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ABSTRACT 

Patterns of connectivity among local populations influence the dynamics of 

regional systems, but most ecological models have concentrated on explaining 

the effect of connectivity on local population structure using dynamic processes 

covering short spatial and temporal scales. In this study, a model was developed 

in an extended spatial system to examine the hypothesis that long term 

connectivity levels among local populations are influenced by the spatial 

distribution of resources and other habitat factors. 

The habitat heterogeneity model was applied to local wild rabbit populations in 

the semi-arid Mitchell region of southern central Queensland (the Eastern 

system). Species' specific population parameters which were appropriate for the 

rabbit in this region were used. The model predicted a wide range of long term 

connectivity levels among sites, ranging from the extreme isolation of some sites 

to relatively high interaction probabilities for others. The validity of model 

assumptions was assessed by regressing model output against independent 

population genetic data, and explained over 80% of the variation in the highly 

structured genetic data set. Furthermore, the model was robust, explaining a 

significant proportion of the variation in the genetic data over a wide range of 

parameters. 

The performance of the habitat heterogeneity model was further assessed by 

simulating the widely reported recent range expansion of the wild rabbit into the 

Mitchell region from the adjacent, panmictic Western rabbit population system. 

The model explained well the independently determined genetic characteristics 

of the Eastern system at different hierarchic levels, from site specific differences 

(for example, fixation of a single allele in the population at one site), to 

differences between population systems (absence of an allele in the Eastern 

system which is present in all Western system sites). The model therefore 

explained the past and long term processes which have led to the formation and 

maintenance of the highly structured Eastern rabbit population system. 
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Most animals exhibit sex biased dispersal which may influence long term 

connectivity levels among local populations, and thus the dynamics of regional 

systems. When appropriate sex specific dispersal characteristics were used, the 

habitat heterogeneity model predicted substantially different interaction patterns 

between female-only and combined male and female dispersal scenarios. In the 

latter case, model output was validated using data from a bi-parentally inherited 

genetic marker. Again, the model explained over 80% of the variation in the 

genetic data. 

The fact that such a large proportion of variability is explained in two genetic 

data sets provides very good evidence that habitat heterogeneity influences long 

term connectivity levels among local rabbit populations in the Mitchell region for 

both males and females. The habitat heterogeneity model thus provides a 

powerful approach for understanding the large scale processes that shape 

regional population systems in general. Therefore the model has the potential to 

be useful as a tool to aid in the management of those systems, whether it be for 

pest management or conservation purposes. 
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Chapter 1. Factors affecting animal distribution patterns 

Chapter 1. Factors Affecting Animal Distribution Patterns 

1.1 Introduction 

Questions regarding regional animal distribution patterns, and the reasons why 

they exhibit these patterns, are fundamental to the study of ecology. Animals 

must be able to access food, water, potential breeding partners and other 

resources that are necessary for long term survival. The heterogenous distribution 

of such resources across a region is a major factor which is likely to influence 

animal distributions (Kareiva 1990). Distributions may also be influenced by 

local and broad scale stochastic effects (Pimm eta!. 1988, Lande 1993, Halley 

and Iwasa 1998, Palmqvist and Lundberg 1998), and internal dynamic population 

processes (May 1986, Hanski 1990, Lawton eta!. 1994). 

An important set of studies have focussed on systems in which a population is 

composed of interacting subpopulations which are spread out in space (Wright 

1931, Gause 1935, Andrewartha and Birch 1954, Huffaker 1958, Erlich and 

Birch 1967, MacArthur and Wilson 1967, den Boer 1968). In these population 

systems, dynamics (and thus distribution patterns) are determined at a scale 

broader than that of the local relatively isolated population (Murdoch 1994). In 

such a system, local populations may become extinct, and the sites which 

previously supported a population may be recolonised by limited interactions 

with neighbouring populations. Such spatial arrangements have the potential 

therefore to enhance the long term persistence of a population system (Huffaker 

1958, den Boer 1968, 1970). 

In contrast to earlier theoretical models in which long term persistence was 

assumed ( eg Nicholson 1933), these studies emphasise the ephemeral nature of 

local populations. Extinctions of local populations may result from localised 

deterministic and stochastic effects in which extinction probabilities are largely 

determined by population size, or may result from more broad scale stochastic 

effects such as drought (see Pimm eta!. 1988, Lande 1993 and Caughley 1994 

for reviews). If a number of local populations are spread out across a region they 

are likely to experience localised stochastic and deterministic effects differently, 
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Chapter I. Factors affecting animal distribution patterns 

while broad scale abiotic effects are likely to lead to correlations in births and 

deaths among many local populations (Hanski 1991 ). 

2 

All extant species must at some time have expanded their ranges, either from the 

original point of speciation, after severe climatic changes ( eg ice ages; Hewitt 

1996) or as a result of human assisted introductions into new areas (as is the case 

for many non native species in Australia). For a population system to establish 

and persist over time, suitable vacant sites must be colonised during a range 

expansion, or recolonised after local extinction in an established system. 

Processes which allow the transfer of individuals among sites are thus essential 

for establishing and maintaining the patterns of distribution of organisms within 

their ranges (Ims and Y occoz 1997). What is important therefore is the 

connectivity among populations, which can be measured as the average number 

of individuals per generation which move successfully between two populations, 

through time (after Stacey et al. 1997). Alternatively, connectivity can be 

expressed as the probability of successful transfer of individuals among the 

populations in question. 

Different patterns of population distribution may result from different levels of 

connectivity. Historical trends in movement among populations may govern 

spatio-temporal distribution patterns by affecting demographic and genetic 

parameters in populations which would otherwise be isolated (Kimura and Weiss 

1964, Brown and Kodric-Brown 1977, Gilpin 1991, Wu et al. 1993). Dispersal 

is the widely accepted term to describe movement of individuals among 

populations. It is comprised of at least three processes, emigration (the one-way 

movement of individuals from their home range), travel (the movement of 

individuals between populations), and immigration (the assimilation of those 

individuals into new populations). Dispersal has the capacity to increase the size 

of populations (Lidicker and Stenseth 1992) and thus alter their persistence times 

(Brown and Kodric-Brown 1977, Schoener 1991), and to modify genetic 

variation within the recipient population (Hedrick and Gilpin 1997). These three 

processes are also known as transfer processes (Ims and Yoccoz 1997). 

Transfer processes can also lead to the colonisation of new patches or the 

recolonisation of vacant patches, which were previously occupied by populations 
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Chapter 1. Factors affecting animal distribution patterns 

driven to extinction (Lande 1993). The successful limited movement of 

propagules (which may include groups or individuals) among populations 

therefore has the potential to augment the persistence of individual populations, 

and hence the system of which they are a part (Hansson 1991, Adler and 

Nuernberger 1994). 

3 

Alternatively, a high degree of interaction may lead to synchronous population 

dynamics which are likely to decrease the persistence time of population systems 

(Harrison and Quinn 1989, Palmqvist and Lundberg 1998). Understanding 

transfer processes, and the factors which affect them, thus has important 

implications for understanding and manipulating the distribution patterns of 

organisms, including conservation biology (Hof and Flather 1996), epidemiology 

(Earn eta!. 1998) and pest management (Stenseth 1981 ). If connectivity can be 

determined directly, it may allow us to correlate the historical pattern of these 

processes with environmental (resource) factors and therefore potentially 

determine the critical environmental factors which have given rise to the 

interaction pattern over time. 

1.2 Mo~els of Distribution Patterns 

The concept of a population is central to ecological and genetic studies. In 

ecology, populations were been viewed as collections in the same space and time 

of homogenous individuals (Cole 1957). The limits of a population under this 

definition had considerable !attitude, since the scale at which a population was 

considered was defined by the question of interest. Mathematical models have 

often been used to infer connectivity levels within population systems, generally 

under the assumption that a population is continuously distributed across a 

landscape, or that a population is comprised of semi-discrete subpopulations 

(Slatkin 1985), also known as local populations (Hanski and Gilpin 1997 ). 

While these conceptualisations of a population are based on interaction levels, 

the dynamics of individual populations may also be important ( eg source-sink 

populations, Pulliam 1988). Differences in definitions of a population has led to 

confusion (Thomas and Kunin 1999). It has been recently suggested that it is the 
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Chapter 1. Factors affecting animal distribution patterns 

processes that occur within (births and deaths) and among (immigration and 

emigration) populations that should be fundamental to the classification of 

populations and the systems within which they interact (Thomas and Kunin 

1999). 

4 

In many ecological studies in the past dispersal was viewed solely as the 

movement of individuals, although now it is acknowledged that successful 

dispersal involves reproduction (and thus gene flow) to recipient populations 

(Lidicker and Stenseth 1992). This idea is fundamental to genetic models since 

the reproduction of immigrants is essential for the transfer of genes among 

populations (Slatkin 1985). Although the spatial extent of populations and 

population interactions have become popular topics in ecological studies in 

recent decades (see Hanski and Gilpin 1991 for review), the evolutionary 

implications of interactions within a subdivided population were considered 

some time before (Wright 1931 ). For this purpose, Wright (1931) employed a 

model of a subdivided population known as the island model (later renamed the 

infinite- or n- island model, Slatkin 1985). In this model, a population is 

subdivided into an infinite number of subgroups, each breeding at random within 

itself except for a proportion of migrants drawn at random from other 

subpopulations. Since equal connectivity among subpopulations is assumed, and 

the average properties of the system do not change due to the assumption of an 

infinite number of subpopulations, the characteristics of a single subpopulation 

are equivalent to all others. Local genetic drift in each subpopulation, which is 

caused by the random sampling of genes at the time of gamete formation, will 

lead to genetic differentiation in the absence of some level of gene flow (Slatkin 

1985). 

One important characteristic of this early model is that it shows no explicit 

spatial structure (connectivity among all subpopulations is equal). This occurs 

because it is assumed that the contribution of individuals from a subpopulation to 

any other subpopulation is equal irrespective of their relative spatial relationship. 

Although this assumption ensured analytical tractability, and the model continues 

to be used as a theoretical extreme ofthe long distance transfer of individuals, 
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Chapter I. Factors affecting animal distribution patterns 

the lack of a definable spatial element means that few real populations are likely 

to exhibit such a structure (Harrison 1991 ). 

5 

Levins' ( 1970) classical metapopulation model can be considered one class of 

island model. Levins described an idealised population system in which a large 

number of identical patches were embedded in an inhospitable matrix (habitat 

unable to support a population), internal patch dynamics were ignored and 

patches could only exist in one of two states at any one time, vacant or occupied. 

Recolonisation of an empty patch assumed successful dispersal to and 

reproduction within the patch. The classical metapopulation model has been 

criticised for restrictive assumptions, which include correlated dynamics and the 

equal size and quality of all patches (which implies identical carrying capacities 

in each patch) (Harrison 1991, Hastings and Harrison 1994). Additionally, the 

assumption of equal connectivity among all patches discounts any effects of 

distance or other factors which may affect the interchange of individuals among 

patches and so, like the island model, the classical metapopulation model does 

not define explicitly spatial structure. For these reasons, few real populations 

have been found which conform to this model (Harrison 1991 ). 

The stepping stone model (Kimura and Weiss 1964) describes the effect of 

spatially limited dispersal among populations, and was one of the earliest models 

to recognise explicitly the effect of space. In this model, a finite number of 

contiguous subpopulations have fixed spatial coordinates in one, two or three 

dimensions, with exchange of individuals occurring exclusively among adjacent 

subpopulations. While the direct exchange of individuals is limited to 

neighbouring populations, gene flow can eventually occur between non­

neighbouring subpopulations in a number of sequential steps via the 

subpopulations that connect them (Neigel1997). Although in the original model 

the degree of connectivity is equal between each set of neighbouring 

subpopulations, the model allows for the possibility that patch characteristics 

vary (such as size or quality) and therefore allows for differences in connectivity 

because patches can be identified uniquely (Kareiva 1990). From a theoretical 

genetic perspective, the stepping stone model and island models can be 

considered the extremes in short and long distance connectivity. 
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Chapter 1. Factors affecting animal distribution patterns 6 

The stepping stone model was an important advance from the island model as it 

allowed for a more explicit explanation of the problem of isolation by distance 

(Wright 1943), in which the transfer of individuals (or genes) among populations 

is spatially dependent. Such a situation requires the recognition of a spatial 

element to explain the distribution pattern of genes which would result from 

restrictions in connectivity. For instance, in a population system which can be 

described by a stepping stone model in one dimension, the level of gene flow 

will show an inverse relationship with geographic distance (and therefore, 

measures of genetic differentiation will increase with geographic distance) 

(Slatkin 1993). In this model, distance acts as an isolating factor among 

populations. 

A number of ecological models exhibit features of the stepping stone model 

because they identify particular patches and thus allow for variation in the 

characteristics of those patches. The source-sink model (Pulliam 1988) describes 

a stable population system with asymmetrical connectivity between two 

contiguous populations, such that a one way transfer of individuals occurs from 

the source to the sink population. In this model the quality of resources in the 

source patch leads to a greater number of births than deaths (thereby leading to a 

larger population and increased persistence times). In contrast, sink populations 

occupy patches in which inferior resource quality leads to mortality outweighing 

within-habitat reproduction (Pulliam 1988), thereby decreasing persistence times 

regardless of patch size. 

Several metapopulation models include the potential for variability in both the 

size and quality of patches (eg Hanski and Gyllenberg 1993, Bowers and Harris 

1994, Day and Possingham 1995), thereby allowing for variation in the degree of 

interactions among populations. However these models assume that local 

population extinctions are mainly driven by population size (which is represented 

by patch area) and that connectivity is related to the geographical dista:r;tce among 

patches. These assumptions may be legitimate in those systems in which local 

populations tend to be small and in which habitable patches can be clearly 

delineated within a matrix unsuitable for the establishment of local populations. 
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Chapter I. Factors affecting animal distribution patterns 7 

In many population systems however, patch area per se may not provide the best 

explanation for local population dynamics, particularly in systems that 

experience substantial environmental variability (Fleishman et al. 2002). Indeed, 

even within an established metapopulation framework, habitat quality can affect 

the dynamics of real population systems (Harrison et al. 1988, Hanski and Gilpin 

1991, Thomas et al. 1996, Boughton 1999). In population systems which 

undergo regional or catastrophic extinctions (Hanski 1991) many local 

populations will be affected simultaneously and extinction probabilities will 

show a limited relationship with population size (Harrison 1991). Here, the 

quality of resources that affect the growth and survival of local populations may 

be a better determinant of population system dynamics than patch size. 

Another confounding effect in metapopulation models is that for simplicity, they 

normally consider a spatial structure in which local populations occupy resource 

patches in a matrix of relatively unsuitable habitat. As a result of this 

simplification, isolation between populations in these systems is considered to be 

a simple function of distance. Terrestrial systems typically do not exhibit such a 

binary characteristic, and biological and physical features are more likely to be 

distributed heterogeneously in space and time (Wiens 1997). Distance may 

therefore not be the only, or even the most important factor which isolates 

populations (Fleishmann et al. 2002). Metapopulation models ignore 

environmental and behavioural factors which may affect connectivity between 

populations, such as geographical barriers (eg mountains, rivers), behavioural 

barriers (egan aversion to a particular vegetation type such as dense forest), or 

the heterogenous distribution of resources which may be necessary to sustain life 

during dispersal (eg water). 

One further limitation of current ecological models is that they assume that 

transfers among populations are achievable by individuals. Their application is 

therefore limited if the processes which determine the spatial distribution of a 

species occur at a scale broader than that which can be achieved by individual 

movement. Connectivity may need to be considered in a broader spatial context, 

in which the descendants of the individuals which leave a donor population, 

rather than the individuals themselves, bring about the recolonisation or augment 
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Chapter I. Factors affecting animal distribution patterns 

the persistence of populations which are widely spaced. Such a case, in which 

populations in a region saturated by patches affect the demographic 

characteristics and persistence times of non-neighbouring populations over time, 

is perhaps more correctly viewed as a stepping stone model. Although many 

studies consider the genetic implications of gene flow in metapopulations over 

broad temporal and spatial scales, the potential for one population to influence a 

distant population has not been considered from an ecological perspective. 

1.3 Processes Which Determine Connectivity 

8 

Theoretical models highlight the importance of broad scale processes, 

particularly dispersal, in determining the persistence and therefore the 

distribution pattern of species within their range. Dispersal has been defined as 

the movement an animal makes from its home range to the place where it 

reproduces (Lidicker and Stenseth 1992). While this definition implies a single 

process, dispersal is perhaps more correctly viewed as the end point of three 

distinct processes: leaving (emigration), travelling (movement between the 

individuals home range and its destination patch) (Ims and Yoccoz 1997) and 

arriving (immigration and reproductive incorporation into an existing population 

or colonisation of a new patch) (Lidicker and Stenseth 1992). Although often not 

stated explicitly, successful dispersal by an individual can be interrupted during 

any one of these processes, and therefore together they will determine the degree 

of isolation (or connectivity) among populations. 

An animal that emigrates leaves a familiar territory in which potential sources of 

food and shelter (both from predators and from abiotic elements) are known. 

There are risks inherent in emigrating, since mortality may be higher in 

dispersers than in residents (Gaines and McClenaghan 1980, Hansson 1991), 

successful mating in a new territory may not occur, and immigrant fecundity may 

be lower than that ofphilopatric individuals (those animals that remain within 

their natal home range) (Krohne and Burgin 1987, Massot et al. 1994). From an 

evolutionary perspective, emigration is worthwhile if on average, individuals 

produce a larger number of viable offspring over the course of their lives after 

leaving their home territory than if they stayed (Lemel et al. 1997). 
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Chapter 1. Factors affecting animal distribution patterns 

Dispersal tends to be male-biased in mammals and female-biased in birds 

(Greenwood 1980, Wolff 1994, Clarke eta!. 1997). Numerous hypotheses have 

been proposed to explain sex related dispersal behaviours. Most of these 

hypotheses centre around the advantages in competition for resources (mates or 

other breeding resources) conferred on the philopatric sex, or on the fecundity 

costs of dispersal (Greenwood 1980, Johnson 1986, Pusey 1987, Wolff and 

Plissner 1998). 

The population genetic consequences of sex-biased dispersal have recently 

attracted much attention (see Prugnolle and de Meeus 2002 for review). While 

there have been theoretical treatments examining population dynamic 

consequences of sex-biased dispersal (Ruxton 1995, Doebeli 1996, 1997, 

Lindstrom and Kokko 1998), these have implicitly focused on isolated 

populations (Ranta eta!. 1999). There have been relatively few studies 

examining the population dynamic consequences of sex specific dispersal 

behaviour within subdivided populations (although see Efford 1998, Aars and 

Ims 2000). Ecological models have generally tended to ignore dispersal 

differences between the sexes, although some recent simulation models have 

employed sex specific dispersal rates (eg Gaona eta!. 1998). Successful 

colonisation will tend to be constrained by dispersal of the more philopatric sex. 

It may therefore be important to assess any differences in the dispersal potential 

of males and females when examining dispersal among local populations within 

a subdivided population system. 

9 

If an emigrant does not become a member of a breeding population after leaving 

it's home range it is irrelevant from a genetic and demographic perspective 

(Stacey eta!. 1997). Immigration tends to enhance the persistence of local 

populations in fluctuating environments, leading to greater population system 

persistence (Hastings 1982, Hastings 1991, Doebeli 1995, Hanski and Zhang 

1993, Hof and Flather 1996, Murdoch et a!. 1996, Rohani et a!. 1996, Pelton en 

and Hanski 1991, Hill et al. 1996, Holyoak and Lawler 1996). If immigration 

occurs before the target population goes to extinction, the demographic and 

genetic contribution of immigrants may bring about a "rescue effect" (Brown and 

Kodric-Brown, 1977). Immigration therefore can buffer populations from 
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Chapter 1. Factors affecting animal distribution patterns 10 

adverse demographic, genetic or abiotic effects (Stacey et al., 1997). 

Immigration can be detrimental, since immigrants may introduce disease into a 

population (Hess 1996). In pest populations, diseases have been introduced 

deliberately in the past in an effort to control the size and distribution of pest 

populations ( eg the release of myxomatosis into the Australian wild rabbit 

population, Fenner and Fantini 1999). While the positive effects of connectivity 

on population or system persistence usually requires reproduction of immigrants 

within the recipient population, the transmission of a disease may not require 

sexual contact if the disease is not sexually transmitted. Contact between 

individuals or even proximity to transmission vectors ( eg Spanish fleas for 

myxomatosis, Fenner and Fantini 1999), may be sufficient to spread a disease 

from a new immigrant to a recipient population. 

When local populations are driven to extinction by natural or anthropogenic 

influences, dispersal may bring about the colonisation of habitable patches within 

a population system. Successful colonisations may form viable populations 

which produce more emigrants. Repetitions of this process lead to the 

establishment of new population systems during range expansion (Sakai et al. 

2001) and ensure that the persistence of existing population systems is greater 

than that of individual populations. Colonisation of extinct patches may provide 

the major mechanism for gene flow in some systems (Slatkin 1985, Fuller et al. 

1996). 

After emigration from a donor population, and before immigrating into a 

recipient population, individuals must negotiate an array of spatial, physical and 

resource factors in the intervening habitat. Any factor which impedes or 

promotes travel will, in conjunction with factors which affect immigration, 

determine the degree to which one (donor) population can influence the genetic 

and demographic parameters of another (recipient) population and so affect both 

its genetic constitution and persistence. Geographical distance and barriers 

(including inhospitable matrix) have been traditionally considered as major 

factors which limit dispersal. More recently it has been recognised that 'viscous' 

landscape elements may restrict dispersal without necessarily acting as absolute 

barriers (Wiens et al. 1997). 
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Chapter 1. Factors affecting animal distribution patterns II 

Although ecological studies have considered the influence of populations on the 

dynamic parameters and persistence of other populations, these studies are 

considered at a relatively restricted scale in which individuals can disperse 

between populations. Such influence may occur at broader spatial and temporal 

scales which have in the past been examined in population genetic studies 

(stepping stone models). Systems are likely to exist in which ecological 

processes occur at this broader scale, and so an extended perspective of 

connectivity needs to be developed. For instance, the distance between 

populations may be so great that it is unlikely that an individual is 

physiologically capable of travelling between donor and recipient patches. 

Conversely, if the individual is capable of traversing the geographic distance, it 

may be behaviourally unlikely to do so if adequate habitat patches which could 

be colonised intervene (adequate patches are those patches in which breeding 

could take place but have a high extinction tendency due to poor resource quality 

or quantity). In such a setting over time, individuals may emigrate from a 

relatively temporally stable donor population to fill adjacent unstable habitats. 

Populations in these intervening populations may persist long enough to produce 

a propagule of emigrants which move to an adjacent patch, with successive 

generations of descendants utilising habitat patches between donor and recipient 

populations. 

Although it has not been considered in traditional ecological models, this 

scenario would allow the influence of a donor population on a distant recipient 

population to be quantified. This model bears similarities to a stepping stone 

model, however previous models have considered the effects of gene flow only 

via temporally stable populations. Connectivity between patches in this spatially 

extended ecological model is likely to be a function of the characteristics of 

intervening patches such as resource quality (Pulliam 1988), since this will 

determine the demographic capacity of populations in intervening populations to 

provide emigrants. Any historical isolation between populations in this model 

would thus be due to patch quality which would affect the probability of 

successful colonisation between the donor patch and the recipient patch. 
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Chapter 1. Factors affecting animal distribution patterns 12 

1.4 Modelling Connectivity 

In regions where resource patches are contiguous and a patch becomes filled 

after colonisation, the travel component of dispersal occurs only across patch 

boundaries and so can be ignored (except in patches where populations cannot 

establish and thus the patch must be traversed). When dispersal occurs in the 

stepwise fashion as described above, dispersal is unlikely to be impeded during 

emigration or immigration into the (vacant) recipient patch. If so, factors which 

might inhibit emigration and immigration can be largely ignored and the level of 

influence that one population exerts on another will be a function of the dispersal 

flow through intervening patches. In this scenario, factors affecting population 

size in each intervening temporally unstable patch, such as species specific 

resources required for successful reproduction and population growth, will 

ultimately limit connectivity by determining the size of the emigrant flow from 

each patch. If the species specific habitat attributes which enable populations to 

reproduce and grow can be determined and averaged over time, and appropriate 

numerical values applied to them, mathematical combination of these values 

should allow for the development of a quantitative model of relative connectivity 

based on habitat heterogeneity. In this model the relative long term isolation 

among populations will be related to the spatial heterogeneity of resources within 

a region. 

The general applicability of any mathematical model is limited without reference 

to independent empirical data to test the veracity of model assumptions ( eg 

Gotelli and Kelly 1993). Validation of a model requires the application of a data 

set which is independent, both of the assumptions and of the operation of the 

model. Testing the veracity of the tentative isolation by habitat heterogeneity 

model therefore requires the existence of techniques to measure the relative level 

of dispersal of organisms over long time spans (greater than several generations), 

between distant donor and recipient patches, through an environment saturated 

with resource patches in a temporally unstable environment. One reason that 

such broad scale spatial and temporal processes have not been considered in 

ecological studies may be that ecological methods for measuring dispersal apply 

only to the time and space over which observations are made (Neigel 1997). 
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Chapter 1. Factors affecting animal distribution patterns 13 

1.5 Measuring Connectivity 

Ecologists have relied predominantly on variations of a single technique to 

directly measure the transfer of individuals from one location to another. Mark 

recapture methods, in which animals which are caught in one site are marked, 

released, and potentially trapped again at other sites, have traditionally been used 

to infer the existence and level of dispersal processes among populations. This 

technique is flexible and can allow for the information regarding specific events 

to be determined, such as the life history stage at which dispersal occurs or the 

ecological conditions which favour dispersal (Slatkin 1994). However mark 

recapture techniques can only demonstrate dispersal within generations. In 

systems which exhibit extinctions, recolonisations and the influence of 

populations on the persistence of others over a broad region, such a technique 

precludes the observation of potentially important connectivity effects over 

larger spatial and temporal scales. 

This broader view is encompassed in indirect measures of effective gene flow, 

which estimate the long term effects of gene flow over a large range of temporal 

and spatial scales (Neigel 1997). In population systems where long term 

connectivity among demes is high, local populations will tend to show 

population genetic similarities (Slatkin 1985). In contrast, population genetic 

differentiation will occur when local populations are isolated. The level of 

population genetic differentiation among local populations has been frequently 

assessed by the estimation ofF statistics, particularly FsT (Wright 1951). 

F sT can be interpereted as the standardised variance in the frequency of an allele 

among populations (Wright 1951), and can be used to indirectly estimate gene 

flow (Slatkin 1994). Indirect genetic methods produce estimates of the average 

level of gene flow with reference to a mathematical distribution model (often the 

island model), and include the interaction of gene flow and other factors to 

predict how much gene flow must have been occurring over time in order for 

observed population genetic patterns to be present (Slatkin, 1994). 
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Chapter 1. Factors affecting animal distribution patterns 14 

Any technique used to estimate dispersal levels must be relatively insensitive to 

factors other than gene flow which might affect allele frequencies. Significant 

variations in the distribution pattern of sampled populations from the island 

model may introduce some degree of error, although such errors are unlikely to 

be large (Slatkin and Barton, 1989). Similarly, in populations not at equilibrium, 

such as large populations (particularly those with low levels of gene flow), and 

systems which exhibit large fluctuations in subpopulation size over a relatively 

short temporal scale, FsT results must be treated with caution, and are unlikely to 

give precise estimates of the numbers of migrants per generation (Slatkin and 

Barton, 1989). Even in non-equilibria! systems, however, large differences in 

F sT values among local populations are likely to reflect underlying dispersal 

trends. Since the levels of differentiation among local populations will be 

strongly influenced by long term patterns of connectivity, FsT estimates based on 

population genetic data can be used to infer relative levels of connectivity among 

populations. 

As well as an appropriate mathematical technique for estimating gene flow, an 

appropriate genetic marker must be used to determine genetic variation for use in 

calculations. Although a variety of genetic markers exist, mitochondrial (mt) 

DNA has proven invaluable for use in many population systems (Neigel1997). 

While double stranded, the haploid mtDNA genome does not undergo 

recombination, and is inherited maternally in most animal species. Because of 

this, the effective population size of mtDNA genes is approximately one quarter 

that of nuclear genes, which allows population subdivision to be detected in 

mtDNA sequences at a level of gene flow at which nuclear genes are panmictic 

(Birky et al. 1983). Also, mutation rates are often higher in some animal mtDNA 

genes than equivalent nuclear sequences, potentially allowing for greater 

variation to be detected (Neigel1997). mtDNA is therefore an appropriate 

choice of marker in populations which exhibit significant levels of gene flow, 

including those which are subject to large fluctuations in population size. 

Since mtDNA is maternally inherited, frequency based data may be confounded 

by any sex related biases in dispersal. It may therefore be appropriate in addition 

to employ a biparentally inherited genetic marker. For this purpose, Amplified 
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Chapter I. Factors affecting animal distribution patterns 15 

Fragment Length Polymorphisms (AFLPs) are being used more frequently, since 

they provide a relatively cheap and reliable means for analysing population 

structure and can be used to calculate FsT analogs (Mueller and Wolfenbarger 

1999). As a nuclear marker, AFLPs provide information regarding combined 

male and female gene flow but due to a larger effective population size are 

unlikely to be as sensitive as mtDNA to population subdivision (Birky et al. 

1983). 

Analyses of inbreeding coefficients (eg FsT) are robust and can be used to infer 

historical trends in dispersal among populations, even when the populations 

undergo large size fluctuations. Inbreeding coefficients can therefore be used to 

infer connectivity among spatially structured populations. This approach can be 

used to generate a data set independent from the assumptions and the operation 

of the habitat heterogeneity model, and so provides a means of validation of the 

model. 

1.6 The European Rabbit in Australia as a Model Species 

Several criteria are desirable in the selection of a model species with which to 

test the tentative model of isolation by habitat heterogeneity. Populations of the 

species should be affected by relatively few, well known habitat attributes (to 

limit possible interactions among attributes) and be spread widely across a region 

which exhibits a range of variations in resource levels (which, if the model is 

accurate, will create variations in connectivity among populations through time). 

In Australia, these criteria are ideally met by the wild rabbit (Oryctolagus 

cuniculus). The first recorded release of wild rabbits in Australia was in 

Geelong, Victoria in 1859 (Stodart and Parer 1988). Although only a few 

(between 15 and 24) rabbits were released, the species is now widely distributed 

and constitutes a major pest species in Australia. Rabbits cause significant 

damage to native flora and fauna, and estimated damage to agricultural systems 

of $A60-90 million annually (Wilson et al. 1992). Rabbits expanded their range 

rapidly through Australia, and this has been attributed to their prolific 

reproductive and dispersal capacities, good competitive ability and the absence 
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Chapter 1. Factors affecting animal distribution patterns 16 

of significant natural predators and parasites in Australia (Rural Lands Protection 

Board 1987), although human assisted translocations may have also played a role 

in their spread (Stodart and Parer 1988, Wilson et al. 1992). 

Rabbits evolved in a mediterranean climate, and northern limits to their 

geographical range are likely due to an interaction between temperature, day 

length and pasture growth occurring in response to summer rainfall (Cooke 

1977). Within this broad geographical range, rabbit population distribution 

patterns have been shown to be influenced by ecological factors including soil 

type, surface cover, altitude and water distribution (Parer 1987). As a fossorial 

species, the success of local populations is closely tied to the availability of 

suitable burrowing habitat in arid and semi-arid environments (Myers 1958). 

Rabbits exhibit a preference for sandy soils (Myers and Parker 1965, Parker et al. 

1976, Parer and Libke 1985, Parer 1987, although see Hall and Myers 1978), as 

it is easily dug, has good drainage (which decreases the risk of a warren being 

flooded), and the flora associated with this soil type responds quickly to rain. 

Sandy soils exist at one end of a continuum of soil type suitability which is 

determined by clay content, with heavy cracking clays being most unsuitable. 

Soil type is thus highly suitable for consideration as a habitat attribute which is 

likely to influence connectivity among rabbit populations. 

The success of rabbits as a pest species in Australia is well illustrated by their 

capacity to attain high densities even in arid regions in which large suitable soil 

patches exist next to patches which are unsuitable for burrowing (Fuller et al. 

1996). During long periods of drought, most rabbits will die, with a few 

surviving in only the most favourable areas (Myers and Parker 1975a, 1975b). In 

such catastrophic systems it is highly likely that extinctions and recolonisations 

play a major role in establishing long term regional rabbit distributions. 

Traditionally, the success ofrecolonisation after local extinctions would be 

considered to be affected by the distance between refuge populations and suitable 

empty sites, and/or the presence of geographic barriers to dispersal among sites. 

Fuller et al. (1996) have shown that rabbit populations are panmictic over a large 

area in western Queensland. This may be an effect of a relatively promiscuous 
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Chapter 1. Factors affecting animal distribution patterns 17 

mating system in resource rich areas, and of a high level of extinctions and 

recolonisations in response to recurrent episodes of drought. In contrast, analysis 

of mtDNA haplotype frequencies of rabbit populations in a more eastern semi­

arid region (the Mitchell region) showed that populations were highly structured 

(Wilson et al. 2002). The Mitchell region is characterised by a range of soil 

types, from suitable to less suitable, although few areas would be unable to 

sustain a population. While potential geographic barriers may exist ( eg the 

Maranoa River which flows seasonally), this is not reflected in the pattern of 

haplotype frequencies (Wilson et al. 2002). Furthermore, isolation among 

populations in the eastern system is not a function of the distance between them 

(Wilson et al. 2002). 

The current genetic structure of local rabbit populations within the Mitchell 

region may be related in part to recent range expansion in addition to within 

system interactions. If habitat heterogeneity has the capacity to influence 

dispersal processes in the long term it should also have influenced the initial 

genetic constitution oflocal rabbit populations within this region. 

Rabbit populations in the semi-arid region of Queensland present as excellent 

candidates on which to test a tentative model of habitat heterogeneity. 

Determining relative connectivity levels in this region may allow for a better 

understanding of the dynamics of local populations within this system. An added 

benefit of such knowledge would be that local and broad scale control programs 

could be more specifically targeted. 

This study has been designed to consider the effect of habitat heterogeneity on 

population system dynamics in a extended spatial framework. The specific 

objectives of the study were to: 

1. develop a mathematical model in which relative long term connectivity 

among local populations within a population system is determined by the 

spatial distribution of resources. 
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Chapter 1. Factors affecting animal distribution patterns 18 

2. test the model using regionally appropriate parameters for the wild rabbit in 

the Mitchell region based on empirical data, and to validate the model using 

independent population genetic data. 

3. employ a stochastic enhancement of the model to simulate a range expansion 

into the Mitchell region in order to determine the historical and long term 

contribution of habitat heterogeneity to connectivity among local wild rabbit 

populations. 

4. use the model to assess any differences between male and female patterns of 

long term connectivity among local rabbit populations in the Mitchell region. 
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Chapter 2. A model of isolation due to habitat heterogeneity 19 

Chapter 2. A Model of Isolation Due to Habitat Heterogeneity 

2.1 Introduction 

For many years, populations of plants and animals were considered to be a well­

mixed collection of individuals occupying a space that was usually arbitrarily 

defined by the bounds of the question of interest (Elton 1927, Cole 1957). It is 

now recognised that even at the local level of scale, resources upon which 

individuals depend for survival and reproduction tend to be distributed 

heterogeneously in space (Karieva 1990). It follows that the spatial distribution 

of local populations will reflect this resource distribution (Andrewartha and 

Birch 1954, den Boer 1968, Levins 1969), and that the relative levels of 

demographic and genetic differentiation among spatially distinct populations 

within a system will be a function of the long term connectivity among those 

local populations (Slatkin 1985, Hansson 1991, Harrison and Hastings 1996). 

Models that view connectivity as a fundamental characteristic of animal and 

plant population systems have evolved, and have tended to grow in complexity 

(Karieva 1990). While early models (Levins 1970) postulated equal connectivity 

among all local populations, later models considered that differences in 

connectivity could exist among populations due to geographical distance ( eg. 

Hanski 1991, Kozakiewicz 1993, Adler and Nuemberger 1994, Hanski 1994) or 

to barriers to dispersal (Lidicker 1975, Slatkin 1985, Kozakiewicz 1993). Recent 

studies suggest that social systems may also play a role in determining 

connectivity among local populations (Cowan and Garson 1985, Brandt 1992, 

Surridge et al. 1999). 

The relative levels of connectivity within a population system may also be 

affected by differences in the quality of resources within habitat patches (Pulliam 

1988, Pulliam & Danielson 1991, Pulliam et al. 1992). The source-sink model of 

Pulliam (1988) examined a system of interacting populations in which the quality 

of patch resources affected both the dynamics of populations within patches and 

patch-to-patch interactions. 
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Chapter 2. A model of isolation due to habitat heterogeneity 20 

While differences in resource quality in this model were extreme, numerous 

species occupy a local range in which resource quality varies less drastically 

(Caughley et al. 1988). In these situations, interactions between spatially 

disjunct local populations may occur in a "stepping stone" fashion via 

populations occupying intervening resource patches, with the dynamics of these 

intervening populations being affected by the quality of the resources in the 

patches that they occupy. The possibility therefore exists that relative differences 

in long term connectivity among spatially distinct local populations within these 

population systems may ultimately be related to the quality of resources within 

intervening patches. 

While a number of models have examined the effects of resource heterogeneity 

on population systems (see Dias 1996 for review), few have considered broad 

scale, long term spatial processes such as connectivity that may influence 

population structure. Fewer still have been validated using independent 

empirical data (Karieva 1990). In addition, these models are often based on 

moving cohorts through time, for example discrete time models. 

The current structure and functioning of any population system is a consequence 

of the long term sum of individual events affecting each of its constituent 

populations. An alternative approach to modelling the spatial distribution of 

population structure within such systems is to base a model on long term mean 

summary variables which reflect the long term impact of these processes, rather 

than cohort based variables. An advantage of modelling long term connectivity 

among populations using mean, long term summary variables is that model 

validation can be carried out using independent population genetic data. Such 

data are the consequence of the long term sum of individual events, as any 

mechanism that causes differential levels of connectivity within a population 

system can result in genetic structuring among local populations (Wright 1951, 

Kimura and Weiss 1964, Ims and Andreassen 1999). 

This chapter develops a general model of long term relative connectivity due to 

the spatial heterogeneity of resources within a system comprised of resource 

patches of varying quality. A simple extension of the model allows for the 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Chapter 2. A model of isolation due to habitat heterogeneity 21 

incorporation of patches containing landscape elements which impede dispersal. 

The usefulness of the habitat heterogeneity model is then demonstrated by 

applying it to a spatially structured rabbit population system in central southern 

Queensland, for which independent genetic data on population structure are 

available. The specific aim of the rabbit case study is to determine if population 

structuring within the system can be explained by differences in long term 

connectivity among sites, due to the distribution of a major resource (soil type) 

and a landscape element which impedes dispersal (dense forest). 

2.2 Model Development 

Assume a vacant landscape consisting of contiguous resource patches, where 

resources are defined as factors essential for survival and reproduction of the 

species of interest. The level of scale at which the landscape is partitioned is 

determined by its constituent patches, which are defined as the minimum area 

within which the relative quality of identified resources can be considered 

homogenous. Also assume that when occupied, a patch contains a single 

population. Further assume that maximum population growth will occur in 

patches in which resource quality is optimal and that the effect of suboptimal 

resources within a patch will be to modify population growth downwards from 

optimal. Given this assumption, it is practical to index the level of each resource 

in a patch relative to the best quality of that resource in the system. Since patches 

are delineated by resource quality, contiguous patches will differ in the quality of 

at least one resource. In order to calculate the relative long term connectivity in a 

population system within the landscape, it is necessary to first determine the 

degree of interaction between each of the constituent populations. 

Consider the long term potential for interaction between a population in an 

originating patch and the population in a distant destination patch. If the 

landscape is initially vacant, a seeding propagule introduced into the originating 

patch (patch 1) will experience growth as determined by a maximum growth 

factor which is modified by the relative quality of resources available in the 

patch. A proportion of the final population will then disperse and colonise the 

next patch (patch 2). This process of colonisation, growth and dispersal will 
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Chapter 2. A model of isolation due to habitat heterogeneity 22 

occur from patch to patch in a stepwise fashion until a dispersing propagule 

colonises the destination patch. The mode of movement between origin and 

destination patches (for instance, a random walk or a straight line) is immaterial 

to the structure of the model but may be important in interpreting outcomes when 

applying the model to a specific system. 

It is important to note that growth and dispersal are not used here as descriptors 

of individual annual cyclic events. It is assumed that, in each patch, the growth 

variable represents the long term mean of all population growth events in that 

patch. Similarly, the dispersal variable represents the long term mean proportion 

of the population that has dispersed. Thus a single series of growth and dispersal 

steps along a path between an originating and a destination patch can be used to 

represent the long term sum of processes affecting connectivity along that path. 

For each resource identified in the system, an index of quality for the resource in 

any patch (R) can be defined as the quality of that resource in the patch (rp) 

relative to the optimal quality of the resource in the system (rapt). In a system 

with a single resource in a specified patch: 

R1=n/ (1) 
/rapt 

However a species may be dependent upon a number of resources within a 

region. In a system of m resources the overall relative patch resource index (Rp) 

for any patch can be determined as the product of each individual resource index 

within the patch, and so for a multiple resource system: 

m 

Rp= IJR; (2) 
i=l 

The relative resource index in a patch acts as a reducing fraction on growth in 

that patch. The size of the propagule immigrating into the second patch ( N 2 ) 

can therefore be calculated as: 

Nz = NJG!Rldl (3) 

where: 

N1 =the size of the propagule seeding the originating patch 

G1 = the long term mean growth factor in the originating patch 
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Chapter 2. A model of isolation due to habitat heterogeneity 

d 1 =the long term mean proportion of individuals dispersing from the 

originating population to the next patch 

Rt = the resource quality index in the originating patch 

23 

The process of colonisation, growth and dispersal is repeated from patch to patch 

along a dispersal path from the originating to the destination patch, and so the 

size of a propagule emigrating from the last patch on the dispersal path (p) and 

immigrating into the destination patch is given by: 

p 

Np+t=Ntf1(G;d;RJ (4) 
i=l 

Even in population systems that experience considerable environmental 

stochasticity on a regional scale, the long term variation in growth and dispersal 

among patches may be low. If so, the model can be simplified by considering G 

and d as system constants rather than patch constants and Equation 4 can be 

simplified as: 

Np +I= Nt[Gd]" tr Ri (5) 
i=l 

Equation 5 allows for the size of a propagule entering any destination patch via a 

specified path from an originating patch to be calculated. To determine the total 

number of immigrants into the patch, this equation is applied for each dispersal 

path which enters the patch and the results summed. 

Consider now the relative long term connectivity among n local populations 

within specific patches in a system. The connectivity (C) of a local population, 

a., results from the mean of all two way interactions between a. and the n-1 other 

distant populations. As connectivity within a system can be considered a relative 

measure, this mean can be indexed relative to the total interactions within the 

system: 
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Where: 

n-1 

::2: N a(in); = the sum of all propagules colonising patch population a 
i=1 

from the (n-1) other local patch populations 

n-1 

::2: N a( out); = the sum of all prop a gules from patch population a 
i=1 

colonising the (n-1) other local patch populations 

11 

l:N(tot); the sum of all propagules colonising all patches 
i=1 

24 

For the model to be useful, it is necessary to further define relative resource 

quality. The quality of a resource may vary as a gradient, a step function or a 

binary condition, for instance the presence or absence of the resource in a patch. 

Even if resource quality varies as a continuous gradient it may be reasonable to 

describe variations in quality with a limited number of categories. For instance, 

a gradient function of a resource in the system may still be categorised as having 

three relative levels of quality - optimal, intermediate or poor. From 

experimental evidence the relative effect of these different qualities of the 

resource on population growth within the system can then be indexed. 

In some population systems, the relative levels of long term connectivity among 

local populations can also be affected by patches which include geographical 

barriers, or certain landscape elements which are resistant to dispersal or 

"viscous" (eg Wiens et al. 1997, Roland et al. 2000, Ferreras 2001). 

Geographical barriers can easily be incorporated into the model by considering 

that population growth is not possible in these patches. Resource quality would 

therefore be indexed as zero preventing further dispersal along that path. If the 

patch contains a viscous landscape element, population growth is again not 

supported and the probability of successful dispersal through the patch will relate 

to the geographical distance of the dispersal path through the landscape element. 

Relative resource quality in such patches would again be indexed as zero, but a 

dispersal resistance function based on dispersal distance through the patch is 

applied. All of the factors which have the potential to affect long term 

connectivity among local populations within a system (spatial heterogeneity in 
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Chapter 2. A model of isolation due to habitat heterogeneity 25 

the distribution of patch resources of different quality, and the spatial distribution 

of viscous landscape elements or geographical barriers) can be considered under 

the term habitat heterogeneity. 

2.3 Model Application 

To apply the model to a particular species in a specific population system, it is 

necessary to identify the resources upon which the species depends, and to map 

the spatial variation in quality of these resources within the system. It is then 

necessary to obtain empirical data on the effect of the variations in resource 

quality on population growth together with estimates of long term mean growth 

and dispersal. To determine the usefulness of the model in a given system, 

model output (relative connectivity indices) can be compared to an appropriate, 

independent estimator of long term connectivity. Population genetic data are 

particularly useful for this role, as population genetic structuring will occur 

largely in response to the long term level of gene flow between each local 

population and the remainder ofthe system (Slatkin 1985). 

The wild rabbit Oryctolagus cuniculus L. is an appropriate species with which to 

demonstrate the utility of the model. The wild rabbit is one of the most 

damaging pests in Australia (Williams et al. 1995). Due to its pest status, 

research on aspects of wild rabbit population dynamics in Australia has been 

conducted for over 50 years, and the resources upon which rabbit populations 

depend are well documented. In addition, Wilson et al. (2002) provide 

population genetic data for eight wild rabbit populations in the semi-arid 

Mitchell region of central southern Queensland (Figure 2.1 ). These data show a 

high degree of population structuring that could not be explained by geographic 

distance among sites or by potential geographic barriers to dispersal such as 

topographic discontinuities or rivers. 

It is well recognized that soil type is a major resource that affects rabbit survival 

and reproduction (Myers and Parker 1965, Myers 1970, Myers and Parker 1975b, 

Parker et a!. 197 6). The effect of soil type on population success is well 

documented, with rabbit populations in Australia (Myers and Parker 1965, Myers 
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Figure 2.1. Location of the Mitchell region in central southern Queensland (inset), with mitochondrial haplotype frequencies at study 

sites(*). (source: Wilson et al. 2002). Glenlea haplotype frequencies are the sum of frequencies of four populations occurring on 

the same large resource patch. There was no significant difference in haplotype frequencies among the four populations (X2
(6) = 

10.4, p=O.ll). 
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Chapter 2. A model of isolation due to habitat heterogeneity 

1970, Myers and Parker 1975, Parker eta!. 1976, Parer and Libke 1985), 

England (Trout and Smith 1995), France (Rogers eta!. 1994) and Spain 

(Soriguer and Rogers 1981) attaining different densities in patches of different 

soil types. 

27 

Myers (1970) estimated rabbit density in semi-arid New South Wales over six 

years on each of three soil types similar to those found in the Mitchell region. A 

mean density was calculated for each soil type, and then mean densities were 

indexed relative to the optimal soil type (the soil type on which mean rabbit 

density was greatest). This resulted in indices of 1, 0.61, 0.31 for optimal, 

intermediate and poor soils respectively. Soil patches in the Mitchell area were 

then defined using a 1:500 000 soil map (Gallowway eta!. 1974), and the 

appropriate soil index applied to each patch. 

No long term rabbit population growth data are available for the Mitchell region, 

however over 19 years of growth data were available for two study sites in the 

arid zone of South Australia (B. Cooke, pers. comm; a shorter section of the data 

is available in Cooke (1974)). These data allowed a long term mean growth 

factor to be determined by averaging population increases from trough to peak 

density. The resulting long term mean growth factor of7.88 (S.E.=1.61) agreed 

well with the maximum observed annual finite rate of increase of7.85 calculated 

for rabbits in Australia by Hone (1999). 

Two studies of rabbit dispersal have been conducted over different periods at a 

study site in southern New South Wales (Daly 1979, Parer 1982). Parer (1982) 

determined numbers of male and female rabbits which dispersed to non-natal 

warrens in each of five years which included years of high and very low rainfall 

(Table 3 in Parer 1982) and calculated survivorship curves for rabbits known to 

be alive. From these data, and given that rabbits are known to have a 1: 1 sex 

ratio (Myers and Poole 1963), the proportion of females dispersing was 

calculated as 0.24. Daly (1979) also presented data on dispersal over a two year 

period. From these data, female dispersal was calculated to be 0.32 and 0.31. 

From the Parer (1982) and Daly (1979) studies, the long term mean dispersal 

factor used here was calculated as 0.29 (S.E.=0.03). For comparison, Dunsmore 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Chapter 2. A model of isolation due to habitat heterogeneity 28 

(1974) calculated female dispersal as 0.26, however large differences in the 

landscape and environment of his study area and the Mitchell region precluded 

inclusion of this estimate into the calculation of the long term mean dispersal 

factor. 

Dense forests impede rabbit dispersal (Ratcliffe 1959, Stodart and Parer 1988, 

Myers et al.1994) but the nature of this resistance has not been quantified. 

Available data suggest that the mean maximum distance over which individual 

rabbits can disperse successfully through vegetation types other than dense forest 

is 1.5 km (Parer 1982). Rabbits are unlikely to be able to disperse as freely 

through dense forest, and so this distance serves as a conservative indication of 

dispersal potential through dense forests. For modelling purposes it was 

assumed that resistance to dispersal through dense forest follows a logarithmic 

form, with 100% of a propagule able to disperse successfully through linear 

distances of less than 1.5 km, 10% of a propagule able to move through linear 

distances of 1.5 to 3 km, and 1% of a propagule able to disperse greater than 3 

km. This dispersal resistance function was employed in the model when a 

propagule reached a patch of dense forest (a patch in which resources were 

indexed as 0). 

In summary, the following parameters were used as inputs to the model for this 

system: a long term mean growth factor (G) of7.88, a long term mean dispersal 

factor (d) of 0.29, soil resource indices of 1, 0.61 and 0.31 for optimal, 

intermediate and poor soils respectively, and a resource index of 0 for dense 

forests with a dispersal resistance function of 1, 0.1 and 0.01 at less than 1.5 km, 

1.5 to 3 km and greater than 3 km respectively. 

Eight local patch populations (sites) in the landscape were selected to coincide 

with the populations sampled by Wilson eta!. (2002). For modelling purposes it 

was assumed that these populations are fixed in space, were relatively resistant to 

extinction, and were initially the only populations within the study area. The 

area between these sites was mapped as a series of patches based on soil and 

vegetation type (Figure 2.2), and a resource index determined for each patch. A 

computer program was developed to simulate the movement of propagules 
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Figure 2.2. The spatial relationship among sites(*), dense forests • and optimalD, intermediat~ , and poor• quality soil patches in 

the Mitchell region . 
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Chapter 2. A model of isolation due to habitat heterogeneity 30 

through patches between all combinations of any two sites (Appendix 1 ). To 

assess the effect of spatial heterogeneity on the system, propagules were moved 

along five predetermined paths between all combinations of site pairs. This was 

achieved by considering each site as a circle with a radius of 6 km from the 

centre of the site, with five linear dispersal paths drawn between different points 

on the circles of the selected site pairs. This method of moving propagules is 

simplistic and is presented only to demonstrate the utility of the model. A 

random walk through patches between sites may be appropriate for more 

extensive simulation studies. 

As site connectivity indices are relative, the size of seeding propagules was 

arbitrary, and the simulation program was seeded with 100 individuals at each of 

the 8 sites. The total number of successful colonists arriving at each site 

resulting from travel through patches along each of the five paths from each 

other site was recorded and relative connectivity indices calculated (Table 2.1 ). 

As Table 2.1 shows, there is substantial variation in long term connectivity 

among sites. The differences in connectivity among sites are fully apparent 

when viewed spatially as connectivity isoclines. Isoclines were formed by 

categorising site - pair connectivity (Table 2.1) as high, intermediate or low in 

relation to the total connectivity within the system, and constructing a polygon to 

join sites within the same category (Figure 2.3). Bowann, Claravale, Currawong, 

Glenalba and Thornlee exhibited relatively high levels of connectivity, Glenlea 

showed a low level of interaction, whilst Pol worth and Verniew were effectively 

isolated from each other and the rest of the system. 

2.4 Model Validation 

The mitochondrial haplotype frequency data of Fuller et al. (1997) and Wilson et 

al. (2002) were used to provide an independent assessment of the degree of 

isolation among eight sites based on differences in genetic population structure. 

Pairwise FsT distances were estimated using Arlequin (Schneider et al. 2000) and 

the mean of pairwise FsT estimates between each site and all other sites was 
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Table 2.1. Model output matrix: Number of successful colonisers and relative connectivity indices for eight sites within the Mitchell 

regwn. 

Contribution from system to site 

Bow ann Claravale Currawong Glenalba Glen lea Polworth Thomlee Vemiew System to site 

index 

Bow ann 0 12955 1402 4087 4446 42 3740 57 0.151 

Claravale 24136 0 3096 10006 960 162 5074 894 0.25 

Contribution Currawong 1069 931 0 4193 9109 8 2706 614 0.105 

from site G1enalba 6676 6073 8278 0 3391 392 3294 2666 0.17 

to system Glenlea 2982 276 9126 1689 0 50 1203 0 0.086 

Polworth 130 133 24 638 139 0 63 0 0.006 

Thomlee 10580 5089 8876 5485 3929 68 0 497 0.195 

Vemiew 182 899 2018 2188 0 0 495 0 0.033 

Site to system index 0.258 0.149 0.185 0.160 0.124 0.004 0.094 0.027 

Mean relative connectivity index 0.205 0.199 0.145 0.167 0.105 0.005 0.144 0.03 

\.;J 
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Chapter 2. A model of isolation due to habitat heterogeneity 32 

Figure 2.3. Spatial configuration of site-system interactions for sites 

within the Mitchell region. Connectivity between sites is ranked 

as high (>3% oftotal interactions within the system)lll, 

moderately high (1-3%)0 and low (<1 %)0 . 
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Chapter 2. A model of isolation due to habitat heterogeneity 33 

calculated to determine the relative level of differentiation between each site and 

the remainder of the system (Table 2.2). 

Table 2.2. Mean of pairwise FsT estimates for each site and all remaining sites 

with standard errors of the mean (s.e.m). 

Site FsT s.e.m 

Bow ann 0.04891 0.024 

Clara vale 0.06691 0.033 

Currawong 0.07507 0.032 

Glenalba 0.06755 0.033 

Glenlea 0.06394 0.019 

Pol worth 0.18978 0.045 

Thomlee 0.04294 0.024 

Vemiew 0.18770 0.049 

The mean FsT index was regressed with the independently constructed long term 

relative connectivity index (Figure 2.4). As the indices of both genetic 

differentiation and connectivity are bounded between 0 and 1, all data were 

arcsine transformed. A large proportion of the variation in the genetic structure 

was accounted for by the relative connectivity index derived from the habitat 

heterogeneity model (r=0.84, p= 0.001). The negative relationship between the 

variables shows that the Fst estimate for a site is higher (the site is more 

genetically differentiated) for isolated sites than for highly connected sites. 

2.5 Sensitivity Analysis 

The calculated relative connectivity indices for the Eastern rabbit population 

system account for a large proportion of the variability in the validation data. 

This provides strong support for the model, however this support is thus far 

limited to a single system. It is therefore important to assess the performance of 

the habitat heterogeneity model under a variety of conditions in order to confirm 

its robustness. 
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Figure 2.4. The relationship between population genetic structure (mean 

of pairwise FsT) and relative connectivity indices, with 95% 

pointwise confidence intervals ( ---). FsT and connectivity indices 

are bounded between 0 and 1, and have been arcsine transformed 
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2.5.1 Dense forests 

There are two components to the model of long term connectivity in this system 

(spatial heterogeneity in soil quality and the resistance of dense forest to 

dispersal by rabbits). To determine the contribution of dispersal resistance 

through dense forest, resource quality was removed from the model by ignoring 

spatial variations in soil quality (that is, considering all patches optimal), and 

combining all adjacent patches except for dense forest. Dispersal resistance 

through dense forests accounted for a large proportion of the variation in the 

population genetic data (r2= 0.71, p= 0.008), but gave a poorer fit than the 

complete model that included spatial resource heterogeneity (r2= 0.84, p= 0.001). 

' 
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Chapter 2. A model of isolation due to habitat heterogeneity 35 

Given the large contribution of dispersal resistance through dense forests to the 

fit of the model to the validation data, further analyses were conducted to 

determine the effect of changing the distance through dense forests at which the 

dispersal resistance indices were applied, and changing the form of the dispersal 

resistance indices. For clarity, the values used for all parameters as described 

above (section 2.3) will be identified as standard parameter values. 

It was assumed above that rabbits can freely disperse through dense forests up to 

a distance of 1.5km, with reductions in the number of dispersers occurring 

thereafter. This distance was based on empirical estimates of dispersal through 

vegetation types other than dense forests, and thus can reasonably be considered 

conservative. Dense forests may provide a greater impediment to rabbit 

dispersal, and reductions in the number of dispersers could begin closer to the 

forest edge than 1.5km. To assess this, the distance at which the dispersal 

resistance indices were applied was varied (from the edge of a forest patch up to 

a maximum of 1.5 km). The model was run using all other standard parameter 

values. The fit of the model output to population genetic data was insensitive to 

the distance at which dispersal indices were applied (Figure 2.5). 
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Figure 2.5. Variation in the fit of model output to population genetic data 

when the distance at which the dispersal resistance function is 

applied is changed. 
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Chapter 2. A model of isolation due to habitat heterogeneity 36 

The dispersal resistance function determines the number of dispersers that 

successfully traverse a dense forest patch, and thus has the potential to affect the 

isolation of particular sites. To assess the effect of the relationship on model 

performance, the proportion of a dispersing propagule that successfully traversed 

a dense forest patch was varied. Since the model output is relatively insensitive 

to the distance at which the indices were applied, the standard parameter values 

were used for distance at which indices were applied and for all other parameters. 

The fit of the model is strongly affected by the proportion of disperses which 

successfully traverse dense forest patches (Figure 2.6). 
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Figure 2.6. Two dimensional contour graph showing the distribution of 

coefficients (r2
) obtained from regression of connectivity indices 

(model output) against population genetic data when the dispersal 

resistance function is varied. Contour lines indicate regression 

coefficient isoclines (labelled with regression coefficient values). 
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Chapter 2. A model of isolation due to habitat heterogeneity 37 

Model output is affected by both dispersal resistance indices, but is most strongly 

affected by the proportion of dispersers that successfully traverse dense forest 

distances of greater than 3km. This suggests that the difficulty in traversing a 

dense forest patch increases substantially with the linear distance throught the 

dense forest patch. This is biologically reasonable, since the rabbit is not a forest 

dwelling species (Myers eta!. 1994). 

2.5.2 Population parameters 

To further test the robustness of the habitat heterogeneity model, simulations 

were run keeping resource and dispersal resistance indices constant but using a 

range of growth and dispersal values which are consistent with those found for 

the wild rabbit in Australia (Hone 1999, Daly 1979, Parer 1982). For each 

simulation run, connectivity indices were calculated and regressed against the 

independent population genetic data set (Table 2.2) in the manner described 

above. The model output explains most of the variation in the population genetic 

data across a wide range of population parameter combinations (Figure 2.7). 

The sensitivity of the model output to intial population size in each patch was 

also assessed, by varying initial population size at each source patch between 10 

and 1000 individuals using all other standard parameter values. Model output 

was largely insensitive to initial population size. The coefficient of variation 

decreased smoothly from 0.87 (N1=10) to 0.83 (N1=1000). 

2.5.3 Dispersal paths 

Dispersal paths between sites were chosen to provide an appropriate sample of 

habitat heterogeneity within the Mitchell region. The output from the model 

could be influenced by the choice of paths if particular path combinations 

strongly overrepresented or underrepresented the heterogeneity between site 

pairs. The model was therefore adapted to allow dispersal between site pairs 

along a single dispersal path only, with random selection of this path between 

each site pair. The model was run for 1000 simulations using standard parameter 
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Chapter 2. A model of isolation due to habitat heterogeneity 38 

0.5 

0.4 

0.3 

Figure 2. 7. Two dimensional contour graph showing the distribution of 

coefficients (r2
) obtained from regression of connectivity indices 

(model output) against population genetic data for a range of 

dispersal and growth parameter combinations. Contour lines 

indicate regression coefficient isoclines (labelled with regression 

coefficient values). 
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values. For each simulation run, connectivity indices were calculated and 

regressed against the independent population genetic data set (Table 2.2) in the 

manner described above. Of the 1000 runs, 942 produced connectivity indices 

that explained more than 50% of the variability in the population genetic data 

(Figure 2.8). The mean coefficient of determination across all runs was 0.71. 

9 

The model is relatively insensitive to intial starting conditions (initial population 

size) and other population parameters, dispersal path combinations between sites 

and the distance at which dispersal resistance indices are applied within dense 

forest. The model is thus extremely robust to variations in most parameters. 

However, since the model is designed to test the hypothesis that habitat 

heterogeneity affects connectivity, connectivity indices should show marked 
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Chapter 2. A model of isolation due to habitat heterogeneity 39 

changes in response to variation in habitat heterogeneity variables such as the 

dispersal resistance index. Model output is sensitive to the choice of dispersal 

resistance index chosen between 1.5km and 3km, but particularly to the index 

chosen for tracts of forest of greater than 3km. This is consistent with a scenario 

where extensive tracts of forest provide a substantial impediment to rabbit 

movement, and consequently this analysis supports the logarithmic form of the 

dispersal resistance function. 
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Figure 2.8. Distribution of coefficients of determination (r2
) when using 

a single randomly selected path between each site pair 

combination over 1000 simulations. 
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The model explains a large proportion of genetic structure in the Eastern system 

across a wide range of parameters. This indicates the very strong influence of 

habitat heterogeneity on the pattern of connectivity among wild rabbit 

populations within this region. Any effects of other processes which might 

potentially influence connectivity (such as social behaviour or isolation by 

distance) are therefore likely to be minor in comparison. This is consistent with 

the analysis of Wilson et al (2002) who found that the population genetic 

structuring within this region could not be explained by isolation by distance. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Chapter 2. A model of isolation due to habitat heterogeneity 40 

This also confirms that the observed genetic structure of local populations in this 

system is highly likely to be a consequence of the long term connectivity among 

sites, which in tum is determined by the combined effect of heterogeneity in the 

spatial distribution of soil quality and dense forests. 
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Chapter 2. A model of isolation due to habitat heterogeneity 41 

2.6 Discussion 

Results of the simulation model show that habitat heterogeneity has the capacity to 

substantially influence long term mean connectivity levels among local rabbit 

populations in the study region. The spatial configuration of soil patches of different 

quality and of dense forests led to a wide range of predicted interaction probabilities 

among local populations. Bowann, Claravale, Currawong, Glenalba and Thornlee 

form a group where long term connectivity levels were not only high but similar 

among sites, with connectivity indices ranging between 0.144 and 0.205. These 

results are in accordance with the population genetic data of Wilson et al (2002) that 

show this subset of sites to be panmictic. 

Predicted long term connectivity indices for Verniew and Polworth were very low in 

comparison to this group (0.03 and 0.005 respectively), suggesting that habitat 

heterogeneity has led to the isolation of these populations from the remainder of the 

system. Population genetic data show the strong divergence of these local 

populations from other populations within the study region (Table 2.2), confirming 

their relative isolation. 

Most ecological models to date have highlighted the significance of geographical 

distance or geographical barriers as factors which isolate populations. As shown 

here, within some systems the possibility also exists that differences in long term 

connectivity among local populations may be related to the spatial distribution of 

resources, in addition to landscape elements which inhibit dispersal. It is highly 

probable that differences in long term connectivity among local populations within 

the rabbit population system of southern central Queensland are related to the 

spatially heterogeneous distribution of resources (soils and vegetation) and dense 

forests. 

In this case study the habitat heterogeneity model was validated with population 

genetic data and accounted for over 80% of the variability in population structure. 

Furthermore, the model is very robust, accounting for a significant proportion of the 

variability in population structure over a wide range of parameter values. This 
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Chapter 2. A model of isolation due to habitat heterogeneity 42 

strongly suggests that the habitat heterogeneity model incorporates the major 

processes which have brought about variations in connectivity among local wild 

rabbit populations within the Mitchell region, and thus provides a clear indication of 

the usefulness of the model as a tool for understanding the processes underlying 

regional dynamics. 

Long term connectivity levels can provide an indication of the probability of 

recolonisation after local population extinctions. The Mitchell region is semi-arid, 

and so the probability extinction of local rabbit populations is likely to be 

considerable. Alternatively, extinctions may occur in response to control strategies. 

When an extinction occurs at a highly connected site, it is likely to be rapidly 

recolonised by interactions with extant local populations at other highly connected 

sites. Conversely, the probability of recolonisation at isolated sites (such as Pol worth 

or Verniew) after a local population extinction is likely to be much lower. 

It is also possible to use a habitat heterogeneity model to assess interaction 

probabilities of a single extant population and several vacant sites in the region. This 

situation may mimic the range expansion of a species into a new area or the 

reintroduction of a species into a region after a broad scale (regional) extinction ( eg 

due to bushfire, drought or anthropogenic influences). Such modelling would allow 

for the evaluation of the probability of colonisation of particular sites from an extant 

population (whose genetic composition is known) under a scenario of range 

expansion. 

Extending the habitat heterogeneity model in this way provides an avenue for 

exploring the possibility that two adjacent rabbit population systems in Queensland 

were formed and persist as a result of habitat heterogeneity. The Western rabbit 

population system is genetically panmictic and covers a vast area of Western 

Queensland (Fuller et a/.1996). This system is contiguous with the highly structured 

Eastern rabbit population system (Wilson eta!. 2002), however differences in 

population genetic structure between the two systems cannot be explained by 

geographical distance or topographical barriers (Wilson eta!. 2002). 
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Chapter 2. A model of isolation due to habitat heterogeneity 43 

The population genetic characteristics of the Glenlea site place this local population 

within the Western system, while all other sites included in the case study form part 

of the Eastern system (Wilson eta!. 2002). The predicted connectivity index for 

Glenlea (0.105) showed that the overall interaction of this site with the Eastern 

system was low. While it is likely that strong isolation of a site due to habitat 

heterogeneity will bring about local population genetic differences within a 

population system (such as at Polworth and Verniew), less severe isolating 

mechanisms might also influence the population genetic characteristics of a system 

when a species expands its range. Since the range of the wild rabbit in Queensland 

expanded from west to east (Stodart and Parer 1988) it is reasonable to consider a 

site such as Glenlea, which is in the west and immediately adjacent to the Eastern 

system, as a possible colonising source for this system. The genetic characteristics of 

a system which would result from the colonisation of the Mitchell region from 

Glenlea given the spatial distribution of soil quality and dense forests is considered in 

the next chapter. 
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Chapter 3. Range Expansion of the Wild Rabbit into the Mitchell Region 

3.1 Introduction 

The wild rabbit is a relatively recent arrival to Australia, and its introduction and 

subsequent rapid spread have been well documented (Stodart and Parer 1988). 

While it seems highly probable that long term connectivity levels among rabbit 

populations within the Eastern system are related to the quality and spatial 

distribution of soils and of dense forests, it is important to note that the current 

population genetic structure within any population system can be related to both 

historical and contemporary processes (Slatkin 1985). This may be viewed as an 

interaction between the original genetic structure of populations when they were 

newly colonised and subsequent gene flow among populations within the system 

after colonisation. Given the recent range expansion by rabbits on the Australian 

continent, both colonisation and subsequent interactions among populations may 

well be relevant for interpreting processes which gave rise to the observed population 

structure within the Eastern system. 

If a range expansion progresses as a wave of advance, with a closed front and short 

dispersal distances ( eg Fisher 193 7, Skellam 1951, van den Bosch et al. 1988), new 

colonies would be expected to show little divergence from more established 

populations. However spatial limitations in connectivity can lead to population 

structuring during a range expansion ( eg Ibrahim et a!. 1996, Le Corre and Kremer 

1998). If the spatial distribution of resource quality does act in the long term to lead 

to variations in connectivity among populations (and thus variations in gene flow) as 

was seen in Chapter 2, it may also influence colonisation dynamics of a species 

expanding its range. Using the model of habitat heterogeneity to simulate a range 

expansion of a species into a region allows predictions to be made regarding the state 

of the system both after colonisation, and after subsequent interactions among newly 

established local populations. Comparing these predictions with independent genetic 

data allows for further verification of the assumptions underlying the habitat 

heterogeneity model. 

It is well known that the wild rabbit spread through the south western comer of 

Queensland and continued east into and beyond the Mitchell region (Stodart and 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 45 

Parer 1988). This is of particular interest, given the substantial population genetic 

differences between the Western (panmictic) system and the Eastern (highly 

structured) system (Wilson eta!. 2002). Colonisation of the Eastern system is 

hypothesised to have occurred during a wave of expansion of rabbits from the west 

to the east, followed by successive waves of interaction among the sites within the 

system during expansionary phases related to sporadic favourable environmental 

conditions. Under this scenario, it is possible to extend the model of habitat 

heterogeneity presented in the previous chapter to simulate a range expansion of the 

wild rabbit into the Eastern system, with subsequent population interactions, using 

mtDNA data. 

The specific aims of these simulations were to: 

1. use the habitat heterogeneity model to simulate a range expansion into the 

Mitchell region from a putative colonising Western system local population 

(Glenlea); and 

2. simulate the influence of long term interactions within the Eastern system 

following a range expansion. 

3.2 Model Extension 

The underlying structure of the simulation model of habitat heterogeneity was 

maintained as a series of growth and dispersal events across a landscape (Appendix 

2), and model parameters were identical to those used in the previous chapter. 

During the colonisation phase in these simulations the Eastern region was considered 

vacant and Glenlea was chosen as a point of entry into the Eastern region. This site 

sits on a very large soil patch which abuts the Mitchell region from the north to the 

south. Using Glenlea as an entry point to the Mitchell region thus conforms to the 

known pattern of spread of rabbits from west to east. The genetic constitution of the 

populations at the time of range expansion are unknown, however the western 

population system is panmictic and therefore the pooled frequencies of all known 

western sites (Fuller et al. 1996, Wilson et al. 2002) were used to determine the 

putative genetic constitution of the population at Glenlea (haplotype A=0.64, 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 46 

haplotype B=O.l3, haplotype C=0.23). At the start of each simulation run, the 

population size at Glenlea was set to 100 and the number of individuals carrying 

each of the three haplotypes (A, B and C) was determined by the frequency of that 

haplotype. 

Stochasticity is an intrinsic element of natural processes and so randomness was 

incorporated into the model both at the landscape level, by the choice of dispersal 

path between sites, and at the population level, via (1) the assignment of haplotypes 

to individuals during the population growth phase and (2) the selection of the genetic 

composition of individuals in dispersing propagules. 

The simulations consisted of two discrete phases. The colonisation phase simulated 

movement through resource patches from Glenlea to each of the Eastern sites which 

were initially vacant. This occurred via one of the five dispersal paths between sites 

described in the preceding chapter. This simulation of the colonisation phase 

resulted in the establishment of populations with known haplotype frequencies in 

each of the Eastern sites. In the second (interaction) phase of the simulation, 

dispersing prop a gules were selected from populations at each of the colonised sites 

and moved through resource patches between each site pair in the Eastern system. In 

all patch to patch processes (that is population growth followed by the generation of 

a dispersal propagule ), the genetic composition of individuals was chosen at random 

based on haplotype frequencies. One thousand simulations were performed, each of 

which comprised of a single colonisation phase followed by a single interaction 

phase. After each of these phases the population at each site was scaled to 100 

individuals while maintaining the haplotype frequencies present at the site. 

3.3 Results 

3.3.1 Colonisation Phase 

Some Eastern system sites were more isolated from Glenlea than others due to the 

spatial configuration of soil patches and forests within the region. Most sites had a 

high probability of colonisation during this phase (Table 3.1 ), although Clara vale and 

Verniew were unlikely to be colonised from Glenlea. However, even at sites that 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 47 

showed a high probability of colonisation, there was large variation in proportional 

immigration success. Verniew accepted an insignificant (0.1%) number of 

immigrants with Polworth accepting only a very small proportion (<I%). All other 

sites accepted a small to moderate proportion of immigrants (5%- 20%) with the 

exception of Currawong which accounted for over 40% of the total immigrants 

accepted into the eastern system. Proportional immigration success from Glenlea 

into the Eastern system indicates the isolation of many sites in the Eastern system 

from the Western system, with the most probable entry path being Glenlea to 

Currawong. 

3.3.2 Geographical Distribution of Haplotypes After Colonisation 

Allele distribution was strongly influenced by the distribution of soils and dense 

forests in the region. This was due to sampling effects along dispersal paths that 

resulted in small population sizes related to soil type or filtering effects due to 

dispersal through dense forests. Both of these 'bottleneck' effects acted to increase 

the probability of genetic differences between Glenlea and each of the Eastern 

system sites, due to variations in allele frequencies or exclusion of one or more 

alleles. 

In over half of the colonisation events between Glenlea and the Eastern system sites 

at least one haplotype was excluded (Table 3.2). When bottlenecks occur, low 

frequency alleles are most likely to be lost due to sampling errors (Nei et al. 1975). 

This was indeed the case, with the B haplotype showing the highest probability 

(0.42) of exclusion (Table 3.2). Polworth was again notable since despite a very high 

probability of colonisation of this site (Table 3 .I), the probabilities of exclusion of 

both the Band C haplotypes were far higher than for any other site (Table 3.2). Thus 

it is most likely that Polworth would be colonised exclusively by A haplotype 

individuals. 

As well as the potential loss of alleles, variations in allele frequencies during the 

colonisation phase may have been sufficient to lead to differentiation of each of the 

newly founded Eastern system populations from Glenlea. To assess this possibility a 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 48 

Table 3.1. The success of colonisation from Glenlea with site specific 

propagule characteristics and proportion of the total immigration pool 

accepted into a site over I 000 simulations. 

Site Successful Successes Propagule Proportional 
colonisation per path size immigration 
events success 

Bow ann 793 195 701 
191 754 
209 830 
198 1240 0.18 

Clara vale 410 193 78 
217 780 0.05 

Currawong 1000 199 131 
194 371 
206 2345 
202 2354 
199 3202 0.43 

Glenalba 1000 194 206 
195 254 
213 586 
217 903 
181 1028 0.15 

Pol worth 1000 227 7 
197 15 
202 31 
187 86 
187 102 0.01 

Thornlee 1000 203 7 
209 204 
220 464 
192 898 
176 2056 0.17 

Vemiew 223 223 39 0.002 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 49 

goodness of fit test was used with the Glenlea frequencies ofhaplotypes A, Band C 

(scaled to a population of 1 00) as the extrinsic hypothesis. Regardless of site, an 

extremely high proportion of runs to recipient sites resulted in populations with 

haplotype frequencies different to Glenlea (mean= 90.8%) (Table 3.3). 

Table 3.2. The number of exclusions of each haplotype (A, B or C) from 

propagules during colonisation of each site over 1000 simulation runs. 

Site Successful A B c 
runs absent absent absent 

Bow ann 793 4 347 203 

Clara vale 410 196 110 

Currawong 1000 8 265 140 

Glenalba 1000 266 128 

Pol worth 1000 108 644 508 

Thornlee 1000 68 320 204 

Verniew 223 17 158 114 

Total 5426 207 2196 1407 

Newly founded Eastern system populations were therefore very unlikely to show 

similar allele frequencies to Glenlea (Table 3.3), even when those sites showed a 

high probability of colonisation and accepted a significant proportion of the 

immigrating pool (Table 3.1). 

To assess the likelihood of population genetic similarities among newly founded 

populations within the Eastern system, a contingency table was constructed for each 

run of the model to determine if sites which were colonised during that run within the 

Eastern system were homogenous. If colonisation did not occur at a site on a 

particular run, that site was excluded from the analysis for that run. No simulation 

runs resulted in an homogenous Eastern population system (Table 3.4). 
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Table 3.3. The percentage of successful colonisation runs in which a newly 

founded population showed genetic differences to the Glenlea 

population. 

Site Successful runs Percentage of runs (ll 

Bowann 793 92.8 (736) 

Clara vale 410 95.1 (390) 

Currawong 1000 84.1 (841) 

Glenalba 1000 84.5 (845) 

Polworth 1000 95.4 (954) 

Thornlee 1000 85.1 (851) 

Verniew 223 98.7 (220) 

(1) Number of runs in parentheses 

The results of the colonisation modelling show that colonisation of the Eastern 

system from Glenlea was most likely to result in a system where the A and C 

haplotypes had a high probability of being included in the founder populations at 

most sites, although the C haplotype showed a lower probability of inclusion at 

Polworth. Individuals carrying the B haplotype were the most likely to be omitted 

from founder populations. Furthermore, population genetic differences were likely 

between Glenlea and each of the newly established Eastern system populations, and 

among these populations. These results are consistent with the genetic data of 

Wilson et al.( 2002). 

Table 3.4. The number of colonisation runs in which a genetically 

heterogenous Eastern system was formed(!). 

Simulation runs 

0 

1 

1 

812 

p values 

p ?::0.05 

0.05 > p??: 0.01 

0.01 > p??: 0.001 

0.001 > p 

(1) 186 model runs were excluded due to low expected values 
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3.4 Interaction Phase 

Within the Eastern system all sites showed a high probability of interaction (Table 

3.5). Thus Verniew and Claravale, which were unlikely to be colonised from 

Glenlea (a western system population), were more likely to be colonised from other 

sites within the Eastern system. Although all sites showed a high probability of 

interaction, the proportion of total immigrants accepted varied widely among sites 

during this phase. Bowann, Glenalba, Thornlee and Claravale form a group which 

accepted a moderate to large proportion of the total pool of immigrants (Table 3.5). 

Currawong accepted relatively few immigrants over all simulation runs while 

Verniew and Polworth showed low and very low levels of interaction within the 

system, respectively. This suggests that these latter 2 sites are relatively isolated 

from all other Eastern system sites. 

Table 3.5. Site specific characteristics ofpropagules proportion of the total 

immigration pool accepted at each site during the interaction phase 

within the Eastern system over 1000 simulation runs. 

Site 

Bowann 

Clara vale 

Currawong 

Glenalba 

Polworth 

Thornlee 

Verniew 

Number of 

successes 

1000 

1000 

1000 

1000 

984 

1000 

1000 

Median Proportional 

propagule size immigration 

success 

1780 

10864 

4798 

1076 

2843.5 

2989.5 

109 

3914 

898 

0.13 

0.33 

0.08 

0.18 

0.01 

0.23 

0.05 

The relative isolation of each of the Eastern system sites was further assessed by 

examining the range ofpropagule sizes accepted into the site (Figure 3.1). Most sites 

accepted a large range of propagule sizes, indicating relative isolation from some 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 52 

sites and high connectivity with others. Even Currawong, which accepted a low 

proportion of the total immigrating pool, displayed a bimodal distribution in 

propagule sizes suggesting that this site showed moderate connectivity with at least 

one other site. Verniew showed less variation about a low median propagule size, 

indicating that this site showed low connectivity with other Eastern system sites. 

Polworth was again notable since it accepted propagules that were consistently very 

small (Figure 3 .1). 

Figure 3.1. Distribution ofpropagule sizes (medians and quartiles) accepted 

at Eastern system sites during the interaction phase. Note that where 

the distributions of propagule sizes were bimodal (Bowann, Clara vale 

and Currawong), the distributions were split and box plots created for 

each component distribution (Bowl, Bow2; Clal, Cla2; Curl, Cur2). 

25000 

20000 

5000 

0 

Bow I Clar I Curr I Glenalba Thomlee 

Bow 2 Clar 2 Curr 2 Polworth Vemiew 

Eastern System site 

3.4.1 Geographical Distribution of Haplotypes After Interaction 

The A haplotype was excluded infrequently from propagules during the interaction 

phase and was only absent from sites which showed low to very low connectivity 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 53 

with other sites within the Eastern system (Vemiew and Polworth) (Table 3.6). Even 

at V emiew however, the A haplotype was only absent during a single simulation run 

and at Polworth was absent in less than 3% of the runs. In the long term therefore, 

the A haplotype was highly likely to be included in propagules arriving at all sites. 

Both the B and C haplotypes were excluded much more frequently than the A 

haplotype at all sites. However, at every site except Polworth the B haplotype was 

excluded more than twice as often as the C haplotype. At Polworth, there is a 

significant probability that both the B and C haplotypes would be absent from 

propagules that reach this site. 

Table 3.6. The number oftimes each haplotype (A, Band C) was absent from 

a propagule during the interaction phase. 

Site Successful A B c 
runs absent absent absent 

Bowann 1000 0 169 60 

Clara vale 1000 0 220 75 

Currawong 1000 0 192 72 

Glenalba 1000 0 182 52 

Pol worth 984 27 455 275 

Thomlee 1000 0 156 35 

Vemiew 1000 297 108 

Total 6984 28 1671 677 

Since the model is stochastic alleles, are unlikely to be completely excluded from all 

propagules which reached a site during all simulation runs. However, trends in the 

distribution of relative frequencies of alleles arriving at each site are indicative of the 

relative isolation of a site from the remainder of the system. The frequency 

histogram trends were very similar, both among haplotype distributions within each 

site and among sites (Figure 3.2). This similarity of pattern was particularly evident 

in the skew of the distributions. Skew is a useful measure for assessing the 

asymmetry of a distribution, and is generally considered significant if the ratio of the 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 

skewness statistic to the standard error of skewness (s.e.s) is ±2 (Tabachnik and 

Fidell 1996). 

54 

All haplotype frequency distributions were asymmetric (Table 3.7). The 

distributions of A haplotypes at all sites were significantly negatively skewed, 

showing a tendency towards high positive values. There is thus a significant 

tendency for propagules to contain a high proportion of A haplotype individuals. 

Both the B and C haplotypes were significantly positively skewed at all Eastern 

system sites (Table 3.7), indicating a trend towards low values. The absolute value 

of the skewness ratio ofthe C haplotype distributions at all sites was much greater 

than that of the A haplotype distributions. Most notable, however, was the very 

strong positive skew of the B haplotype distributions. Thus most propagules 

contained a very low proportion of B haplotype individuals. This was most evident 

at V erniew and Pol worth, where the skewness ratios were the largest of any sites. 

The haplotype distributions at these sites were characterised by the very large 

number ofpropagules deficient in the B haplotype (Figures 3.2e and 3.2g). In the 

long term there is therefore a tendency for propagules originating within the Eastern 

system and arriving at other Eastern sites to carry a higher than expected proportion 

of A haplotype individuals, and relatively low proportions of C haplotype 

individuals. There was also a very strong trend towards propagules with a very low 

to zero proportion ofB haplotype individuals. 

Interacting propagules also tended to show characteristics that differed from the 

Glenlea population (Table 3.8). While the medians of the A haplotype distributions 

approximated the proportion of A haplotypes in the Glenlea population, (haplotype 

A=0.64, haplotype B=O.l3, haplotype C=0.23) the medians ofboth B and C 

haplotypes were smaller. This was particularly evident at Polworth where the 

median of the B haplotype was substantially smaller than the proportion of B 

haplotypes at Glenlea. In fact, the proportion of the B haplotype at Glenlea more 

closely approximated the third quartile values rather than the median at all sites, 

indicating very large losses of the B haplotype within the system. 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 55 

Figure 3.2. Histograms of frequencies of Alll, B• and CD haplotypes in 

propagules arriving at Eastern system sites during the interaction phase over 1000 

simulation runs. 
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Figure 3.2 (c) 
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Figure 3.2 (e) 
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Figure 3.2 (g) 
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Table 3.7. Skewness ratios (skewness: standard error of skewness) for each 

of the distributions of frequencies of A, B and C haplotypes arriving 

at Eastern system sites during the interaction phase. 

Haplotype 

A B c 
Bow ann -5.35 20.62 11.88 

Clara vale -6.34 24.30 13.56 

Currawong -4.83 22.42 11.50 

Glenalba -5.52 17.51 12.36 

Polworth -7.67 28.39 14.64 

Thomlee -6.32 16.60 12.89 

Vemiew -6.16 25.04 14.32 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 59 

Table 3.8. Medians, quartiles and ranges for the distributions of haplotype 

frequencies arriving at Eastern system sites during the interaction 

phase. 

Site Ha~lot~~e Median Quartile 1 Quartile 3 Range 
Bow ann A 66 52.75 78 87 

B 8 2 19 82 
c 18 8 32 82 

Clara vale A 67 53 82 96 
B 7 1 16 91 
c 18 7 32 95 

Currawong A 66 52 79 98 
B 8 2 18 78 
c 19 8 31 91 

Glenalba A 66 53 80 96 
B 8 2 18 70 
c 18 8 31 90 

Polworth A 69 48 87 100 
B 3 0 18 100 
c 16 0 35 100 

Thornlee A 66 54 79 98 
B 9 2 18 64 
c 18 9 30 91 

Verniew A 66 50 82 100 
B 7 0 19 100 
c 17 7 32 95 

3.4.1.1. Variation in Dense Forest Patch Sizes 

Dense forests are an important component of habitat heterogeneity in the Eastern 

rabbit population system (Chapter 2). It is likely that the distribution of dense forests 

has had important effects on the distribution of alleles within this system. The 

simulations above were conducted under the assumption that the distribution of 

dense forests in the Mitchell region have been relatively stable since the range 

expansion of the wild rabbit from the west (Stoddart and Parer 1988). Although it is 

difficult to assess the exact extent of any clearing of dense forest in this region, it is 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 60 

possible that dense forest patches were larger at the time of range expansion. To 

account for this possibility, linear dispersal distances through dense forests were 

increased by 50%. All other parameter values were held constant and 1000 

simulations were run to determine the distribution of alleles after interaction. 

Frequency distributions for A, Band C haplotypes (Figure 3.3) were very similar to 

those of the previous simulations (Figure 3.2). All sites again tended to receive 

propagules with a low proportion of C haplotype individuals and a very low 

proportion of B haplotype individuals. As in previous simulations, the haplotype 

frequency distributions at Polworth (Figure 3.3e) and Vemiew (Figure 3.3e) were 

characterised by the very large number of propagules deficient in the B haplotype. 

(a) 

Figure 3.3. Histograms of frequencies of Alii, B• and COhaplotypes in 

propagules arriving at Eastern system sites during the interaction 

phase when dispersal distances through dense forests were increased 

by 50% (1000 simulation runs). 

250 

>-g 150 
Q) 
:::l 
C" 
~ 100 
u. 

Bowann 

Haplotype frequency 
0 
0 ....... 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 61 

Figure 3.3 (b) 
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Figure 3.3 (d) 
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Figure 3.3 (f) 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 64 

There is a strong similarity in pattern of haplotype frequency distributions between 

sets of simulation runs (Figures 3.2 and 3.3). Even when using larger dense forest 

patches, the effects of habitat heterogeneity on connectivity, and on the distribution 

of alleles in the region, are very similar. The current distribution of dense forests in 

the region can therefore be considered sufficient to assess habitat heterogeneity 

effects during range expansion of the wild rabbit into the Mitchell region. 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 

3.5 Discussion 

The results of the simulation model show that the spatial distribution of soil types 

and dense forests across the Mitchell region had substantial effects on the 

65 

partitioning of immigrants within the system during both the initial range expansion 

from the west (colonisation phase) and during subsequent interactions among Eastern 

system sites. In extreme cases the reduction in colonisation potential was sufficient 

to make the possibility of colonisation from Glenlea unlikely (Verniew and 

Claravale). However even at the sites most highly connected to Glenlea, newly 

colonised populations showed significant differences in allele frequencies to those of 

the colonising source. Bottlenecks along dispersal paths were sufficient to induce 

significant differences in allele frequencies between Glenlea and newly colonised 

populations in most simulation runs. 

In approximately half of the newly colonised populations individual alleles 

(particularly the B haplotype) were excluded entirely. This was not unexpected 

given that B was the lowest frequency haplotype at Glenlea and was thus most likely 

to be excluded following population bottlenecks (Nei et al. 1975). These results 

suggest that habitat heterogeneity among sites was sufficient to produce the relative 

isolation of the Eastern system as a whole from Glenlea, and hence from the entire 

Western population system. The results also show that habitat heterogeneity can 

explain the establishment of a population system that is highly genetically structured 

with populations that tended to be deficient in, or show a low frequency of, B 

haplotype individuals. 

Although essentially isolated from the Western system, the results of the interaction 

phase suggests there is potential for high levels of connectivity among some sites 

within the Eastern system and relative isolation of others. Estimated propagule sizes 

among Eastern sites varied widely and indicated substantial habitat heterogeneity 

within the region. Four sites (Bowann, Currawong, Glenalba and Thornlee) clearly 

showed moderate to high levels of interaction with other sites within the system in 

terms of propagule size, and this was reflected in the similarity of the genetic 

constitution of prop a gules arriving at these sites during the interaction phase. 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 66 

During the interaction phase propagules were often large to very large, and tended to 

consist of a high frequency of individuals carrying the A and a low frequency of 

individuals carrying the C haplotype. Propagules also tended to be deficient in B 

haplotype, or to show very low frequencies of this allele. The very strongly skewed 

B haplotype distributions also suggest the tendency for bottlenecks along dispersal 

paths (which resulted from habitat heterogeneity) to further reduce B haplotype 

frequencies within interacting propagules, or to remove the B haplotype entirely 

from propagules. Thus even when B haplotype individuals entered the Eastern 

system at low frequency during colonisation, stochastic events along dispersal paths 

among sites tended to decrease their frequency still further. In the long term, 

moderate to high levels of connectivity among populations at Bowann, Currawong, 

Glenalba and Thornlee are likely to lead to genetic similarities among these 

populations. Each of these populations is likely to consist of a high frequency of 

individuals carrying the A haplotype and a low frequency of individuals carrying the 

C haplotype. Individuals carrying B haplotype individuals may be in a low 

frequency or be absent entirely. 

Claravale and Verniew were more likely to be colonised from within the Eastern 

system than from Glenlea. Claravale experienced the highest level of interaction of 

any of the Eastern system sites and so despite any initial genetic differences when 

newly founded, in the long term the Claravale population would tend to show similar 

haplotype frequencies to the highly connected subset of sites (Bowann, Currawong, 

Glenalba and Thornlee ). In contrast, Verniew experienced low connectivity with the 

remainder of the Eastern system. Thus while Verniew was likely to be colonised 

from within the Eastern system, the genetic structure of the population is unlikely to 

be strongly influenced by interactions within the system through time, and any 

genetic differences with other Eastern system sites may persist. 

Although the overall interaction of Currawong within the Eastern system was only 

slightly greater than that of V erniew, the distribution of propagule sizes arriving at 

the site was bimodal. Thus while Currawong experienced low interaction with most 

Eastern system sites, it probably experienced a moderate level of interaction with at 

least one other Eastern site. Currawong was unlikely to show significant interactions 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 67 

with Verniew or Polworth since these sites experience low to very low interaction 

with all other sites within the system. Currawong was more thus most likely to show 

interactions with one or more of the remaining Eastern system sites (Bowann, 

Claravale, Glenalba or Thornlee). These populations formed a group that are highly 

connected, and so moderate levels of interaction between Currawong and one or 

more of these populations would also tend to lead to genetic similarity over the long 

term. 

Polworth stands out as a site which was highly isolated both during the colonisation 

and interaction phases. Propagules arriving at Polworth were consistently very small 

and were often deficient in B and C haplotype individuals. The Polworth population 

was therefore likely to be fixed for the A haplotype, indicating the isolation of this 

site from other Eastern system sites. 

3.5.1 Comparison of Model Output with Population Genetic Samples 

The model presented in Chapter 2 provides strong support for the effect of habitat 

heterogeneity on the long term relative levels of interaction among sites in the 

Eastern system. Not only does the model of isolation by habitat heterogeneity 

explain the relative connectivity between sites (Chapter 2) but, as shown here, it is 

also able to explain the varied genetic structure of sites within the eastern system. 

By inducing bottlenecks along dispersal paths, habitat heterogeneity has had 

significant effects on both the colonisation and interaction phases that resulted in the 

current genetic structure of the system. Given that the habitat heterogeneity model 

can explain both relative connectivity and genetic structure to such a strong extent it 

suggests that habitat heterogeneity is a major determinant of connectivity within the 

system. The habitat heterogeneity model can thus confidently be used to make 

tentative predictions about the long term characteristics of the Eastern rabbit 

population system. These predictions can then be compared with real data describing 

the current population genetic structure of the Eastern system (Wilson et al. 2002) to 

assess the importance of habitat heterogeneity on dispersal processes between the 

Western and Eastern rabbit population systems, and among populations within the 

Eastern system. These predictions and comparisons are summarised in Table 3.8. 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 68 

Table 3.9. Tentative predictions of genetic characteristics of the Eastern 

rabbit population system based on simulation results with 

comparisons to known state of the Eastern system based on 

population genetic data (Wilson et al. 2002). 

Hierarchical Attribute Simulation Real system 
level Prediction 

Eastern vs Regional Genetic differences Eastern system 
Western population between Glenlea and significantly genetically 
system genetic all Eastern system different from Western 

structure sites system 

Eastern B haplotype Low to zero Absent from all sites 
System frequencies frequency at all sites 

Eastern within region High probability of Significant population 
System population population genetic genetic structuring 

genetic differences within 
structure system 

Within Genetic Genetic similarities Bowann, Claravale, 
Eastern similarities among Bowann, Currawong, Glenalba and 
system among Claravale, Thornlee form a panmictic 

subsets of Currawong, Glenalba subgroup. Polworth and 
Eastern and Thornlee V erniew show significant 
system sites populations likely; differences in allele 

this group likely to be frequencies to this group 
different to Polworth and each other. 
and Verniew 

Site Genetic Polworth highly Fixed for A haplotype 
divergence likely to show very 

low frequencies of B 
and C haplotypes or 
to be fixed for A 
haplotype 

Site Genetic V erniew likely to Verniew has A and C 
divergence haveAandC haplotypes but is 

haplotypes but genetically divergent from 
genetic differences to all other Eastern system 
all other sites sites 
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Chapter 3. Range expansion of the wild rabbit into the Mitchell Region 69 

As Table 3.8 shows, the simulation model is a good predictor of a number of 

population genetic attributes of the Eastern system, from regional differences 

(Western versus Eastern system) to population genetic characteristics at specific 

sites. The heterogenous spatial distribution of resources and dense forests is thus 

highly predictive of the dispersal potential of rabbits both during colonisation of the 

Eastern system from the west and during later interactions among sites. 

The simulation modelling in Chapters 2 and 3 was conducted using a dispersal 

parameter appropriate for female rabbits in the Mitchell region, and most ecological 

models to date have focussed exclusively on the female component of a population 

(Ranta et a/.1999). However, several studies have shown that wild rabbit 

populations may exhibit male biased dispersal (Parer 1982, Webb et al. 1995, 

Kunkele and von Holst 1996) which may affect the relative isolation of local rabbit 

populations within the region. In order to further assess patterns of connectivity 

within the Eastern system, an additional simulation was conducted to account for 

both male and female rabbit dispersal, and will be discussed in the next chapter. 
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Chapter 4. Modelling Male and Female Rabbit Dispersal 

4.1 Introduction 

While theoretical models suggest that dispersal within a subdivided population 

system will affect characteristics such as system persistence ( eg Murdoch et al. 1996, 

Rohani eta!. 1996, Holyoak and Lawler 1996, Hill et al. 2002), in many species one 

sex tends to disperse more than the other. In most avian taxa which have been 

studied dispersal is mainly female biased, while male biased dispersal is more 

common in mammals (Greenwood 1980). A number of studies have established that 

dispersal in rabbits tends to be males biased both in Australia (Dunsmore 1974, 

Daley 1979, Parer 1982, Parer and Fullagar 1986) and in Europe (Kunkele and von 

Holst 1996, Webb et al. 1995). Male rabbits also tend to disperse further than 

female rabbits (Kunkele and von Holst 1996, Richardson et al. 2002). 

An obvious corollary of a male bias in dispersal is that females tend to be 

philopatric. This difference in dispersal tendency between the sexes can impact on 

the dynamics of range expansions (Hengeveld 1989) and on the dynamics of a 

population system once it is established (Hanski and Gilpin 1991 ). Establishment of 

local populations during range expansion or after local extinction requires both sexes 

in dioecious species. The rate of spread of an invasion or the probability of re­

establishment after extinction will therefore be limited primarily by the dispersal 

potential of the philopatric sex. Any sex based differences in dispersal capacity 

might therefore have an important influence on patterns of connectivity 

As seen in the preceding chapters it seems likely that the spatial distribution of 

resources and of dense forests has the potential to influence relative connectivity 

among at least the female component of local rabbit populations within a population 

system in semi-arid Australia. However, a male bias in dispersal of wild rabbits may 

affect patterns of connectivity among local populations when the population is 

considered as a whole. A simulation study accounting for both male and female 

dispersal was therefore conducted to examine patterns of connectivity among local 

populations in the Eastern rabbit population system. 
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Chapter 4. Modelling male and female rabbit dispersal 71 

4.2 Model Application 

To determine the effect of a male bias in dispersal, a simulation was run (habitat 

heterogeneity model, Appendix 1) using a combined male and female dispersal 

parameter which was estimated from the same sources of empirical data as per 

Chapter 2 (Daly 1979 and Table 3 in Parer 1982). Both Daly (1979) and Parer 

(1982) present numbers of male and female dispersers allowing the combined 

dispersal parameter for males and females to be calculated (0.37). In addition to a 

greater tendency to disperse, male rabbits can disperse twice as far as female rabbits 

(Kunkele and von Holst 1996, Richardson et a!. 2002) which may influence their 

dispersal potential through dense forests. To account for this, the distance at which 

the logarithmic decrease function was applied in patches of dense forest was 

increased by 50%. Thus 100% of a propagule dispersed successfully through linear 

distances of dense forest of less than 2.25 km, 10% of a propagule moved through 

linear distances of 2.25 to 4.5 km, and 1% of a propagule was able to disperse 

greater than 4.5 km. All other parameters were identical to those used in Chapter 2. 

4.3 AFLP Study 

Since the dispersal parameter used in the current simulations was an estimate for 

males and females, it was necessary to validate simulation results with a genetic 

marker which is biparentally inherited. For this purpose, Amplified Fragment 

Length Polymorphism (AFLP) markers were screened on rabbit liver samples. 

Samples had been used previously for the estimation of mtDNA haplotype 

frequencies in the Eastern system (Wilson eta!. 2002). The AFLP technique was 

performed according to the protocol of Ajmone-Marsan eta!. (1997). Restriction 

digestion and ligation of adaptors were performed on a Selby dry block heater. 

Approximately 400ng of DNA was incubated with the Taql restriction enzyme for 1 

hour at 65 °C. Taq1 (recognition sequence TCGA) was used as the dominant cutter 

with EcoR1 as the rare cutter. 

After fragments were generated, specific adaptors were ligated to the sticky ends of 

the restriction site with DNA ligase. Ligation of adaptors occurred at 37 °C for 3 

hours. The template DNA created by the digestion-ligation process was then diluted 
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Chapter 4. Modelling male and female rabbit dispersal 72 

1 Ox with TE buffer for use in pre-selective amplification. Amplification procedures 

were undertaken on a programmable PTC-100 (MJ-Research Incorporated). Pre­

selective polymerase chain reaction (PCR) was performed with To 1 and Eo 1 

primers. The following temperature cycle profile was used: 1) 30 cycles of 

denaturing at 94°C for 30 minutes, 2) annealing and extension for 1 hour at both 72 

°C and 56 °C and 3) a final step of 10 minutes at 72 °C. The amplification reaction 

was diluted 1 Ox with TE buffer. 

The three most variableEcoR1/Taq1 primer combinations (E33-T49, E33-T50 and 

E42-T49) were chosen for selective PCR from preliminary analysis (results not 

shown). Fragments were radioactively marked with e3P] -labelled ATP incorporated 

into the newly polymerised DNA as the base adenine. Selective amplification began 

with denaturing for 30 minutes, and annealing and extension at 61.5 °C for 30 

minutes and 72 °C for 1 hour. The 61.5 °C step was reduced by 0.7 °C in temperature 

for every succeeding cycle until 56 °C was reached. 30 cycles of the above cycle 

profile were performed with 56 °C as the final annealing temperature. This was 

followed by a final step of 5 minutes at 72 °C. PCR products were then mixed with 

7ul of gel loading dye and denatured for 3-5 minutes at 95 °C. To ensure that 

contamination did not influence any of the PCR results and that scoring of loci was 

consistent, a control was used each time. 

Polyacrylamide gel electrophoresis (PAGE) was performed on a large gel rig 

produced by Life Technologies. Gels were pre-run for 1 hour and wells were cleaned 

of excess urea prior to sample loading. Reaction products were loaded on a 5% 

polyacrylamide gel and run for 2 hours and 45 minutes in TBE buffer (Tris, boric 

acid, EDTA). Gels were dried onto Whitman blotting paper and exposed to AGF A 

X-ray films for between 20-36 hours. 

The AFLP procedure was performed twice on six initial samples using the same 

primer sets to test if the procedure was reproducible for this species. Samples 

produced reproducible banding patterns at scorable loci. Two individuals scored all 

gels independently and only clearly identifiable loci were used in the analysis. One 
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Chapter 4. Modelling male and female rabbit dispersal 73 

hundred and forty eight (148) putative loci were identified, ofwhich 113 were 

polymorphic and retained for analysis. Pairwise FsT was estimated using Arlequin 

(Schneider et al. 2000), and the mean of pairwise FsT was calculated for each site as 

per Chapter 2 (Table 4.1 ). 

Note that some samples originally used in the study of Wilson et al. (2002) were 

unavailable, which resulted in smaller sample sizes for some populations than the 

mtDNA study (Table 4.1 ). Only 3 samples were available from the Thornlee 

population. This population was therefore excluded from both the current simulation 

study and from the AFLP analysis. Additionally only one population was available 

on the soil patch at which the Glenlea population is located whereas in Chapter 2 the 

haplotype frequencies of 4 populations were combined for genetic analysis. To 

ensure that removal of the Thornlee population and use of a single Glenlea 

population did not significantly impact on the simulation results the simulation was 

rerun using identical parameters to those used in Chapter 2 (i.e. using a female 

dispersal parameter) but excluding Thornlee from both the simulation and genetic 

analysis and using haplotype frequencies for the Glenlea population for genetic 

analysis. All regression analyses were conducted as per Chapter 2. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Chapter 4. Modelling male and female rabbit dispersal 74 

4.4 Results 

Relative connectivity indices for a scenario of female dispersal in the Eastern system 

(excluding the Thomlee population) are shown in Table 4.2. A marginal 

improvement in the fit of the model output to population genetic data under this 

scenario was evident (Figure 4.1) as compared with the fit ofthe model to genetic 

data in Chapter 2 (Figure 2.3; r2=0.84). It is therefore unlikely that the exclusion of 

the Thomlee population and calculation of population genetic statistics (F sT) based 

on a single Glenlea population would significantly impact on the model when 

dispersal from the whole population is considered. 

Table 4.1. Mean of pairwise FsT estimates (with sample size in parentheses) 

and standard errors of the mean (s.e.m) for mtDNA and AFLP's for 

seven sites within the Mitchell region. 

mtDNA AFLP 

Site FsT s.e.m FsT s.e.m 

Bowann 0.05371 (33) 0.031 0.0592 (25) 0.006 

Clara vale 0.07865 (31) 0.04 0.06194 (17) 0.007 

Currawong 0.07604 (31) 0.042 0.06813 (28) 0.008 

Glenalba 0.0734 (30) 0.041 0.07946 (27) 0.011 

Glenlea 0.07754 (42) 0.027 0.0528 (23) 0.008 

Polworth 0.1988 (30) 0.057 0.07236 (14) 0.009 

Verniew 0.20752 (34) 0.059 0.08927 (25) 0.008 
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Table 4.2. Model output matrix under scenario 1 (female dispersal; excluding Thomlee): Number of successful colonisers and relative 

connectivity indices for seven sites within the Mitchell region. 

Bowann Clara vale Currawong Glenalba Glenlea Polworth Vemiew System to site 

index 

Bow ann 0 12955 1402 4087 4446 42 57 0.182 

Clara vale 24136 0 3096 10006 960 162 894 0.311 

Contribution Currawong 1069 931 0 4193 9109 8 614 0.126 

from site Glenalba 6676 6073 8278 0 3391 392 2666 0.218 

to system G1enlea 2982 276 9126 1689 0 50 0 0.112 

Pol worth 130 133 24 638 139 0 0 0.008 

Vemiew 182 899 2018 2188 0 0 0 0.042 

Site to system index 0.279 0.169 0.19 0.181 0.143 0.005 0.034 

Mean relative connectivity index 0.231 0.24 0.158 0.199 0.128 0.007 0.038 

-....) 
VI 
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Chapter 4. Modelling male and female rabbit dispersal 76 

Figure 4.1. Relative long term connectivity indices (female dispersal) versus 

population genetic data for seven sites within the Mitchell region, 

with 95% pointwise confidence intervals ( ---). 
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When combined male and female dispersal was considered (scenario 2), there was 

again a broad range of connectivity indices (Table 4.3), although the pattern of 

connectivity within the system changed considerably when compared with female 

only dispersal (Table 4.2). The connectivity index for Polworth was substantially 

higher than with female only dispersal. While Verniew remained isolated, 

Currawong was more isolated when combined male and female dispersal was 

modelled than for females. Glenlea showed a low probability of interactions with 

other sites for females (Table 4.2), but here was highly connected to the Eastern 

system (Table 4.3). Once again, connectivity indices account for a large proportion 

of the variation in population genetic data ( Figure 4.2). 
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Table 4.3. Model output matrix under scenario 2 (combined male and female dispersal, excluding Thomlee): Number of successful 

colonisers and relative connectivity indices for seven sites within the Mitchell region. 

Bow ann Claravale Currawong Glenalba Glenlea Polworth Vemiew System to site 

index 

Bow ann 0 161959 17415 170994 2634693 5891 6317 0.153 

Clara vale 304612 0 20522 352572 4414948 432910 3779 0.281 

Contribution Currawong 11486 6309 0 157584 1424963 3630 1696 0.082 

from site Glenalba 273689 213757 309872 0 28814 8024 92527 0.047 

to system Glenlea 1689037 1357193 1426013 14618 0 731353 69699 0.269 

Polworth 10697 436567 11475 12809 2385745 0 55670 0.148 

Vemiew 15550 3791 5515 88645 224840 54875 0 0.020 

Site to system index 0.117 0.111 0.091 0.041 0.57 0.063 0.012 

Mean relative connectivity index 0.135 0.196 0.086 0.044 0.417 0.106 0.016 

'I 
'I 
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Figure 4.2. Relative long term connectivity indices (scenario 2: combined 

male and female dispersal) versus population genetic data for seven 

sites within the Mitchell region, with 95% pointwise confidence 

intervals ( ---). 
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Chapter 4. Modelling male and female rabbit dispersal 79 

4.5 Discussion 

In order to better understand the dynamics of regional population systems in which 

habitat heterogeneity can isolate local populations, it is useful to examine any 

differences in dispersal potential between males and females within the system. 

When considering a recently introduced species such as the wild rabbit, such 

differences are likely to have had impacts on the colonisation dynamics of the 

species and to affect the current behaviour of the system. This is particularly likely 

in systems in which extinctions and recolonisations are important, such as in regions 

which are influenced by environmental stochastic effects or in which epizootics ( eg 

Rabbit Haemorrhagic Disease, RHD) can lead to occasional high mortality levels 

within local populations. 

It is informative to examine differences in connectivity indices between female-only 

dispersal (scenario 1), and combined male and female dispersal (scenario 2). As 

both simulations account for females dispersal characteristics, any differences 

between the female only simulation and the combined male and female simulation 

can be attributed to the dispersal of males. Polworth is highly isolated for females, 

but these results show that the site has a substantially higher level of interaction with 

the system for males. This suggests that the probability of recolonisation of this site 

would be low after an extinction event (for instance, due to drought or control 

measures). Even if males were to successfully reach the Polworth site after an 

extinction, establishment of a breeding population (and thus recolonisation) could 

only occur after females had also successfully dispersed to Polworth from other sites. 

This is unlikely given the very low level of female interaction between Pol worth and 

other Eastern system sites. 

Population extinctions may also result from the spread of diseases (Hess 1996). The 

capacity to differentiate between male and female interaction potential is particularly 

useful when considering diseases that are spread by individual contact. While the 

interaction ofPolworth with the remainder of the system is still low for males, it is 

far higher than for females. Thus transmission of the disease to the Pol worth site 

would depend largely on relatively high male dispersal, while recolonisation of the 

site would be constrained due to the lower dispersal potential of females. 
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Chapter 4. Modelling male and female rabbit dispersal 80 

Differences in connectivity indices for males and females are evident not only within 

the Eastern system, but also between Glenlea (a Western system site) and the Eastern 

system. Connectivity indices suggest that interactions between the two systems are 

low for females (Glenlea connectivity index= 0.128; Table 4.1 ). However, the 

current modelling suggests a very high male interaction potential between the two 

systems (Glenlea connectivity index= 0.42; Table 4.3). These differences in 

dispersal potential between males and females are once again likely to impact on the 

dynamics of the Eastern system, both in the recolonisation of the Eastern system if a 

broad scale event brought about a regional extinction (due to limited recolonisation 

potential from the west because of low connectivity for females), and the 

transmission of diseases (high potential for disease transmission from the west due to 

high probability of male interaction between Glenlea and the Eastern system). 

In contrast to Polworth and Glenlea, the isolation ofVerniew from the remainder of 

the system is relatively unchanged regardless of the whether female-only dispersal or 

combined male and female dispersal is considered. Verniew is highly isolated for 

both males and females and so is unlikely to be recolonised after an extinction event. 

Further, the isolation of this site makes it unlikely that a disease would be 

transmitted to the Verniew population, either from the west or from other sites within 

the Eastern system. 

The habitat heterogeneity model accounts well not only for connectivity levels 

among females within the Eastern system (Chapters 2 and 3) but, as shown here, also 

provides an very strong explanation for connectivity levels within the whole Eastern 

population system when appropriate sex specific dispersal characteristics are used. It 

is thus highly likely that the spatial distribution of soils and dense forests within the 

Mitchell region affects both females and males in the Eastern population system, but 

affects them in different ways. This has led to distinct patterns of connectivity for 

males and females. As this chapter has shown, it is essential to determine any 

differences between male and female connectivity patterns in order to fully 

understand dynamics within regional systems. The capacity for the habitat 

heterogeneity model to explain such a large proportion of the genetic structure in the 

Eastern system, for both males and females, confirms the utility of model as an aid to 

understanding the processes which shape regional population systems. 
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Chapter 5. General Discussion 81 

Chapter 5. General Discussion 

Understanding the factors which influence the dynamics of populations is of 

significant interest from both theoretical and management perspectives. While local 

populations will be affected by internal dynamics processes, they may also interact 

within a population system (Andrewartha and Birch 1954, den Boer 1968, Levins 

1970, Pulliam 1988, Hengeveld 1989). Where this occurs, it is necessary to examine 

population systems at a scale broader than that of local populations in order to 

understand important system attributes. 

Dispersal from extant local populations has the potential to bring about the 

colonisation of previously uninhabited territory during range expansion, influencing 

the initial spatial distribution and genetic characteristics of newly established local 

populations. In established systems, high levels of connectivity will tend to 

homogenise demographic and genetic differences among populations that might 

otherwise differentiate due to local environmental conditions and/or genetic drift 

(Slatkin 1985). In addition, high connectivity levels have the potential to alter 

system function. This may occur due to the mitigation of local or broad scale 

extinction processes (Brown and Kodric-Brown 1977, Pulliam 1988), the 

recolonisation of vacant patches after extinctions (Levins 1969) or by increasing the 

transmission rate of diseases (Mollison 1977, Hess 1996). In contrast, local 

populations which exhibit low levels of long term interaction are likely to show 

genetic structuring, and processes buffering extinction are less likely. Connectivity 

levels therefore have the potential to affect the persistence and functioning of 

regional systems (Harrison and Hastings 1996, Hanski and Simberloff 1997). 

Models of population distribution based on different connectivity patterns, such as 

source-sink or metapopulation models, are useful tools to aid in understanding the 

dynamics of real population systems. To be of maximum benefit however, a model 

must capture the major processes underlying the population system in question. In 

contrast to population genetic models, most ecological models to date have not 

considered the potential for interactions in a spatially extended system where 

interactions occur at a scale beyond that of a single dispersal event. In some such 

systems, the spatial distribution of resources which affect key demographic 
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Chapter 5. General discussion 82 

processes (such as population growth) and of landscape elements which impede the 

dispersal potential of individuals are likely to play a role in determining the long 

term mean level of interaction among local populations (Chapter 2). 

While the model of habitat heterogeneity introduced in Chapter 2 can be seen as a 

tentative and relatively simple first step in describing such systems, the model could 

easily be extended to incorporate other features. For example, in the Eastern rabbit 

population system local population extinctions are likely to be correlated due to 

broad scale stochastic effects (periods of drought), and therefore will be relatively 

independent of local population size. In other systems ( eg metapopulations) local 

population size may well be important in determining extinction risk, and thus the 

potential to provide colonisers for adjacent patches along a dispersal path. If patch 

area provides an adequate indicator of population size, an appropriately scaled index 

of patch area could be included in the model for each patch along a dispersal path. 

While assigning indices to patch areas in a way that realistically reflects extinction 

risk may not be a simple process, such parameters are frequently estimated (for 

instance by using Population Viability Analysis). In addition to adding factors, it 

may be reasonable to alter the form of particular variables. For example, in systems 

in which density dependent processes have been shown to be important it would be a 

simple modification to change the growth function used here to one that is bounded 

by the carrying capacity for each patch type. 

Models provide a convenient means for summarising important dynamics processes 

but should be applied judiciously. Even when examining the same species in 

different regions, different processes may impact on population system dynamics. 

The model of habitat heterogeneity provides a very good fit to population genetic 

data (as described by the current level of genetic differentiation) in the Eastern rabbit 

population system, and it is apparent that the spatial distribution of soils and dense 

forests have been important in shaping the characteristics of the system (Chapter 2). 

The Western rabbit population system (Fuller 1996) is genetically panmictic, covers 

a vast region of arid western Queensland and is contiguous with the Eastern system. 

When the model of habitat heterogeneity was applied to the six populations in the 

Western system (Appendix 3), predicted long term mean connectivity indices based 

on soil type show a poor fit to population genetic data provided by Fuller et al 
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Chapter 5. General discussion 83 

(1997)(r2= 0.22, p=0.36) suggesting that connectivity among local populations is not 

affected by habitat heterogeneity in this panmictic system. This is to be expected, 

since in the Western system there are a few, very large soil patches in the region 

(heterogeneity in soil type is low) and there are no dense forests. Interactions among 

local populations in the Western system therefore are unlikely to be impeded by 

habitat heterogeneity. In this population system, dynamics are more likely to be 

related to high rates of local extinction in the highly unstable arid environment 

followed by relatively unimpeded recolonisation, as evidenced by high levels of gene 

flow (Fuller 1996, 1997). 

In systems where habitat heterogeneity influences long term interactions among 

established local populations, it may have also influenced the probability of 

colonisation of sites during a range expansion and thus the initial genetic 

characteristics of newly established local populations (Chapter 3). The spatial 

distribution of resources and viscous landscape elements within a region has the 

potential to affect the characteristics of propagules which seed local populations, and 

thus the characteristics of the local populations arising from those propagules 

(Chapter 3). When the factors which impede the probability of interaction among 

local populations persist through time such population differences are also likely to 

persist (Slatkin 1985). 

Notable population genetic characteristics of the Eastern rabbit population system 

include the absence of the B haplotype which is present in all Western system 

populations, fixation of the A haplotype at Pol worth, and genetic similarities among 

other Eastern populations (Bowann, Claravale, Currawong, Glenalba and Thornlee) 

with substantial population genetic divergence of the V erniew population. Each of 

these features is consistent with a process whereby habitat heterogeneity: 

1) leads to a range of colonisation probabilities from a colonising source; 

2) has the potential to substantial reduce the size of propagules along dispersal 

paths to sites that are colonised, thereby inducing bottlenecks; and 

3) leads to a range of interaction probabilities among local populations in the 

long term, allowing for levels of gene flow sufficient to reduce initial 
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Chapter 5. General discussion 

population genetic differences among some populations and maintain 

differences with others. 

84 

The model is therefore able to determine the influence of habitat heterogeneity both 

during establishment of the system and during subsequent interactions among 

established populations. 

The spatial distribution of resources and viscous landscape elements within a region 

may influence the dispersal capacity of males and females differently. Different 

patterns of connectivity might therefore be exhibited between the male and female 

components of the system (Chapter 4). Such differences are likely to influence the 

dynamics of regional systems, particularly in those systems where natural or 

deliberate extinctions of local populations occur. For instance, female rabbits are 

primarily responsible for the construction of warrens, which are central to the 

establishment of successful populations (Myers et al. 1994). It is thus essential to 

assess the dispersal potential of female rabbits when considering the likelihood of 

recolonisation of a site after a local population extinction. Sites which have low 

levels of female interaction with other populations will consequently have a low 

probability of recolonisation. However, the higher male interaction probabilities to 

some sites within the Eastern system (Chapter 4) is also noteworthy, since the 

transmission rate of diseases which require individual contact are strongly influenced 

by patterns of dispersal (Hess 1996, Grenfell and Harwood 1997, Fulford et a/. 

2002). The difference between male and female dispersal potential to a site such as 

Pol worth suggests that the probability of male mediated transmission of a disease to 

Pol worth would be far higher than the probability of recolonisation of the site, due to 

lower female interaction probabilities. 

In this study, the effects of sex biased dispersal on connectivity among local rabbit 

populations was assessed and showed that, in this system, habitat heterogeneity 

affects the dispersal of males and females differently. Connectivity indices were 

validated using both maternal (Chapter 2) and bi-parental (Chapter 4) genetic 

markers and explained a large proportion of the variation in both data sets. This 

strongly suggests that the habitat heterogeneity model has accounted for the major 
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Chapter 5. General discussion 

ecological processes which affect both male and female dispersal among rabbit 

populations in this system. 

5.1 Management Implications 

85 

Factors which influence dispersal probabilities have the potential to influence the 

sites which are colonised initially during a range expansion, and ongoing 

connectivity levels have the potential to affect population system dynamics due to 

recolonisation and rescue effects. Connectivity levels will also affect the pattern of 

spread of diseases (Mollison 1977, Hess 1996), which may pose threats to 

endangered species (Hess 1996) or act as valuable tools for the management of pest 

species ( eg RHDV). Identifying factors which cause variations in long term 

connectivity among populations is therefore a prerequisite for the effective 

management of regional systems. 

Population genetic data have the potential to be highly informative regarding long 

term levels of interaction among populations. With these data, management units 

(Moritz 1994) can be defined to allow conservation or control efforts to be 

implemented at an appropriate level of scale. However, population genetic data do 

not provide an understanding of the factors which promote or inhibit interaction 

levels. In order to be useful, population genetic data need to be interpreted with 

reference to appropriate models which most closely reflect the system in question. 

Traditionally, island models (Wright 1931, Slatkin 1985) and stepping stone models 

(Kimura and Crow 1964) (which may incorporate geographic barriers) have been 

used for reference. For example, if population system dynamics can be explained 

adequately using a one dimensional stepping stone model the geographic distance 

between demes should explain much of the variability in population genetic data ( eg 

Chenoweth et al. 1998). 

In systems where habitat heterogeneity influences the probability of interactions 

among local populations, it is species' specific factors which influence interaction 

probabilities that should provide guidelines for management efforts. As this study 

has shown, habitat factors can be identified by regional habitat heterogeneity models. 
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Chapter 5. General discussion 86 

To be useful for management, a model must be able to identify critical factors that 

can then be manipulated as appropriate for conservation or control. Also, if it can be 

demonstrated that a model adequately incorporates the major factors and processes 

influencing the population system, as in this study, the model can be used to give 

some general predictions of the effects of such manipulations, or of other contro 1 

strategies such as the deliberate introduction of diseases. These points are best 

illustrated with reference to the Eastern rabbit population system. 

Rabbit control strategies can be categorised as local (intended to affect one or a few 

populations eg warren ripping or poisoning in the case of the wild rabbit) or broad 

scale (intended to affect many populations, such as myxomatosis or RHDV). The 

use of epizootics as broad scale measures to control pest populations has had 

significant short term successes in Australia, and so has been the subject of intense 

scientific scrutiny (Fenner and Fantini 1999, Cooke 2002). Disease outbreaks may 

be difficult to predict since the pattern of spread of a disease may be influenced by a 

number of variables such as transmission vectors and environmental factors such as 

rainfall and temperature (Smyth et al. 1997). If contact among individuals is an 

important means of disease transmission, however, then the level of connectivity 

among populations will influence the regional spread of the disease. Indeed, the 

importance of incorporating rates of local population interaction in epidemiological 

models has been recognised for some time (eg Barlow 1993, 1994, Grenfell and 

Harwood 1997, Fulford et al. 2002). 

On the basis of the spatial distribution of resources (soils) and dense forests in the 

Eastern system, a planned release of a disease would be most effective if 

implemented at a site (or sites) that showed high connectivity with other sites (eg 

Bowann or Claravale ). For instance, the introduction ofRHDV into one or both of 

these local rabbit populations during an appropriate climatic period is likely to 

provide an efficient component of a control strategy since the disease should spread 

rapidly to highly connected sites (Hess 1996). However the disease is unlikely to 

spread rapidly to sites with low connectivity such as V erniew, where localised 

release of the virus or other effective local control methods should be implemented. 
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Chapter 5. General discussion 87 

Diseases such as RHD increase the mortality rate within local populations, and are 

released with the aim of lowering the regional density of the target pest species. 

Increasing mortality in pest populations has a long history, although the deliberate 

introduction of diseases is a relatively recent strategy. It has been suggested, 

however, that it is ethically preferable and more acceptable to the general public to 

reduce the density of pest populations by lowering their fertility via methods such as 

immunocontraception (Barlow 1994, McCallum 1996). Immunocontraception 

involves delivering specific antigens into a recipient animal, with the aim of 

invoking an immune response and rendering the animal infertile (Barlow 2000). 

Baits and genetically tailored viruses are typically considered as potential delivery 

mechanisms. While practical problems exist, and relatively little research into the 

population responses of imposed sterility on target species has been conducted 

(although see Saunders eta!. 2002), immunocontraception ha been promoted as a 

possible means for effective control of pest species. 

Several theoretical models have been developed to examine aspects of 

immunocontraception using viruses as delivery agents, such as the persistence of the 

virus in a population and potential reductions in host density (Barlow 1994, Hood et 

al. 2000). Most models to date have been non-spatial (although see Sato et al. 

1994). If the viral vector used to carry antigens requires individual contact for 

transmission, for instance a sexually transmitted disease, the connectivity among 

local populations within a region will impact on patterns of disease spread. 

Furthermore, it may be important to consider any differences in the dispersal 

potential of males and females of the target species, since this may affect 

transmission rates and the potential for population recovery after control (Ji et al. 

2001 ). Connectivity between Glenlea and the Eastern system was far higher when 

combined male and female dispersal was modelled (Table 4.3) than under a female 

dispersal scenario (Table 4.2). If a viral vector were to spread from the west to the 

Eastern system, greater connectivity would lead higher disease transmission rates 

than if dispersal potential between the sexes was equal. As noted above, this is 

particularly interesting since while disease transmission rates would be largely 

determined by the more vagile sex (males), population recovery (recolonisation, 

rescue effects and rates of population increase) would be constrained since they 

would be governed by more sessile females. 
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Chapter 5. General discussion 88 

When control measures are successful, local population densities or even regional 

densities of a pest species may be markedly reduced in the short term. It has been 

estimated that rabbit population densities reduced by up to 90% after introduction of 

myxomatosis in Australia (Fenner and Fantini 1999), although densities have 

increased subsequently due to attenuation in the virulence of the myxoma virus and 

increased resistance of wild rabbits (Myer et al. 1994, Saint et al. 2001). Rabbit 

Haemorrhagic Disease has shown a more limited, patchy success with densities of 

wild rabbits in some regions reduced substantially after deliberate introductions or 

natural spread of the disease (Bowen and Read 1998, Mutze et al. 1998). If the 

success of control measures varies regionally, the dispersal of colonising propagules 

from less affected regions into highly affected regions may provide a mechanism for 

the re-establishment of pest populations. Although some remnant populations are 

likely to remain within the highly affected region, this process should generally 

emulate a range expansion. If so, and if resource or landscape factors affect long 

term connectivity levels within the region, a habitat heterogeneity model would be 

useful for identifying those local populations which exhibit high levels of 

connectivity with potential source populations. This knowledge could assist in 

establishing efficient monitoring programmes or allow for the early effective 

implementation of control measures. 

Although historically wild rabbits have been a major pest in the Mitchell region, 

rabbit population densities in the region currently are very low (pers. obs.). This 

contrasts with the Western system where deliberate release of the virus has had little 

ongoing effect (Department ofNatural Resources 2001). IfRHDV provides poor 

rabbit control in the Western system the possibility exists that a Western system 

population such as Glenlea could potentially act as a source for the reintroduction of 

wild rabbits into the Eastern system. Monitoring re-introductions of wild rabbits into 

the Eastern system would ideally be conducted at a site such as Currawong which 

showed high potential for colonisation from Glenlea (Chapter 3). Conversely, 

establishing a monitoring site at Verniew is unlikely to be informative. Colonisation 

of this site is likely to occur from within the Eastern system rather than from 

Glenlea, with rabbits required to be established at several sites within the Eastern 

system before colonisation ofVerniew occurred. 
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Chapter 5. General discussion 89 

Control strategies have been traditionally based on the manipulation of critical 

population processes such as mortality. However when local populations interact 

within a system, targeting intrapopulation processes in isolation is unlikely to result 

in effective control. Since dispersal is a key process in regional systems, identifying 

factors which affect dispersal and have the potential to be manipulated should 

provide an important component of management strategies. Two factors 

significantly influence isolation within the Eastern system namely the spatial 

distribution of resources and of dense forests, and the spatial distribution of dense 

forests has the potential to be manipulated. Planting tracts of forest of sufficient 

dimensions would reduce connectivity among local rabbit populations, reduce the 

potential for recolonisation and rescue effects and so increase the probability of 

success of localised control strategies. Certainly this study shows that the retention 

of existing tracts of dense forest is an important component of a long term control 

strategy. 

In conclusion, this study has shown the value of a habitat heterogeneity model to test 

the hypotheses that the heterogeneous distribution of resources and other habitat 

factors can affect long term connectivity levels among local populations within a 

regional system. It is important to note that the validity of the assumptions 

underlying any model can only be assessed with reference to data which reflect the 

same processes the model describes, and are independent of its construction. As 

shown here, population genetic data are extremely useful for assessing female 

(Chapter 2) and male (Chapter 4) levels of interaction among local populations and 

so provide an excellent means of validation of the model, but do not explain the 

factors which cause these interaction levels. 

The habitat heterogeneity model explained well the pattern of long term connectivity 

among local rabbit populations within the Mitchell region which has led to the 

isolation ofVerniew and much higher interaction probabilities at sites such as 

Bowann and Claravale (Chapter 2). The model accounted for most of the variation 

in the genetic data over a wide range of population parameters (Chapter 2). 

Confirmation of the rigour of the model was further provided by a more detailed 

explanation of the genetic characteristics of the Eastern system when the well known 
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Chapter 5. General discussion 

west to east range expansion of the rabbit was modelled (Chapter 3). Not only did 

the model account for specific genetic characteristics of populations within the 

Eastern system (for example, high probability of fixation of the A haplotype at 
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Pol worth and genetic similarities among a highly connected subset of Eastern system 

sites), it also showed a high probability of the loss of the B haplotype when the wild 

rabbit colonised the Mitchell region. All of these characteristics are consistent with 

the genetic data (Wilson et al. 2002). The model therefore gave insight into the past 

and long term processes which have led to the formation and maintenance of the 

highly structured Eastern rabbit population system. 

Differences in the dispersal characteristics of males and females have the potential to 

influence connectivity patterns among local populations (Chapter 4). The habitat 

heterogeneity model showed that Polworth, a highly isolated site for females, is 

much more accessible to males. In contrast, Verniew is highly isolated for both 

males and females within the Eastern system. Thus, not only did the model account 

for female patterns of connectivity within the system but demonstrated that habitat 

heterogeneity influences male and female patterns of connectivity differently. Once 

again variation in the appropriate genetic data set was explained well by the model. 

The habitat heterogeneity model presented in this study explains not only the factors 

which have led to the establishment of a distinct Eastern rabbit population system 

when range expansion is considered, but accounts for over 80% of the variation in 

genetic data when female and combined male and female dispersal was modelled. 

The explanation of such a large proportion of the variability in two genetic data sets 

provides very good evidence that the model is robust and has captured the major 

processes influencing interactions among local rabbit populations in this system. 

The habitat heterogeneity model therefore provides a powerful approach to 

understanding the processes underlying regional dynamics, which highlights its 

utility as a tool to aid in the management of regional systems. 

Recognition that habitat heterogeneity has the potential to influence connectivity 

levels among local populations in some systems will allow for more efficient and 

cost effective management programmes to be developed. In the Eastern rabbit 

population system, identification of relative long term connectivity levels among 
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Chapter 5. General discussion 91 

sites, for both males and females, should allow for the implementation of appropriate 

localised control measures at isolated sites and broad scale measures (such as the 

introduction of RHDV) at more highly connected sites, particularly those sites which 

show high potential for male interaction and low potential for female interaction. 

Connectivity patterns among local populations within a system influence regional 

dynamics in many ways: the transmission of diseases (Hess 1996), rescue effects 

which may buffer populations from adverse influences (Brown and Kodric-Brown, 

1977) and the potential for recolonisation after extinctions. The determination of 

connectivity levels is therefore important for management of species, either of pest 

population or populations which are endangered. For example, although the wild 

rabbit is a pest species in Australia, the spread ofRHDV through its natural range in 

Spain has caused drastic declines in abundance in many regions, prompting calls for 

conservation measures to be implemented (Villafuerte eta!. 1995). The suggestions 

for population control outlined in this study could be easily adapted in a conservation 

context, for example to increase connectivity among local populations if appropriate. 
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Appendix 1: Habitat Heterogeneity Simulation Model 

The habitat heterogeneity model simulates site to site dispersal interactions among 

any number of sites within a population system, with a series of growth and dispersal 

steps among patches between sites. Growth in each patch is determined by a 

resource index based on the quality of major resources in the patch. Dispersal can be 

impeded by habitat factors ( eg dense forests), where the size of dispersing propagule 

is determined by the use of an appropriate dispersal resistance function. 

Al.l Input files 

The habitat heterogeneity model requires a number of input files. 

1. Inputs. txt: Specifies the location of resource files, and includes important 

data for running the model such as the number of sites to simulate, population 

growth and dispersal parameters and the number of paths between sites. 

2. Popfile.txt: Contains the number of sites to test, the number ofhaplotypes 

within the system, site names and known haplotype frequencies at the site. 

This file can be used for the input of haplotype frequencies, and is not used in 

this version of the Habitat Heterogeneity Simulation Model. 

3. Resource files: Files which contain a matrix of resource indices. There is a 

separate file for each resource between each pair of sites. For instance, 

1_2.soi contains the soil resource indices for all patches which are intersected 

by the 5 linear dispersal paths between Bowann and Claravale. Vegetation is 

ignored (indexed as 1) in all patches which do not contain dense forests. 

Vegetation resource indices ( eg 7 _ 6. veg) were adapted to account for the 

linear distance a dispersal path travels through dense forest patches when 

they are encountered (according to the appropriate dispersal resistance 

function) and to remove growth and dispersal processes from dense forest 

patches. 
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Appendices 

A1.2 Output Files 

The habitat heterogeneity model outputs a file for each site to site interaction, 

containing the number of dispersers which reach a site from one other site ( eg 

93 

1 2.001 records the number of individuals that reach Claravale as a result of 

dispersal from Bowann). The number of dispersers which have arrived along each 

dispersal path is recorded in the file separately. Site to site interactions can thus be 

evaluated separately, or can be combined into a matrix to assess interactions within 

the system. 

A1.3 Simulation Model Code 

Comments have been made in bold to clarify sections of the QBasic code. 

Programmers comments follow an apostrophe and are ignored by the programme. 

' Habitat Heterogeneity Simulation Model 
I 

CLS 'clear screen 

'INPUT "Enter input file:", infile$ '---add for user input of filename 
infile$ = "inputs. txt" '---automatic select inputs. txt 

' read in input data 
I 

f=FREEFILE 
OPEN infile$ FOR INPUT AS #f 
LINE INPUT #f, buf$ 
INPUT #f, d 'dispersal constant 

' read in population file 
I 

g=FREEFILE 
OPEN popfile$ FOR INPUT AS #g 
LINE INPUT #g, buf$ 
INPUT #g, nosites 'number of sites 
INPUT #g, nohaplos 'number of haplotypes 
LINE INPUT #g, buf$ 
DIM sitename$( no sites) 
DIM initfreq(nosites, nohaplos) 
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FOR a = 1 TO nosites 
INPUT #g, sitename$(a) 'input sitenames 
FORb = 1 TO nohaplos 
INPUT #g, initfreq(a, b) 'input initial frequencies 

NEXTb 
NEXT a 
CLOSE#g 
LINE INPUT #f, buf$ 
INPUT #f, nopaths 'number of paths between sites 
LINE INPUT #f, buf$ 
INPUT #f, pathtodo 
LINE INPUT #f, buf$ 
INPUT #f, datapath$ 'output path 
datapath$ = R TRIM$( datapath$) 
IF R1GHT$(datapath$, 1) <>"\"THEN 
datapath$ = datapath$ + "\" 
END IF 

LINE INPUT #f, buf$ 
INPUT #f, outext$ 'output filename 
LINE INPUT #f, buf$ 
INPUT #f, nos test 'number of sites to test 
IF nostest > nosites THEN 
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PRINT "ERROR: You are trying to test more sites than appear in the population file 
"; popfile$ 
END 
END IF 
REDIM stest(nostest) 
LINE INPUT #f, buf$ 
FOR a = 1 TO nostest 
INPUT #f, stest(a) 'array of sites to test 

NEXT a 
LINE INPUT #f, buf$ 
INPUT #f, reverse 'is reverse on/off 
LINE INPUT #f, buf$ 
INPUT #f, pntpatch 'print patch details 
LINE INPUT #f, buf$ 
LINE INPUT #f, buf$ 
INPUT #f, popinc ' Growth factor 
LINE INPUT #f, buf$ 
INPUT #f, seed ' Initial population size seed 

CLOSE#f 

PRINT "Habitat Heterogeneity Model " 
PRINT "Initialisation - " + infile$ 
PRINT "Population - " + popfile$ 

PRINT "From- To - Iteration-" 
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1 work out which to sites to test 

FOR s1a = 1 TO nostest- 1 
FOR s2a = s1a + 1 TO nostest 
FOR rev= 0 TO reverse 
IF rev = 0 THEN 
s1 = s1a 
s2 = s2a 

ELSE 
s1 = s2a 
s2 = s1a 

END IF 
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Ensures all site to 
site interactions 
are simulated 

filen$ = LTRIM$(STR$(stest(s1))) +" "+ LTRIM$(STR$(stest(s2))) 

IF pntpatch = 1 THEN 
h=FREEFILE 
OPEN datapath$ + filen$ +".pop" FOR OUTPUT AS #h 

END IF 
i = FREEFILE 
OPEN datapath$ + filen$ + "." + outext$ FOR OUTPUT AS #i 

I 

-------------------------------------------------------
1 determine how many rows of data are in the soil file 
I 

-------------------------------------------------------
o =FREEFILE 
OPEN datapath$ + filen$ + ".soi" FOR INPUT AS #o 
cnt= 0 
DO WHILE NOT EOF( o) 
LINE INPUT #o, 1$ 
IF LTRIM$(1$) <>""THEN cnt = cnt + 1 

LOOP 
CLOSE#o 

1 read in soil data 

g=FREEFILE 
OPEN datapath$ + filen$ + ".soi" FOR INPUT AS #g 
REDIM soi(cnt, nopaths) 
FORa= 1 TO cnt 
FORb = 1 TO nopaths 
INPUT #g, soi( a, b) 

NEXTb 
NEXT a 

Arrays to store 
resource indices 
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CLOSE#g 

1 read in veg data 
I 

g=FREEFILE 
OPEN datapath$ + filen$ + ".veg" FOR INPUT AS #g 
REDIM veg(cnt, nopaths) 
FOR a= 1 TO cnt 
FORb = 1 TO nopaths 
INPUT #g, veg( a, b) 

NEXTb 
NEXT a 
CLOSE#g 

1 read in v 1 data 

g=FREEFILE 
OPEN datapath$ + filen$ + ".v1" FOR INPUT AS #g 
REDIM v1(cnt, nopaths) 
FOR a= 1 TO cnt 
FORb = 1 TO nopaths 
INPUT #g, v1(a, b) 

NEXTb 
NEXT a 
CLOSE#g 

1 calculate no of patches in each path 

REDIM nopatch(nopaths) 
FOR a = 1 TO nopaths 
b=1 
DO 
IF b = cnt THEN 
b = cnt + 1 
EXIT DO 
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A dummy variable 
which could be 
used to add 
additional 
resource indices 
for a region if 
required 

Necessary since 
different paths 
between any two 
sites may consist of 
different numbers 
of habitat patches 
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END IF 
b=b+1 

LOOP WHILE soi(b, a) <> 0 
nopatch(a) = b- 1 

NEXT a 

' calculate combination matrix 

REDIM COMB(cnt, nopaths) 
FOR a = 1 TO cnt 
FORb = 1 TO nopaths 
COMB(a, b)= soi(a, b)* veg(a, b) 

NEXTb 
NEXT a 

' perform single iteration along all paths from x to y 
I 

pathtodo = nopaths 
FOR path= 1 TO pathtodo 

LOCATE 7, 8 'print in same place every run 
PRINT LTRIM$(STR$(s1)) 
LOCATE 7,17 
PRINT LTRIM$(STR$(s2)) 
LOCATE 7, 33 
PRINT LTRIM$(STR$(path)) + 11 11 'print current status 

' calculate initial patch population 
I 

ppop = INT(popinc * COMB (I, path) * seed) 'Growth 

pop=ppop 

' calculate dispersal from patch 1 
I 

disp = INT(pop *d) 
p = 1 'patch is 1 
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The resource index 
for each patch 
crossed by a 
dispersal path, 
incorporating the 
dispersal 
resistance function 
when appropriate 
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'Repeat for remaining patches. 

' go along all patches from site x to y 
t 

FOR p = 2 TO nopatch(path) 
ppop = INT(popinc * COMB(p, path) * disp) 
pop =ppop 

IF pntpatch = 1 THEN 
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Prints details of 
dispersal into each 
patch along a site 
to site dispersal 
path if required 

PRINT #h, filen$ + "," + LTRIM$(STR$(it)) + "," + LTRIM$(STR$(path)) + "," 
+ LTRIM$(STR$(p)); 
PRINT #h, "," + LTRIM$(STR$(disp)) 

END IF 

' print number of dispersers to output file 

IF p = nopatch(path) THEN 
PRINT #i, LTRIM$(STR$(path)); 
PRINT #i, "," + LTRIM$(STR$(disp)) 

END IF 

' calculate dispersers 
t 

disp = INT(pop * d) 

NEXT p ' patch loop 
NEXT path ' path loop 

IF pntpatch = 1 THEN 
CLOSE#h 

END IF 
CLOSE#i 

NEXT rev 'do reverse 
NEXT s2a ' loop to sites 
NEXT s 1 a ' loop from sites 
CLOSE 

Prints the number 
of dispersers into a 
site when the final 
patch is 
encountered 
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Appendix 2. Range Expansion Model 

The basic form of the Range Expansion model is the same as the Habitat 

Heterogeneity model, but here sites within the population system are colonised from 

one or more sources, after which these populations potentially interact. During both 

colonisation and interaction phases, growth and dispersal is affected by the spatial 

distribution of resources and other habitat factors. In this model however, the 

haplotype frequencies at the colonising site(s) are included as a model input, and 

haplotypes are randomly selected during growth and dispersal processes. In this 

study each iteration of the model consisted of a single colonisation phase (dispersal 

from the colonising site to each of the remaining sites in the system) and a single 

interaction phase (interactions among colonised sites), although the model allows for 

multiple interactions among sites for each colonisation phase. The dispersal path 

taken during both colonisation and interaction phases is randomly selected. 

A2.1 Input Files 

Input files are identical to those used in the Habitat Heterogeneity simulation model, 

except: 

(a) the number of colonisations (iterations) to perform is specified in inputs. txt; 

(b) the frequencies of each haplotype at the co Ionising site are input via the 

population file (popfile.txt). Haplotype frequencies for each haplotype for all 

other sites are input as 0; 

(c) Multiple iterations among sites can be performed for each colonisation phase; 

and 

(d) The size of colonised sites before interaction may be set to a different size 

than that of the colonising source (in this study, sizes were always set to 1 00). 

A2.2 Output Files 

The programme generates two sets of output files: 1) the number of individuals of 

each haplotype entering a site from all other sites, and the sum of those individuals; 

and 2) the proportion of the total number of individuals entering the site which carry 
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each haplotype. These are printed to the files during colonisation and the successive 

interaction among sites, for all iterations of the model. 

A2.3 Simulation Model Code 

Comments have been made in bold to clarify sections of the QBasic code. 

Programmers comments follow an apostrophe 

' Range Expansion Model 
' evaluates effect of habitat heterogeneity on connectivity 
' during range expansion 29/8/2001 
I 

CLS 'clear screen 
RANDOMIZE TIMER 'randomise by clock 

'INPUT "Enter input file:", infile$ '--- add for user input of filename 
infile$ = "ipeast.txt" '---automatic select inputs.txt 

' read in input data 
I 

f=FREEFILE 
OPEN infile$ FOR INPUT AS #f 

LINE INPUT #f, buf$ 
INPUT #f, d 'dispersal constant 
LINE INPUT #f, buf$ 
INPUT #f, popfile$ 'population filename 

' read in population file 
I 

g=FREEFILE 
OPEN popfile$ FOR INPUT AS #g 
LINE INPUT #g, buf$ 
INPUT #g, nosites 'number of sites 
INPUT #g, nohaplos 'number ofhaplotypes 
LINE INPUT #g, buf$ 
DIM sitename$(nosites) 
DIM glefreq(nosites, nohaplos) 
DIM initfreq(nosites, nohaplos) 
FOR a = 1 TO nosites 
INPUT #g, sitename$(a) 'input sitenames 
FORb = 1 TO nohaplos 
INPUT #g, glefreq(a, b) 'input initial frequencies 

NEXTb 
NEXT a 
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CLOSE#g 
I 

' finished reading population file 
I 

LINE INPUT #f, buf$ 
INPUT #f, glenit ' colonisation iterator 
LINE INPUT #f, buf$ 
INPUT #f, sysit 'Number of system interactions 
LINE INPUT #f, buf$ 
INPUT #f, nopaths 'number of paths between sites 
LINE INPUT #f, buf$ 
INPUT #f, pathtodo 'path to use O=random 
LINE INPUT #f, buf$ 
INPUT #f, datapath$ 'output path 
data path$ = R TRIM$( datapath$) 
IF RIGHT$( datapath$, 1) <> "\" THEN 
datapath$ = datapath$ + "\" 

END IF 
LINE INPUT #f, buf$ 
INPUT #f, outext$ 'output filename 
LINE INPUT #f, buf$ 
INPUT #f, outext1$ 
LINE INPUT #f, buf$ 
INPUT #f, nostest 'number of sites to test 
IF nostest > nosites THEN 

101 

PRINT "ERROR: You are trying to test more sites than appear in the population file 
"; popfile$ 
END 
END IF 
REDIM stest(nostest) 
LINE INPUT #f, buf$ 
FOR a = 1 TO nostest 
INPUT #f, stest(a) 'array of sites to test 

NEXT a 
LINE INPUT #f, buf$ 
INPUT #f, colsite ' site number of the colonising site 
LINE INPUT #f, buf$ 
INPUT #f, reverse 'is reverse on/off 
LINE INPUT #f, buf$ 
INPUT #f, pntpatch 'print patch details 
LINE INPUT #f, buf$ 
INPUT #f, popinc ' Growth factor 
LINE INPUT #f, buf$ 
INPUT #f, glepop ' Initial population seed for colonising source 
LINE INPUT #f, buf$ 
INPUT #f, syspop 'site population size for each iteration 

CLOSE#f 
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PRINT "Range expansion Model 29/8/200 1" 
PRINT "Initialisation - " + infile$ 
PRINT "Population - " + popfile$ 
PRINT "From- To - Glenit - Sysit- " 

filen3$ = "num" 
1 =FREEFILE 
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OPEN datapath$ + filen3$ + "." + "num" FOR OUTPUT AS #1 

FOR glen= 1 TO glenit 'Number of introductions from Glenlea 

initpath = 0 

filenl$ ="glen"+ LTRIM$(STR$(glen)) 
j =FREEFILE 
OPEN datapath$ + filenl$ + "." + outextl$ FOR OUTPUT AS #j 

filen2$ = "sys" + LTRIM$(STR$(glen)) 
k=FREEFILE 
OPEN datapath$ + filen2$ + "." + outextl$ FOR OUTPUT AS #k 

filen3$ = "disp" + LTRIM$(STR$(glen)) 
1 =FREEFILE 
OPEN datapath$ + filen3$ + "." + outextl$ FOR OUTPUT AS #1 

REDIM systor(nosites, nohaplos)' storage for each eastern system cycle 

r= 1 

FOR sys = 1 TO sysit 'System cycle loop 

IF sys = 1 THEN 
methpop = glepop 'Glenlea seed for 1st iteration 
FOR a = 1 TO nosites 
FORb = 1 TO nohaplos 
initfreq(a, b)= glefreq(a, b) 

NEXTb 
NEXT a 

ELSEIF sys <> 1 THEN 

Uses colonisation 
site frequencies 
during 
colonisation phase, 
otherwise uses 
frequencies at sites 
based on colonised 
populations 
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FOR a= 1 TO nosites 'reiterates frequencies for each subsequent run 
FOR b = 1 TO nohaplos 
initfreq(a, b)= systor(a, b) 
NEXTb 
NEXT a 
methpop = syspop 

' work out which to sites to test 

FOR sl = 1 TO nostest 'to sites loop 

REDIM hapstor(nosites, nohaplos)' stores numbers of each haplotype into a site 

FOR s2 = 1 TO nostest 'from sites loop 

IF s2 = sl THEN 
s2 = s2 + 1 
IF s2 > nosites THEN EXIT FOR 'exits s2 loop 
END IF 
filen$ = LTRIM$(STR$(stest(s2))) + "_" + LTRIM$(STR$(stest(sl))) 

IF pntpatch = 1 THEN 
h=FREEFILE 
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OPEN datapath$ + filen$ +".pop"+ LTRIM$(STR$(sys)) FOR OUTPUT AS #h 
END IF 
i =FREEFILE 
OPEN datapath$ + filen$ + "." + outext$ FOR OUTPUT AS #i 

I 

-------------------------------------------------------
' determine how many rows of data are in the soil file 
I 

o=FREEFILE 
OPEN datapath$ + filen$ + ".soi" FOR INPUT AS #o 
cnt= 0 
DO WHILE NOT EOF( o) 
LINE INPUT #o, 1$ 
IF LTRIM$(1$) <>""THEN cnt = cnt + 1 

LOOP 
CLOSE#o 

' read in soil data 

g=FREEFILE 
OPEN datapath$ + filen$ + ".soi" FOR INPUT AS #g 
REDIM soi(cnt, nopaths) 
FORa= 1 TO cnt 
FORb = 1 TO nopaths 
INPUT #g, soi( a, b) 
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NEXTb 
NEXT a 
CLOSE #g 

' read in veg data 
I 

g=FREEFILE 
OPEN datapath$ + filen$ + ".veg" FOR INPUT AS #g 
REDIM veg(cnt, nopaths) 
FOR a = 1 TO cnt 
FORb= 1 TO nopaths 
INPUT #g, veg( a, b) 

NEXTb 
NEXT a 
CLOSE#g 

' calculate no of patches in each path 
I 

REDIM nopatch(nopaths) 
FOR a= 1 TO nopaths 
b=1 
DO 
IF b = cnt THEN 
b = cnt + 1 
EXIT DO 

END IF 
b=b+1 
LOOP WHILE soi(b, a)<> 0 
nopatch(a) = b- 1 

NEXT a 

' calculate combination matrix 

REDIM COMB(cnt, nopaths) 
FOR a = 1 TO cnt 
FORb = 1 TO nopaths 
COMB(a, b)= soi(a, b)* veg(a, b) 
NEXTb 

NEXT a 

' perform x iterations of site x to y 

' ------------------------------------------------------------
LOCATE 7, 8 'print in same place every run 
PRINT LTRIM$(STR$(s2)) 
LOCATE 7,17 
PRINT LTRIM$(STR$(sl)) 
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LOCATE 7, 33 
PRJNT LTRIM$(STR$(glen)) 
LOCATE 7,46 
PRJNT LTRIM$(STR$(sys)) +" "'print current status 

REDIM hapfreq(nohaplos) 

IF pathtodo = 0 THEN 
path= INT((RND * nopaths) + 1)' select path at random 
ELSE 
path= pathtodo'use path specified in input. txt 
END IF 

IF sys = 1 THEN initpath =path 

' set up initial population based on patch attributes 
I 

' calculate patch pop 
I 

IF sys = 1 THEN 

ppop = INT(popinc * COMB(l, path)* methpop) 

pop=O 

FOR a = 1 TO nohaplos 
hapfreq(a) = INT(initfreq(stest(s2), a) * ppop) 
pop= pop+ hapfreq(a) 
NEXT a 

ELSEIF sys <> 1 THEN 

pop=O 
ppop = INT(popinc * COMB (I, path) * methpop) 

FOR a = 1 TO nohaplos 
hapfreq(a) = distor(s2, a) 'find haplotype freq's in first patch from prev run 

NEXT a 
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FOR a= 1 TO nohaplos determine size of population 
pop= pop+ hapfreq(a) 

NEXT a 

IF ppop > pop THEN 
IF pop > 0 THEN 
REDIM toadd(nohaplos) 'array for new individuals 
FOR ww = 1 TO nohaplos 
toadd(ww) = 0 

NEXTww 
FORa= 1 TOppop-pop 
mum = INT( (RND * pop) + 1) 
tot= 0 
FOR c = 1 TO nohaplos 
tot = hapfreq( c) + tot 
IF mum <= tot THEN 
toadd( c) = toadd( c) + 1 
EXIT FOR 

END IF 
NEXTc 

NEXT a 

'---------------------------------------
' add new individuals to population 

'---------------------------------------
pop=O 
FOR ww = 1 TO nohaplos 
hapfreq(ww) = hapfreq(ww) + toadd(ww) 
pop =pop + hapfreq(ww) 

NEXTww 
END IF 

END IF 

IF pop > ppop THEN 
IF pop > 0 THEN 

FOR a = 1 TO pop - ppop 
mum = INT( (RND * pop) + 1) 
tot= 0 
FOR c = 1 TO nohaplos 
tot = hapfreq( c) + tot 
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If population size 
is greater or 
smaller than that 
based on resources 
and growth factor 
(eg due to 
rounding errors), 
stochastic increase 
or decrease 
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IF mum <= tot THEN 
hapfreq(c) = hapfreq(c)- 1 
pop= pop- 1 
EXIT FOR 

END IF 
NEXTc 

NEXT a 
END IF 

END IF 
END IF 

' calculate dispersal from patch 1 
I 

I 

disp = INT(pop * d) 
p = 1 'patch is 1 

--------------------------------------------------------
' prepare hapfreq of the dispersers into next patch 
I 

I 

fillto = disp ' fill to disp 
nodisper = 0 

-------------------------------------------------------
' randomly select dispersers from initial population 

'-------------------------------------------------------
REDIM dishfreq(nohaplos) 
REDIM sthfreq(nohaplos) 

FOR a = 1 TO disp 
mum = INT( (RND * pop) + 1) 
tot= 0 
FOR c = 1 TO nohaplos 
tot = hapfreq( c) + tot 
IF mum <= tot THEN 
hapfreq( c) = hapfreq( c) - 1 
dishfreq( c) = dishfreq( c) + 1 
pop= pop- 1 
EXIT FOR 

END IF 
NEXTc 

' disperse all individuals 
I 

-------------------------------
IF a= fillto THEN 
REDIM sthfreq(nohaplos) 
FORb = 1 TO nohaplos 
sthfreq(b) = dishfreq(b) 
dishfreq(b) = 0 
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Random selection 
of dispersers from 
patch population 1 
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NEXTb 
END IF 

NEXT a 

FOR a= 1 TO nohaplos 
hapfreq(a) = sthfreq(a) 
sthfreq(a) = 0 

NEXT a 

1 end of dispersal section 
I 

1 go along all patches from site x to y 
I 

FOR p = 2 TO nopatch(path) 

1 calculate patch population 
I 

ppop = INT(popinc * COMB(p, path)* disp) 

I 

----------------------------------------------------
1 increase incoming to the patch pop 
I 

pop=O 
FOR a = 1 TO nohaplos 
pop= pop+ hapfreq(a) 

NEXT a 

1 If last patch, calc no of each haplotype entering 

IF p = nopatch(path) THEN 
REDIM hapin(nohaplos) 
FOR a = 1 TO nohaplos 
hapin(a) = 0 

NEXT a 
FORb = 1 TO nohaplos 
hapin(b) = hapfreq(b) 

NEXTb 

END IF 
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Put dispersers into 
site 
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IF ppop > pop THEN 

IF pop > 0 THEN 
REDIM toadd(nohaplos) 'array for new individuals 
FOR ww = 1 TO nohaplos 
to add( ww) = 0 

NEXTww 
FOR a = 1 TO ppop - pop 
mum= INT((RND *pop)+ 1) 
tot= 0 
FOR c = 1 TO nohaplos 
tot = hapfreq( c) + tot 
IF mum <= tot THEN 
toadd( c) = toadd( c) + 1 
EXIT FOR 

END IF 
NEXTc 

NEXT a 

·---------------------------------------
' add new individuals to population 

'---------------------------------------
pop =0 
FOR ww = 1 TO nohaplos 
hapfreq(ww) = hapfreq(ww) + toadd(ww) 
pop =pop + hapfreq(ww) 

NEXTww 
END IF 
ELSEIF ppop < pop THEN 

IF pop > 0 THEN 
FOR a = 1 TO pop - ppop 
mum= INT((RND *pop)+ 1) 
tot= 0 
FOR c = 1 TO nohaplos 
tot = hapfreq( c) + tot 
IF mum <= tot THEN 
hapfreq(c) = hapfreq(c)- I 
pop= pop- 1 
EXIT FOR 

END IF 
NEXTc 

NEXT a 
END IF 

END IF 

End stochastic population growth 
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Stochastic 
population growth 
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' print patch haplotype frequencies if required 
I 

IF pntpatch = 1 THEN 
PRINT #h, LTR1M$(STR$(g1en)) + "," + LTR1M$(STR$(sys)) + "," + 

LTR1M$(STR$(path)) + "," + LTR1M$(STR$(p)); 
FOR a = 1 TO nohaplos 

PRINT #h, "," + LTR1M$(STR$(hapfreq(a))); 
NEXT a 
PRINT #h, "," + LTR1M$(STR$(disp)) 

END IF 

' print haplotype frequencies to output file 
I 

IF p = nopatch(path) THEN 

FOR a = 1 TO nohaplos 
hapstor(s2, a)= hapstor(s2, a)+ hapin(a) 

NEXT a 

PRINT #i, LTR1M$(STR$(it)); 
FOR a = 1 TO nohaplos 
PRINT #i, "," + LTRIM$(STR$(hapin(a))); 

NEXT a 
PRINT #i, "," + LTRIM$(STR$(disp)) 

END IF 

' calculate size of dispersing propagule 
I 

disp = INT(pop * d) 

Print output for 
last patch 

Calculate size of 
dispersing 
propagule 

IF p <> nopatch(path) THEN 'perform dispersal if not in the last patch 

FOR a = 1 TO nohaplos 'reset dispersing haplotypes 
dishfreq(a) = 0 

NEXT a 

FOR a = 1 TO disp 
mum= INT((RND *pop)+ 1) 
tot= 0 
FOR c = 1 TO nohaplos 

Stochastic 
selection of 
dispersers 
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tot = hapfreq( c) + tot 
IF mum <= tot THEN 
hapfreq( c) = hapfreq( c) - 1 
dishfreq (c) = dishfreq (c) + 1 
pop= pop- 1 
EXIT FOR 

END IF 
NEXTc 

'---------------------------
' disperse all individuals 
I 

-----------------------------
REDIM sthfreql(nohaplos) 
FOR b = 1 TO nohaplos 
sthfreq(b) = dishfreq(b) 
dishfreq(b) = 0 

NEXTb 
END IF 

NEXT a 

FOR a = 1 TO nohaplos 
hapfreq(a) = sthfreq(a) 
sthfreq(a) = 0 

NEXT a 

' end of dispersal section 
I 

IF pntpatch = 1 THEN 
CLOSE#h 

END IF 
CLOSE#i 

NEXT s2 'loop from sites 

REDIM temp(nohaplos) 'temp array for frequency calculation 
FOR a= 1 TO nohaplos 
temp( a)= 0 

NEXT a 
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Calculate numbers 
and frequencies of 
individuals that 
have entered the 
site from all other 
sites 
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FOR a = 1 TO nohaplos 
FORb= 1 TO nosites 
temp( a)= temp( a)+ hapstor(b, a) 

NEXTb 
NEXT a 

IF s 1 = colsite THEN ' prevents further interaction from co Ionising source 
FOR a = 1 TO nohaplos 

temp(a) = 0 
NEXT a 

END IF 

FORb = 1 TO nohaplos 
distor( s 1 , b) = temp(b) 
NEXTb 

sum=O 
x=O 

FOR a= 1 TO nohaplos 'total number into sl site 
sum= sum+ temp( a) 

NEXT a 

IF sum = 0 THEN sum = sum + 1 

FOR a= 1 TO nohaplos 'calc frequency ofhaplotypes 
x =temp( a) I sum 
systor(s 1, a) = x 
x=O 
NEXT a 

PRINT #1, LTRIM$(STR$(glen)) + "," + LTRIM$(STR$(sys)) + "," + 
LTRIM$(STR$(path)) + "," + LTRIM$(STR$(s1)); 

FORb = 1 TO nohaplos 
PRINT #1, "," + LTRIM$(STR$(temp(b))); 
NEXTb 

PRINT#l, "" 

NEXT s 1 ' loop to sites 

r = r + 1 'Glenlea loop counter 
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Print output files 

FOR a= 1 TO nosites 
PRINT #k, LTRIM$(STR$(glen)) + "," + LTRIM$(STR$(path)) + ","; 

LTRIM$(STR$(sys)) + "," + LTRIM$(STR$(a)); 
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FORb = 1 TO nohaplos 
PRINT #k, "," + LTRIM$(STR$(systor(a, b))); 

NEXTb 
PRINT #k, '"' 
NEXT a 

NEXT sys 

FOR a= 1 TO nostest 

Interaction loop 

PRINT #j, LTRIM$(STR$(a)) + "," + LTRIM$(STR$(initpath)); 'print site 
number 

FOR b = 1 TO nohaplos 
IF b < nohaplos THEN 

PRINT #j, "," + LTRIM$(STR$(systor(a, b))); 
ELSE 

PRINT #j, "," + LTRIM$(STR$(systor(a, b))) 
END IF 

NEXTb 
PRINT"" 
NEXT a 

CLOSE#j 
CLOSE#k 
CLOSE #1 
NEXT glen 
CLOSE#q 

CLOSE 
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Appendix 3: Model Application to the Western Rabbit Population System 

The habitat heterogeneity model (Appendix 2) was applied to wild rabbit populations 

in the arid western region using soil classifications (good, intermediate and poor) and 

soil quality indices (1, 0.61 and 0.31 respectively) as per Chapter 2. Soil patches in 

the western region were defined using Western Arid Region Land Use Series 

(W ARLUS) parts 1 and 3 (CSIRO). Growth and dispersal indices were also 

identical to those used in Chapter 2 (7.88 and 0.29 respectively). There were no 

dense forests in this region. 

Six local patch populations in the region were selected to coincide with populations 

sampled by Fuller (1995, 1996, 1997) (Thurloo, Molesworth, Jiggerboo, Nappa 

Merrie, Bundoona and Eyre Creek), and dispersal paths between pairs of populations 

were defined as per Chapter 2. The simulation program was seeded with 100 

individuals at each of the selected sites, and relative connectivity indices were 

calculated (Table A3.1). 

Local populations sampled by Fuller (1995) which occurred on the same soil patch 

were combined for genetic analysis as per Chapter 2 (Thurloo 1, Thurloo 2 and 

Thurloo Bore; Molesworth and Orient; Jiggerboo and Watts). The mean of pairwise 

F sT was calculated for each soil patch population (Table A3 .2) and regressed against 

relative connectivity indices as per Chapter 2. Very little of the variation in 

population genetic data was accounted for by relative connectivity indices (r2=0.22, 

p= 0.36). 
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Table A3 .1 Model output matrix: Number of successful colonisers and relative connectivity indices for six sites within the arid Western region. 

Bundoona Eyre Creek Jiggerboo Molesworth Nappa Merrie Thurloo System to site 

index 

Bundoona 0 15500 4805 15500 4805 15500 0.109 

Eyre Creek 15500 0 15500 50000 15500 15500 0.218 

Contribution Jiggerboo 15500 15500 0 15500 15500 15500 0.151 

from site Molesworth 15500 15500 15500 0 15500 15500 0.151 

to system Nappa Merrie 15500 15500 15500 15500 0 15500 0.151 

Thurloo 50000 15500 15500 15500 15500 0 0.218 

Site to system index 0.218 0.151 0.130 0.218 0.130 0.151 

Mean relative connectivity index 0.164 0.185 0.141 0.185 0.141 0.185 

....... 

....... 
Vl 
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Table A3.2 Mean of pairwise FsT estimates and standard errors of 

the mean (s.e.m) for six sites within the western population system. 

Site FsT s.e.m 

Bundoona 0.0137 0.017 

Eyre Creek 0.0059 0.009 

Jiggerboo 0.0137 0.015 

Molesworth 0.0573 0.014 

Nappa Merrie 0.009 0.008 

Thurloo 0.0275 0.016 
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