5.17)

where ri =
√

x2
i + y2

i . The inhomogeneous coordinate of a world point X′
i relative to
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the second camera frame of reference is obtained as

X′
i =

[
2hp n x′i
n2−r′2i

,
2hp n y′i
n2−r′2i

, hp

]T

= (X ′
i ,Y

′
i ,Z

′
i)

T , (5.18)

where r′i =
√

x′2i + y′2i . Then for any keypoint correspondence, replacing the coor-

dinates x̌i and x̌′i in equation 5.12 with the coordinates Xi and X′
i respectively, and

removing the redundant terms in h, gives

[
Xi −Yi 1 0

Yi Xi 0 1

]



cosφ

sinφ

tx/hp

ty/hp




=

[
X ′

i

Y ′
i

]
. (5.19)

Unfortunately, the Euclidean transform can not be obtained directly as equation

5.16 is not written as a function of the three linearly independent variables φ, tx, ty.

However, using the gold-standard algorithm in [95], a solution for the affine homogra-

phy HA can be found which is of the form

HA =

[
A t

0T 1

]
, A =

[
a11 a12

a21 a22

]
. (5.20)

Since the matrix A is an affine transform, there is no guarantee that its solution will

be a 2 × 2 orthonormal rotation Rz(φ) as required. It is necessary to therefore find the

best estimate of the rotation Rz(φ) given the solution for A. As discussed in [95], the

affine matrix A can be decomposed as

A = Rz(φ)(Rz(θ)T SRz(θ)) (5.21)

where (Rz(θ)T SRz(θ)) is the component of the affine deformation and Rz(φ) the or-

thonormal rotation given in equation 5.15. If USV = svd(A) is the singular value

decomposition of the affine matrix A, then A can be written as

A = (UV T )(V SV T ) (5.22)

from which, referring to equation 5.21, Rz(φ) = UV T . Since both matrices U and V

are orthogonal, their matrix product R(φ) is orthogonal with determinant 1 as required

for a rotation matrix. As described by Scaramuzza [198], this ‘best estimate’ for the
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rotation Rz(φ) is the optimal solution which minimises the Frobenius norm

min
Rz(φ)

||Rz(φ)−A||2F , Rz(φ)Rz(φ)T = I2×2, (5.23)

where I2×2 is the 2× 2 identity matrix. The estimate of the rotation R(φ) can then be

used to find the homography given in equation 5.16. Observe also that given the known

height hp of the camera from the ground plane, the correct magnitude of the translation

t can be resolved, which is is an advantage of using a ground plane constraint when

valid.

The gold standard algorithm in [95] uses the coordinates X and X′ to solve equa-

tion 5.19. For convenience, this method will be referred to as the standard DLT. Care

must be taken using the standard DLT for keypoints detected in wide-angle images.

Since the Euclidean transformation is estimated for the keypoints mapped to the ground

plane, the results are heavily biased for keypoints near the equator for the downward

camera configuration used in the Hyperion sequence (i.e. the camera’s principal axis

is orthogonal to the ground plane). This can be illustrated by deriving the covariance

matrix Σ = J JT , where J is the Jacobian of the transformation from the stereographic

image plane to the ground plane. Since all world points are constrained to lie in the

ground plane, for simplicity 2D coordinates can be used where, from equation 5.17,

the Jacobian is

J =

[
∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

]
(5.24)

=
2hp n

n2 − r2

[
2x2

n2−r2 +1
2xy

n2−r2

2xy

n2−r2

2y2

n2−r2 +1

]
, (5.25)

where x = (x,y)T is the coordinate of a keypoint on the stereographic image plane

defined with respect to the principal point, and r =
√

x2 + y2. The covariance matrix

is then

Σ =

(
2hp n

(n2 − r2)

)2
[

2n2(x2 − y2)+n4 + r4 4n2 xy

4n2 xy 2n2(y2 − x2)+n4 + r4

]
. (5.26)

Figure 5.4 shows a set of pSIFT keypoints on the image and their associated error

(uncertainty) ellipsoids on the ground plane obtained from their covariance matrices.

For this illustration, the uncertainty of the position for all keypoints on the stereo-

graphic image were assumed to be equal and normally distributed about the positions

of the keypoints. It is evident from the figure that the uncertainty of the ground plane
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Threshold Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

θ < 90◦
median ≥1000 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000

IQR ≥1000 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000

θ < 89◦
median 3.78 5.99 8.27 10.82 13.44 16.09 17.97

IQR 2.68 2.88 3.00 4.12 4.80 4.31 3.03

θ < 80◦
median 1.98 4.09 6.05 7.41 9.02 12.16 17.41

IQR 1.12 2.09 2.01 3.78 8.31 10.78 10.67

θ < 70◦
median 1.99 3.87 5.31 6.93 7.95 9.31 12.57

IQR 1.12 2.29 1.91 1.86 4.25 6.08 6.32

(a) Fixed frame-rate (see figure 5.6a).

Threshold Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

θ < 90◦
median 24.58 135.50 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000

IQR 392.02 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000

θ < 89◦
median 3.27 5.15 6.97 8.70 10.62 12.07 14.16

IQR 2.42 2.49 5.14 6.80 7.67 7.83 8.20

θ < 80◦
median 1.81 3.96 5.67 6.65 11.24 15.43 20.42

IQR 1.00 1.98 2.45 7.57 12.72 15.25 13.51

θ < 70◦
median 1.87 4.28 6.09 6.49 10.82 14.94 20.00

IQR 0.81 2.04 3.31 7.70 12.45 15.09 14.20

(b) Variable frame-rate (see figure 5.6b).

Table 5.1: Visual odometry error as a function of the distance travelled for the Hyperion

sequence using the Euclidean ground plane constraint and standard DLT. The smallest

median values for each angular threshold are shaded.

position increases significantly for those keypoints found towards the periphery of the

stereographic image. Therefore, and inaccuracies in keypoint positions on the image

plane for those points towards the periphery may greatly effect the linear solution of

the homography (Euclidean transform).

To investigate these effects, the visual odometry estimates for the Hyperion se-

quence were found using the standard DLT for the fixed and variable frame-rates using

varying angle of colatitude thresholds θ on the camera’s effective field of view. If the

coordinates any one of the keypoints in a corresponding pair has an angle of colatitude

above the threshold, this correspondence is not used to estimate the camera egomo-

tion. As the camera’s principal axis is assumed to be orthogonal to the ground plane,

a keypoint with spherical coordinate η(θ,φ) lies in the ground plane if θ < 90◦. The

threshold values on the angle of colatitude used were θ < 90◦, 89◦ ,80◦, and 70◦, as

illustrated in figure 5.5. The accuracy of the visual odometry estimates were obtained

for both the fixed and variable frame-rate methods for 20 trials each. The results are

shown in figure 5.6 and are summarised in tables 5.1a and 5.1b for the fixed and vari-

able frame-rate methods respectively.
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(a) Position of keypoints on the stereographic image. For each keypoint, θ
is the corresponding angle of colatitude on the sphere. The original image

is of size 640 × 480 pixels.
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(b) Error ellipse for the position of each keypoint on the ground plane. An

arbitrary scale factor of 10 has been applied to each for the purposes of

visualisation.

Figure 5.4: Position of keypoints on the stereographic image and the corresponding er-

ror ellipses on the ground plane derived from the covariance matrix for each keypoint.

The point at the centre of each ellipsoid is the position of the keypoint on the ground

plane. The angle θ is the angle of colatitude of the keypoint on the sphere.
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Figure 5.5: The circles on the stereographic image corresponding the angles of colat-

itude thresholds θ (the circle corresponding to θ = 89◦ is not shown due to its close

proximity to that for θ < 90◦). For a given angular threshold, only the keypoint corre-

spondences with image coordinates u and u′ within the regions enclosed by the circles

are used to estimate the camera egomotion.

From inspection of the results, in general the accuracy of the egomotion estimates

for the fixed frame-rate improve as the threshold is reduced — the results for the thresh-

old θ < 90◦ are not visible in figure 5.6a as the errors are large. However, the results

for the variable frame-rate show that this is not the case. It is observed also that in

general, the variable frame rate errors have a higher mean and greater IQR than those

for the fixed frame-rate.

Ideally, a linear estimate of the homography should be found which minimises an

error defined on the image plane itself as this in the domain in which errors in keypoint

location occur during detection. Although a linear solution for the homography has not

been found that can achieve this, it is proposed that a modified version of the DLT can

be used which attempts to make some account for the uncertainty of keypoint positions

in the image plane when obtaining a solution of the homography. This modified DLT

is referred to as the weighted DLT and is discussed in the next section.
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(b) Variable frame-rate

Figure 5.6: Box plot of the visual odometry errors as a function of the distance travelled

for the Hyperion sequence using the Euclidean ground plane constraint and standard

DLT. The results have been obtained over a total of 20 trials for both the fixed and

variable frame-rates. IQR is the inter-quartile range.
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5.2.6.1 Weighted DLT

Recall from equation 5.14 that the DLT finds a solution for a generalised homography

H from the constraint

x̌′i × H x̌i = ||x̌′i|| ||H x̌i|| sinθnx̌i,x̌
′
i
= 0, (5.27)

where x̌i and x̌′i are the homogeneous coordinates of a corresponding pair of keypoints.

This equation can be interpreted as saying that the solution for the parameters h of

the homography are found which minimise the angles θi between the vectors x̌′i and

H x̌i, weighted by the magnitude of the same vectors (since θ ≈ sin θ for small θ). In

many cases, a solution for the homography is obtained using the normalised homoge-

neous coordinates x̌i = (x̌i, y̌i,1)T and x̌′i = (x̌′i, y̌
′
i,1)T for all keypoint correspondences.

For the camera configuration used in the Hyperion sequence, the camera’s principal

axis is orthogonal to the ground plane. This means that Xi = hpx̌i and X′
i = hpx̌′i for

all keypoint correspondences. As shown previously in figure 5.4, this is not ideal for

the Hyperion sequence. The reason is that the uncertainty of the positions Xi and X′
i,

with respect to the uncertainty of the pSIFT keypoint positions on the stereographic

image, is greater for keypoints near the periphery of the image than those near the

principal point.

As noted in equation 5.8, the coordinates of the keypoints ηi,η
′
i on the unit view

sphere can be used to find a solution for the homography H, where

η′
i × Hηi = ||η′

i|| ||Hηi|| sinθnηi,η
′
i
= 0. (5.28)

Assuming for now that ||H ηi|| remains constant for all ηi, then ||η′
i|| ||H ηi|| remains

constant for all ηi,η
′
i. A solution for the parameters h of the homography H could then

be found which minimises, with equal weighting for each correspondence, the angle

between the vectors H ηi and η′
i. The weighted DLT algorithm assumes that ||H ηi||

remains constant for all ηi, and applies an individual weighting to each corresponding

pair of keypoints ηi and η′
i representative of their uncertainty in keypoint position on

the stereographic image.

To find a suitable weighting, it is necessary to derive an expression which relates

the uncertainty of a pSIFT keypoint’s position x on the stereographic image plane

(relative to the principal point) to the uncertainty of the keypoint’s position η on the

sphere. Since stereographic projection is conformal, assuming that the uncertainty

of a keypoint’s position on the image is uniform in all directions, the uncertainty of
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the keypoint’s position on the sphere is locally uniform in all directions. Recall from

chapter 4 that a change in angle dψ2 along any great circle on the sphere corresponding

to a change in spherical coordinates can be approximated as

dψ2 = d η(x)2 +d η(y)2 +d η(z)2 = d η2. (5.29)

The following expression was also derived which relates a change in angle dψ on the

sphere to a change in pixel position dP in any direction from a point at a radius r from

the principal point on the stereographic image plane:

dψ2 =
4m2

p

(m2
p + r2)2

dP2, (5.30)

where mp is the distance of the stereographic image plane from the centre of the view

sphere, and r =
√

x2 + y2. The change in angle dψ2 is the same irrespective of the

direction α of the unit pixel shift dP as stereographic projection is conformal. Equa-

tion 5.30 can be rewritten as

dP =
m2

p + r2

2mp
dψ (5.31)

from which the ratio of the displacement on the image plane dP(r) at radius r to dP(0)

at radius r = 0 is approximated as

dP(r)

dP(0)
=

m2
p + r2

m2
p

. (5.32)

This equation is used as the basis for applying a weighting to the spherical coordinates

ηi and η′
i.

Define r(ηi) and r(η′
i) as the radii on the stereographic image plane from the prin-

cipal point corresponding to the points ηi and η′
i respectively. Using equation 5.32, the

weights wi and w′
i applied to the points ηi and η′

i are

wi =

(
m2

p + r(ηi)
2

m2
p

)2

and w′
i =

(
m2

p + r(η′
i)

2

m2
p

)2

. (5.33)

The weightings wi and w′
i in equation 5.2.7 will be unity if the points ηi and η′

i respec-

tively are at the north pole n. This weighing is therefore the relative uncertainty of a

keypoint’s position on the sphere relative to a point at the north pole. Letting η̃i = wi ηi

and η̃′
i = w′

i η′
i, the weighted DLT rewrites the first two linearly independent equations
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in 5.12 for each correspondence as

[
0T −η̃(z)′i η̃T

i η̃(y)′i η̃T
i

η̃(z)′i η̃T
i 0T −η̃(x)′i η̃T

i

]
h = 0, Ah = 0, (5.34)

which, for the specific case of the Euclidean ground plane constraint, takes a similar

form to equation 5.19:




−η̃(z)′i η̃(y)i η̃(z)′i η̃(x)i

−η̃(z)′i η̃(x)i −η̃(z)′i η̃(y)i

0 η̃(z)′i η̃(z)i

−η̃(z)′i η̃(z)i 0

η̃(y)′i η̃(z)i −η̃(x)′i η̃(z)i




T 


cosφ

sinφ

tx/hp

ty/hp

1




= 0, Ãh = 0. (5.35)

Unlike the standard DLT used for the Euclidean ground plane constraint, the gold

standard solution for affine transforms [95] can not be used as the explicit position of

the world points Xi and X′
i are not used. The solution for the parameters of h are

therefore obtained from the singular value decomposition of the matrix Ã. Letting

USV = svd(Ã), h is the column vector of V corresponding to the smallest non-zero

singular value subject to the condition ||h|| = 1. The vector h is rescaled by dividing

through the last term and the known height of the camera hp from the ground plane

used to resolve the correct translation values t = (tx, ty,0)T . As was the case using

the standard DLT, the rotation angle φ is not be written as a separable linear term.

Thus, after rescaling the vector h there is no guarantee that the values returned for

cos θ and sin θ in equation 5.35 satisfy the required constraint sin2 θ + cos2 θ = 1.

The best estimate of the orthonormal rotation Rz(φ) is therefore found using the same

methodology described in the previous equations 5.21 through 5.23.

For future reference, this same procedure can also be used to obtain a solution for h

with the weighted spherical coordinates η̃, η̃′ in the matrix Ã in equation 5.35 replaced

with the unweighted spherical coordinates η,η′. The visual odometry estimates will

be found using the unweighted spherical coordinates in the following sections. For

convenience, this method will be referred to as the spherical DLT.

5.2.6.2 Iterative Weighted DLT

One potential limitation of the weighted DLT is the fact that ||Hηi|| is not guaranteed

to be constant for all ηi; the exception is for the case where the homography is a pure
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rotation. Therefore, the magnitude of H ηi and hence the overall weighting applied to

each pair of correspondences is dependent on both H and ηi. One could argue that if the

coordinates of each point ηi were multiplied by some arbitrarily large scalar n, then the

magnitude of the vectors nHηi would approach a constant value. However, doing this

may lead to numerical instability when solving for h (the solution would be obtained

from the singular value decomposition of h). This relates to the concept of numerical

‘preconditioning’ where, in applications specific to computer vision, large input values

are to be avoided [95]. Ideally, it would be desirable to derive for each ηi some constant

ki for which ||ki Hηi|| = 1. Unfortunately, without knowing the parameters of the

homography H this constant ki can not be obtained.

The iterative weighted DLT first finds an estimate of h using the weighted DLT,

where ||h|| = 1, from which the homography H is obtained. The scale factor ki for

each keypoint position ηi is then found from the initial estimate of H as

ki =
1

∑(Hηi)2
. (5.36)

The weighted DLT is then used to find a new estimate of the homography using the

weighted spherical coordinates η̃i = ki wi ηi — the points η̃′
i remain the same. If de-

sired, this process could be repeated indefinitely where for each iteration the constant

ki for each point ηi is recalculated for the current estimate of the homography H ob-

tained from h. In the following experiments, this process is not iterated, that is, the

weighting factors k are estimated only once.

5.2.6.3 Experiments: Linear Estimate

The visual odometry estimates for the Hyperion sequence were found again for vary-

ing angular thresholds θ. These results were obtained separately using the spherical

DLT, weighted DLT, and the iterative weighted DLT. The same set of keypoint corre-

spondences used in each of the 20 trials used to find the results in figure 5.6 were used

again.

Results

Figures 5.7 and 5.8 show the box plots of the visual odometry errors for the fixed

frame-rate and variable frame-rate respectively. The median errors and interquartile

ranges for the fixed frame-rate and variable frame-rate are given in tables 5.2 and 5.3.
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(c) Iterative Weighted DLT

Figure 5.7: Box plot of the visual odometry errors as a function of the distance travelled

for the Hyperion sequence using a Euclidean ground plane constraint and fixed frame-

rate. The results were found for the spherical, weighted and iterative weighted DLT’s

for the same 20 trials used to find the results in figure 5.6a.
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Figure 5.8: Box plot of the visual odometry errors as a function of the distance travelled

for the Hyperion sequence using a Euclidean ground plane constraint and variable

frame-rate. The results were found for the spherical, weighted and iterative weighted

DLT’s for the same 20 trials used to find the results in figure 5.6b.
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DLT Mode Threshold Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Standard

θ < 90◦
median ≥500 ≥500 ≥500 ≥500 ≥500 ≥500 ≥500

IQR ≥500 ≥500 ≥500 ≥500 ≥500 ≥500 ≥500

θ < 89◦
median 3.78 5.99 8.27 10.82 13.44 16.09 17.97

IQR 2.68 2.88 3.00 4.12 4.80 4.31 3.03

θ < 80◦
median 1.98 4.09 6.05 7.41 9.02 12.16 17.41

IQR 1.12 2.09 2.01 3.78 8.31 10.78 10.67

θ < 70◦
median 1.99 3.87 5.31 6.93 7.95 9.31 12.57

IQR 1.12 2.29 1.91 1.86 4.25 6.08 6.32

Spherical

θ < 90◦
median 1.93 3.96 5.37 6.75 9.04 10.15 13.29

IQR 1.39 2.72 1.32 1.45 4.25 6.72 6.73

θ < 89◦
median 1.93 3.96 5.37 6.75 9.04 10.15 13.29

IQR 1.39 2.72 1.32 1.45 4.25 6.72 6.73

θ < 80◦
median 1.93 3.95 5.36 6.74 9.02 10.12 13.15

IQR 1.39 2.72 1.30 1.41 4.19 6.60 6.57

θ < 70◦
median 1.93 3.91 5.31 6.70 8.76 9.93 12.84

IQR 1.40 2.71 1.31 1.31 3.88 6.23 6.33

Weighted

θ < 90◦
median 1.96 4.20 5.50 6.75 9.58 10.76 13.82

IQR 1.47 2.78 1.37 2.03 5.51 7.67 7.62

θ < 89◦
median 1.96 4.20 5.49 6.75 9.56 10.74 13.83

IQR 1.47 2.78 1.38 2.03 5.51 7.68 7.64

θ < 80◦
median 1.97 4.18 5.45 6.71 9.36 10.51 13.18

IQR 1.47 2.75 1.55 1.70 4.93 6.97 6.78

θ < 70◦
median 1.96 4.10 5.40 6.61 9.00 10.15 12.17

IQR 1.48 2.78 1.22 1.42 3.91 5.78 5.54

Iterative

Weighted

θ < 90◦
median 1.95 4.21 5.49 6.79 9.53 10.67 13.65

IQR 1.48 2.80 1.41 1.95 5.47 7.62 7.55

θ < 89◦
median 1.95 4.19 5.48 6.79 9.52 10.65 13.65

IQR 1.47 2.78 1.42 1.95 5.46 7.63 7.56

θ < 80◦
median 1.95 4.20 5.45 6.75 9.31 10.44 13.02

IQR 1.47 2.77 1.57 1.67 4.89 6.94 6.72

θ < 70◦
median 1.95 4.13 5.40 6.62 9.02 10.17 12.12

IQR 1.49 2.77 1.28 1.45 3.95 5.81 5.55

Table 5.2: Visual odometry errors (metres) as a function of the distance travelled for

the Hyperion sequence using the Euclidean ground plane constraint, fixed frame-rate,

and the spherical, weighted and iterative weighted DLT’s. The blue entries are the

smallest median values for the angular thresholds. IQR is the inter-quartile range.

Discussion and Conclusions

Fixed frame-rate: From initial inspection of the results, the spherical, weighted and

iterative weighted DLT’s gives more consistent accuracy than the standard DLT with

respect to the angular threshold θ used. As was the case with the standard DLT, the

results suggest that the most accurate visual odometry estimates are still found for the

smallest angular threshold of θ = 70◦. Although the iterative weighted DLT provides

marginal improvements over the weighted DLT, neither appears to give more accurate
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DLT Mode Threshold Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Standard

θ < 90◦
median 24.58 135.50 ≥500 ≥500 ≥500 ≥500 ≥500

IQR 392.02 ≥500 ≥500 ≥500 ≥500 ≥500 ≥500

θ < 89◦
median 3.27 5.15 6.97 8.70 10.62 12.07 14.16

IQR 2.42 2.49 5.14 6.80 7.67 7.83 8.20

θ < 80◦
median 1.81 3.96 5.67 6.65 11.24 15.43 20.42

IQR 1.00 1.98 2.45 7.57 12.72 15.25 13.51

θ < 70◦
median 1.87 4.28 6.09 6.49 10.82 14.94 20.00

IQR 0.81 2.04 3.31 7.70 12.45 15.09 14.20

Spherical

θ < 90◦
median 1.81 4.19 5.98 7.06 13.21 17.32 22.86

IQR 0.78 1.87 3.08 8.27 13.81 16.90 14.82

θ < 89◦
median 1.81 4.19 5.98 7.06 13.21 17.32 22.86

IQR 0.78 1.87 3.08 8.26 13.82 16.89 14.82

θ < 80◦
median 1.81 4.18 5.96 7.02 13.14 17.31 22.83

IQR 0.77 1.87 3.06 8.23 13.70 16.76 14.60

θ < 70◦
median 1.88 4.31 6.21 7.85 14.50 19.72 25.83

IQR 0.90 2.02 3.95 9.67 15.26 18.64 15.72

Weighted

θ < 90◦
median 1.67 4.20 5.37 7.29 10.59 13.18 16.85

IQR 1.31 2.23 1.69 5.93 10.53 12.68 11.05

θ < 89◦
median 1.67 4.21 5.38 7.26 10.56 13.19 16.87

IQR 1.31 2.23 1.70 5.95 10.58 12.75 11.07

θ < 80◦
median 1.65 4.16 5.27 6.91 10.15 12.61 16.17

IQR 1.32 2.26 1.54 5.44 9.90 12.03 10.19

θ < 70◦
median 1.74 4.14 5.80 6.84 10.91 14.29 18.25

IQR 1.01 1.93 2.78 6.94 11.89 14.83 13.01

Iterative

Weighted

θ < 90◦
median 1.62 4.03 5.21 7.62 10.91 13.67 17.38

IQR 1.46 2.54 1.78 5.73 10.61 12.84 11.43

θ < 89◦
median 1.62 4.03 5.19 7.59 10.88 13.66 17.37

IQR 1.46 2.53 1.78 5.73 10.63 12.87 11.43

θ < 80◦
median 1.60 4.01 5.13 7.34 10.48 13.01 16.56

IQR 1.49 2.56 1.68 5.22 9.92 12.04 10.57

θ < 70◦
median 1.58 3.96 5.06 7.11 10.64 13.35 16.57

IQR 1.28 2.42 1.82 5.32 9.73 12.18 10.63

Table 5.3: Visual odometry errors (metres) as a function of the distance travelled for

the Hyperion sequence using the Euclidean ground plane constraint, variable frame-

rate, and the spherical, weighted and iterative weighted DLT’s. The blue entries are

the smallest median values for the angular thresholds. IQR is the inter-quartile range.

results than the spherical DLT. However, all have very similar accuracy. Note also

that the accuracy of the visual odometry estimates using the spherical DLT for angular

thresholds θ < 90◦ and θ < 89◦ are comparable to the accuracy using the standard DLT

with the smallest angular threshold of θ < 70◦. These results suggest that using the

most basic angular threshold θ < 90◦ (i.e. points can lie anywhere in the ground plane),

the spherical, weighted and iterative weighted DLT’s are more suited than the standard

DLT for estimating the homography between frames using the Euclidean ground plane

constraint and fixed frame-rate for the Hyperion sequence.

It is of interest to note here that there are minimal differences in the results found
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using the weighted DLT and the iterative weighted DLT. This is not surprising as the

magnitude of the camera translation t between the views used to compute the camera

egomotion is very small using the fixed frame-rate. As a result, the magnitude of

H ηi is dependent mainly on the rotational component of the homography H such that

||H ηi|| ≈ constant ∀ηi; this is the condition that the iterative weighted DLT attempts

to achieve.

Variable frame-rate: As was the case with the fixed frame-rate, when compared

to the results obtained using the standard DLT, the accuracy of the visual odometry

estimates obtained using the spherical, weighted and iterative weighted DLT’s are less

influenced by the angular threshold used. In general, both the weighted and iterative

weighted DLT’s show some improvement over the spherical DLT. Unlike the fixed

frame-rate, the magnitude of the translation t between the frames used to estimate the

camera egomotion is greater resulting in an increased variability in the magnitude of

Hηi for each ηi. This suggests that the iterative weighted DLT would give improved

performance over the weighted DLT. This improvement in performance is observed in

the results, particularly for the smallest angular threshold of θ = 70◦.

5.2.6.4 Iterative Refinement

After obtaining a linear estimate of the homography H between frames from which an

estimate of the camera egomotion is obtained, the accuracy of egomotion estimate can

be improved by minimising some new cost function (different to the cost function used

to find the linear estimate) using a non-linear optimisation. A standard cost function to

be minimised is the transfer error ε between images defined as [95]:

ε =
n

∑
i=1

d(u′
i,u

′
i(Hηi))

2 +d(ui(H
−1η′

i),ui)
2, (5.37)

where n is the number of correspondences. The parameters ui and u′
i are the coordi-

nates of the pSIFT keypoints in the first and second stereographic image respectively.

The parameter u′
i(Hηi) is the coordinate, in the second stereographic image, of the

point Hηi mapped to this image. Likewise, ui(H
−1η′

i) is the coordinate, in the first

stereographic image, of the point H−1η′
i mapped to this image. d(u′

i,u
′
i(Hηi)) is

the Euclidean distance between the points u′
i and u′

i(Hηi) measured on the stereo-

graphic image plane, and d(ui(H
−1η′

i),ui) is the Euclidean distance between the points

ui(H
−1η′

i) and ui measured on the stereographic image plane.
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A geometric cost function can also be used for the Euclidean ground plane con-

straint based on the method used by Maimone, Cheng and Matthies [145]. In contrast

to the transfer error which is defined on the image plane, the geometric error is defined

with respect to the position of the world points X,X′ in Euclidean space. Although

Maimone, Cheng and Matthies use their method to estimate 6 degree of freedom cam-

era motion using stereo vision, the method can be adapted for used with the Euclidean

ground plane constraint. As all world points are constrained to lie in the ground plane,

the camera motion between frames can be restired to 2 degrees of freedom where

Rz(φ) =

[
cos φ −sin φ

sin φ cos φ

]
, t =

[
tx

ty

]
. (5.38)

Using the two-dimensional coordinates Xi = (Xi,Yi)
T and X′

i = (X ′
i ,Y

′
i )

T of the pair of

corresponding keypoints obtained from equation 5.17, the geometric error for the pair

of corresponding keypoints is

εi = X′
i − (RzXi + t). (5.39)

For the set of all correspondences X ↔ X′, the maximum likelihood estimate of the

camera motion defined by the variables φ, tx and ty minimises the sum

Σi(ε
T
i Wiεi), (5.40)

where Wi is the inverse covariance matrix for the error εi defined as

Wi = (Rz ΣX′
i
RT

z +ΣXi
)−1. (5.41)

The parameters ΣX′
i

and ΣXi
are the 2× 2 covariance matrices of the points Xi and

X′
i respectively. Given the coordinates xi and x′i on the stereographic image (relative

to the principal point) of two corresponding pSIFT keypoints, the covariance matrix

for each is obtained from equation 5.2.6.5 — the uncertainty in the positions of all

keypoints on the stereographic image are assumed to be equal.

5.2.6.5 Experiments: Iterative Refinement

The experiments in this section compare the accuracy of the optimised visual odome-

try estimates for the Hyperion sequence using the Euclidean ground plane constraint

and the transfer and geometric cost functions. For the fixed and variable frame rates,

an initial estimate of the Homography H between frames was found using the iterative
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weighted DLT from with the variables φ, tx and ty were recovered. The threshold angle

used was θ < 89◦. Using this estimate of H obtained with the iterative weighted DLT,

any correspondences with a transfer error εi > 4 were considered outliers and removed.

Using these remaining correspondences, the variables φ, tx and ty were optimised using

a Matlab implementation of Levenberg-Marquardt and each of the transfer and geo-

metric cost functions defined in equations 5.37 and 5.40. Optimising the variables φ, tx

and ty using the transfer cost function ensures that the homography contains no affine

transform. The parameters φ, tx and ty, and the height hp of the camera from the ground

plane are used to find the homography in equation 5.16 for each iteration of the op-

timisation. For each cost function, optimisation is terminated if the tolerance on the

rotation or translation values changes by less than 10e−6, or if the number of iterations

exceeds 200.

Results

The results are shown in figure 5.9 accumulated over a total of 20 trials. This is a

separate set of 20 trials to those used in the previous experiments. The visual odom-

etry errors for the initial linear estimates of the camera egomotion obtained using the

iterative weighted DLT have been included for comparison. A summary of the results

is given in table 5.4. Figure 5.10 illustrates for one of the trials the visual odometry

estimates versus GPS ground truth for the linear estimated (iterative weighted DLT),

and each of the non-linear methods using the transfer error and geometric error.

Discussion and Conclusions

The results for each frame-rate indicate improvements in accuracy over the linear

estimates for both non-linear schemes (transfer and geometric cost functions). For the

fixed frame-rate, accuracy of the results using the transfer error are marginally better

than those for the geometric error, however, the opposite is true for the variable frame-

rate.

The similarities in the accuracy using the two cost modes can be explained by

the fact that each performs a similar operation. Each attempts to find the maximum

likelihood estimate of the camera egomotion which accounts for the uncertainty of

keypoint positions in the stereographic image. The transfer cost function accounts

for this uncertainty by defining the error to be minimised on the stereographic image.

The geometric cost function defines the error to be minimised in Euclidean with the

covariance matrices used to account for the uncertainty in keypoint positions in the

stereographic image. These covariance matrices were obtained from equation
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Figure 5.9: Box plot of the visual odometry error as a function of the distance trav-

elled for the Hyperion sequence using a linear estimate of the camera motion followed

by iterative refinement for the Euclidean ground plane constraint. Results are for a

separate set of 20 trials to those used previously to find the results in figures 5.6a and

5.6b. The visual odometry errors using the initial linear estimate have been included

for comparison.
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Figure 5.10: Plot of the visual odometry estimates for the Euclidean ground plane

constraint versus GPS ground truth. The linear iterative weighted DLT was used to

obtain an initial estimate of the camera egomotion between frames. This estimate was

then optimised using the transfer and geometric cost functions. The paths have been

manually aligned as no orientation information of the vehicle was available.
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Mode Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Linear (iterative weighted DLT)
median 1.97 4.19 5.50 6.78 9.58 10.66 13.62

IQR 1.47 2.76 1.40 1.96 5.45 7.73 7.62

Non-Linear (transfer)
median 1.95 3.74 5.08 6.09 7.55 9.36 9.68

IQR 1.48 2.99 1.79 0.88 1.98 2.94 2.17

Non-Linear (geometric)
median 1.95 3.73 5.05 6.08 7.52 9.32 9.65

IQR 1.48 2.99 1.79 0.87 1.93 2.90 2.13

(a) Fixed frame-rate.

Mode Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Linear (iterative weighted DLT)
median 1.64 4.02 5.18 7.68 11.08 14.02 17.49

IQR 1.45 2.58 1.78 5.97 10.63 12.89 11.15

Non-Linear (transfer)
median 1.59 3.49 4.83 6.06 8.32 10.02 10.40

IQR 1.59 2.22 1.63 2.37 3.86 4.54 3.94

Non-Linear (geometric)
median 1.54 3.45 4.82 5.87 8.32 9.76 10.21

IQR 1.58 2.40 1.74 2.25 4.04 4.68 3.94

(b) Variable frame-rate.

Table 5.4: Error (metres) as a function of the distance travelled for the Hyperion se-

quence using the Euclidean ground plane constraint. An initial estimate of the camera

egomotion was obtained using the iterative weighted DLT. This accuracy of this es-

timate was then optimised using the transfer and geometric cost functions. The blue

entries are the smallest median values for all methods. IQR is the inter-quartile range.

The results suggest that either the transfer or geometric cost functions are suitable

for optimising the estimate of the camera egomotion. For each iteration of optimisa-

tion, the transfer error is more computationally efficient to compute than the geometric

error. This makes is potentially the more practical method to use.

5.2.7 Ground Plane Visual Odometry: Triggs’ Method

In many practical applications the precise normal to the ground plane np may be un-

known. When this is the case, the homography between two frames is of the gener-

alised form given in equation 5.6 which has eight degrees of freedom and can be solved

up to arbitrary scale factor. The experiments in this section find the visual odometry es-

timates by solving for the generalised homography between frames. The components

of the rotation R, translation t and the normal n are extracted from the homography

H using the method devised by Triggs [226]. The visual odometry estimates obtained

using this method will be referred to as the Triggs ground plane constraint, which is

the same terminology used by Scaramuzza [198, 200].

The generalised homography can be solved by constructing the set of simultaneous
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linear equations Ah = 0, where each keypoint correspondence contributes two rows

to the matrix A — these are the first two rows in equation 5.12. A solution for the

entries h of the homography H can be obtained from a minimum of four non-collinear

correspondences from the singular value decomposition USV = svd(A) of A. h is the

column vector of V corresponding to the smallest non-zero singular value. When re-

searching methods of camera calibration using planar scenes [226], Triggs formulated

a method for extracting, up to a two-fold ambiguity, the rotation R, translation t/hp

and normal np from the generalised homography H defined equation 5.6, where the

known height hp of the camera from the ground plane can be used to find t. These are

found from the singular value decomposition of H, and the full details can be found

in [226]. The two-fold ambiguity is resolved by selecting the solution whose normal

np is nearest to the approximately known value of np = (0,0,1)T .

As just discussed, the homography H can be solved from the matrix A which uses

the homogeneous coordinates x,x′. The coordinates X,X′ can not be used as the nor-

mal to the ground plane needs to be known precisely to derive them from the coor-

dinates of the keypoints in the stereographic image. Given the coordinates η,η′ of

the corresponding keypoints on the sphere, the ‘standard’ way to construct the matrix

is to use the normalised homogeneous coordinates x̌i = (η(x)i/η(z)i,η(y)i/η(z)i,1),

x̌′i = (η(x)′i/η(z)′i,η(y)′i/η(z)′i,1) and apply the normalisation described in [95] to im-

prove numerical stability when solving for h. This method was used by Scaramuzza

and Siegwart [200] to estimate camera egomotion using the Triggs ground plane con-

straint with keypoints detected in wide-angle catadioptric images. The solution ob-

tained using this method will be referred to as the standard DLT.

As was the case for the Euclidean ground plane constraint, the spherical, weighted

and iterative weighted DLT’s can be used to find a solution for h. The only difference is

that the matrix A is of the form given in equation 5.34 and not 5.35 (i.e. there are no re-

dundant terms in h). The weighting factors given in equation are used by the weighted

and iterative weighted DLT’s. The solution for h using the spherical, weighted and

iterative weighted DLT’s is again obtained from the singular value decomposition of

A. No data normalisation similar to that described in [95] is used by the spherical,

weighted and iterative weighted DLT’s.

As a final note, the estimate of the camera egomotion returned using the Triggs

ground plane constraint is defined in the camera coordinate frame of reference. The

corresponding change in angle φ and translation on the ground plane can be found

by projecting R and t to the ground plane using np. This is done in the following

experiments to find the motion of the camera in the ground plane.
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5.2.7.1 Experiments: Linear Estimate

For each of the fixed and variable frame-rates, the visual odometry estimates for the

Hyperion sequence were obtained using the Triggs ground plane constraint for 20 sepa-

rate trials. These were the same trials used in the experiments in section 5.2.6.3. These

visual odometry estimates were found using each of the standard, spherical, weighted

and iterative weighted DLT’s and the same angular thresholds θ used in the previous

experiments.

Results

The results for the fixed frame rate are displayed in figure 5.11 and summarised

in table 5.5. The results for the fixed frame rate are displayed in figure 5.12 and are

summarised in tables 5.5 and 5.6.

Discussion and Conclusions

As for the Euclidean ground plane constraint, the accuracy of the visual odometry

results found using the standard DLT for the fixed and variable frame-rates is sensitive

to the angular threshold used. In contrast, the accuracy of the visual odometry esti-

mates using the spherical, weighted and iterative weighted DLT’s are less influenced

by the angular threshold used.

For both the fixed and variable frame-rates, in general the weighted DLT gives

improved accuracy over the spherical DLT. With respect to the iterative weighted DLT,

for both frame-rates improvements in the accuracy compared to the weighted DLT are

observed, although these are more substantial for the variable frame-rate. As argued

previously, the accuracy of the results found using the iterative weighted DLT are only

marginally better than those found using the weighted DLT for the fixed frame-rate

as that the magnitude of the translation between frames is small. As a result, the

magnitude of H ηi is near constant for all ηi which is the condition that the iterative

weighted DLT aims to achieve.

For the fixed frame-rate, the iterative weighted DLT gives improved performance

over the standard DLT for all threshold values. The same is true for the variable frame-

rate except for case where the threshold is set to θ = 80◦ using the standard DLT.

However, as shown by the results in figures 5.11 and 5.12, the iterative weighted DLT

is more robust as the performance remains more consistent for all threshold angles θ.
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Figure 5.11: Box plots of the visual odometry errors using a fixed frame-rate (Hype-

rion, Triggs ground plane constraint). The results were obtained using the same 20

trials as the results in figure 5.6a.
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Figure 5.12: Box plots of the visual odometry errors using a variable frame-rate (Hy-

perion, Triggs ground plane constraint). The results were obtained using the same 20

trials as the results in figure 5.6b.
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DLT Mode Threshold Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Standard

θ < 90◦
median ≥999 ≥999 ≥999 ≥999 ≥999 ≥999 ≥999

IQR ≥999 ≥999 ≥999 ≥999 ≥999 ≥999 ≥999

θ < 89◦
median 35.26 67.11 110.78 157.09 186.41 213.75 238.84

IQR 58.91 77.87 99.32 113.28 104.72 96.46 81.17

θ < 80◦
median 3.15 5.88 24.92 34.55 47.54 57.72 69.21

IQR 5.05 31.11 56.96 64.07 67.84 50.21 46.82

θ < 70◦
median 2.09 5.11 5.47 5.95 7.30 9.49 17.46

IQR 3.43 5.56 9.94 12.92 15.48 20.76 24.30

Spherical

θ < 90◦
median 2.01 3.26 4.26 5.00 5.61 6.22 6.74

IQR 0.95 2.53 3.06 2.45 1.15 1.18 1.48

θ < 89◦
median 2.01 3.26 4.27 5.01 5.62 6.25 6.75

IQR 0.94 2.53 3.04 2.44 1.12 1.20 1.51

θ < 80◦
median 2.01 3.26 4.28 5.05 5.67 6.30 6.82

IQR 0.95 2.52 3.04 2.37 1.12 1.29 1.57

θ < 70◦
median 2.10 3.42 4.48 5.62 6.70 7.33 8.43

IQR 0.93 2.37 2.74 1.71 1.34 2.39 2.60

Weighted

θ < 90◦
median 1.89 3.11 4.07 4.46 4.75 5.07 5.38

IQR 0.98 2.81 3.16 2.57 1.22 0.63 0.80

θ < 89◦
median 1.89 3.10 4.07 4.44 4.76 5.06 5.38

IQR 0.98 2.83 3.15 2.59 1.22 0.66 0.89

θ < 80◦
median 1.89 3.07 4.06 4.47 4.75 5.06 5.33

IQR 0.95 2.84 3.16 2.55 1.17 0.58 0.73

θ < 70◦
median 1.92 3.06 4.11 4.60 5.26 5.70 6.37

IQR 0.94 2.72 3.12 2.14 0.83 0.95 1.00

Iterative

Weighted

θ < 90◦
median 1.88 3.09 4.08 4.47 4.72 5.02 5.31

IQR 1.01 2.87 3.19 2.69 1.23 0.63 0.78

θ < 89◦
median 1.88 3.08 4.07 4.45 4.72 5.03 5.30

IQR 1.01 2.90 3.21 2.69 1.27 0.68 0.90

θ < 80◦
median 1.88 3.05 4.06 4.48 4.67 5.00 5.29

IQR 0.98 2.90 3.21 2.64 1.22 0.63 0.79

θ < 70◦
median 1.91 3.04 4.12 4.58 5.12 5.54 6.21

IQR 0.93 2.77 3.14 2.19 0.81 1.01 1.18

Table 5.5: Visual odometry errors using fixed frame-rate (Hyperion, Triggs ground

plane constraint) for the standard, spherical, weighted and iterative weighted DLT’s

(see figure 5.11). All values have units of metres. The blue entries indicate the smallest

median value for each DLT across all angular thresholds. IQR is the inter-quartile

range.

5.2.7.2 Iterative Refinement

After obtaining a linear solution for the homography H, the accuracy of H can poten-

tially be improved using a non-linear optimisation. The transfer error defined in equa-

tion 5.37 can again be used as the cost function to be minimised. It is possible, given

the normal to the plane np and the estimate of the inter-frame rotation R, to resolve

the position of points X,X′ and their associated covariance matrices σX,σX′ directly

from the keypoint positions on image. However, these would need to be recalculated
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DLT Mode Threshold Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Standard

θ < 90◦
median 5.12 27.88 120.00 492.48 684.47 753.11 769.85

IQR 60.20 159.17 611.14 848.11 ≥999 ≥999 ≥999

θ < 89◦
median 2.43 4.78 7.27 9.00 11.30 11.76 12.31

IQR 3.08 3.18 4.06 6.66 6.05 4.93 5.18

θ < 80◦
median 1.55 2.91 4.02 4.02 4.09 4.65 5.25

IQR 0.85 2.68 1.98 0.95 0.73 1.40 2.21

θ < 70◦
median 1.75 4.57 5.87 7.82 11.45 15.34 22.27

IQR 2.12 3.35 4.42 9.50 14.84 18.47 21.91

Spherical

θ < 90◦
median 2.38 4.21 5.85 6.76 8.41 9.91 12.36

IQR 1.67 2.59 2.66 2.75 3.92 4.33 5.23

θ < 89◦
median 2.38 4.22 5.85 6.77 8.45 9.93 12.46

IQR 1.68 2.63 2.71 2.80 4.09 4.50 5.44

θ < 80◦
median 2.40 4.30 5.98 6.98 8.97 10.84 14.18

IQR 1.67 2.81 2.84 3.41 5.20 6.03 7.25

θ < 70◦
median 2.99 5.78 8.75 12.86 18.32 24.80 33.67

IQR 1.91 3.41 4.39 7.23 9.71 11.71 14.26

Weighted

θ < 90◦
median 1.70 3.18 4.36 4.87 5.28 6.20 7.15

IQR 1.31 2.37 2.04 1.09 2.19 3.37 3.88

θ < 89◦
median 1.71 3.19 4.38 4.89 5.33 6.24 7.20

IQR 1.32 2.38 2.03 1.09 2.27 3.45 3.95

θ < 80◦
median 1.70 3.21 4.50 4.88 5.24 5.99 7.43

IQR 1.33 2.44 2.13 1.22 2.76 3.71 4.02

θ < 70◦
median 2.09 4.24 6.34 8.41 11.92 16.23 23.13

IQR 1.84 3.23 3.22 6.75 9.11 10.81 13.79

Iterative

Weighted

θ < 90◦
median 1.60 2.96 3.91 4.32 4.80 5.67 6.51

IQR 0.86 2.54 2.09 0.99 1.06 2.23 2.48

θ < 89◦
median 1.60 2.97 3.92 4.36 4.85 5.73 6.57

IQR 0.86 2.53 2.09 0.97 1.11 2.29 2.52

θ < 80◦
median 1.59 2.92 3.95 4.43 4.84 5.70 6.49

IQR 0.85 2.52 2.04 0.94 1.18 2.36 2.73

θ < 70◦
median 1.77 3.50 4.94 5.30 6.63 8.24 10.51

IQR 1.22 2.61 2.30 2.24 3.48 4.09 5.74

Table 5.6: Visual odometry errors using variable frame-rate (Hyperion, Triggs ground

plane constraint) for the standard, spherical, weighted and iterative weighted DLT’s

(see figure 5.12). All values have units of metres. The blue entries indicate the smallest

median value for each DLT across all angular thresholds. IQR is the inter-quartile

range.

for each iteration of the optimisation using the estimate of H obtained in the previous

iteration. As a result, the computational expense using the geometric error far exceeds

that of using the transfer error. Considering also that the accuracy of the results was

very similar for transfer and geometric cost functions for the Euclidean ground plane

constraint, only the transfer error is considered in this section.
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5.2.7.3 Experiments: Iterative Refinement

Using either the fixed or variable frame-rate, an initial estimate of the homography H

was found using the iterative weighted DLT with angular threshold θ < 89◦. The nor-

mal to the plane np and rotation were recovered from this estimate and used to remove

any of the correspondences that do not project to a points in the ground plane. This es-

timate of H was then used to find the transfer error σi defined in equation 5.37 for each

of the remaining correspondences. Any correspondences with an error εi > 4 were

considered outliers and were removed. The individual elements of the homography H

were then optimised, which is the method recommended in [95], by minimising the

transfer error cost function in equation 5.37. A Matlab implementation of Levenberg-

Marquardt was used to perform this optimisation. The optimisation terminates if the

tolerance of all the elements of H change by less than 10e−6, or if a number of itera-

tions exceeds 200.

Results

Results were obtained using the same 20 trials used previously in section 5.2.6.5.

They are presented in figure 5.13 and summarised in table 5.7. Figure 5.14 shows, for

one of the fixed frame-rate and variable frame-rate trials, the estimates of the visual

odometry found using simply the initial iterative weighted DLT estimate, and the non-

linear (optimised) estimate, versus GPS ground truth.

Discussion and Conclusions

For the fixed frame-rate, the results indicate some improvements in the accuracy of

the visual odometry estimates over small distances only. The fact that this is not true

for the longer segments is an unexpected result. One possible explanation is that there

may still be outliers present in some of the frame to frame correspondences during the

non-linear optimisation which have a greater effect on the accuracy of the homography

estimate than during the linear estimate with the iterative weighted DLT. Considering

that a single inaccurate measurement of the homography will have a greater effect on

the long range accuracy then the short range accuracy, then this may be the most likely

explanation. Unlike the results for the fixed frame-rate, there are improvements in

the accuracy of the visual odometry estimates for all distances using the non-linear

optimisation over the linear estimate.
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Figure 5.13: Box plots of the visual odometry errors (Hyperions, Triggs ground plane

constraint). An initial estimate of the Homography between frames was found using

the iterative weighted DLT and threshold θ < 89◦. This estimate was then optimised

using the transfer error cost function. The results shown are for a separate set of 20

trials used previously in figures 5.6a and 5.6b.
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Figure 5.14: Plot of the visual odometry estimates for the Triggs ground plane con-

straint using the linear iterative weighted DLT and the non-linear optimisations (trans-

fer error) versus GPS ground truth for one of the fixed and variable frame-rate trials.

The paths have been manually aligned.
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Mode Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Linear (iterative weighted DLT)
median 1.88 3.08 4.08 4.47 4.74 5.01 5.31

IQR 1.00 2.90 3.20 2.69 1.29 0.73 0.93

Non-Linear (transfer)
median 1.85 3.02 4.04 4.56 4.96 5.36 5.99

IQR 0.97 2.82 2.92 2.10 0.81 1.31 1.45

(a) Fixed frame-rate.

Mode Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Linear (iterative weighted DLT)
median 1.61 2.96 3.86 4.32 4.81 5.63 6.48

IQR 0.84 2.54 2.14 0.99 1.04 2.18 2.43

Non-Linear (transfer)
median 1.44 2.71 3.69 4.10 4.58 5.25 5.83

IQR 0.67 2.97 2.56 1.10 0.95 2.22 2.09

(b) Variable frame-rate.

Table 5.7: visual odometry errors (Hyperions, Triggs ground plane constraint). An

initial estimate of the Homography between frames was found using the iterative

weighted DLT and threshold θ < 89◦. This estimate was then optimised using the

transfer error cost function. All errors have units of metres. IQR is the inter-quartile

range.

5.2.8 Discussion and Conclusions: Ground Plane Visual Odome-

try

5.2.8.1 Direct Linear Transforms (DLT’s)

The results in sections 5.2.6 and 5.2.7 showed that for both the Euclidean and Triggs

ground plane constraints respectively, the initial visual odometry estimates found using

the standard DLT’s were highly sensitive to the angular threshold θ placed on the cam-

eras effective field of view. Two variants of the standard DLT were proposed termed

the weighted and the iterative weighted DLT. The goal of each was to obtain a lin-

ear estimate for the homography H which accounted for the uncertainty of keypoint

location during detection on the image plane.

For both the fixed and variable frame-rates, the visual odometry estimates for the

Euclidean and Triggs ground plane constraints found using each of the weighted and

iterative weighted DLT’s were in general more accurate than the estimates found using

the standard DLT’s. The weighted and iterative weighted DLT’s were also less sensitive

to the angular threshold θ on the cameras effective field of view. For the fixed frame-

rate, the accuracy of the visual odometry estimates found using the iterative weighted

DLT was not significantly better than that found using the weighted DLT for both the

Euclidean and Triggs ground plane constraints. The reasons for these observations
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were discussed previously in sections 5.2.6 and 5.2.7. For the variable frame-rate,

although there was minimal difference between the accuracy of the visual odometry

estimates for the Euclidean ground plane constraint found using the the weighted and

iterative weighted DLT’s, significant improvements using the latter were observed for

the Triggs ground plane constraint.

Overall, the results suggest that for the particular downward facing camera config-

uration used in the Hyperion sequence, when estimating the camera egomotion using

either the Euclidean or Triggs ground plane constraint, both the weighted and iterative

weighted DLT’s are a suitable alternative to the standard DLT’s.

5.2.8.2 Euclidean versus Triggs

From the results presented, the visual odometry estimates obtained using the Triggs

ground plane constraint were more accurate than those obtained using the Euclidean

ground plane constraint. For the Euclidean ground plane constraint, it was assumed

that the normal to the plane was np = (0,0,1)T (the cameras principal axis was or-

thogonal to the ground plane). Any variations from this assumption have the potential

to limit the accuracy of the frame to frame egomotion estimates and hence the visual

odometry estimates. A number of factors, all relevant to the Hyperion sequence, for

which np 6= (0,0,1)T include: inaccurate alignment of the camera with respect to the

ground plane, camera vibration, and movement of the robot over rocks and uneven

terrain.

The Triggs ground plane constraint can potentially account for these factors. It is

of interest to summarise here the results of Scaramuzza [198] who compared the rela-

tive performance of the Euclidean and Triggs ground plane constraints for egomotion

estimates using synthetic omnidirectional (wide-angle) image data. A brief summary

of his observations is:

• In the presence of image noise, the Euclidean results were in general better than

those for the Triggs algorithm for perfect camera alignment (np = (0,0,1)T ).

The opposite was true for non-perfect camera alignment (camera pitch = camera

roll = 1◦).

• As the variance in the distribution of the keypoint correspondences along the y

axis decreases (for example, all correspondences being located on one side of

the image), the accuracy of the egomotion estimates using the Euclidean con-

straint was better that for the Triggs constraint for perfect camera alignment.
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Furthermore, in the case where all keypoint correspondences approach a degen-

erate configuration, such as being collinear (lying on a single conic on the image

plane), the results using Triggs gave extremely poor performance. This poor per-

formance for Triggs with near degenerate configuration was found to exist also

for the case of non-perfect camera alignment, (camera pitch = camera roll = 1◦).

However, as the variance in the distribution of the points increased, the results

for Triggs were better than for the Euclidean case.

Although the results for the Hyperion sequence do not consider the effect of im-

age noise and distribution of the keypoint correspondences explicitly, the distribution

of the keypoints was in most instances far from reaching a degenerate configuration

— pSIFT was able to detect and find corresponding keypoints in most regions of the

image. Inaccuracies in egomotion estimates are therefore attributed primarily to im-

age noise and variations in the camera alignment with respect to the ground plane.

Based on the results of Scaramuzza [198], for both these conditions the Triggs method

will in general give improved estimates compared to the Euclidean method. The re-

sults observed in the experiments for the Hyperion sequence appear to support these

observations.

To conclude, although the Triggs ground constraint requires solving for a homog-

raphy with more degrees of freedom than that using the Euclidean ground constraint,

the results show that it provides more accurate visual odometry estimates for the hy-

perion sequence for each of the fixed and variable frame-rates. This is most likely

due to the fact that it can account for variations in the normal to the plane np and,

as suggested by Scaramuzza, is less sensitive to image noise. If for example the dis-

tribution of the keypoint correspondences between two frames began approaching a

near degenerate configuration, the switching scheme of Scaramuzza [198] could be

used where the Euclidean ground plane constraint is used in preference to the Triggs

ground plane constraint. The accuracy of both the Euclidean and Triggs ground plane

constraints are still limited by the fact that the ground plane constraint is only an as-

sumption/constraint made. In reality the world points in the Hyperion sequence would

not be perfectly coplanar as the majority of the keypoints detected are rocks that are el-

evated above the ground plane. There would also be natural undulations of the ground.

However, accurate visual odometry results were still able to be found using the ground

assumption/constraint.
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Cost Function Frame-rate Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Transfer

Fixed
median 1.57 3.32 4.82 5.61 7.39 8.91 9.19

IQR 1.31 2.86 1.67 1.52 3.38 3.66 2.84

Variable
median 1.59 3.49 4.83 6.06 8.32 10.02 10.40

IQR 1.59 2.22 1.63 2.37 3.86 4.54 3.94

Geometric

Fixed
median 1.57 3.31 4.82 5.59 7.36 8.87 9.15

IQR 1.31 2.86 1.67 1.48 3.32 3.60 2.81

Variable
median 1.54 3.45 4.82 5.87 8.32 9.76 10.21

IQR 1.58 2.40 1.74 2.25 4.04 4.68 3.94

(a) Euclidean ground plane constraint.

Cost Function Frame-rate Statistic
Distance Travelled (metres)

25 50 75 100 125 150 175

Transfer

Fixed
median 1.43 2.81 3.67 4.21 4.52 5.10 5.55

IQR 0.83 2.96 2.88 1.67 0.64 1.75 1.69

Variable
median 1.44 2.71 3.69 4.10 4.58 5.25 5.83

IQR 0.67 2.97 2.56 1.10 0.95 2.22 2.09

(b) Triggs ground plane constraint.

Table 5.8: Visual odometry errors (Hyperion, Euclidean and Triggs ground plane

constraints) for fixed and variable frame-rates. The results are shown only for the

non-linear estimates — the initial linear estimates were obtained using the iterative

weighted DLT with angular threshold θ < 89◦. The blue entries indicate the smallest

median error for each distance and cost function. IQR is the inter-quartile range.

5.2.8.3 Fixed versus Variable Frame-rates

It was suggested previously that increasing the change in pose between the frames

used to compute camera egomotion has the potential to improve the accuracy of vi-

sual odometry estimates. The variable frame rate scheme described in section 5.2.2

was used to do this. The comparison of the relative accuracy of the visual odome-

try estimates found using the fixed and variable frame-rates are shown in figures 5.15

and 5.16 for the Euclidean ground plane constraint (non-linear) and the Triggs ground

plane constraint (non-linear) respectively. These same results are summarised in ta-

ble 5.8. The same segments (position of start and end points) used to find the errors

for the variable frame-rate have were also used to find the errors for the fixed frame-

rate in an attempt to prevent any potential bias in the results. The results have been

accumulated for the same 20 trials used to find the results in figures 5.9 and 5.13.

Overall, the results indicate that when using the Euclidean ground plane constraint,

for each cost function the accuracy of the visual odometry estimate found using the

fixed-frame rate are more accurate than those found using the variable frame-rate. The

relative accuracy of the estimates for the fixed and variable frames rate are much more

similar for the Triggs ground plane constraint, however, overall the accuracy of the
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Figure 5.15: Box plot of the visual odometry errors (Hyperion, Euclidean ground plane

constraint) for the fixed and variable frame-rates. The results are shown only for the

non-linear estimates — the initial linear estimates were obtained using the iterative

weighted DLT with angular threshold θ < 89◦.



5.2. Visual Odometry 313

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

7

8

9

10

11

12

Distance Travelled (metres)

E
rr

o
r 

(m
e
tr

e
s
)

 

 

Fixed frame−rate

Variable frame−rate

Figure 5.16: Box plot of the visual odometry errors (Hyperion, Triggs ground plane

constraint) for the fixed and variable frame-rates. The results are shown only for the

non-linear estimates — the initial linear estimates were obtained using the iterative

weighted DLT with angular threshold θ < 89◦.

estimate found using the fixed frame-rate is marginally better than that found using

the variable frame-rate, especially as the length of the segment (distance travelled)

increases.

The variable frame-rate algorithm increases the change in pose between the frames

used to compute the camera egomotion, and this has the advantage of improving the

signal to noise ratio in the change in keypoint positions in the image. However, fewer

correspondences are used to compute the egomotion using the fixed frame-rate. The

accuracy of the egomotion estimates may therefore be more sensitive to outliers, and

may explain why the accuracy of the visual odometry estimates using the fixed frame-

rate are better than those using the variable frame-rate. However, there may be advan-

tages using the variable frame-rate for the case of generalised visual odometry which

makes no assumptions regarding the camera motion or the position of the scene points

(i.e.. being coplanar). This will be investigated in section 5.2.9.

5.2.9 Generalised (Unconstrained) Visual Odometry

If no information regarding the position of the world points associated with keypoint

correspondences is known, for example being coplanar, then a generalised means for

estimating visual odometry needs to be used. The term generalised is defined to mean

that no assumptions/constraints are made regarding the position of the world points
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Figure 5.17: The epipolar geometry between two cameras centred at points C and C′.

(except that they remain stationary between views). Although constraints can be placed

on the camera motion, the experiments in this section assume that the camera can

undergo full six degree of freedom motion.

5.2.9.1 Epipolar Geometry and the Essential Matrix

Referring to figure 5.17, let x and x′ be a pair of corresponding keypoints, associated

with the world point X, detected in different perspective images captured by two cam-

eras centred at C and C′. The relationship between the homogeneous coordinates of

the keypoints x = (x,y,1)T and x′ = (x′,y′,1)T is defined by the epipolar geometry

between the views.

For a monocular camera, the position of the world point X on the line passing

through C and x can not be derived from the coordinate of the point x. However,

X must be in front of the camera. If the camera moves to a new position C′ under

the action of some rotation R and translation t, the line connecting the two camera

centres intersects the image planes of camera 1 and 2 at the epipolar points e and e′

respectively. The points C,C′ and x define a unique plane π — the epipolar plane for

the point x. Since the depth of the point X is unknown, it could lie anywhere on the

line l′ in image 2. The line l′ is the epipolar line for the point x, and is defined as the

intersection of the epipolar plane and the image plane of camera 2. It may be said

then that under any generalised motion of the camera, any point x in image 1 maps

to its epipolar line l′ in image 2: x 7→ l′. Conversely, a point x′ in image 2 maps the

the epipolar line l in image 1: x′ 7→ l. Given a set of corresponding keypoints in two

images, the epipolar lines l′ for all keypoints x in image 1 will intersect at the epipolar

point e′, and the epipolar lines l for all keypoints x′ in image 2 will intersect at the
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epipolar point e. Notice that the positions of the epipolar points e,e′ in images 1 and 2

define the direction of the camera translation from viewpoint 1 to 2 and viewpoint 2 to

1 respectively.

As detailed in [95], using the principal of point transfer via a plane, the points x

and x′ are projectively equivalent and related by a 2D homography HΠ:

x′i = HΠ xi, ∀ xi,x
′
i, (5.42)

where xi and x′i are a corresponding pair of keypoints in the set of all corresponding

keypoints between the images.

Referring to figure 5.17, the epipolar line l′ is be defined as the vector cross product

l′ = e′ × x′ = [e′]×x′. Here, the notation used in [95] is used where for any vector

A = (a1,a2,a3)
T ,

[A]× =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 . (5.43)

Substituting equation 5.11 into the relationship l′ = [e′]×x′ gives

l′ = [e′]×HΠx, (5.44)

l′ = F x, (5.45)

where F is the 3× 3 fundamental matrix. The fundamental matrix also describes the

relationship l = F−1x′ and relates points x and x′ by [95]:

x′i
T

F xi = 0, ∀ xi,x
′
i (5.46)

assuming only that the position of world points Xi remain fixed between views. Again,

xi and x′i are a corresponding pair of keypoints in the set of all corresponding keypoints

between the images.

If the calibrated coordinates of the keypoints are known, for example the spherical

coordinates η and η′, then the condition in equation 5.46 can be written as

η′
i
T

Eηi = 0, ∀ ηi,η
′
i, (5.47)

where E is the essential matrix1. Equation 5.48 can also be written using the homoge-

1If x̌ = nη, where n is some scalar and η is the coordinate of the point x on the unit sphere, then

for a perspective camera there is some matrix K1 for which K1x̌ = x. Additionally, there is some matrix
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neous coordinates x̌ = mη and x̌′ = nη′, where m and n are any non-zero scalar values,

as

x̌′i
T E x̌i = 0, ∀ x̌i, x̌

′
i. (5.48)

Assuming that the first camera matrix is P1 = [I3×3|0], where x̌ = PX, then for

a change in rotation R and translation t between views, the second camera matrix is

P2 = [R|t], where x̌′ = P2 X. This rotation R and translation t are the same as those

defined previously in equation 5.1 (pg. 268). The essential matrix E is a function of

this rotation R and translation t (up to an unknown scale ambiguity) [95]:

E = [t]×R. (5.49)

If camera 1 is positioned at the origin of the world coordinate frame, then C =(0,0,0)T .

The position C′ of the second camera is C′ = −RT t.

As previously discussed in section 5.2.1, the five-point algorithm of Nistér [180]

and RANSAC [70] are used to find the essential matrix between views given a set of

calibrated keypoint correspondences η ↔ η′. The details of this process are given in

the same section. The rotation R and translation t are recovered from the essential

matrix up to a four-fold ambiguity using the method described in [95] — there are two

possible solution each for the rotation R and unit baseline translation t. Only a unit

baseline translation can be found as the true magnitude of the translation can not be

found without knowing the coordinates of the world points. To resolve this four-fold

ambiguity, the scene reconstruction algorithm described in the same text [95] is used.

The correct solution is the one which finds, for a corresponding pair of keypoints in

the upper hemisphere of the view sphere (i.e. in front of the camera), a reconstructed

world point in front of both cameras. Once the ambiguity is resolved, the position of

the world points X are found for a unit baseline translation [95]. The initial estimate of

the camera egomotion obtained from the essential matrix can be considered as a linear

estimate.

5.2.9.2 Linear estimates: fixed versus variable frame-rate

Before outlining in detail the full visual odometry algorithm, the visual odometry esti-

mates for the Hyperion sequence with the fixed and variable frame-rates will be com-

pared using the linear estimate of the camera egomotion derived from the essential

K2 where K2x̌′ = x′. Equation 5.46 can then be rewritten as x̌′KT
2 FK1x̌ = 0. The essential matrix E is

related to the fundamental matrix F by E = KT
2 FK1.
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matrix E. Importantly, no threshold on the effective field of view of the camera is re-

quired as keypoints are not constrained to be coplanar. For simplicity, to resolve the

correct magnitude of the translation t, the GPS ground truth data is used as a virtual

encoder. Since GPS has limited accuracy, the estimate of the magnitude of the trans-

lation obtained from the GPS measurements would likely be less accurate than that

obtained by a traditional wheel encoder.

Results

For each of the fixed and variable frame-rates, the visual odometry estimates for two

separate trials are shown in figures 5.18 and 5.19 respectively.

Discussion

From simple inspection of the results, it is evident that visual odometry estimates us-

ing the variable frame-rate are superior to those using the fixed frame-rate. Although

there is the potential to improve the egomotion estimates using a non-linear optimi-

sation, which will be discussed in section 5.2.9.3, the inability to find a good initial

estimate of the camera egomotion using the fixed frame-rate means that the optimi-

sation could converge on local minima. Since the results for the variable frame-rate

are superior to those for the fixed frame-rate, for the remaining experiments only the

variable frame-rate data will be used.

Before proceeding, it is important to recall that accurate visual odometry estimates

were able to be found using the Euclidean and Triggs ground plane constraints for the

fixed frame-rate. This highlights the advantage of enforcing a ground plane constraint

when valid (or approximately valid in the case of the Hyperion sequence).

5.2.9.3 Visual Odometry Algorithm

The method for obtaining a generalised monocular visual odometry estimate is out-

lined here. The individual steps relating to iterative refinement and resolving the scale

ambiguity in the magnitude of the translation will be discussed later. The steps in the

method are:

1. Given a set of keypoint correspondences η ↔ η′ between frame, obtain an esti-

mate of the essential matrix using Nistér’s five-point algorithm [180] and RANSAC [70].

2. Find the estimate of the second camera matrix P2 = [R|t] from the essential ma-

trix, where ||t|| = 1 – the first camera matrix is P1 = [I3×3|0]. This requires
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Figure 5.18: Visual odometry estimates versus GPS ground truth for the fixed frame-

rate. The egomotion was resolved from the essential matrix using the five-point algo-

rithm and RANSAC. The magnitude of the baseline translation was resolved from the

GPS ground truth values.
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Figure 5.19: Visual odometry estimates versus GPS ground truth for the variable

frame-rate. The egomotion was resolved from the essential matrix using the five-point

algorithm and RANSAC. The magnitude of the baseline translation was resolved from

the GPS ground truth values.
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resolving the four-fold ambiguity in the estimate [95].

3. Resolve the structure of scene points for a unit baseline translation t [95].

4. Optimise the values of the second camera matrix P2 and the positions of the

world points X.

5. If first set of frame to frame correspondences, go to step 1.

6. Find the keypoints which appeared in the previous set of frame to frame cor-

respondences and the Euclidean position of their associated world points in the

current camera frame of reference.

7. Resolve the magnitude of the baseline translation.

8. Rescale the magnitude of the camera matrix translation and world points.

9. Repeat from step 1.

Using this method, the estimate of both the visual odometry any the position of all the

world points are found. If desired, these world points could be used to construct a map

of the environment.

It is interesting to note here that this method differs from the monocular scheme

proposed by Nistér [181]. Using Nistér’s method, the camera egomotion is resolved us-

ing only the correspondences for which the position of the reconstructed world points

have been found in previous frames. Using the method outlined above, these points are

used only to resolve the magnitude of the translation. This is flexible in the sense that

another sensor such as wheel odometry could be used to resolve this magnitude. This

method is selected as Nistér’s method essentially discards many of the keypoint corre-

spondences in the image when solving for the camera egomotion, particularly for the

variable frame-rate. Since one of the advantages of wide-angle vision is the increased

field of view, it is of benefit to exploit all possible correspondences throughout the im-

age to resolve the motion. This is similar in some respects to the method of Tardif et

al [218] who also used all keypoint correspondences to obtain an initial estimate for

the camera egomotion, however, they retain only the initial estimate for the rotation

and use the position of the existing world points from previous frames to find both the

direction and magnitude of the camera translation.

Iterative Refinement

The accuracy of the egomotion estimates and the position of the world points are im-

proved using a non-linear iterative refinement. This requires optimising the parameters
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of the second camera matrix P2 and the homogeneous coordinates of the world points

X. Given and initial estimate of the second camera matrix P2 = [R|t] obtained from the

essential matrix, where ||t||= 1, and the position of the world points recovered for this

initial estimate, the optimisation minimises the sum of the squared reprojection errors

ε = ∑
i

d(ui,u(P1 Xi))
2 +d(u′

i,u
′(P2 Xi))

2, (5.50)

where P1 = [I|0]. ui and u′
i are to coordinates of a corresponding pair of keypoints

in the first and second stereographic images. u(P1 Xi) is the coordinate, in the first

stereographic image, of the point P1 Xi mapped to this image. Likewise, u′(P2 Xi)

is the coordinate, in the second stereographic image, of the point P1 Xi mapped to

this image. The positions on the stereographic image plane are used as pSIFT key-

points are detected in the these stereographic images. The variable d(ui,u(P1 Xi)) is

the Euclidean distance between the points ui and u(P1 Xi) measured on the stereo-

graphic image, and d(u′
i,u

′(P2 Xi)) is the Euclidean distance between the points u′
i

and u′(P2 Xi) measured on the stereographic image. The combined reprojection er-

ror d(ui,u(P1 Xi)) + d(u′
i,u

′(P2 Xi)) for each keypoint correspondence is calculated

before implementing the optimisation. Any correspondence with a combined repro-

jection error greater than 4 pixels is removed.

For the purposes of implementing the optimisation, the parameters for the second

camera matrix used are

P2 = [q0,q1,q2,q3, tx, ty, tz]
T , (5.51)

where q = (q0,q1,q2,q3)
T are the quaternion values derived from the second camera

matrix rotation R. Each world point is defined by its homogeneous coordinate Xi =

[xwi
,ywi

,zwi
,wwi

]T , and optimisation takes place over all the variables

v = [q0,q1,q2,q3, tx, ty, tz,xwi
,ywi

,zwi
,wwi

]T , i ∈ {1,2, . . . ,n} (5.52)

where n is the number of keypoint correspondences. A Matlab implementation of

Levenberg-Marquardt is used for the optimisation in the following experiments.

Resolving the scale ambiguity (magnitude of baseline translation)

For monocular cameras, there is no means for resolving the magnitude of the base-

line translation t without knowledge of the scene (or input from other sensors). How-

ever, given the position of the world points found from previous frames, then the scale

can be resolved relative to these. It is possible to then find a visual odometry esti-

mate with a single global scale ambiguity — typically the first frame in the sequence
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has a unit baseline translation, so the magnitude of translation for all other frames are

obtained relative to this.

To resolve the magnitude of the baseline translation, step 7, a subset of correspon-

dences for the current frame are used. These are the correspondences for which the

position of the world points X were resolved in a previous cycle (i.e. from a previ-

ous set of frame to frame correspondences). The coordinates X′ of these world points

are found in the current camera frame of reference, and the distance to each point

l′ = ||X′|| found. After finding the positions X of these same points using the current

set of correspondences and the optimisation method described, the distance to each

of these points l = ||X|| is found. The magnitude of the baseline translation b is then

found by minimising the error

ε = ∑
i

l′i −b li

li l′i
. (5.53)

The denominator applies an inverse distance weighting which is necessary as world

points at a greater distance from the camera will typically have a greater uncertainty

(covariance) in their position than those nearer to the camera.

5.2.9.4 Experiments: Hyperion Sequence

The generalised non-linear visual odometry algorithm described was used to estimate

the visual odometry for the Hyperion sequence using the variable frame-rate method.

Figure 5.20 shows the plot of the estimated path against the GPS ground truth data. For

comparison, a plot of the linear estimate for the same trial has also been included —

the linear estimate was obtained by omitting step (4). The paths have been manually

aligned and a suitable global scale factor selected. The results in the figure show the

x,y translation, x,z translation and both the pitch and roll in the current camera frame

of reference. Note that no z-component for the GPS data was available for comparison.

The results show that the generalised visual odometry estimate obtained using the

variable frame-rate method provides a good estimate of both the camera motion and

relative scale between egomotion estimates. However, the large variations in pitch an-

gle at x ≈ 120m suggests that the accuracy could further be improved by incorporating

some camera motion model and/or means of Kalman filtering for example which has

been used with success by Corke et al [48] over a segment of the same image sequence.

Their method, which used a fixed frame-rate, failed after travelling approximately 25

metres.
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Figure 5.20: Visual odometry results for the Hyperion sequence using no constraints

on the vehicle motion or position of scene points. The pitch and roll angles are in the

camera frame of reference and not the global frame.
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5.2.9.5 Experiments: Fisheye Sequence

The visual odometry estimates for the 4.4 km fisheye sequence were also found using

the generalised non-linear visual odometry algorithm described. The results are shown

in figure 5.21. Unlike the Hyperion data set, the ratio of the distance to world points

associated with each keypoint to the magnitude of the baseline translation was large.

As a result, the ability to maintain an accurate overall scale between the magnitude

of translation for successive egomotion estimates was limited. Therefore, the results

presented in figure 5.21 use a simulated odometer to resolve the magnitude of the inter-

frame translation using difference of GPS positions. This is the same method that was

used to resolve the magnitude of translation for the linear estimates in figures 5.18 and

5.19 and again will be less accurate than real wheel odometry which was not available

since the camera was hand held. Similarly to the Hyperion sequence, no z-component

of the GPS data was available for comparison. The operating environment does contain

variations in elevation, however, these can not be readily obtained.

Although the magnitude of the camera translation could not be reliably obtained

using vision alone, the results still indicate that a suitable estimate for the camera ego-

motion between views (rotation and direction of translation) could be found. The vari-

ations in the paths, particularly in the upper half of the figure, are the results of some

inaccurate estimates of the egomotion near reference frame 400 (i.e. the 400th estimate

of the egomotion). Interestingly, this rotational misalignment appears to correct itself

near reference frame 900 which is a coincidence only.

5.2.10 Conclusions

The pSIFT keypoint detector was used in this section to estimate the visual odometry

of two outdoor wide-angle images sequences. Overall, accurate visual odometry esti-

mates were able to be found using various constraints on the position of world points

and camera motion.

Visual odometry estimates for the Hyperion sequence (downward facing equian-

gular catadioptric camera) were found using the Euclidean and Triggs ground plane

constraints. For both cases, two suitable variations of the standard Direct Linear Trans-

form (DLT) were proposed termed the weighted DLT and iterative weighted DLT. Both

were shown in general to provide more accurate linear estimates of the camera egomo-

tion whose results were far more consistent for different angular thresholds θ on the

camera’s effective field of view. Suitable non-linear methods used to improve the accu-
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Figure 5.21: Visual odometry results for the Fisheye sequence using no constraints on

the vehicle motion or position of scene points. The pitch and roll angles are in the

camera frame of reference and not the global frame. The GPS ground truth results

have been used as a virtual encoder to resolve the scale ambiguity in the magnitude of

translation. The annotations on the figure are reference frame numbers — a reference

number of 100 for example is the 100th iteration (egomotion estimate) of the variable

frame-rate method.
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racy of these estimates were then considered which minimise different cost functions.

For the Euclidean ground plane constraint, the transfer and geometric cost functions

were used, and both were found to give comparable performance for the fixed and

variable frame-rates. In regards to the relative accuracy of the visual odometry es-

timates obtained using the Euclidean and Triggs ground plane constraints, improved

accuracy was found using Triggs as it relaxes the, unreasonable, assumption that the

camera’s principal axis is always orthogonal to the ground plane. Although no advan-

tage was observed using the variable frame-rate over the fixed frame-rate with respect

to the accuracy of the visual odometry estimates, both were able to find reasonably

accurate accurate estimates, particularly using the Triggs ground plane constraint. The

accuracy could potentially be further improved using the visual compass algorithm of

Scaramuzza and Siegwart [200]. Their algorithm converts the wide-angle images used

to estimate the camera egomotion to cylindrical panoramic images and then attempts

to refine the orientation estimate by aligning these images in the space of appearance.

A generalised visual odometry algorithm was presented which made no assump-

tions regarding the camera motion or the position of the scene points. For the Hyperion

sequence, the advantages of using the variable versus fixed frame-rate were illustrated

using a linear estimate for the camera egomotion. For this same sequence, the monoc-

ular visual odometry algorithm was able to provide an accurate estimate for the camera

motion where an accurate relative scale between the magnitudes of the successive esti-

mates of the camera translations were maintained. For the fisheye sequence, although

a reliable scale factor between the magnitude of translation estimates could not be re-

tained, the visual odometry algorithm was in most instances able to find a suitable

estimate of the camera motion. There were some deviations in the path as a results of

integration some inaccurate estimates for the rotation, however, considering the length

of the path was in excess of 4.4km the results are promising. To reliably resolve the

magnitude of the camera translation between frames, aspects of the visual odometry

algorithm of Tardif et al [218] or fusion of vision with inertial measurements or wheel

odometry could potentially be used.

5.3 Visual place recognition

In this section the potential application of pSIFT to visual place recognition is demon-

strated using the fisheye image sequence. As previously discussed, wide-angle cameras

are suited for visual place recognition in large scale outdoor environments as they can

obtain an image of the same scene from very different viewpoints. The “Video Google”
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system of Sivic and Zisserman [210] is used to compare the similarity of images taken

over the fisheye image sequence. This similarity between images can be used as an ini-

tial guide for loop closure detection, that is, recognising that the camera has returned

to a previously visited place. The ability to detect previously visited locations is a key

part of visual SLAM systems and is used to correct for drift in the estimate of camera

location.

The Video Google system uses a visual ‘bag of words’ method to compare the

similarity of two images, and has been used as the basis of image retrieval [49] al-

gorithms and loop closure detection [99, 69] algorithms. The system is inspired by

text retrieval methods. The visual words represent the visual vocabulary of keypoint

descriptors, where each keypoint detected in an image is assigned to a visual word

based on its descriptor values. Each image is then described by a visual word vector

Vd , which is a weighted occurrence histogram of the visual words in the image. This

cosine angle between the visual word vectors of any two images is used to measure

their similarity. Importantly, the Video Google system is an appearance based method

used to assess similarity between images, which means that the similarity is dependent

solely on the keypoints detected in the images. A review of alternate methods used

for loop closure detection and experimental comparisons can be found in [238]. Al-

though higher level appearance based methods have since been developed, including

a series of seminal works by Cummins et al [50, 51, 52], the Video Google system is

well suited for demonstrating the ability of pSIFT to detect and describe accurately the

same keypoints in different wide-angle images taken at very different viewpoints.

5.3.1 Establishing the visual-words

The visual vocabulary was learned offline using a separate fisheye image sequence

operating in the same environment. pSIFT keypoints were detected in all the images,

and their descriptors were used to find a visual vocabulary of 10,000 words using

k-means clustering. The seed points (means) were initialised by randomly selecting

10,000 descriptors for the set of all keypoints. The distance between a descriptor and

a mean was measured using Euclidean distance during clustering.

5.3.2 Word reliability

The Video Google systems tracks keypoints across multiple frames to determine stable

keypoints, and the visual word vector for each image is constructed using only these
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stable keypoints. Using this method improves the ability of the algorithm to correctly

identify similar images. The problem with applying this to outdoor image sequence is

that the ability to track keypoints is dependent on many factors, such as the change in

camera pose between images. It is proposed that a word reliability metric can be used

to achieve a similar result without the need to track keypoints across multiple frames,

where this word reliability is learned offline.

A visual word is considered reliable if it satisfies two conditions. Firstly, it de-

scribes some salient region in the image. In this context salient is defined to mean any

non-repeatable region or pattern in the image. Secondly, it is able to describe the same

region in the environment robustly with respect to small projective transformations or

viewpoint change. To determine word reliability, the same training sequence used to

build the visual vocabulary is used. pSIFT keypoints are detected in each image, and

each keypoint is assigned to a visual word. For successive images in the sequence, the

pSIFT keypoint correspondences are found using the ambiguity metric for matching.

Correct correspondences are then found using RANSAC and the five-point algorithm,

as described in section 5.2.1. If two corresponding keypoints have been assigned the

same visual word, the a correct match of the word has been. This word then satisfies

the two constraints.

Let din be the number of times word i has been found in image n and min,n+1
be the

number of correct matches of word i between images n and n + 1. Then for a total of

N > 2 training images the following parameters are found:

Ndi
=

di1

2
+

N−1

∑
n=2

din +
diN

2
, (5.54)

Nmi
=

N−1

∑
n=1

min,n+1
, (5.55)

from which the reliability Ri of the word i is evaluated as

Ri =
Nmi

Ndi
, 0 ≤ Ri ≤ 1. (5.56)

5.3.3 Visual Word Vector

Each image is represented by a visual word vector Vd whose length is equal to the

number of words k in the vocabulary. Using the same definition as used in [210], for a
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database of N images each element in the vector Vd for a given image is

Vdi
= (nid/nd) log10(N/ni), i ∈ {1,2, . . . ,k}. (5.57)

Here, (nid/nd) is the term frequency tf which is the ratio of the frequency of word

i in the current document nid to the total number of words in the document nd . The

weighting log10(N/ni) is the inverse document frequency idf, where ni is number of

images in the database (image sequence) which contain the word i. The purpose of the

inverse document frequency is to reduce the weighting of visual words which appear

in many images. The word reliability metric is then applied to find a modified visual

word vector V ′
di

:

V ′
di

= R2
i (nid/nd) log10(N/ni), i ∈ {1,2, . . . ,k}. (5.58)

A squared reliability metric was selected based on empirical observations. The ele-

ments of V and V ′ corresponding to the top 5% and bottom 10% of the most recurring

visual words in the image sequence are considered as being stop words [210] and are

remove. The elements of V ′ corresponding to the 10% of the of the visual words with

the lowest reliability are also removed.

As an example, figure 5.22 illustrates three visual words from the fisheye training

set. The inverse document frequency and reliability values are shown in the captions

for each. Note that the inverse document frequency values have been normalised such

that the maximum range is from zero to one. Notice that although the inverse document

frequency for the first two words is higher than the third, their reliability scores are far

smaller. That is, these first two words were found through training to be unreliable

when attempting to match across images.

5.3.4 Image Similarity

For each image in the fisheye sequence, the pSIFT keypoints were detected. Each

keypoint was then assigned to a visual word using its descriptor and the visual vo-

cabulary, where the Euclidean distance between the descriptor is used to measure the

distance between the descriptor and each word in the vocabulary. Although not used,

an efficient vocabulary tree algorithm designed for this purpose has been developed by

Nistér and Stewénius [183]. The visual word vectors Vd and V ′
d for each image were

then computed. Two similarity matrices for the fisheye sequence were then found by

measuring the similarity between all possible image pairs in the sequence using the
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(a) idf = 0.689379, reliability

= 0.018868

(b) idf = 0.584299, reliability

= 0.015385

(c) idf = 0.498923, reliability

= 0.771429

Figure 5.22: Example visual words in the vocabulary and their associated inverse doc-

ument frequency (idf) and word reliability values. Note that the inverse document

frequency values have been normalised to be in the range 0 to 1.

visual word vectors Vd and V ′
d . This similarity is measured as the cosine angle between

the visual word vectors.

5.3.5 Results and Discussion

The similarity matrices for the fisheye sequence in figure 5.1 found using the visual

word vectors Vd and V ′
d are given in figure .

The result of thresholding the similarity score for the similarity matrix found using

V ′ is shown in figure 5.24. The dark off diagonal blobs indicate potential loop closure

events, and the lines in figure 5.25a indicate these potential loop closure events on the

map of the operating environment. Although this result alone would not be used as the

only basis for deciding if the loop should be closed, it illustrates the ability of pSIFT to

detect and describe the same keypoints in wide-angle images subject to large changes

in camera pose. Figure 5.25b illustrates on the the image pairs corresponding to a

potential loop closure detection with a similarity score of 0.79. The lines in figure 5.25c

show the visual word correspondences in this image pair. To illustrate the advantages

of wide-angle vision for loop closure detection, the images in Fig.5.25b illustrate by

the dashed line the equivalent view that a perspective camera with a horizontal angle

of view of 60◦ would obtain.
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(a) Results for word vectors V without relia-

bility weighting.
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(b) Results for word vectors V ′ with the relia-

bility weighting.

Figure 5.23: Similarity matrices for the fisheye sequence using visual word vectors

with and without the reliability weighting.
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Figure 5.24: Thresholding of the cosine similarity score using the visual word vectors

V ′ for a value of 0.6.
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(a) Positions of loop closure detection.

(b) Query image (top) and retrieved

image (bottom) (Cosine similarity =

0.79).

(c) Visual word correspondences

Figure 5.25: The location of the potential visual loop closure events. The lines indicate

the matching images on the map. For the potential loop closure events in the upper

right region of (a), an example pair of images is shown in (b) where the visual word

correspondences are shown in (c). Note that (b) includes an overlay of the equivalent

view that a typical perspective camera with a horizontal angle of view of 60◦ would

obtain.
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5.4 Conclusions

The new pSIFT keypoint detector was applied to common vision-based localisation

tasks in this chapter including visual odometry and visual place recognition. Various

constraints were used to estimate the visual odometry for two wide-angle images se-

quences, and the effect of frame-rate selection on the accuracy of these estimates were

compared. A fixed frame-rate was used with estimates camera egomotion between

successive frames in the sequences, and variable frame-rate was used which automat-

ically selects the frames used based on a minimum number of keypoints that can be

tracked between the frames. The algorithm used for the variable frame-rate method

was based on that of Mouragnon et al [170]. Visual place recognition results were also

found using a fisheye image sequence which included loop closure events.

Visual odometry estimates were first found for the Hyperion sequence using a

ground plane constraint, which means the world points associated with all pSIFT key-

point correspondences were assumed to be coplanar. A Euclidean ground plane con-

straint was first used where the camera’s principal axis was assumed to be orthogonal

to the ground plane. The visual odometry estimates were then found using the Triggs

ground plane constraint which relaxes this constraint regarding the precise alignment

of the camera’s principal axis with respect to the ground plane. It was observed that

the standard Direct Linear Transform (DLT) used to estimate the camera egomotion

for each of these constraints was sensitive to the effective field of view of the camera.

Two modified versions of the standard DLT were formulated, and they vary from the

standard DLT in their choice of keypoint coordinates used. The coordinates used are

the weighted spherical coordinates of keypoint correspondences, where this weight-

ing is a function of the uncertainty of keypoint positions on the sphere relative to the

uncertainty in their positions found during detection. Both were shown to be far less

sensitive to the effective camera field of view than the standard DLT and were able

to find accurate linear estimates of camera egomotion. Two cost function were then

used to optimise the initial linear estimate based on the transfer error and geometric

error. Both were shown to produce similar results and improve the accuracy of the

visual odometry estimates, in particular the Triggs ground plane constraint. The rel-

ative accuracy of the visual odometry estimates found for each of the Euclidean and

Triggs ground plane constraints were found to be similar using a fixed frame-rate and

a variable frame-rate.

The visual odometry estimates were then found for the Hyperion and fisheye im-

age sequences using a generalised algorithm which made no assumptions regarding the
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position of scene points or camera motion. The ability to find an accurate visual odom-

etry estimate using a fixed frame-rate and a variable frame-rate were compared for the

Hyperion sequence, and the results indicated that the variable frame-rate method was

superior. This results gives strong evidence to show that for a generalised visual odom-

etry algorithm, that accuracy of the egomotion estimate between frames improves as

the change in pose between frames increases. The ability of pSIFT to detect and cor-

rectly match keypoints between successive images in the sequence enabled this change

in pose between the automatically selected frames using the variable frame-rate algo-

rithm to be large. For the Hyperion sequence, the generalised visual odometry algo-

rithm was able to find an accurate estimate of the true vehicle path using the variable

frame-rate, and was able to reliably resolve the magnitude of the camera translation

using only vision. The results for the fisheye sequence using the variable frame-rate

again showed reasonably accurate results, especially considering that the length of the

transit exceeded 4 kilometres. However, the ability to reliably resolve the magnitude of

the camera translation between frames for this sequence was limited. The GPS ground

truth data was therefore used as a virtual encoder for this purpose. However, the esti-

mate of the camera rotation and direction of translation between frames was accurately

estimated using only vision.

Finally, visual place recognition results were presented for the fisheye sequence

using the “Video Google” system proposed by Sivic and Zisserman in [210] with the

addition of a word reliability metric. This system is an appearance only method which

finds the similarity between any two images using only the keypoints detected in the

images. The results found indicated that correct loop closure events could be identified,

that is, previously visited places in the transit could be recognised. This results showed

that the pSIFT keypoint detector was able to detect, and reliably describe, the same

keypoints in different wide-angle images separated by a large change in pose.
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Conclusions

As discussed in the introduction in chapter 1, the large field of view of wide-angle

cameras makes them ideal for vision based localisation tasks. However, these tasks

typically require keypoints to be detected and matched between images separated by a

large change in camera pose, that is, keypoints must be detected and matched across

wide-baselines. Most existing methods used for this purpose have been designed for

narrow field of view perspective cameras.

This principal question addressed in this thesis is:

‘Can a method of wide-baseline keypoint detection and matching be found suited for

use with any wide-angle camera for vision-based localisation, including visual

odometry and visual place recognition?’

In answering this question, a comprehensive review of wide-angle image forma-

tion was presented. The important outcome of this review is that most wide-angle

cameras can be modelled as central projection, and this means that the distorted im-

ages they produce can be back projected to effectively undistorted functions on the

sphere. As discussed by Daniilidis et al [56], image processing algorithms formulated

as operations on the sphere are ideal for central projection wide-angle images as they

are invariant to the radial distortion in the image. This work by Daniilidis et al was one

of the inspirations for the work in this thesis.

Before attempting to develop a method of wide-baseline keypoint detection and

matching for wide-angle images, a review of the state of the art was conducted. It was

found that to successfully detect and match keypoints across wide-baselines, it was

necessary to detect and describe keypoints in a way that was invariant to projective

changes between the images. Scale-invariant keypoint detecting algorithms were found

335
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to be ideally suited for this, especially those based on the scale-space framework. The

Scale Invariant Feature Transform (SIFT) was identified as one of the best performing

keypoint detectors through a review of comparative works. However, the limitation

of applying SIFT directly to wide-angle images is the inability to account for image

distortion. It was proposed that SIFT could be reformulated as an image processing

algorithm on the sphere.

Two variants of SIFT were developed, termed spherical SIFT (sSIFT) and parabolic

SIFT (pSIFT), that were suited for wide-angle cameras. The methods of keypoint de-

tection and description used by SIFT were reformulated as operations on the sphere.

Both used the solution of the heat diffusion equation on the sphere solved by Bülow [31]

to find the scale-space representations of a wide-angle image. The solution is the con-

volution of the image mapped to the sphere with the spherical Gaussian. sSIFT and

pSIFT differ in the method they used to implement this convolution: sSIFT in the

spherical Fourier domain, and pSIFT as an approximate operation on the stereographic

image plane. The abilities of sSIFT and pSIFT to reliably detect, describe and match

keypoints between image pairs separated by a large change in pose were compared to

that of SIFT (operating directly on wide-angle images and rectified perspective images)

through extensive and systematic experiments. Overall, pSIFT was found to perform

consistently well and better than SIFT.

To answer the research question, pSIFT was applied to vision-based localisation

tasks. Accurate visual odometry estimates were able to be found for real outdoor

wide-angle image sequences using various constraints on the position of world points

and camera motion. Visual place recognition results were also presented, and pSIFT

was shown to be able to reliably recognise previously visited locations. Visual odom-

etry and place recognition are fundamental primitives in many vision-base localisation

frameworks.

In conclusion, a method of keypoint detection and description was able to be devel-

oped that is suited for wide-baseline keypoint detection and matching with wide-angle

images. It was able to perform better than its equivalent algorithm designed for per-

spective images (SIFT) in systematic experiments, and was shown to be suited for

vision-based localisation tasks such as visual odometry and visual place recognition.



6.1. Answers to questions posed 337

6.1 Answers to questions posed

In answering the principal question, a number of additional questions were posed in

chapter 1. The thesis was structured on these research questions, and they are ad-

dressed here:

1. What types of wide-angle cameras exist, what are the methods of modelling the

distortion in the image, and how can they be calibrated to resolve the camera’s

intrinsic parameters?

A review of wide-angle cameras having a field of view near or in excess of a

full hemisphere was presented in chapter 2, and they include catadioptric and

fisheye cameras. A review of the parametric camera models used to describe

image formation with catadioptric and fisheye cameras was also presented in

the same chapter along with the methods used to calibrate wide-angle cameras.

Catadioptric cameras use a camera and reflective surface to obtain a wide-field

of view image, and they are typically designed to follow some predefined model

of image formation. On the other hand, fisheye camera models are typically

selected empirically — a review of the common fisheye camera models was

presented. Auto-calibration, full-range, and plumb line calibration algorithms

can all be used to find the camera intrinsic parameters. In most cases, wide-

angle cameras are considered to have a single effective viewpoint, which means

the that images they produce can be mapped to the unit view sphere centred at

the single effective viewpoint of the camera. This images can also be converted

to geometrically correct perspective images.

2. What existing methods of wide-baseline keypoint detection are suitable for vision-

based localisation?

This question was addressed in chapter 3. Scale-invariant, and scale and affine

invariant keypoint detectors are used for wide-baseline keypoint detection and

matching. They can detect and describe the same keypoints in two different

images in a manner invariant to scale change between the images and small

projective deformations. The scale-invariant keypoint detectors are most fre-

quently used for vision based localisation. The Scale Invariant Feature Trans-

form (SIFT) [142] is the most frequently used of the keypoint detectors for vi-

sion based localisation applications, although more recently the Speeded-Up Ro-

bust Features algorithm [17] has gained popularity due to its increase speed over

SIFT.

3. What are the limitations of applying these existing methods to wide-angle images
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and how, if possible, can they be adapted to suit wide-angle images?

Towards the end of chapter 3, the limitations of applying existing algorithms

such as SIFT directly to wide-angle images was identified as their inability to ac-

count for the radial distortion in the image. One could always convert the wide-

angle image to a perspective image before applying these algorithms, however,

this conversion introduces sever interpolation artifacts. Perspective projection is

also unable to produce an image with a field of view in excess of a full hemi-

sphere. Another alternate that is frequently used is to convert a wide-angle image

to a log-polar or cylindrical panoramic image and apply existing algorithms de-

signed for use with perspective images to these. However, these log-polar and

cylindrical panoramic images are not perspective, so applying algorithms de-

signed for use with perspective images to these is not ideal.

4. Can an alternative to existing wide-baseline keypoint detection and matching al-

gorithms be developed which is more suitable for use with wide-angle images?

The sSIFT and pSIFT keypoint detectors were developed in chapter 4. They

are each variants of SIFT designed for wide-angle cameras, and they are able to

detect and describe keypoints in a way that is invariant to wide-angle image dis-

tortion. The ability of sSIFT and pSIFT to match keypoints in images separated

by large change in camera pose (wide-baseline separation) was compared to that

of SIFT operating directly on wide-angle and rectified perspective views in ex-

periments. Overall, pSIFT was found in the experiments conducted to be the

best solution for wide-baseline keypoint detection and matching in wide-angle

images.

5. Assuming a suitable alternative can be found, can it be used to obtain accurate

visual odometry estimates for a mobile robot, and if so, what are the effects of

increasing the change in pose between views with respect to accuracy?

Chapter 5 presented visual odometry results using the new pSIFT keypoint de-

tector with two wide-angle images sequences. Using various constraints on the

position of world points and camera motion, accurate visual odometry estimate

were found for each image sequence. A variable frame-rate algorithm based on

that of Mouragnon et al [170] was used to automatically select the frames used

to compute camera egomotion. The relative accuracy of these estimate were

compared to those using a fixed frame-rate. When constraints were place of the

position of the world points (ground plane constraint), there was found to be

only minor variations in the results. For generalised visual odometry where no

assumptions/constraints are made regarding the position of the world points or
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camera motion, the variable frame-rate method was found to be superior to the

fixed frame-rate method. This result highlighted the importance of increasing

the change in pose between the frames used to compute the camera egomotion,

and why wide-baseline keypoint detection and matching algorithms are used in

many vision odometry systems.

6. Assuming again that a suitable alternative can be found, can it be used to obtain

robust visual place recognition using wide-angle cameras?

Visual place recognition results were presented for an outdoor fisheye image se-

quence in chapter 5 using pSIFT. The place recognition algorithm used was the

appearance based “Video Google” system of Sivic and Zisserman [210] with

the addition of a novel word reliability metric. The results indicated that poten-

tial place recognition (loop-closure) events could correctly be identified. This

showed that pSIFT was able to correctly detect and describe the same keypoints

in different wide-angle images taken at very different viewpoints.

6.2 Contributions of the Thesis

The contributions of the thesis are summarised as:

• A review of the advantages of using wide-angle cameras for visual odometry

and visual place recognition was presented. Wide-angle cameras are able to find

more accurate estimates of camera egomotion when compared to narrow field of

view cameras, and they are able to capture images of the same scene separated

by a large change in camera pose.

• A review of image formation with wide-angle cameras and camera calibration

was given, including a detailed review of the camera models used to describe

image formation.

• The development of a modified ‘plumb line’ calibration algorithm suited for

central projection wide-angle cameras was developed. The algorithm can be

used to calibrate for a camera’s intrinsic parameters using any model of image

formation. A robust grid point detection algorithm was also developed which

operates in parallel with calibration.

• Review of the state of the art in keypoint detection and description, and their

applications to wide-baseline matching. Scale-invariant keypoint detection and
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description algorithms such as SIFT were identified as being suited for this ap-

plication to wide-baseline matching. However, most of these methods are de-

signed for used with perspective cameras, and the limitations of applying them

directly to wide-angle images was identified as their inability to account for cam-

era distortion. The limitation of applying them to either rectified perspective or

(log-polar or cylindrical) panoramic images was also identified. This limitation

is the severe interpolation artifacts that are introduced during these conversions.

Furthermore, panoramic images are not perspective, so applying algorithms de-

signed for perspective images to them is not ideal.

• Development of sSIFT and pSIFT, two methods of scale-invariant keypoint de-

tection suited for wide-angle cameras that can be used for wide-baseline key-

point detection and matching with wide-angle images. Both are variants of SIFT

that are reformulated as image processing algorithms on the sphere. Both define

scale-space for wide-angle images as the convolution of the image mapped to

the sphere with the spherical Gaussian. The methods of keypoint detection and

description used by sSIFT and pSIFT are invariant to the radial distortion in the

image.

• A method to estimate the bandwidth of a wide-angle image from the camera

intrinsic parameters was introduced. This estimate is used to find the minimum

sample rate used by sSIFT to convolve the image with the spherical Gaussian

in the spherical Fourier domain. An anti-aliasing interpolation filter was also

designed that can be used to minimise aliasing when the required sample rate

exceeds the maximum computationally feasible value.

• An approximation spherical diffusion operation used to find the scale-space rep-

resentations of wide-angle images. This approximate diffusion operation is im-

plemented as an efficient convolution operation on the stereographic image plane.

Although the scale-space images found using this approximation have a non-

uniform scale, they were used successfully by pSIFT for scale-invariant keypoint

detection in wide-angle images.

• Two coordinate weighting schemes (one iterative) were formulated for egomo-

tion estimation with pSIFT keypoints and the Direct Linear Transform (DLT) us-

ing a ground plane constraint. They were compared to the ’standard’ coordinate

selections used for egomotion estimation using the DLT, for example normalised

homogeneous coordinates. They were found to find egomotion estimates with

either comparable or better accuracy and whose estimates were less influenced

by the effective field of view of the camera.
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• An investigation of the effect of frame-rate selection on the accuracy of visual

odometry was conducted through experiments. For generalised visual odometry,

a variable frame-rate method, which attempts to increase the change in pose be-

tween frames used to compute camera egomotion, was found to produce superior

results to those found using a fixed frame-rate.

• A word reliability metric was developed and incorporated into the appearance

based “Video Google” system used for visual place recognition. Experimental

results were presented using pSIFT and this algorithm with an outdoor fisheye

image sequence. The results showed that potential loop closure events could be

correctly identified.

6.3 Further directions

There were a number of further directions of research that were not explored in the

thesis due to time constraints, and they include:

• The keypoint detectors developed in the thesis reformulated SIFT as an image

processing algorithm on the sphere making them suited for wide-angle cameras.

It would be of interest to reformulate other existing methods designed for use

with perspective images, such as MSER and SURF, as image processing algo-

rithms on the sphere. The relative performance of these algorithms tailored for

use with wide-angle cameras could then be compared.

• pSIFT exploits the conformal nature of stereographic projection to approximate

spherical diffusion efficiently on the stereographic image plane. A range of con-

formal mappings other than stereographic projection warrants further investiga-

tion, where each could be used to map a wide-angle image to a ‘conformal image

plane’. This investigation would compare the relative advantages and disadvan-

tages of each with respect to approximating spherical diffusion as a convolution

operation on these conformal image planes.

• Re-evaluate the sSIFT keypoint detector with different hardware. In all the ex-

periments conducted, the required sample rate for each wide-angle camera ex-

ceeded the maximum computationally feasible value. It would be of interest to

re-evaluate sSIFT using harwdare capable of using a sample rate greater than

that used in the experiments.
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• The sSIFT keypoint detector uses s2kit to find the spherical harmonic functions,

which requires sampling the image values on an equiangular θ,φ grid. Alternate

methods, such as the technique developed by Chung et al in [41], have been

developed for this purpose, and they do not require sampling the image on a θ,φ

grid. These alternate methods should be explored in more detail and potentially

implemented.

• The sSIFT keypoint detector maps the scale-space images on the sphere (sam-

pled on an equiangular θ,φ grid) back to the original wide-angle image plane.

This mapping introduces some form of interpolation artifacts. It may be more

suitable to detect the keypoints in the scale-space images sampled on the θ,φ

grid, thus preventing the introduction of interpolation artifacts.

• The keypoint detection stage of sSIFT and pSIFT map the greyscale intensity

values within a keypoint’s support region to fixed sized patch from which the

descriptor is evaluated — this mapping requires an interpolation of the greyscale

intensity function. Other methods used to evaluate the keypoints descriptors

need to be explored which avoid this need for interpolation and the artifacts it

can produce.

• There has recently been significant advancements in visual SLAM algorithms

that can operate in large scale outdoor environments. It would be of interest to

evaluate the performance of pSIFT in a visual SLAM framework.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.1: Calibration results for image 1. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.2: Calibration results for image 2. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.3: Calibration results for image 3. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.4: Calibration results for image 4. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.5: Calibration results for image 5. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.6: Calibration results for image 6. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.7: Calibration results for image 7. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.8: Calibration results for image 8. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.9: Calibration results for image 9. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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(a) Calibration results depicted on the original image plane (1024 × 768

pixels).

(b) Calibration results depicted on the orthonomal perspective plane

(1024 × 768 pixels).

Figure A.10: Calibration results for image 10. The green crosses show the position of

the grid points found using the grid point detection algorithm. The red lines illustrate

the fitted great circle on the sphere, and the blue line the front-parallel horizon of the

plane containing the planar checkerboard pattern.
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Appendix B

Spherical Harmonic Expansion of the

Spherical Dirac Function

The spherical Dirac function δS2 is defined as

f (n) =
Z

η∈S2
f (η)δS2(θ,φ)dη, f ∈ L2(S2), (B.1)

where θ ∈ [0,π) is an angle of colatitude, φ ∈ [0,2π) is an angle of longitude, n =

(0,0,1)T is the north pole, and dη = sin(θ)dθdφ. Any square integratable function f

on the sphere can be expanded into spherical harmonics as

f = ∑
l∈N

∑
|m|≤l

f̂ m
l Y m

l , f̂ m
l =

Z

S2
f (η)Y m

l (η)dη, (B.2)

where Y m
l denotes the complex conjugate of the spherical harmonic functions Y m

l (θ,φ):

Y m
l (θ,φ) =

√
2l +1

4π

(l −m)!

(l +m)!
Pm

l (cos(θ))eimφ, l ∈ N, |m| ≤ l, (B.3)

where Pm
l are the associated Legendre polynomials

Pm
l (x) =

(−1)m(1− x2)
m
2

2ll!

dl+m

dxl+m
(x2 −1)l. (B.4)

The spectrum δ̂S2 of the spherical Dirac function δS2 is obtained as

(δ̂S2)m
l =

Z

S2
δS2(η)Ȳ m

l (θ,φ)dη. (B.5)
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From the definition of δS2 in equation B.1, equation B.5 becomes

(δ̂S2)m
l = Ȳ m

l (n). (B.6)

There is an apparent singularity in trying to evaluate Ȳ m
l at the north pole as the

spherical harmonic function, Y m
l (θ,φ), is parameterised by spherical coordinates θ,φ

— φ is not defined at the pole. However, as the angle θ = 0 at the north pole, the

associated Legendre polynomials Pm
l (cos(θ)) evaluated for θ = 0 are

Pm
l (cos(θ = 0)) =

{
1 m = 0

0 m 6= 0
(B.7)

It follows then that irrespective of the angle φ,

(δ̂S2)m
l = Ȳ m

l (n) =





√
2l+1

4π m = 0

0 m 6= 0
(B.8)

From equation B.2, the spherical harmonic expansion of δS2 is

δS2(η) = ∑
l∈N

(δ̂S2)m
l Y 0

l (η) (B.9)

= ∑
l∈N

√
2l +1

4π
Y 0

l (η), (B.10)

which is the summation of only the zonal harmonic function Y 0
l as (δ̂S2)m

l = 0 ∀ m 6= 0.



Appendix C

Computation of Discrete First Order

Derivatives and Hessian Matrix for

Keypoint Interpolation

For a keypoint detected at position u = (u,v)T in the difference of Guassian image

DS2(·;kti), the quadratic interpolation scheme proposed by Brown and Lowe [29] is

used to improve the accuracy of a keypoint’s position and scale. The interpolated

position x̂ of the keypoint from the origin x = (u,v,kt)T is

x̂ = −∂2DS2

∂x

−1
∂DS2

∂x
, (C.1)

where
∂D

S2

∂x
is the 3 × 1 vector of first order partial derives computed at the point

DS2(u,v;kti), and
∂2 D

S2

∂x2 is the 3×3 Hessian matrix computed at the point DS2(u,v;kti).

The vector
∂D

S2

∂x
is obtained as

∂DS2

∂x
=




DS2(u,v;kti)u

DS2(u,v;kti)v

DS2(u,v;kti)kt


 (C.2)

=




1
2
{DS2(u+1,v;kti)−DS2(u−1,v;kti)}

1
2
{DS2(u,v+1;kti)−DS2(u,v−1;kti)}
1
2
{DS2(u,v;kti+1)−DS2(u,v;kti−1)}


 . (C.3)
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The Hessian matrix
∂2 D

S2

∂x2 is obtained as

∂2 DS2

∂x2
=




DS2(u,v;kti)uu DS2(u,v;kti)uv DS2(u,v;kti)ukt

DS2(u,v;kti)uv DS2(u,v;kti)vv DS2(u,v;kti)vkt

DS2(u,v;kti)ukt DS2(u,v;kti)vkt DS2(u,v;kti)kt kt


 , (C.4)

where

DS2(u,v;kti)uu = DS2(u+1,v;kti)+DS2(u−1,v;kti)−2DS2(u,v;kti), (C.5)

DS2(u,v;kti)vv = DS2(u,v+1;kti)+DS2(u,v−1;kti)−2DS2(u,v;kti), (C.6)

DS2(u,v;kti)kt kt = DS2(u,v;kti+1)+DS2(u,v;kti−1)−2DS2(u,v;kti), (C.7)

DS2(u,v;kti)uv =
1

4
[(DS2(u+1,v+1;kti)−DS2(u−1,v+1;kti))− (C.8)

(DS2(u+1,v−1;kti)−DS2(u−1,v−1;kti))], (C.9)

DS2(u,v;kti)ukt =
1

4
[(DS2(u+1,v;kti+1)−DS2(u−1,v;kti+1))− (C.10)

(DS2(u+1,v;kti−1)−DS2(u−1,v;kti−1))], (C.11)

DS2(u,v;kti)vkt =
1

4
[(DS2(u,v+1;kti+1)−DS2(u,v−1;kti+1))− (C.12)

(DS2(u,v+1;kti−1)−DS2(u,v−1;kti−1))]. (C.13)
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