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Abstract 

Literally, the word compliance suggests conformity in fulfilling official requirements. 
The thesis presents the results of the analysis and design of a class of protocols called 
compliant cryptologic protocols (CCP). The thesis presents a notion for compliance in 
cryptosystems that is conducive as a cryptologic goal. CCP are employed in security 
systems used by at least two mutually mistrusting sets of entities. The individuals in 
the sets of entities only trust the design of the security system and any trusted third 
party the security system may include. Such a security system can be thought of as a 
broker between the mistrusting sets of entities. 

In order to provide confidence in operation for the mistrusting sets of entities, CCP 
must provide compliance verification mechanisms. These mechanisms are employed 
either by all the entities or a set of authorised entities in the system to verify the com­
pliance of the behaviour of various participating entities with the rules of the system. 

It is often stated that confidentiality, integrity and authentication are the primary 
interests of cryptology. It is evident from the literature that authentication mechanisms 
employ confidentiality and integrity services to achieve their goal. Therefore, the fun­
damental services that any cryptographic algorithm may provide are confidentiality 
and integrity only. 

Since controlling the behaviour of the entities is not a feasible cryptologic goal, 
the verification of the confidentiality of any data is a futile cryptologic exercise. For 
example, there exists no cryptologic mechanism that would prevent an entity from 
willingly or unwillingly exposing its private key corresponding to a certified public 
key. The confidentiality of the data can only be assumed. Therefore, any verification 
in cryptologic protocols must take the form of integrity verification mechanisms. 

Thus, compliance verification must take the form of integrity verification in cryp­
tologic protocols. A definition of compliance that is conducive as a cryptologic goal is 
presented as a guarantee on the confidentiality and integrity services. The definitions 
are employed to provide a classification mechanism for various message formats in 
a cryptologic protocol. The classification assists in the characterisation of protocols, 
which assists in providing a focus for the goals of the research. The resulting concrete 
goal of the research is the study of those protocols that employ message formats to 
provide restricted confidentiality and universal integrity services to selected data. 

The thesis proposes an informal technique to understand, analyse and synthesise 
the integrity goals of a protocol system. The thesis contains a study of key recov­
ery, electronic cash, peer-review, electronic auction, and electronic voting protocols. 
All these protocols contain message formats that provide restricted confidentiality and 
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vi ABSTRACT 

universal integrity services to selected data. 
The study of key recovery systems aims to achieve robust key recovery relying 

only on the certification procedure and without the need for tamper-resistant system 
modules. The result of this study is a new technique for the design of key recovery 
systems called hybrid key escrow. 

The thesis identifies a class of compliant cryptologic protocols called secure selec­
tion protocols (SSP). The uniqueness of this class of protocols is the similarity in the 
goals of the member protocols, namely peer-review, electronic auction and electronic 
voting. The problem statement describing the goals of these protocols contain a tuple, 
(I, D), where I usually refers to an identity of a participant and D usually refers to the 
data selected by the participant. SSP are interested in providing confidentiality service 
to the tuple for hiding the relationship between I and D, and integrity service to the 
tuple after its formation to prevent the modification of the tuple. The thesis provides a 
schema to solve the instances of SSP by employing the electronic cash technology. The 
thesis makes a distinction between electronic cash technology and electronic payment 
technology. It will treat electronic cash technology to be a certification mechanism that 
allows the participants to obtain a certificate on their public key, without revealing the 
certificate or the public key to the certifier. The thesis abstracts the certificate and the 
public key as the data structure called anonymous token. It proposes design schemes 
for the peer-review, e-auction and e-voting protocols by employing the schema with 
the anonymous token abstraction. 

The thesis concludes by providing a variety of problem statements for future re­
search that would further enrich the literature. 
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Chapter 1 

Introduction 
What compliances will remove dissension? 

- JONATHAN SWIFT (1667 - 17 45) 
Democracy is a small hard core of common agreement, 

surrounded by a rich variety of individual differences. 
-JAMES B. CONANT (1893- 1978) 

Human interactions are rife with contradictions. The perception of opposing in­

terests, mistrust and related properties causes such contradictions. Irrespective of its 

application, every technology must inevitably face such contradictions in some man­

ner, which generally employs an acceptable solution, which in tum would be the result 

of an acceptable compromise. The presence of contradictions demands compliance 

mechanisms for the interactions. 

Modem computing systems have greatly eased many monotonous and routine jobs, 

and have created many new modes of comfort, recreation and freedom. Albeit im­

portant, they are one of the many technologies used to assist human interactions and, 

therefore, are not immune to such perceptions, interests and events. Although it will be 

difficult to eliminate the contradictions altogether, it is possible to design interactions 

that could be acceptable to all the involved sets of entities. The study of compliant 

cryptologic protocols will be very useful for such goals. Compliant cryptologic proto­

cols possess verification procedures that allow validation of the behaviour of various 

participants against the system rules. At the same time, the verification equations must 

not adversely affect other security functionalities of the system. Usually, compliant 

cryptologic systems provide a revocation service that can be employed when compli­

ance verifications fail. 

Key recovery and electronic cash systems are specialised forms of cryptologic sys­

tems that have evolved as a response to contradictory requirements in secure commu-

1 
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2 CHAPTER 1. INTRODUCTION 

nication systems. Key recovery systems (KRS) focus on the provision of the confi­

dentiality service in secure communication systems. The sets of participants in KRS 

are the users, the escrow agents and the law enforcement agents (LEA). There exists 

an inherent mistrust between the users and the LEA. The users are interested in the 

setting up of robust confidentiality channels between themselves and the LEA is inter­

ested in revoking the confidentiality service from the channels, in order to eavesdrop 

the communications. Both the LEA and the users must place a prescribed amount 

of trust on the escrow agents to achieve their respective goals. Similarly, electronic 

cash systems provide compliance mechanisms for the contradictory requirements held 

by the authorities and the users. The authorities require strong authentication for all 

valid participating users and the participating users require services that would allow 

them to remain anonymous within the system. Under some circumstances, the author­

ities may additionally require the revocation of anonymity service (tracing) from the 

participating users. In order to implement the tracing functionality the users and the 

authorities must trust a set of trustees. 

Electronic auction systems consist of a set of bidders, a set of auctioneers, and a 

set of trustees. The bidders require the provision of confidentiality service to their bids 

until the closing of the bidding period and the auctioneers require the provision of the 

integrity service to the bids. After the closing of the bidding period, the auctioneers 

require the revocation of the confidentiality service for the bid and the bidders require 

the provision of the integrity service to all the bids. Additionally, anonymity for the 

losing bidders and global verification of the fairness of the bidding process may also 

be required. It is evident that the bids require restricted confidentiality service, until 

the closing of the bidding period, and universal integrity service. Contradiction occurs 

when the bidders are not trusted to reveal the bid or when anonymity service must 

be provided to all participants except the winning bidder. The contradictions can be 

solved when the bidders and the auctioneers trust the set of trustees to either revoke 

the confidentiality of the bid or the anonymity for the bidders. Note that revocation of 

anonymity is, fundamentally, revocation of confidentiality. 

Electronic voting systems are among the most complicated and politically sensitive 

applications of compliant cryptologic protocols. In such systems, the voters require 

the confidentiality service for their votes and the authorities require verification of 
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1.1. GOALS AND CONTRIBUTIONS 3 

the correctness of the votes, before they are tallied. If a vote is incorrect, the voting 

authorities must not learn that a particular voter had cast an invalid vote. Otherwise, 

the privacy of the voters would be in jeopardy. If anonymity is provided to the voters 

then conflicts occur because the authorities require every valid vote to have been cast 

by authenticated voters. The authorities must also be confident that every voter can 

vote only once. 

The concentration of this thesis is on cryptologic systems that require suitable 

forms of compliance mechanisms to engender trust in an otherwise mistrusting sets 

of entities. Inevitably, the mechanisms require acceptable forms of compromise solu­

tions that require all the sets of entities to forgo certain capabilities, in return for other 

capabilities. The methodology of research for this thesis strives to be as apolitical as 

possible to provide solutions for various problems that are acceptable to all the partic­

ipating sets of entities. This approach results in a predominantly technical treatment of 

various issues with minimal policy analysis. The advantage of this approach is a tech­

nique that consists of independent layers of research- namely technical, policy, and 

management research. The technical research provides feasibility, analyses, design and 

evaluation for known problem statements from a technical stand-point that the other 

research concentrations can employ. The problem statements for the technical research 

are provided by policy, management and technical research. 

1.1 Goals and Contributions 

The abstract goal of the thesis is to present the similarities in compliant cryptologic 

systems in an organised manner so that future research can use the data to construct 

design or analysis frameworks for such systems. Due to the vastness of topics in the 

abstract goal, the thesis concentrated on a single category of compliant cryptologic 

systems that provide restricted confidentiality and universal integrity services. Exam­

ples of cryptosystems that possess this pattern are key recovery systems [88] and fair 

electronic cash systems [38]. 

The thesis presents a streamlined approach for the visualisation and organisation 

of cryptologic systems. It visualises the presence of basic services and the finitely 

enumerable combinations in which they may be employed. The analysis and design 
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4 CHAPTER 1. INTRODUCTION 

proposals that result from such an approach are simple and easy to comprehend. Due 

to the simplicity in design, the security analyses of the proposals are considerably 

abstracted. 

The concepts proposed in this thesis have the ability to classify seemingly different 

protocols under a single category, so that advancements in solutions for one protocol 

can be easily applied to other protocols in the category. The concepts abstract the 

effects of contradictory requirements in cryptologic systems. This goal was achieved 

by analysing and enumerating the basic services that all cryptologic systems will use, 

and analysing the effects of contradictory requirements on these services. 

The four related goals in the thesis are as follows: 

1. The development of an informal framework, consisting of the basic services, 

for the analysis of compliant cryptologic systems. This goal is to identify the 

services common to all cryptologic protocols. This information along with the 

manner in which these services are employed will be sufficient to characterise all 

cryptographic operations in a protocol. The identification of such similarities in 

the goals of protocols could be used to group protocols so that a solution for one 

protocol in a group can be applied to all the other protocols. Thus a classification 

of cryptologic protocols based on the cryptographic operations employed will be 

possible. 

2. The development of an informal, conceptual tool for the verification of in­

tegrity service. Since the primary aim of this thesis is the study of cryptologic 

protocols that provide restricted confidentiality and universal integrity services, a 

tool for the study of integrity verification equations is essential. Since there exist 

very few results in the literature for the study of integrity verification equations, 

such as that of Simmons [85], there is a need to develop suitable techniques to 

understand the achievement of various integrity verification equations in a pro­

tocol. Techniques for the study of confidentiality in systems are popular in the 

literature, such as that of Abadi and Rogaway [1]. 

3. The analysis and design of key recovery systems. Key recovery systems pos­

sess the most basic and straightforward form of compliance statement of the 

form: restricted confidentiality and universal integrity services. Thus, key re-
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1.1. GOALS AND CONTRIBUTIONS 5 

covery protocols are the simplest and most general class of protocols that can be 

categorised under this compliance statement. 

4. The analysis, design and usage of anonymous token systems. Anonymous 

token systems (ATS) provide restricted or universal confidentiality service to the 

identity of registered users. Such systems can be used as sub-protocols to solve 

more complex protocols goals, such as those of peer-review, electronic auction 

and electronic voting. A potentially conflicting pair of requirements in such sys­

tems is the need for robust authentication of system participants and the need for 

maintaining their privacy. The protocol specific requirements are achieved by 

designing additional protocols that employ the anonymous authorisation infor­

mation form the ATS. 

The contributions of the thesis are represented by the following list. 

1. A simplified view of cryptologic systems. The goals of cryptologic protocols 

are expressed in terms of the basic services, which facilitate simple analysis and 

design techniques. The simplified view assisted in a clear conceptualisation of 

various protocol goals, which was very useful in the development of various 

protocols presented in this thesis. 

When formalised as a syntax containing the representation for confidentiality 

and integrity services, the view will allow the designer to view protocol goals 

as integrity services, confidentiality services, and as a combination of these ser­

vices. This technique would greatly simplify the analysis and design of complex 

protocols. 

2. Development of informal technique for studying the achievements of vari­

ous integrity verification equations. This technique was employed to design an 

alternative proposal for the Cramer-Shoup cryptosystem [26], which was proved 

to be secure against adaptive chosen ciphertext attack - the strongest form of 

attack on any encryption mechanism. This application demonstrated the useful­

ness of the integrity verification technique (IVT) for the design of new protocols. 

The IVT was also employed for the analysis of an electronic cash proposal and 

a key recovery proposal, which resulted in the identification of fundamental de-
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6 CHAPTER 1. INTRODUCTION 

sign flaws that were not reported in the literature. This application demonstrated 

the application of IVT for analysing protocols for design flaws. 

3. Analysis and design of key recovery protocols. Key recovery protocols are the 

simplest class of protocols belonging to the compliance category of interest for 

this thesis. A new property essential for key recovery systems operating over an 

untrusted, open network was identified. This property was called enforceability. 

The effect of the absence of this property in private-key and session-key recovery 

systems was demonstrated. A new paradigm for software based key recovery 

system that emulated all the properties noticeable in the Clipper proposal [88] 

was presented. This paradigm was called hybrid key recovery. 

4. Abstraction of anonymous token systems (ATS). The electronic cash system 

was analysed using the abstraction. A generic schema that employs the ATS 

to solve a class of protocols called secure selection protocols (SSP) was con­

ceived. Peer-review protocols, electronic auction and electronic cash systems 

were identified to be instances of SSP. The schema conceived as result of the 

previous contribution was employed to solve these instances. The similar solu­

tion provided evidence for the possibility for the collective design of seemingly 

disparate protocols. The solutions also provide evidence for the capabilities of 

the first contribution. 

1.2 Published Material 

All publications were co-authored with Prof. Colin Boyd and Prof. Ed Dawson. The 

list of the papers in a reverse chronological order is as follows: 

1. A Three Phased Schema for Sealed Bid Auction System Design. In Australasian 

Conference for Information Security and Privacy, ACISP'2000, 412-426. Lec­

ture Notes in Computer Science, Springer-Verlag. 

2. Secure Selection Protocols. In International Conference on Information Secu­

rity and Cryptology, ICISC'99, 130-146. Lecture Notes in Computer Science, 

Springer-Verlag. 
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1.3. ORGANISATION 7 

3. Signature Scheme for Controlled Environments. In International Conference on 

Information and Communication Security, ICICS'99, 119-134. Lecture Notes in 

Computer Science, Springer-Verlag. 

4. Strong Binding for Software Key Escrow. In Proceedings of the 1999 ICPP 

Workshops, ICPP'99, Japan, 134-139. IEEE Press, 1999. 

5. Publicly verifiable key escrow with limited time span. In Australasian Confer­

ence for Information Security and Privacy, ACISP'99, 36-50. Lecture Notes in 

Computer Science, Springer-Verlag. 

1.3 Organisation 

The main matter of this thesis can be classified into the following groups: 

'l. Chapters 2 and 3 will present information and tools for the analysis and design 

of compliant cryptologic protocols; 

2. Chapter 4 will deal with the problem of providing restricted confidentiality ser­

vice. Material from Papers 3, 4 and 5 listed in Section 1.2 is included in this 

chapter; and, 

3. Chapter 5 will discuss the mechanisms for the provision of confidentiality ser­

vice for an identity of the participants (anonymity service) and present design 

tools that employ the mechanisms for providing anonymity service to achieve a 

category of protocols called secure selection protocols. Materials from Papers 1 

and 2 listed in Section 1.2 are included in this chapter. 

The first group of chapters present generic information that will be useful for visual­

ising the problem statements in the other two groups. The second group focuses on 

key recovery systems and the third group on systems that could employ the anonymity 

service. 

There are three appendices in this thesis. Appendix B presents the third-party pro­

tocols employed by mechanisms in this thesis. Appendix C discusses the relevant key 

recovery proposals available in the literature. Appendix D details the proposal for a 

fair electronic cash proposal and presents an abstraction of the proposal. 
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Chapter 2 

Compliances in Cryptosystems 
The secret of getting ahead is getting started. The secret 

of getting started is breaking your complex 
overwhelming tasks into small manageable tasks, and 

then starting on the first one. 
-MARK TWAIN 

A complex system that works is invariably found to have 
evolved from a simple system that worked. 

-JOHN GALL 

The protocol logic of modern cryptographic systems is becoming more complex 

with every successful proposal. The complexity hinders precise reasoning, which re­

sults in unclear protocol goals for some applications; this makes analysis and design 

of these protocols more difficult. 

This state of affairs is acute, especially, in the analysis and design of compliant 

systems because a particular service to one group may require the revocation of related 

services from another. Thereby, the very act of providing a service needs clear under­

standing. Of the many areas of interest, the different kinds of services and the manner 

in which they are provided commands significant attention. 

The aim of this chapter is to analyse cryptosystems from a basic and simple view 

point, in order to establish a common ground for the analysis of protocols. The aim 

is accomplished by identifying the atomic (or fundamental) services that any crypto­

logic protocol would provide and developing an understanding of cryptologic systems 

(cryptosystems) based on the atomic services. The result of this aim is to present 

a precise statement of purpose of this research. Also, as a consequence of the aim, 

different properties of cryptosystems, namely, verifiable encryption, compliance, and 

enforceability are identified and explained. 

9 
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10 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

2.1 Introduction: A View of Cryptosystems 

A simple1 and robust view of cryptosystems allows for a simple characterisation of 

cryptosystems, which renders subsequent threads of reasoning about various cryp­

tosystems simple and easy to understand. Traditionally, the art and science of cryp­

tography has been interested in technologies for two basic services, confidentiality and 

integrity, that can be employed in suitable combinations to realise more powerful con­

structs. Thereby, confidentiality and integrity can be considered to be the basic (or 

atomic) services present in all cryptologic protocols. Rueppel [78] presented a similar 

treatment of cryptosystems, but from the perspective of computer security. A similar 

view of cryptosystems can be realised from the perspective of cryptologic protocol 

analysis and design. 

The basic services can be viewed as follows: keys provide a service (confidentiality 

or integrity) with respect to messages. Note the conspicuous absence of the terms 

entity and trust in the view. The concept of "entities" is external to cryptology - it 

can be "believed" or trusted that some keys are "held" by certain entities, but this is an 

extraneous assumption. The importance of entities (like Alice or Bob) is deliberately 

avoided in subsequent definitions and analyses, in order to facilitate a key-centric view 

of cryptosystems2. The reasoning for such an approach follows naturally from the 

importance of keys in modern cryptosystems. 

A cryptosystem can be viewed to be a composition of integrity and confidential­

ity services. Although the confidentiality service is essential for the provision of the 

integrity service, they can be considered, with loss of generality and for the sake of 

simplicity, to be independent. Thereby, cryptosystems can be decomposed into an 

integrity component and a confidentiality component. This decomposition when rep­

resented in a suitable fashion will result in a simple characterisation of the goals of the 

cryptosystem- that is the integrity goal and the confidentiality goal. If a cryptosystem 

possesses deficiencies in either of these goals, then it will possess deficiencies as a 

whole. 
1"There are two ways of constructing a software design: One way is to make it so simple that there 

are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious 
deficiencies. The first method is far more difficult." - C.A.R. Hoare 

2This is in contrast to an entity-centric view, such as that of the BAN logic [14]. 
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2.1. INTRODUCTION: A VIEW OF CRYPTOSYSTEMS 11 

2.1.1 Informal Definitions for the Basic Services 

A suitable high level definition for confidentiality and integrity will be useful in the 

subsequent discussions. At the same time, necessary precautions must be in place that 

would guarantee the definition to be broad enough to encompass all currently available 

technologies (and those that could be available in the future). Since keys are central 

to all cryptosystems, the definitions for integrity and confidentiality will be based on 

keys, messages and ciphertexts. 

Definition 2.1 Confidentiality is the basic service that grants access to a message, 

given the ciphertext and the corresponding key. 

It may be useful to abstract confidentiality as a proposition: if the key is known then 

the message is known. Note that this abstraction does not answer the following ques­

tion with certainty: if the message is known, can the key be known? The truth table 

for.the implies(~) boolean operator suggests that the key can either be known or un­

known, when the message is known. The truth-table does not unambiguously answer 

the question. Let K be a boolean value denoting the knowledge of the key and M be 

a boolean value denoting the knowledge of the message, then the following equation 

represents confidentiality: 

Note that the ciphertext represents the confidentiality service, therefore the above equa­

tion is a logical representation of any ciphertext. The confidentiality mechanism is 

an atomic service that could be employed as a logical access control node. In other 

words, the ciphertext controls the access to a message using the corresponding key(s ). 

Since, in most practical confidentiality systems, a message can also be a key, a one­

way function can be viewed as an access control mechanism with the same value for 

the message and the key. For example, a symmetric key cipher such as DES or AES 

will be a one-way function with the key string equal to the message string. As Diffie 

and Hellman [31] noted, every confidentiality rendering system tends to possess the 

one-way property, irrespective of whether it is a public-key or a private-key system. 

Definition 2.2 Integrity is the basic service that determines the immutability of a mes­

sage, given the message, the ciphertext and the corresponding key. 
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12 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

Since the integrity service is usually modeled as a verification equation, the integrity 

process takes three inputs (the key, the ciphertext and the message) and produces a 

single, binary output to signal mutability or immutability. When there exists a bijection 

between the message and the ciphertext, the message input to the integrity process may 

be the information describing the bijection, rather than the message itself. Since, most 

of the currently used technologies base their behaviour on the bijective behaviour of 

the underlying mathematical structure, this approach is widely used. For example: 

1. in the discrete log settings, given a public key y = gx mod p, where p is a 

suitable prime, X E z; is the private key and g E z; is an element (which could 

be a generator): there exists a bijection between y (the ciphertext) and x (the 

plaintext), or more precisely the equivalence class X = { x I y = gx mod p}. 

Thus given y the verifier can draw logical conclusions about X; 

2. in the case of symmetric key encryption algorithms, the bijection between the 

plaintext and ciphertext is crucial for proper decryption behaviour. 

The analysis will regard confidentiality and integrity to be independent services, 

and will aim to decompose the cryptosystem to obtain two views - representing views 

for the integrity and the confidentiality services. These views can be analysed to gain 

better understanding of the protocol, which will be useful for the analysis and optimi­

sation procedures. 

Menezes, von Oorschot and Vanstone [62] additionally list authentication and non­

repudiation as basic goals of cryptosystems. The omission of these services, here, will 

not affect the goals because authentication and non-repudiation employ confidentiality 

and integrity services, in tum, to achieve their results. For example, a signature system 

provides confidentiality service for the private key of the signer3, and integrity service 

for the verifier, for a message - by employing the message, the set of public keys, and 

the information about the bijection between the set of private keys and the set of public 

keys. The random numbers that some signature systems may use can be modeled 

either into the message to be signed or the public-private key pair. Such approaches 

will either result in a signature on a randomised message or, a signature employing a 

randomised short-term key pair derived from the certified long-term key pair. 
3No entity may compute the private key given the value of the public key (PrivateKey =? 

PublicKey) or the signature ciphertexts (PrivateKey =? SignatureCiphertexts) 
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2.1. INTRODUCTION: A VIEW OF CRYPTOSYSTEMS 13 

The sources of random numbers are crucial for many modem protocols. Hence, 

it may be argued that random number generation is a basic service. This argument 

has its merits and demerits. A demerit is that it tends to complicate the representa­

tion of protocols (cryptosystems), which needs simplification. So, this aspect must 

be accommodated in the representation at a higher level. In order to accomplish such 

a goal, a precise understanding of the role of random numbers will be very useful. 

The importance of random numbers (or pseudo-random numbers) in contemporary 

cryptography is a direct consequence of the basic nature of cryptosystems. A random 

number is unpredictable, thereby its confidentiality is guaranteed until its generation 

(or until the termination of the generation process): no entity, including the generator, 

should be able to predict the number. Thus, random number generators are tools, like 

encryption-decryption algorithms, for implementing confidentiality, which is a basic 

service. Abadi and Rogaway [1] discuss the modelling of the confidentiality service 

from a prositional calculus and complexity point of view. Their discussion suggest a 

strong similarity between the two approaches. 

2.1.2 Composition of Cryptosystems 

Observing the definitions for confidentiality (Definition 2.1) and integrity (Defini­

tion 2.2), it is evident that: 

1. confidentiality is a proposition represented by ciphertexts; and, 

2. integrity is a test (or diagnosis) on the relationship between a ciphertext and 

message. 

Confidentiality, by itself, is not a test, rather it is a proposition about the access to 

a message given the knowledge of a key, which is usually intended to be private. Thus 

confidentiality represents the private view of the cryptosystem (the view that is avail­

able only when a key is available). Note that the relationship between the ciphertext 

and the message cannot be determined because a single ciphertext can provide access 

to different messages (views) when different keys (accesses) are employed. For exam­

ple, suppose a message m 1 is encrypted employing the key k1 to obtain a ciphertext c1 . 

If the ciphertext c1 is decrypted using another key k2 that is unrelated to k1 , the result 
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14 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

will potentially be a random message m 2 that would be unrelated to m 1 . The confiden­

tiality view represents the trusting environment, where all the entities participating in 

the protocol know and trust the relevant keys, and their associations with correspond­

ing entities. In fact, there would be no other choice because this view presents only 

propositions and no diagnoses or tests that can be verified. 

Integrity is a diagnostic tool that can be used to verify the relationship between a 

message, a ciphertext and a key. It provides a binary answer to signal relationship or 

lack thereof. Thus, integrity can be viewed to be the mutability of the relationship 

between the message and the ciphertext based upon the assumptions on mutability of 

the key. Unlike the confidentiality service, the relationship between a ciphertext and 

a message can be precisely determined given the knowledge of a key. If the key is 

·. public then the view is public, else it is private. This view represents the mistrusting 

environment where, by Definition 2.2, every entity needs to check the relationship 

between the message and the ciphertext. Although the entities can assign propositions 

to various diagnoses, this view contains diagnoses alone and no propositions. This 

is a crucial observation that is important for protocol designers who use the protocol 

constructs of other designers. A construct may robustly provide a diagnosis but it is 

up to the protocol designer to meaningfully interpret, or assign correct proposition or 

propositions to the diagnosis. 

The complete cryptosystem is a combination of confidentiality and integrity ser­

vices such that there are propositions and diagnoses. Propositions and diagnoses can 

be unrelated or related. Usually, though, related tuples of propositions and diagnoses 

are more interesting from the perspective of a protocol design. The related tuples can 

be thought of to be the glue that binds different confidentiality constructs (proposi­

tions) and integrity constructs (diagnoses). In most cases of deficient protocols, the 

failure can be traced to an unrelated tuple of propositions and diagnoses that was mis­

interpreted as related. That is, incompatible or incorrect propositions were assigned to 

some of the diagnoses. 

Thus a cryptosystem has a propositional view and a diagnostic view. The proposi­

tional view, inherently, cannot be tested and the diagnostic view is solely for testing. 

This decomposition of cryptosystems allows us to view a cryptosystem: 

1. purely as a propositional system; 
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2.1. INTRODUCTION: A V.IEWOFCRYPTOSYSTEMS 15 

2. purely as a diagnostic system; and, 

3. as a system with a combination of propositions and diagnoses. 

The first two views are useful to perform simple, first-hand analyses of the (propo­

sitional or diagnostic) achievements of the cryptosystem and the third view is useful 

to analyse the correctness of the synthesis of these achievements. If there is a defi­

ciency in either of the first two views, then the third view will have a deficiency, but 

not necessarily the other way around. 

In the case of public key cryptosystems we can, usually, treat the propositional view 

as a private view and the diagnostic view as a public view, based on the knowledge of 

a key. 

2.1.3 A Characterisation of Cryptosystems 

In< this section, various terms to be used in the definition of cryptosystems will be 

clarified, followed by the definition itself. 

• Security Object: is a collection of functionally related ciphertexts that provide 

the confidentiality service to a set of messages using a set of keys. A system 

may have many security objects. Examples are public keys (identity), session 

keys, electronic coins and ticket-granting tickets in authentication schemes like 

Kerberos. 

• Node: is a collection of entities. While in the sending mode the node is inter­

ested in the confidentiality, or preserving the confidentiality, service of a set of 

security objects. While in the receiving mode the node is interested in the in­

tegrity service of a set of security objects and/or accessing the messages in some 

(or all) of the ciphertexts. 

• Source: of a security object is the node that created the security object in its 

entirety - that is the source must form all the ciphertexts corresponding to that 

security object. 

• Sink: of a security object is the node that is the intended target entity and has 

access to the message in some or all of the ciphertexts in the security object. 
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16 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

• Message Format: is a logical container that contains security objects and related 

ciphertexts for the ve1ification of the integrity of the message format. 

Definition 2.3 A cryptosystem contains at least one security object and a source. 

There must be at least a single security object and a source (to form the security object) 

to cause any subsequent events, if any, to occur. Note the conspicuous absence of a 

requirement for a sink in the definition. This is to encompass those systems that may 

lock information forever, which are valid cryptosystems. 

2.2 Verifiable Encryption 

As stated in the previous section, the confidentiality view presents only propositions 

and no diagnoses that can provide proofs for the propositions. There are many applica­

tions that require the verification of the message format by a node other than the source 

or the sink. For example, publicly verifiable secret sharing schemes [86, 3] may require 

a monitor (a node) to verify the ciphertexts sent by the dealer of the secret (the source) 

to a shareholder (the sink), in order to ascertain that the shareholder will obtain a valid 

share. Similar examples are available in key-recovery [90], e-cash [12], e-voting and 

e-auction [91] systems. 

Verifiable encryption techniques are primarily concerned with the formation of spe­

cialised message formats that contain security objects produced by some confidential­

ity system (such as an encryption algorithm) and diagnostic data for some integrity 

verification system. Stadler [86] proposed a form of verifiable encryption to achieve a 

publicly verifiable secret sharing scheme, which provided a public diagnosis about a 

proposition regarding the encryption of individual secret shares. The goal of the ver­

ifiable encryption scheme [86] was the design of a message format that contained the 

following components: 

Confidentiality: Security object of the ith secret share c1i = Enc(keyi, sharei) and 

Czi = f(sharei), where f is a one-way function, and the ciphertext protecting 

the secret, c2 =!(secret); and, 

Integrity: The ciphertexts of the message formats contained data for the following 

diagnosis (integrity checks); 
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2.2. VERIFIABLE ENCRYPTION 17 

1. The message component of c1i and c2i are equal; and, 

2. The message component of c2i satisfies a relationship with c2 , and all the 

otherciphertextsc2j = OneWayFunction(sharej J i,j E A),whereAis 

a pre-defined access-control structure. 

Note that the confidentiality and integrity views are not disjoint- as both the views 

contain the ciphertexts c1i, c2i and c2 : so the compositional view is the union of the in­

dependent views. Many other proposals for verifiable encryption have been proposed, 

with or without explicitly identifying them with this terminology. This section will 

present different forms of verifiable encryption. 

Verifiable encryption can be considered to be a method for associating a message 

with a key, and thereby the ciphertext, without revealing the message. A brief classifi­

cation of verifiable encryption techniques will be useful for the analysis and synthesis 

of,,yerifiable encryption schemes. The next sub-section will present a classification for 

publicly verifiable encryption schemes. 

2.2.1 A Classification of Publicly Verifiable Encryption Schemes 

Publicly verifiable encryption is a technique to allow the prover to encrypt a message, 

m, usually, under the public key, y, of a receiver to obtain. a ciphertext, E, and prove 

to any verifier that m in E has a particular property, without revealing additional 

information (as defined by the primitive) about m. 

The classes of publicly verifiable encryption that can be listed are: 

Class 0: (Commitment for encrypted message) Given the one-way image of ames­

sage and the encryption of the message, prove that the pre-image of the one-way 

image is equal to the decryption of the encrypted message. That is: 

(PROOFEQ(O(m) = O(Dec(Enc(m)))), O(m), Enc(m) 

where 0 is a one-way function (or a suitable commitment function) and Enc is 

a public key encryption function such that Dec is the decryption function, which 

can be efficiently computed only with the knowledge of a corresponding private 

key. PROOFEQ is a proof of equality. It can be observed that: 

1. O(m), Enc(m) are the propositions; and, 
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18 CHAPTER 2. CO!viPLIANCES IN CRYPTOSYSTEMS 

2. (PROOFEQ(O(m) = O(Dec(Enc(m)))) is the diagnosis. 

Given a ciphertext Enc(m) and the one-way image of the message, O(m), mech­

anisms in this class allows for the proof of equality of the pre-image of 0 ( m) 

and the decryption of the ciphertext, if that is the case. Stadler [86] and, Asokan, 

Shoup and Waidner [3] employed this class to design a publicly verifiable secret 

sharing protocol and a fair exchange protocol, respectively. 

Class 1: (Equality of encrypted message) Given two ciphertexts4 under different keys, 

prove that they encrypt the same message. That is: 

where Deci is the decryption function corresponding to the encryption function 

Enci such that Deci can be computed only by entity i and, PROOFEQ is the 

transcript of a proof system for equality relationship. It is important to note that 

Dec1 and Dec2 may use similar or different encryption algorithms. 

1. Enc1 ( m), Enc2 ( m) are the propositions; and, 

2. (PROOFEQ(Dec1 (Enc1(m)) = Dec2 (Enc2(m)))) is the diagnosis. 

Proposals belonging to this class provide mechanisms to allow a single mes­

sage to be encrypted for two (or more) parties and prove this. Note that the 

definition for this class and Class 0 mechanisms are identical if we replace the 

one-way function, 0, with an encryption function - or in other words, a com­

mitment scheme is a generic encryption function such that nobody knows the 

corresponding decryption function. Frankel and Yung [38] and, Verheul and van 

Tilborg [89] employed this class to design a fair off-line e-cash system and a 

binding ElGamal proposal, respectively. Note that Enc 1-Dec1 and Enc2-Dec2 

need not be similar cryptosystems. In fact, the decryption mechanism (of one of 

the cryptosystems) need not even exist. 

Class 2: (Membership of message) Given a ciphertext prove that the encrypted mes­

sage is a member of a pre-defined set. That is: 

(PROOFIN(Dec(Enc(m)) EM)), Enc(m), M 
4Extension to more than two ciphertexts can be easily derived from the basic form. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



2.2. VERIFIABLE ENCRYPTION 19 

where M is a finite set of messages and PROOFIN is the transcript of the proof 

system for the membership relationship (of m E M). Here: 

1. Enc(m) is the proposition; and, 

2. (PROOFIN(Dec(Enc(m)) EM)) is the diagnosis. 

Proposals in this class might use a witness indistinguishable proof along with a 

probabilistic encryption scheme. Cramer, Gennaro and Damgard [22] employed 

this class in the design of a voting scheme. 

Class 3: (Knowledge of structure of the encrypted message) Given the encryption 

of the one-way image5 of a message, prove knowledge of the message. That is: 

(PROOFKNOW m(Dec(Enc(O(m)))), Enc(O(m)) 

where PROOFKNOW m is the transcript of the proof of knowledge of m. It 

could be noted that: 

1. Enc( O(m)) is the proposition; and, 

2. (PROOFKNOW m(Dec(Enc(O(m)))) is the diagnosis. 

For example, the proof system may convince the verifier that the user knows the 

discrete logarithm of the encrypted message. Discussion on this form of proof 

is not yet popular in the research literature. Any break-through in the quest for 

concrete solutions for this class of algorithm will provide improved alternatives 

to many known protocol suites such as e-cash and e-auctions. For example, 

0 ( m) can be the public key of the sender and thereby m the private key. This 

approach could yield many interesting solutions for some applications. 

There may well be additional classes of publicly verifiable encryption. Irrespective 

of the class, all the algorithms will contain a set of publicly accessible propositions (se­

curity objects) and a set of diagnoses to prove some aspect of the encrypted message 

(ciphertexts in the message format). Most cryptosystems that require restricted con­

fidentiality service in a highly untrusted environment employ some form of verifiable 

encryption. 
5 or any other appropriate structure. 
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20 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

2.3 Types of Compliance 

After the examination of verifiable encryption, a natural query would be: why is verifi­

able encryption important for compliant protocol design? The answer lies in the nature 

of the class of compliant cryptosystems that is of interest for this research. Verifiable 

encryption is the most natural tool that can be used to achieve restricted confidential­

ity service with an universal integrity service. Many compliant systems operate for at 

least two sets of users, with users of one set having a fragile trust relationship6 with 

the users of the other set. Also, in most cases, the service of interest for one set may 

contradict the service of interest for the other set. Prominent examples are: 

1. in a key-recovery system the set of users are interested in the establishment of 

confidentiality channels between themselves while the set of law-enforcement 

users are interested in the controlled revocation of confidentiality from these 

channels; 

2. in electronic coin systems the set of users wish to realise anonymous funds 

transfer to the set of merchants and the set of trustees may wish to revoke the 

anonymity in the case of double-spending, black-mailing, or under some special 

conditions; 

3. in electronic auction systems the set of bidders are interested in confidentiality 

service for the value of their bid and the set of auctioneers are interested in the 

revocation of the service for the winning bid, if not for all the bids; 

4. in electronic voting systems the set of voters are interested in the confidential­

ity of their vote while the set of officials are interested in the authenticity and 

correctness 7 of the vote. 

If we consider anonymity to be confidentiality service for an identity, then all the ex­

amples require some form of verifiable confidentiality service. 

1. Key-recovery systems require the set of users to prove recoverability service, for 

the set of law-enforcement users, in order to avail the required service; 
6 A relationship where two parties do not trust each other but engage in some form of interaction to 

obtain some service from a common system. 
7 Only authenticated voters can vote once. If the tallying procedure does not verify the correctness 

of the vote, then the voting procedure must check if the vote is a valid choice. 
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2.3. TYPES OF COMPLIANCE 21 

2. Electronic cash systems require the set of customers to prove the revocability of 

their identity; 

3. Electronic auction systems require the set of bidders to prove that the confiden­

tiality of the bid can be revoked; 

4. Electronic voting systems require the voters to prove that a valid vote has been 

encrypted and that the voter has not already voted in the election. 

Most of these systems possess a fine balance between provision and revocation of 

services for a set of mutually mistrusting users. A straightforward manner would be 

to require the set of users, who avail some service from the other set of users, to prove 

compliance to the rules of the system. The services in such systems can be analysed 

by considering the following aspects: 

1. the provision of service (or functionality); and, 

2. the logic of the provision. 

Functionally, cryptosystems provide two types of service, which are confidentiality 

and integrity, as discussed in Section 2.1.1. Thus, the first aspect has already been dealt 

with. The remainder of this section will discuss the second aspect and its relationship 

with the first aspect. The provision of services can either be restricted or universal. 

Definition 2.4 A cryptosystem may provide a service of interest until an event occurs. 

The occurrence of the event may be probabilistic in nature or deliberately triggered. 

Such a type of guarantee for a service is called restricted. 

For example: 

1. In key recovery schemes, such as [88, 63], the confidentiality service (for ames­

sage or session key) is guaranteed until a set of trustees participate in the key 

recovery protocol. 

2. In electronic cash schemes, such as the proposal by Brands [12], the confiden­

tiality service (for an identity embedded in a coin) is guaranteed until the coin is 

double spent; 
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22 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

3. In fair electronic cash schemes, such as the proposal by Frankel, Tsiounis and 

Yung [38], the confidentiality service is guaranteed until a set of trustees partic­

ipate in a tracing protocol; 

Definition 2.5 A cryptosystem may provide a service of interest without any condi­

tions. Such a type of guarantee for a service is called universal. 

For example: 

1. In electronic cash schemes, an universal integrity service must be provided to 

the structure of the coin; 

2. In key recovery systems the universal integrity service is essential for LEAF like 

components [88] in order to avoid integrity oriented attacks [10]. 

3. Universal integrity and confidentiality services are essential for key agreement 

protocols; and, 

4. Universal integrity and confidentiality services for the private key of the root 

certification authority (if present) is essential for the proper functioning of the 

public-key infrastructure. 

Cryptographic services are provided on a per-message basis and cryptosystems may 

have many messages, therefore a cryptosystem may provide a variety of services. For 

example, a cryptosystem may provide restricted confidentiality service for some mes­

sages and universal confidentiality for some other messages. 

Since confidentiality and integrity are the basic services, the entities participating 

in the system are interested in the manner in which these services are provided. Com­

pliance is a property that is global to the cryptosystem. 

Definition 2.6 Compliance is a guarantee on the confidentiality and integrity services 

by the cryptosystem to the participating entities. 

For example: 

1. every message communicated in a message format (such as an electronic coin) 

by every source and sink in a key escrow system must be accessible to the law 

enforcement agency. 
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2.3. TYPES OF COlvfPLIANCE 23 

2. every fair electronic coin (message format) in an e-cash system must contain a 

valid signature by the bank and the (hidden) identity of the customer owning the 

coin. The source of the coin (security object) is the node containing the bank or 

the customer, and the sink is the node containing the bank or the merchant. 

Definition 2.6 presents a very broad view of compliance. It is possible to categorise 

cryptosystems based on the definition and the type of service provided by cryptosys­

tems. Since there are two basic services (confidentiality and integrity) and two types of 

service (restricted and universal), there are four types of compliance guarantee. They 

are: 

Compliance Category 0: aims to guarantee universal confidentiality and integrity ser­

vices for all security objects and/or message formats. Most security objects in 

traditional cryptosystems such as identification systems, signature systems, key 

establishment systems and entity authentication systems can be classified under 

this category. In all these systems confidentiality and integrity services are guar­

anteed universally. For example, a signature system provides universal confiden­

tiality service for the private key of the signer (source) and, universal integrity 

service for the verifier (sink), for a message- by employing the message, public 

key, and, the information about the bijection between the set of private keys and 

the set of public keys. 

Compliance Category 1: aims to guarantee universal integrity service for all mes­

sage formats and restricted confidentiality service for selected security objects. 

Most key recovery systems and e-cash systems can be classified under this cat­

egory. For example, thee-coins (security objects) proposed by Brands [12] and 

Frankel, Tsiounis and Yung [38] provide restricted confidentiality service for the 

identity of the customer (part of the source), and universal integrity service for 

the identity, for every other participant- the merchant and the bank (sink). The 

primary interest of this thesis is to focus on this category of compliance. 

Compliance Category 2: aims to guarantee universal confidentiality service for all 

secmity objects and restricted integrity service for selected message formats. 

Prospective cryptosystems that may employ the deniable encryption concept 

proposed by Canetti et al [16] could be an example for this category. 
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24 CHAPTER 2 .. COMPLIANCES IN CRYPTOSYSTEMS 

Compliance Category 3: aims to guarantee restricted integrity and confidentiality 

services for selected security objects and/or message formats. Oblivious transfer 

(OT) protocols, introduced by Rabin [75], are good candidates for this category. 

The source has two messages and avails confidentiality service for both. One 

of these services is restricted. It engages in the OT protocol with the sink. At 

the end of the OT protocol, the confidentiality service for one of the messages 

is revoked by the sink, which, in-tum, avails the confidentiality service for that 

message, say mi. Additionally, the sink avails the integrity service for themes­

sage, mi. It cannot avail the integrity service for the other message. That is the 

integrity service for the messages are restricted based on the choice of the sink. 

A cryptosystem's compliance guarantees can be uniquely specified by tuples con­

taining: 

1. the message format specification; 

2. the compliance category (or categories) of security objects in the message for-

mat; 

3. the level of enforcement, to be discussed in the next section, for the compliance. 

This is a very useful way to categorise compliance and present the information to the 

design, analysis, implementation, deployment and maintenance phases of a project. 

Note that additional information may be required by some phases, but these provide 

some of the essential information that the design phase is interested in communicating. 

2.3.1 Enforcement of Compliance 

Recalling the characterisation of cryptosystems from Section 2.1.3, we observe that 

the message formats contain diagnostic information on some security objects. As this 

research focuses on security objects belonging to compliance category 1 (see Sec­

tion 2.3), universal integrity service (diagnosis) is of interest. So, immutable message 

formats are important for this analysis. Popular examples of message formats will be: 

1. the LEAF structure in the Clipper proposal [88.]; 

... 
2. the electronic coin abstraction proposed by Brands [12]; and, 
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2.3. TYPES OF COIVIPLIANCE 25 

3. the bind data in the binding ElGamal scheme for a fraud detectable proposal for 

key recovery by Verheul and van Tilborg [89]. 

The integrity service for all these message formats is critically important for the proper 

operation of the system. If we study the example of certification-based key-recovery 

schemes employing the public-key technology such as the binding ElGamal proposal 

by Verheul and van Tilborg [89], we can easily realise the intent of these proposals: if 

the public-key infrastructure is employed for legal communication, then key-recovery 

is mandatory. Such propositions appear to work well on paper, but it may be technically 

difficult to implement the proposition. Thus, hundred percent compliance may not be 

possible to implement. In such situations, it must be possible to grade the level of 

compliance. 

Definition 2.7 The degree of the compliance guarantee provided determines the en­

forcement level of the cryptosystem. This is the enforceability property of the cryp­

tosystem. 

In key recovery systems, for example, co-operating source and sink can always by­

pass escrow (trivially by employing super-encryption procedures). Thus, key recov­

ery systems may operate assuming source rogue-user, sink rogue-user or source-sink 

rogue-user models presented by Denning [29]. The resulting enforceability depends 

on such design assumptions. The following broad categorisation of enforceability is 

possible: 

Enforceability Level 0: cryptosystems employ an on-line monitor to guarantee com­

pliance. 

Enforceability Levell: cryptosystems employ an off-line monitor to guarantee de-

tection of failure of compliance. 

Each enforcement level may encompass different degrees of compliance that depend 

on varying factors such as implementation details, available technology, and so on. 

For a fine-grained calibration of the level of enforceability into various degrees, stan­

dards such as the US Federal Information Processing Standard FIPS:140-l [67] may 

be employed. The remainder of this section will concentrate only on the level of en­

forceability mentioned above, rather than delving into the degree of enforceability that 
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26 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

may be possible. This is because the degree of enforceability is an implementation 

issue and need not necessarily be a design issue, so as to avoid complicated design and 

analysis techniques. 

The compliance guarantee is achieved by engineering on-line or off-line monitors 

(resulting in enforceability level 0 or level 1 systems respectively) that verify themes­

sage formats being communicated within the system. We refer to Section 2.1.3 for a 

discussion on the terminologies that will be used in the following definition. 

Definition 2.8 A monitor is a node that is responsible for the integrity verification of 

the message formats and their conformance to the compliance guarantee. 

The following observations about the nature of monitor are important to understand 

the enforceability mechanisms: 

1. In the case of on-line monitors, the security objects must be received by the 

monitor before the sink can access the message and/or avail the integrity service. 

In this case, the cryptosystem achieves the compliance guarantee due to the on­

line nature of the monitor. The on-line nature of the monitor can be realised by 

requiring the monitor to be physically on-line, like key recovery systems [88], 

or logically on-line, like electronic cash systems with observers [18, 12]. In 

the case where the monitor is logically on-line, the sink may have to forward 

the message format to the monitor before the required service can be availed, 

instead of the source sending the message format directly to the monitor. The 

tamper-resistant hardware that was employed by the Clipper proposal [88] is an 

example for on-line monitors. 

2. In the case of off-line monitors, the security objects need not be received by the 

monitor before the sink can avail the required service. The sink may be expected 

to forward the message format to the monitor or the monitor may intercept (or 

wire-tap) the message format while it is in transit. In this case the cryptosys­

tem can only guarantee the detection of failure of compliance. For example, the 

electronic cash scheme as proposed by Frankel and Yung [38] can only detect 

double-spending of e-coins and not prevent it because the monitor (bank) is off­

line. Similarly, the fraud detectable key-recovery scheme proposed by Verheul 
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2.4. SUMMARY 27 

and van Tilborg [89] can, at best, detect malicious communicating parties em­

ploying legal message formats to by-pass key recovery and, cannot prevent such 

activities. 

Most cryptosystems require strict formats for the messages being transmitted dur­

ing each transmission phase. The source of the communication creates the message 

formats to obtain confidentiality service and the sink may verify the message formats 

to determine the integrity service for the messages contained in the format. Note that 

the verification process is only interested in determining the integrity of the message 

formats. This is a subtle, but important, observation that is crucial for understand­

ing the role of enforcement in some cryptosystems to be discussed later in this thesis. 

There are two options for the verification process: 

1. only the target entity (or set of target entities) can assume the role of sink, which 

results in restricted verifiability of the format; and, 

2. any entity can assume the role of sink, which results in the global verifiability of 

the format. 

Both forms of verifiability are useful depending on the purpose for the verification. 

For example, some key escrow systems may require any entity to act as a monitor and 

other systems that provide restricted anonymity may place restrictions on the monitors 

that can obtain the integrity service. 

2.4 Summary 

This chapter presented a broad introduction to compliant cryptosystems. The primary 

interest of the research is the study of cryptologic systems that employ message for­

mats belonging to compliance Category 1 - universal integrity service for all message 

formats and restricted confidentiality service for select security objects. 

A cryptosystem is primarily concerned with the manner of provision of the basic 

services. The manner of provision of services is encompassed by the definition for 

the term compliance. Compliance is a guarantee and requires constant auditing of the 

system by suitable entities. Since confidentiality by itself does not provide audit (diag­

nosis) tools and integrity by itself is not sufficient to achieve the goals of most systems, 
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28 CHAPTER 2. COMPLIANCES IN CRYPTOSYSTEMS 

a combination of confidentiality and integrity services is essential. A straightforward 

combination of confidentiality and integrity services results in the (publicly) verifiable 

encryption proposals, which invariably are employed by all compliant cryptosystems. 

Message formats are important for the audit of cryptosystems. Diagnosis of mes­

sage formats can be achieved by designing on-line or off-line monitors. The nature 

of the monitors decides the enforcement level of the cryptosystem. On-line monitors 

provide more effective enforcement than that of off-line monitors. 

The next chapter will propose an integrity verification technique that would be 

useful to help protocol designers to understand the implications of various verification 

equations. Understanding the verification equations is important because they are the 

audit (diagnostic) tools for monitoring the compliance of message formats. This is an 

important issue in a highly mistrusting environment. 
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Chapter 3 

Integrity Verification Technique 
Subtlety may deceive you; integrity never will. 

- OLIVER CROMWELL 
There are things known, and there are things unknown. 

And in between are the doors. 
-JIM MORRISON 

As was stated in Chapter 2, universal integrity service, for all participants, is essen­

tial for all message formats belonging to the compliance Category 1. An understanding 

of the achievements of various verification equations must be achieved. The achieve­

ments determine the effectiveness of the compliance statements of various message 

formats employed by the cryptosystems. 

Since there is no known formal integrity verification methodology available in the 

literature, an informal methodology was developed. The technique employs a graphi­

cal representation for the integrity service, as defined in Chapter 2. This representation 

results in a chain of propositions that relates the integrity of various keys to other keys, 

which may in turn be messages or ciphertexts. The assumptions (such as beliefs) and 

trust conditions (such as certification) for the keys, messages and ciphertexts are not 

represented. This results in a syntax that deals entirely in the domain of cryptology, 

which contains only messages, keys and ciphertexts. 

This chapter will explain the methodology developed for the verification of in­

tegrity services. The methodology is then employed to analyse an encryption algorithm 

that is secure against the adaptive chosen ciphertext attack, an electronic cash system, 

and a key-recovery system. The usefulness of this technique is further demonstrated 

by designing a more efficient alternative to the encryption algorithm and identifying 

deficiencies in the proposals for the electronic cash system and the key-recovery sys­

tem. 

29 
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30 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

3.1 Introduction 

The integrity verification technique (IVT) for the study of the integrity services of a 

proposal focuses on the verification equations of the system of interest. This approach 

is useful in abstracting the unpredictable behaviour of the signer. 

This section presents a characterisation of the Schnorr signature scheme [81] and 

its variants in Section 3.1.1. Section 3.1.2 contains a discussion on Schnorr-type blind 

signature schemes [18, 12] and outlines the subtleties that protocol designers must be 

aware of. 

The notations employed in this chapter are as follows: 

• (X) represents a set of values named X, which may denote the public-key, mes­

sage or ciphertexts; 

• [x1 , x 2 , ···]represents a tuple; and, 

• ( · · ·) is the delimiter for separating individual verfication equations. 

3.1.1 Characterising Signature Schemes 

The servicing of a message, M, by a key, K, by employing a ciphertext, C, can be 

represented as follows: 

SERVICE,C 
K M 

where, SERVICE E {C,I} is the type of service, Cis the keyword for the confi­

dentiality service and I is the keyword for the integrity service. Confidentiality is the 

private view of participants and integrity is the public view. Note that the terms private 

and public are relative, and depend on the assumptions about the ownership of various 

keys. Since this chapter is concerned with the characterisation of the integrity service, 

SERVICE =I. So, the SERVICE component of the expression will not be explicitly 

depicted. 

A signature scheme, from the perspective of the integrity goal, can be visualised 

to be a mechanism that transfers the integrity service from a key to a message. The 

following representation results from the technique: 

( Ciphertexts} 
(PublicKey) (Message) 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



3.1. INTRODUCTION 31 

The term ( Ciphertexts) represents the result of any cryptographic operation, including 

the encryption and signature operations. For example, if y = gx mod p for a suitable 

value of p, then y is a ciphertext. Usually, the signature process is computationally 

expensive and the messages are arbitrarily long. Therefore, suitable message digest 

(symmetric key) techniques are employed. This gives raise to two techniques. 

The first technique is to directly sign the message digest. Suppose that an RSA key 

pair [77], [e, n], is employed to sign a message, m, employing a secure hash function, 

tl, to generate the following verification equations: 

? 
tl(m, · · ·) c 

? 
r 

then [c, r] is a signature tuple. This technique is represented as follows: 

where: 

( (SymmetricKey) 

( (PublicKey) 

( M essageDigest) 

(Signature Ciphertexts) 

(Message)) 1\ 

(MessageDigest)) 

1. (SymmetricKey) is Null, since 1l is usually an unkeyed hash function; 

2. (MessageDigest) = c; 

3. (Message) = [m, · · ·]; 

4. (PublicKey) = [e, n]; and, 

5. (SignatureCiphertexts) = r. 

Henceforth, the logical and operation will be represented by the 1\ symbol. This oper­

ator means that individual verification equations must output true for the verification 

system to output true. Note that the Null key represents the no key scenario and is 

known globally to all participants. Also note the myriad of protocol design possibilities 

when SymmetricKey is not equal to the Null key. 

The second technique is to sign a symmetric key that would provide the integrity 

service to the message. The technique proposed by Fiat and Sharnir [37], and adopted 
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32 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

by Schnorr [81] is a good example. The following representation results from our 

proposal: 

(Signature Ciphertext) ( M essageDigest) 
( (PublicKey) (SymmetricKey) (Message)) 

The symmetric key, in this case, cannot be the Null key. Note that the representation, 

by itself, does not suggest that the signature ciphertext provides non-repudiation ser­

vice to the message, rather it suggests integrity service for the symmetric key, which in 

turn provides integrity service to the message. This is because the representation deals 

with a lower level view to trace the flow of integrity service, which is more fundamen­

tal than the non-repudiation service. A one-to-one relationship between the symmetric 

key and the message is essential to extend the non-repudiation service to the message, 

which in the Schnorr signature scheme is achieved by a one-to-one relationship be­

tween the signature ciphertext and the message digest. The rest of this section will 

explain this form of representation in detail. 

A tuple [r, c] is a valid Schnorr signature on a set of messages m by the public key 

[g, y, p] (henceforth the symbol p, representing the prime number, will be omitted from 

the public key whenever it can be implicitly understood), if the following equation 

holds: 

? tl(m,A) c 

where, 1-L is a secure hash function, c is the message digest and A = ycgr is the 

symmetric key. The integrity goal of the Schnorr signature scheme can be expressed 

as follows: 

(3.1) 

That is a trusted public key, [g, y], provides integrity service to a symmetric key, A, 

by employing the ciphertext, [ c, r ]. The symmetric key, A, in turn provides integrity 

service to the message, m, by employing the ciphertext c. The same value of the 

ciphertext, cis employed by the public key and the symmetric key. This is an important 

requirement to prevent the generation of multiple signature transcripts from a single 

Schnorr signature. 

The proof of equality of discrete logarithms employed by Ch~um and van Antwer­

pen [17] resembles the Schnorr signature. It proves that log
9 

y = logv u for some u 
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3.1. INTRODUCTION 33 

and v. Note that [g, y] or [u, v] must be trusted or certified. The verification equation 

for such a scheme is as follows: 

? 
1-L(m,A,B) c 

where, 

1. c is the message digest; 

2. 1-L is a secure hash; 

3. m is the set of messages; 

4. [c, r] is the signature ciphertext; and 

The integrity goal of this scheine can be expressed as follows: 

( (([g, y] [~A) 1\ ([v, u] [4] B)) 4 m) (3.2) 

The symmetric keys A and B provide integrity service to m. It is crucially important 

to note that [g, y] or [v, u] must be certified (using some private or public certification 

scheme) before any integrity deductions can be made. The protocol associates the 

integrity of [g, y] (or [v, u]) with the integrity of [v, u] (or [g, y]). Once this association 

is made and the absolute integrity of at least one of the key tuples is deduced, then the 

integrity of the symmetric keys [A, B], and thereby the message m, can be deduced. 

Without certification of any of the keys, no meaningful deductions on the integrity 

service can be made. Note that this requirement is inherited from the Schnorr signature 

scheme represented in Equation 3.1. 

3.1.2 Characterising Schnorr-Type Blind Signature Schemes 

The blind signature technique [28] allows an entity to obtain a signature tuple on a 

message from a signer without revealing either the signature tuple or the message. 

This allows the entity to prove to any other entity that it was authorised by the signer 

without revealing its identity- the entity is anonymous. 
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34 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

A well known method to obtain a blind signature requires the signer to engage 

in a honest-verifier zero-knowledge identification protocol with the receiver (of the 

signature), who would play the role of a skewed honest-verifier to obtain the blind 

signature. Chaum and Pedersen [18] demonstrated the technique to obtain a blind 

Schnorr signature, which was later modified by Brands [12] to obtain a specialised 

version called restrictive blind signature. A goal of this chapter is to characterise both 

these schemes in order to highlight their subtle and important properties, which are 

ignored by some protocol designers. This oversight introduces many deficiencies in 

the integrity goal of the resulting cryptosystem as will be presented in Section 3.3 .1. 

A Schnorr-type blind signature was first proposed by Chaum and Pedersen [18]. 

The signature tuple is the same as that of Schnorr signature scheme (see Section 3.1.1) 

and has the same signature verification equation. The only difference is that the signer 

cannot know the message that is being signed, which in the case of Schnorr signature is 

the symmetric key and not the message itself This is a subtle point that should actually 

mean that the signer is authorising the symmetric key only and does not necessarily 

authorise the message that the symmetric key may provide integrity to- as was the case 

in the original Schnorr signature scheme. Interestingly, this problem has a counterpart 

in the key recovery research (and cryptologic research as a whole), where it is a difficult 

problem to restrict the use of certified keys [15, 54, 11]. 

Since the verification equation for a blind Schnorr signature is the same as the 

Schnorr signature scheme, the subtlety is introduced in the integrity goal by employing 

a modifier. This is because the blinding process provides the confidentiality service 

and the syntax presented in this chapter deals only with the integrity service. Since the 

blinding process does not alter the integrity goal of the protocol, any alteration of the 

representation of the integrity goal for the Schnorr signature, to introduce the subtlety, 

must be purely a convention. The best way to accomplish this requirement would be 

to introduce a modifier. In Equation 3.1, the message that is signed, m, is represented 

employing a modifier as m. Syntactically, Equation 3.1 is otherwise unchanged. The 

integrity goal is represented as follows: 

( ~~ ) [g, y] ----+ A 4 m (3.3) 

Note that the signature generation procedure may or may not be blinded 1, so the modi-

1 In the case of an e-cash system the customer could engage in a normal Schnorr signature protocol 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



3.1. INTRODUCTION 35 

fier is intended only for the interpretation of a potential weakness in argument. In other 

words, the modifier is a statement of intent and not of a fact. In the previous equation, 

the modifier suggests that the signer may have no control over the message, m. 

The restrictive blind signature by Brands [12] is similar to the blind Schnorr signa­

ture scheme [18], with an additional property that the signer guarantees the structure 

of the symmetric key, A. In the original proposal [12], the signer employs the Schnorr 

variant (by Chaum and van Antwerpen, see Section 3.1.1) represented by Equation 3.2 

and guaranteed the representation (structure) of one of the symmetric keys with respect 

to the bases [91, 92]. The verification equations employed by the merchant (during the 

spending phase) and the bank (during the deposit phase) in Brands' scheme are as 

follows: 

c tl(A, B, z, a, b) 
? 

9ry-c a -

b 
? Arz-c 

d 1-lo(A, B, · · ·) 

B 
? 

9~1 9;2 A-d 

where: 

1. c and dare message digests; 

2. 1l and 1£0 are secure hash functions; 

3. [A, z] is a temporary key pair; 

4. B is a message; 

5. [a, b] is the symmetric key tuple blindly authorised by the bank; and, 

6. [9, 91, 92, y, Y1o Y2] is the public key of the bank such that y = 9xB, y1 = 9~B and 

y2 = 9~B, where XB is the banks private key; 

7. [r, c] is the signature tuple by the bank; and, 

8. [r1, r2] is the signature tuple on B employing the key[91 , 92, A]. 

with the bank, and the merchant cannot discern this fact. 
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36 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

The integrity goal of this scheme is represented as follows: 

( 
[c,r] [c,r] ) 

(([g, y] ------t a)!\ ([A, z] ------t b)) 4 B !\ 

( 
[r1,r2,d] d ) 

[91, 92, A] B-+ [A,···] (3.4) 

It can be read as: the bank authorises the symmetric keys [a, b] using its public key 

[g, y] and, [A, z] by its association with [g, y]. The symmetric keys provide the in­

tegrity service to B. This is the joint statement of the first verification equation. This 

is a blinded operation. The second verification equation provides the integrity service 

to B by employing the public key [g1 , g2 , A] and the ciphertexts [r1 , r 2 , d]. B, in turn, 

provides the integrity service to a predetermined set of messages and A. This is not a 

blinded operation. The implicit assumption for the goal of this proposal is the associ­

ation of the bases [g1 , g2] with the key A, which was a prut ofthe key [A, z] which was 

associated with·[g, y] by the blind signature process. Thereby, whoever possessed the 

signature (the first verification equation) must also possess the knowledge of the rep­

resentation of A with respect to the base [g1 , g2] Gust as the Schnorr signature scheme 

required the signer to possess the representation of the public key y with respect to 

the base g). This additional check allowed the bank (which took part in the signature 

generation process) to gain another implicit confidence: the blind signature transcript 

contains a valid, hidden identity that is a representation of the bases [g 1 , g2]. In the case 

of electronic cash systems employing blind signature, the merchant, without trusting 

the bank, cannot gain this knowledge as it can make no logical deductions about the 

withdrawal protocol (signature generation process). 

3.2 The Cramer-Shoup Public Key System 

The technique proposed in Section 3.1 will be useful for the analysis of any proto­

col that requires some form of integrity verification. In order to highlight this aspect, 

the Cramer-Shoup Public Key Encryption System [26], which was proposed to pro­

vide security against the adaptive chosen ciphertext attack, will be analysed. Security 

against this attack is related to the non-malleability property for public-key cryptosys­

tems [35]. In a nutshell, if the owner (who.knows the private key corresponding to 

the public key) can verify the immutability of the ciphertext after its formation, then 
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3.2. THE CRAMER-SHOUP PUBLIC KEY SYSTEM 37 

the owner could defend from attacks that required decryption of modified ciphertexts, 

such as the adaptively chosen ciphertext attack. 

The basic scheme of the Cramer-Shoup cryptosystem [26] operates on a group G 

of order a large prime q, such that the Diffie-Hellman decision problem is intractable. 

Suitable generators 9I, g2 ER G are also chosen. The public key of the receiver will be 

of the form: 

where z, XI, x2 , YI, y2 ER Zq are the private keys. The ciphertext 4-tuple is of the form: 

where r ER Zq is a random number, a= 1-l(u1 , u2, e), and 1-l is a universal one-way 

function. 

The receiver responds to only those ciphertext tuples that conform with the follow­

ing verification equations: 

v 

If the above equations are satisfied, the receiver decrypts the ciphertext as m = e / uf, 

which is the ElGamal decryption algorithm, to obtain the message. Employing the 

methodology proposed in Section 3.1, the integrity goal of the verification equations 

can be represented as follows: 

(3.5) 

That is the symmetric keys [u1 , u2] provide integrity toe employing the ciphertext a 

and the (private) keys [xi, x2 , YI, y2] provide integrity to the symmetric keys [ui, u2] 

employing the ciphertexts [v, a]. It is interesting to observe the structural similarity 

of this representation with that of Schnorr signature tuples in Equation 3.1. That is 

both the Cramer-Shoup verification algorithm and the Schnorr signature verification 

algorithm employ the same verification structure, which is: 

[a,b) a 
Key1 -----+ Key2 -----+message 
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38 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

The identification of such similarities is a useful feature of this representation. Since 

the Cramer-Shoup algorithm employs a similar structure to the Schnorr signature al­

gmithm for the provision of integrity service, it would be worthwhile to investigate if 

an encryption scheme secure against adaptive chosen-ciphertext attack can be devised 

by employing the Schnorr signature scheme. 

3.2.1 A New Scheme 

An alternate encryption system to the Cramer-Shoup cryptosystem [26], with robust 

integrity verification mechanism and similar verification structure, exists. The remain­

der of this section will present such a proposal. 

System Settings A cyclic group G of prime order q is chosen such that the Schnorr 

signature algorithm and ElGamal encryption algorithm are secure. The certified public 

key of the receiver contains y = gx, y1 = gx1 such that x # XI (and so y # YI) for 

some x, XI ER Zq and g ERG, so that y, YI E G. 

Encryption Algorithm The sender performs the following calculations to securely 

send a message m: 

1. choose at random, r, r 1 ER Zq, and compute u = gr, e = myr and ui = y~1 ; 

2. compute a= 1-l(e, ui, u), by employing a secure hash algorithm 1-l; and, 

3. compute v = r- ria mod q and send (ui, e, a, v) to the receiver. 

Integrity Verification and Decryption Algorithm The decryption algorithm per­

forms the following calculations when the ciphertext tuple ( u I, e, a, v) is available: 

ax- 1 

1. compute u = ui 1 gv; 

? 

2. verify, a...:__ 'H(e, ui, u); 

3. compute message, m = ejux; 

If the verification is successful, the receiver responds to the sender, else the receiver 

rejects the tuple. 
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3.2. THE CRAMER-SHOUP PUBLIC KEY SYSTEM 39 

Completeness and Efficiency Analysis The verification equation holds because: 

The above equation explains the reason for having unequal private keys, x =j:. xI· 

Otherwise, the value ux, the shared Diffie-Hellman key, can be computed by employing 

the public values. Thus, y can be considered to be a unique public-key meant for 

confidentiality services and YI to be a unique public-key meant for integrity services. 

The representation of the verification equation in our proposal would be similar to 

Equation 3.1, that is: 

(3.6) 

Clearly, the ciphertext can be verified only if the private-key XI is available. Part of 

the ElGamal ciphertext, u, which is used as the symmetric key for a Schnorr-type 

' signature scheme, can be computed only with the knowledge of xi. The inclusion of 

private-keys, in Equations 3.5 and 3.6, in the starting node of keys (the left-most set of 

elements) abstracts this notion. 

The performance comparison between the basic scheme of the Cramer-Shoup sys­

tem and the alternate proposal is presented in Table 3.1. In the table, t = log2 JGJ is 

the number of bits required for the representation of elements in G, l = log2 JZql is the 

number of bits required for representation of elements in Zq and L be the information 

in bits required for the representation of the respective group information. It terms of 

key size, the alternate proposal requires smaller public and private keys. In term of 

performance, the alternate proposal achieves less number of exponentiations for the 

sender as suggest in Table 3.1. 

Parameter Cramer-Shoup System Alternate Proposal 
No. of sender exponentiations 5 3 
No. of receiver exponentiations 3 3 
Size of private key 5l 2l 
Size of public key 5t+L 3t+L 
Size of ciphertext 4t 2t + 2l 

Table 3.1: Table of Comparison 
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40 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

Security Analysis 

The Cramer-Shoup cryptosystem and the alternate proposal achieve the same integrity 

goal (observe integrity representations in Equations 3.5 and 3.6): the sender proves 

the knowledge of the shared Diffie-Hellman key yr in some fashion, and thereby the 

knowledge of the message m. Thus, the security against chosen ciphertext attack has 

led to non-malleable encryption [35] (due to the use of non-interactive proof of know l­

edge systems and the hash function) and plaintext-awareness [6]. An advantage of the 

Cramer-Shoup cryptosystem is the existence of a formal proof for its achievement of 

the non-malleability property. A prospective security proof for the alternate proposal 

could provide insight into its achievement, which may be plain-text awareness. Note 

that plain-text awareness is a stronger notion of security than non-malleability. 

The ciphertext of the alternate cryptosystem is a 4-tuple, X = ( e = myr, u1 = 

y~1 , a= 1-l(e, u1 , u), v = r- r1a mod q). There are three independent security mech­

anisms employed by the alternate proposal: 

The supplementary encryption scheme (SES): A message w = gr1 is encrypted un­

der a public key y1 = gx1 as u1 = y~1 and the corresponding decryption being 
x!l 

u1 =w; 

The Schnorr signature scheme (SSS): employs w = gr1 as the public key to achieve 

the non-malleability (immutability) property; and, 

The EIGamal encryption scheme (EES): Given the values fore, u = gr andy = gx, 

find an m such that m = ejux. 

The ciphertext 4-tuple can be considered to be an extended ElGamal ciphertext (e = 

myr, u = gr), where a part of the ciphertext is encrypted, ( u1 , a, v) = Ency
1 
(u), where 

Enc employs SES and SSS as subroutines. Note that the ElGamal ciphertext u = gr is 

not sent in the clear, only e is sent in the clear. Intuitively, this double encryption must 

provide increased security than the original ElGamal proposal, which was employed 

without any modification in the Cramer-Shoup cryptosystem. 

A security proof for the scheme proposed is not currently available. At the present 

juncture, this is the only disadvantage, compared with the Cramer-Shoup cryptosys-
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3.3. ANALYSIS OF PROTOCOLS WITH WEAK INTEGRITY SERVICE 41 

tern. The primary purpose for the inclusion of the proposal in this section is the illus­

tration of the reasoning capabilities offered by the integrity verification technique. 

3.3 Analysis of Protocols with Weak Integrity Service 

The previous section provided a study for the design of new protocols by studying 

the integrity goals of existing protocols. This section will present the analysis of the 

integrity goals of the proposals for an efficient e-cash proposal in Section 3.3.1 and a 

fraud detectable key-recovery system in Section 3.3.2. The aim of this section is to 

highlight the usefulness of this technique in identifying protocol deficiencies. 

3.3.1 Analysis of an Efficient E-Cash Proposal 

Radu, Govaerts and Vandewalle [76] observed that Brands' restrictive blind signa­

ture [12] was computationally expensive due to the number of exponentiations it re­

quired, compared to the blind Schnorr signature [18]. Their proposal required less 

frequent computation of the restrictive blind signatures [12] and frequent computation 

of,blind Schnorr signatures [18] to achieve a more efficient cash system. The proposal 

was a three-phased withdrawal mechanism briefly described as follows: 

1. geLpseudonym protocol between the user and the bank to obtain a restrictive 

blind signature on a pseudonym, 1r, by employing the Brands withdrawal proto­

col (see Equation 3.4). This allows the bank to guarantee that the pseudonym 1r 

is derived from a registered identity 1r0 . 

2. withdraw _big _coin protocol between the user and the bank allows the user to ob­

tain a blind Schnorr signature (see Equation 3.3) on a big coin that associates 

a pseudonym, f3 with a valid long-term pseudonym 1r; and, 

3. exchange_big_coin protocol between the user and the bank that allows the user 

to anonymously withdraw many small coins after providing the bank with 

a valid big coin and the corresponding long term pseudonym 1r. 

The user can spend the small coins with any merchant. Radu et al. proposed the 

use of a smart-card during the spending protocol that will act as an observer [18] to 

prevent double spending of small coins. The certified public keys of the bank is 
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42 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

represented by the tuple, [g, P, P 1] such that the bank possesses the representation of 

P and P1 to the base g. 

The verification equations that the bank employs to verify the long-term pseudonym 

during the exchange_big_coin phase are as follows: 

c 1-L(n, z, A, B) 

A 
? grpc -

B 
? 7rrZc -

d 1-L(/3, a) 
? g~l g;znd (3.7) a -

These are the verification equations of Brands' restrictive blind signature scheme dis­

cussed in Section 3.1.2. Note that the first three equations are the results of user 

participation in the geLpseudonym protocol and the last two equations are formed 

by the bank with the assistance from the user (and the smart-card) during the ex­

change_big_coin phase, which is anonymously executed by the user. 

The verification equation that the bank employs to verify the big coin during 

the exchange_big_coin phase are as follows: 

e 1-L(/3, 1r, D) 

D 
? (3.8) 

This is a blind Schnorr signature explained in Section 3.1.2 by Equation 3.3. 

A big coin is considered valid if and only if it satisfies Equations 3.7 and 3.8. 

If the big coin is valid then the bank issues many small coins, which do not 

use Brands' scheme. 

Protocol Deficiency: As stated previously in Section 3 .1.2, a blind signature must be 

considered as an authorisation for a symmetric key and not for the message that could 

be serviced by the symmetric key. Radu et al. did not observe this caution in their 

proposal for an efficient e-cash. As will be shown, this oversight results in a weakness 

in their proposal that allowed unaccounted transfer of funds between accounts, that is 

the property of non-transferability is not achieved. 
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3.3. ANALYSIS OF PROTOCOLS WITH WEAK INTEGRITY SERVICE 43 

The verification equations (see Equation 3.7) for the long-term pseudonym em­

ploys Brands' restrictive blind signature scheme discussed in Section 3.1.2. These 

equations can be represented as follows: 

( ~~ ~~ ) (([g,P] ----+A) 1\ ([n,z]------+ B)) 4 [n,z] 1\ 

( 

[r1,r2,d] d ) 
[gl) 92' 7f] 0: -+ [,8] (3.9) 

~n the Brands' scheme, the symmetric key a (B in Equation 3.4) was serviced by c, 

which restricted the use of a to only one servicing - otherwise the private key of the 

user would be revealed (a deficiency of Schnorr-type signature schemes). Whereas, 

in the scheme proposed by Radu et al., the symmetric key a was not serviced by c. 

Thereby the value for a can be changed to allow for multiple servicing of values of ,B 

by 7f. 

, The verification equations (see Equations 3.8) for the big coin employs the 

Chaum-Pedersen blind signature scheme (see Section 3.1.2, Equation 3.3). These 

equations can be represented as follows: 

(3.10) 

Note that the claimed association between a long term pseudonym, n, and the short 

term pseudonym, ,8, happens during this protocol. Radu et al., analysed [e, r 3] as a 

blind signature on [,8, 1r] by the key pair [g, P1), the certified public key of the bank. 

Hence they argued that association was authorised by the bank. The flaw in this argu­

ment is: [e, r 3) is a blind signature on D and not on [,8, n). Referring to equation 3.10, 

clearly the integrity check relies on the use of the key, D, which was authorised by the 

bank, to associate the tuple [,8, n] and this problem is similar to the generic situation 

explained in Section 3.1.2. That is, the bank is trusting the user to correctly associate 

one of his/her long-term pseudonyms, n, with a short-term pseudonym, ,8. This allows 

the user to associate the n value of another user with the ,B value that resulted from 

his/her withdrawal. In effect, this would allow unaccounted money transfer between 

users, which may result in perfect black-mailing and/or money-laundering [92]. Al­

though Radu et al. did not comment about the property of non-transferability2 in their 

2The property which is essential to prevent unaccounted transfer of funds. 
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44 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

paper, many practical monetary systems require this property for their proper func­

tioning. Clearly, their scheme lacks the non-transferability property because of lack of 

integrity checks. 

In order to visualise this problem let the long-term pseudonym of a black-mailer 

be 1r, which was derived from his/her long term identity n 0 using the geLpseudonym 

protocol. The black-mailer can perform the following actions to achieve a perfect­

blackmail; 

1. Allow the victim user to participate in the mutual-authentication protocol that 

takes place before the withdraw_big_coin transaction; 

2. Logically or physically hijack the withdrawal terminal from the victim user to 

prevent him/her from registering the value of n; and, 

3. Perform the withdraw_big_cain transaction with the bank as prescribed by the 

protocol, employing 1r as the pseudonym. 

This attack would enable the black-mailer to possess an anonymous coin that identi­

fied the victim or the bank, unless the anonymity for all the customers of the bank is 

revoked. 

3.3.2 Analysis of the Binding ElGamal Proposal 

Verheul and van Tilborg [89] employed the proof of equality of discrete logarithms 

(see Equation 3.2, Section 3.1.1) in a novel manner to realise a key recovery system. 

A brief summary of this proposal is presented as follows. 

Suppose that Ronald (borrowing the nomenclature for the entities from their pro­

posal) in the USA wishes to use a key-recovery enabled public-key infrastructure to 

securely communicate with Margaret in the UK. Let A be the escrow authority in the 

USA and B be the escrow authority in the UK. The system operates with a common, 

prime-order multiplicative subgroup Gq < z; (where p and q are suitable prime num­

bers), with a common generator g E Gq chosen securely by trusted officials. Let the 

certified public key (elements of Gq) of Margaret be YM, of A be YA and, of B be 

ys, such that the respective entities possess the representation of the public key with 

respect to the base g. In order to send a message, M, Ronald is required to perform the 

following operations: 
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3.3. ANALYSIS OF PROTOCOLS WITH WEAK INTEGRITY SERVICE 45 

1. Choose a (random) symmetric session key, S, and encrypt the message as E = 

enc(S, M), where enc is a suitable encryption algorithm; 

2. Choose a random value k E Zq and encrypt S under the public keys YM, YA 

and YB as: C = gk, RM = Sy'M, RA = Sy~ and RB = Sy~, which is the 

multi-ElGamal encryption ciphertext for three parties; and, 

3. Form proof of equality of discrete logarithms to prove that: 

The transcripts of this proof system become the verification equations for the 

system that can be verified by any monitor. 

Ronald sends the ciphertext and the proof in the clear (using a standard message for­

mat) to Margaret, who can decrypt (EIGamal decryption) the session key, S, from RM 

and C and, decrypt the ciphertext E using S to obtain M. The verification equations, 

which were proposed to be checked by an off-line global-monitor, for their proposal 

are: 

c 1-L(E, c, RA, RB, RM, D, F,I, .. ·) 

D ? 
9ccr 

F ? 
(YA/YM )c(RA/ RM r -

I 
? 

(YB/YM )c(RA/ RM r (3.11) 

where: 1-L is a secure hash function, [ c, r] is a Schnorr signature tuple. 

The representation for the verification equations of the key recovery scheme, using 

the notation presented in Equation 3.2, is as follows: 

( (([g, C] [=tl D) 1\ 

[c,r] 
([YA/YM, RA/ RM] ~ F) 1\ 

([YB/YM,RB/RM] [4] I)) 4 [E,C,RA,RB,RM,· · ·J) (3.12) 

It is evident that this representation is similar to the representation provided in Equa­

tions 3.1 and 3.2. Comparing the above representation with Equations 3.1 and 3.2, the 

following observations can be made: 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



46 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

1. none of the key pairs ([g, C], [YA/YM, RA/ RM] and [YB/YM, RB/ RM]) can be 

trusted because they are uniformly chosen by the sender (who is not trusted for 

certification procedures); 

2. ratios of keys provide the integrity service to the symmetric keys F and I, which 

is not a standard assumption of Schnorr-type signatures. 

These observations suggest a deficiency in the system that allows the sender to ma­

nipulate the keys, which were meant to be the starting point of the integrity service -

that is if the starting point is corrupted then the integrity service that it transfers is also 

corrupted. This deficiecy can be used to attack the protocol. 

Protocol Deficiency: Prior to discussing an attack on a key recovery system, the 

meaning of a non-trivial attack must be understood. A key recovery protocol is defi­

cient if successful adversaries abide with the message formats suggested by the pro-

. tocol and procure legitimate services from the key recovery infrastructure to ensure 

secure communication. For example, if a public-key based key recovery system pro­

vides robust certification mechanism, such as robust public key infrastructures, and 

requires key recovery enablement before the certification can be employed, then an 

adversary is successful when certified public keys are employed and key recovery is 

avoided. The attack on the proposal, by Verheul and van Tilborg [89], by Pfitzmann 

and Waidner [73] need not necessarily be an attack on the protocol proposed by Ver­

heul and van Tilborg, rather it is an attack on all session-key recovery systems without 

any form of private-key recovery. It outlines the generic concealed-encryption attack3 

on key recovery protocols and fails to explain the manner in which the concealed key 

may be established. Although our attack exploits the property of concealed-encryption 

attack, it is not a generic attack on all session-key recovery protocols, rather it is a spe­

cialised attack on the proposal [89], which resultedfrom an oversight in the protocol 

design. Moreover, the manner in which an illegal session key can be established us­

ing the key recovery infrastructure will be explained. This distinction is important for 

protocol designers, who may employ the proposed fraud detection mechanism [89] for 
3There is no technique available to check if a claimed key was used during the encryption process 

-verifiable encryption for symmetric key systems is not currently available. 
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3.3. ANALYSIS OF PROTOCOLS WITH WEAK INTEGRITY SERVICE 47 

a different application that may not have properties similar to that of key-recovery ap­

plications. For example, Abe [2] successfully employed a similar integrity verification 

mechanism for a mix network proposal. 

Suppose that the sender and a hidden receiver (M) would like to communicate us­

ing the actual receiver (M) as the decoy. The sender can accomplish this by employing 

the following steps: 

1. choose a random session key, S; 

2. encrypt the message with S to obtain the ciphertext, E; 

3. obtain the public keys of the hidden receiver, YH, the decoy, YM and the authori­

ties (YA, YB); 

4. choose a random value fork; 

· 5. compute a decoy session key, S = Sy1Ify~; 

6. encrypt the decoy session key for the decoy and the authorities, RM = Sy~ = 
Syt, RA = Sy~, RB = Sy~ and C = gk; 

7. form the verification equation as suggested by the representation in Equation 3.12; 

8. send the ciphertexts and verification parameters to decoy. 

The hidden receiver performs the following steps: 

1. wiretap the communication to decoy to obtain E, RM and C; 

2. obtain session key, S = RM/CxH, where XH is the private key of the hidden 

receiver; and, 

3. decrypt E using S to obtain the message. 

The monitor will verify the equations properly, the decoy receiver and the authorities 

will retrieve the decoy session key, S, from the respective ciphertexts employing the 

respective private keys, and the decoy session key, S, will not decrypt E correctly. 

Also note that it will be difficult to find the hidden receiver, y H, or the actual session 

key, S (finding the hidden receiver would imply breaking the multi-ElGamal cryp­

tosystem [89]). 
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48 CHAPTER 3. INTEGRITY VERIFICATION TECHNIQUE 

3.4 Summary 

A novel technique to represent the integrity goal of a system was presented by account­

ing for all the verification equations and ignoring the unnecessary protocol complex­

ities that produced the equations. Also, the usefulness of this abstraction in encom­

passing the unpredictability of the protocol participants was demonstrated. The use of 

the technique was demonstrated by the identification of similar protocol deficiencies 

in seemingly different scenarios, by the application of the technique. 

Many proposals for compliant systems tend to ignore the importance of the in­

tegrity service, while in pursuit of the confidentiality service. Blaze [10] formulated 

an attack on the integrity service in the Clipper proposal [88], which was predomi­

nantly focused on the confidentiality service. Unfortunately, many protocols in vari­

ous fields of cryptologic application still succumb to attacks similar to those detailed 

in Sections 3.3.1 and 3.3.2, namely attacks exploiting weaknesses in integrity services. 

Integrity and confidentiality services must be given equal footing for the design of ro­

bust protocols. The proposed technique will assist protocol developers to identify and 

solve problems relating to the integrity service. 

The use of the new technique is not just for the analysis of protocol deficiencies 

(as in Section 3.3), but also for the synthesis of protocols (as in Section 3.2). The 

prospective development of a uniform syntax for protocol constructs will greatly assist 

in the analysis and design of modern cryptologic systems. 
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Chapter 4 

Key Recovery Systems 
Secrecy is as indispensable to human beings as fire, and 

as greatly feared. 
- SISSELA B OK 

Swedish philosopher, "Secrets," 1983. 

The concern of key recovery, or escrow, systems is the access to a confidential 

message. The three sets of players in the system are the users, the escrow agents and 

the Ia.yv-enforcement agents. The users communicate confidential messages between 

themselves (or with outside users) and when a formal request is made the escrow agents 

provide access to the messages for the law-enforcement agents. Clearly, the require­

ments of the users and the law-enforcement agents are contradictory. The state is 

further complicated by the apparent mistrusting relationship shared by the users and 

the law-enforcement agents. 

Key recovery systems nicely fit into compliance Category 1 due to their restricted 

confidentiality service and universal integrity service, essential to achieve the perceived 

requirements. This chapter will detail requirements of key recovery systems, analyse 

and propose problems, propose a new paradigm for key recovery systems, and present 

a scheme conforming with the paradigm. 

4.1 Introduction 

A key recovery system is a compliant cryptosystem, with the conflicting requirements 

being confidentiality service for the set of users and revocation of confidentiality ser­

vice (controlled wiretapping) for the set of law enforcement agencies. The escrow 

agents assume the role of judges or trusted third parties, and the role of monitors is 

achieved using appropriate compliance checking mechanisms. 

49 
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50 CHAPTER 4. KEY RECOVERY SYSTEMS 

Key recovery was initially propounded as a mechanism for wiretapping confiden­

tiality channels, in order to bridge two contradictory requirements, namely privacy for 

system users and ability to break this privacy by an authorised and well defined set of 

entities. The thesis identified a twofold argument for broader research into key recov­

ery systems. Firstly, key recovery mechanisms [65] will be useful in other application 

scenarios as well - the most prominent of them being cryptographic key management. 

Secondly, researching key recovery teclmiques will facilitate better understanding of 

mechanisms for revocation of cryptographic services. The latter argument is more 

relevant for this thesis due to its interest in restricted confidentiality. Revocation is 

a logical tool to achieve restricted confidentiality, which, as discussed in Chapters 2 

and 3, is essential for many other applications of cryptologic protocols. 

In trying to bridge the contradictory requirements many proposals infringed on the 

security assumptions of cryptographic services that were unrelated (in a broad sense) to 

key recovery systems. For example, a fundamental assumption of public key cryptog­

raphy is that only the owner of the public key should know the corresponding private 

key and many (unrelated) public key based protocols rely heavily on this assumption 

for their security. If one of these protocols contradicts the fundamental assumption, 

then all the (unrelated) public key protocols will fail to guarantee their security argu­

ments. Advantageously, the goal of many public key protocols is confidentiality of 

some data or key information. The goal of key recovery protocols, on the other hand, 

is to break this confidentiality in a controlled manner. Traditionally, breakable ser­

vices were not the aim of cryptographic protocols, in fact the protocols battled hard 

against activities that attempt to break a service. This deliberation resulted in many 

cryptographic systems that were unyielding to the concept of revocation, which is an 

essential component of many pragmatic systems - the most prominent of such sys­

tems being a public key infrastructure that supports revocation of certificates. 

Notation: Some common notations used in this chapter are as follows. 

1£: A cryptographically secure hash function. 

h: A cryptographically secure keyed hash function. 

k ER Zp: Choose k randomly from the congruence class modulo p. 
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4.2. PROPERTIES OF KEY RECOVERY SYSTEMS 51 

II: String concatenation operator. 

z;: Group of non-zero integers modulo p. 

C = enc(K, M): Symmetric key encryption of the message M with the key K. 

1\1 = dec( K, C): Symmetric key decryption of the ciphertext C with the key K. 

E = Ency ( M): Encryption of the message M with the public key y. 

M = Decx(E): Decryption of the ciphertext E with the private key x. 

4.2 Properties of Key Recovery Systems 

The essential properties for the design of key recovery system are: 

Compliance: All messages communicated between the set of users, in a confidential 

manner by employing the legal services and message formats, must be accessi­

ble to the law enforcement agents with the assistance from the recovery agents. 

There may be additional compliance guarantees, but this is the fundamental guar­

antee that all key recovery schemes strive to achieve. 

Enforceability: Only the intended receiving party can access the confidential mes­

sage: and this is possible if and only if the law-enforcement agents, with the 

assistance from the escrow agents, can access the same confidential message. 

Traceability: The law-enforcement agents must be able to determine the destination 

(and optionally the source) of the message format without ambiguity. This re­

quirement is a logical antecedent for the enforceability and compliance proper­

ties of this application domain. The nature of the property of a key recovery 

system will effectively decide the level of anonymity that the users may ob­

tain. If the system is designed to employ a global monitor then there will be no 

anonymity for the source and the sink of the message. 

In order to avoid complicated design, this thesis designed a monitor that employs 

global verification techniques. The resulting monitor can be redesigned to employ are­

stricted verification technique, so as to provide trust-based anonymity 1 for the users by 
1The users need to trust the monitor for the anonymity service (confidentiality service for their 

identity). 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



52 CHAPTER 4. KEY RECOVERY SYSTEMS 

designing suitable confidentiality services for the diagnostic elements - the elements 

that provide integrity service to the security objects contained in the message format. 

Key recovery systems can be classified based on the nature of the keys that are 

recovered. There are three types of key recovery systems: 

1. Long-term key recovery systems: recover the long-term secret keys such as a 

private key corresponding to a certified public key; 

2. Short-term key recovery systems: recover the short-term or ephemeral keys such 

as the session keys established using certified long-term keys; 

3. Hybrid-key recovery systems: fully recover the short-term keys and partially 

recover the long-term keys such that the owners of the long-term key have an 

exclusive knowledge of a part of the long-term key and an authority has an ex­

clusive knowledge of the other part of the key. Both the owners and the authority 

must collaborate to obtain a desired service. This category was identified by this 

research. 

4.3 Private Key Recovery 

Private key recovery is a long-term key recovery system, where the private key cor­

responding to the certified public key is recovered. That is the users are expected to 

surrender their private keys to the escrow agents in return for the certification of the 

corresponding public key. A number of proposals for software key escrow [53, 63, 94] 

opted to use public key certification as the compliance mechanism by escrowing the 

private key of users before their registration. The general idea is that, to benefit from 

the public key infrastructure provided by the system, the users must have their public 

keys certified, and this certification is only available if the corresponding private key 

is escrowed. Such systems do not require large amounts of storage space, as would a 

session key recovery system, and are relatively easy to implement. 

However, escrowing private keys has many disadvantages. The most prominent 

drawback is that once the private key is recovered the users can have no control over the 

period of key-recovery capability for law-enforcement: past, present and future com­

munications of the user can potentially be tapped unless the long-term key is changed 
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4.3. PRIVATE KEY RECOVERY 53 

regularly. Also, the security of the database used to store the private keys of users will 

be critical for confidentiality, identification and escrow services. Since the private keys 

are stored in the database only for escrow services, the security of the database must 

not affect the confidentiality and identification services. Moreover, users have to place 

considerable trust in the authority or escrow agents that will be disproportionate to the 

service they obtain from the system. In fact, such systems cannot provide robust key 

escrow while at the same time protecting essential user rights. 

4.3.1 A Time-limiting Key Recovery Proposal 

As stated previously, the recovery of private keys allows the escrow agents to access 

confidential messages without any restraint on time. The fundamental concept behind 

key escrow proposals is to protect confidentiality of the honest citizen and revoke it 

from the dishonest citizen. While many schemes can be devised to grant or revoke the 

confidentiality service for selected users (citizens), the judgment of whether a citizen 

is honest or dishonest can only be reached with human involvement. This seems to 

be one of the weak links in any escrow system. A person in the government might 

be honest when the government is in control, but when another government takes over 

(possibly by a coup) the same person may be viewed as dishonest. This observation is 

applicable for all citizens, even for government officials who might control the escrow 

system. For any escrow system to be complete it should address this problem. 

The main problem related to this phenomenon is decryption (using the escrow 

mechanism) of ciphertexts that were intercepted in the past. The Clipper proposal [88], 

detailed in Section C.2, acutely suffered from this weakness. In the proposal, when the 

law enforcement agency (LEA) obtains a single court order it can decrypt past, present 

and future communications from/to the target without any form of restraint. 

Limiting escrow activity in time is essential for escrow systems [57, 48]. Many 

proposals relied on tamper-resistant hardware (or software) to accomplish this require­

ment. Reliance on tamper-resistance, especially in software, is difficult and will affect 

scalability of the implementation. Many proposals [11] relied only on certification 

procedures to accomplish the goal of the protocol. The discussion in this section is on 

such schemes. 

Burmester, Desmedt and Seberry [13] proposed a multi-party protocol that required 
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54 CHAPTER 4. KEY RECOVERY SYSTEMS 

the citizen, LEA and all the trustees to be available during the set-up phase. The 

proposal will henceforth be referred to as the BDS scheme. A brief summary of the 

BDS scheme is presented in Appendix C.l. A novel scheme will be devised, such that 

the trustees need not be on-line during the registration phase, by employing publicly 

verifiable encryption. This approach results in a more robust system in which trust 

on the trustees is minimal. This approach is in-line with the philosophy for design 

presented in Section 4.2, which required all integrity protecting mechanisms to be 

publicly verifiable. 

The BDS scheme consisted of a key escrow system that was claimed to limit the 

time span of wiretapping. The driving argument in the paper was that the trustees 

could be compromised at some point in time. It was assumed that at least a minimum 

number of the trustees will be honest in erasing the old share of the private key after 

computing the new share from the old share. The argument that the trustees could be 

compromised, may result in severe repercussions on the trust model of the system. The 

actual duties for which the trustees are trusted was not clearly mentioned in their paper. 

These reasons directly contribute to an attack on the system when a citizen (possibly 

an influential government officer) conspires with at least a minimum number of the 

trustees, to avoid escrow and still get his/her public key certified. In the Z-out-of-Z 

model that was detailed in BDS scheme, the minimum number is one. 

According to their scheme, citizens can periodically update the private keys and at 

the same instance the trustees can simultaneously update the respective shares. Also, 

if at least one of the trustees erases its old share, then it will be difficult to compute the 

old private key from the existing shares. Only the new private key can be reconstructed. 

This property is achieved using a homomorphic, one-way function. In the BDS scheme 

squaring in a composite modulus was used for the design of such a homomorphic one­

way function. Proof of the Diffie-Hellman relationship, D H (g 81
, g82

) = g8182
, was 

used in the BDS scheme to generate proofs for correctness of the shares generated by 

the citizens. This proof can be converted into a non-interactive protocol by employing 

suitable hash algorithms, as suggested by Fiat and Shamir [37]. 
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4.3. PRIVATE KEY RECOVERY 55 

A Potential Pitfall 

The underlying assumption for the development of the BDS scheme was that the 

trustees could be compromised at some instance of time, but the protocols for the three 

phases assumed complete trust in the trustees. These contradictory assumptions in the 

design of the system are serious flaws. Moreover, it is very difficult to place complete 

trust in any entity in practice. Secure systems should place minimal trust in neces­

sary parties in a protocol and explicitly mention the assumptions on trust relationships. 

Consider the forms of attack that allow a citizen to by-pass escrow by conspiring with 

some of the trustees, and still use the system in such a way that the identity of the con­

spiring trustees cannot be found. There are three potential break-points in the system 

that could be the foci of such an attack. They are; 

1. In the set-up (or registration) phase the LEA has to unconditionally trust the 

trustees to report fraud against the user when they do not receive the discrete 

logarithm of {zili = 1, · · ·, l}, the user published in the bulletin board. An 

attack could allow the user to give a wrong share to the trustee and still get 

his/her public key certified. No mechanism was proposed that would allow any 

neutral party to detect this fault. 

2. In the up-date phase there is no publicly verifiable proof that the trustee will up­

date the shares as prescribed by the protocol. The protocol relied on an implicit 

trust in the trustee for this update. We note that the only trust on the trustees that 

was explicitly mentioned in the BDS scheme was the deletion of old shares after 

computing new shares. 

3. In the key recovery phase there is no publicly verifiable proof that will guarantee 

that the trustee will use the correct value of its share {sili = 1, · · ·, l}. Some of 

the trustees could use a wrong value of the share that will prevent legal access to 

the plaintext and be unidentified. 

An Improved Proposal 

Publicly verifiable proofs can be employed so that any number of neutral entities (mon­

itors) can check the correctness of the registration phase and detect malicious parties. 
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56 CHAPTER 4. KEY RECOVERY SYSTEMS 

The proposal of Asokan et al. [3] is the only encryption algorithm independent and 

efficient publicly verifiable encryption which is known. The pseudocode to achieve an 

off-line version of their proposal is presented in Appendix B.2. Due to the verifiable 

encryption mechanism the improved scheme does not require the existence of secure 

channels between citizens and trustees as was the case in the BDS scheme. Since 

the improved scheme is an extension of the BDS scheme, it inherits all its security 

advantages. 

System Settings System settings are essentially similar to that of the BDS scheme, 

except for certain additions to the existing parameters. The LEA is trusted to execute 

the prescribed protocols faithfully. The LEA sets up a public key infrastructure that can 

be used for secure communications with the trustees. The public keys of the trustees 

{Yili = 1, · · ·, Z} (corresponding to the private keys { xili = 1, · · ·, l}) are certified and 

registered in a public directory. At least a minimum number of the· trustees are trusted 

to change their public-private key pair periodically, publish the new public key and 

erase the previous private key. This is essential to avoid decryption of the encrypted 

shares sent to the trustees using their public keys at an arbitrary point of time. 

Set-Up Phase Citizenj generatesalargeprimenumberpj suchthatpj = 2PilPi2 +1, 

where Pil and Pi2 are large primes. Also, Pil Pi2 3 mod 4, so that -1 is a 

quadratic non-residue in the fields ZPil and ZPJ 2 • Let nj = PilPj2· The citizen then 

chooses gj E ZPJ that is a generator of ZPi and its private key Xj ER Znj. He/she then 

computes the public key as Yi = g? mod Pi· The public data will be {gj, yj,pj}· The 

private data will be { x j, Pil, Pid. The citizen and the LEA engage in a protocol that 

has the following steps; 

1. Citizen: Computes the shares for the trustees as x j = II~=l si (mod Pi -1) and 

performs verifiable encryption of the shares as, {VerEne with input 

(si, g,p, Yi) and output(ci, Di, P1;, · · ·, P80J li = 1, · · ·, Z}. Sends 

{ ci, Di, P1;, · · ·, P8o; ji = 1, · · ·, Z} to the LEA. 

2. LEA: Checks the proofs of verifiable encryption as {CheckVerEnc with input 

( ci, p, g, Di, P1;, · · ·, P80J and output( checki) li = 1, · · ·, l}. If any of the checki 

is FAIL then signals error message to the citizen and terminates the protocol. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



4.3. PRIVATE KEY RECOVERY 57 

3. Citizen: Sends z1 ... i = g81
' ... ,si and the proofs of z1 ... i = DH(z1 ... i-l, Di) for ' ' ' , ) } 

i = 2, · · · , l to the LEA. 

4. LEA: If proofs for all the Diffie-Hellman relationships are correctly verified, cer­

tifies Y) = z1, ... ,1 as the citizen's public key in the system; forwards the verifiable 

encryption { ci, Di, P 1i, · • · , P8o;} to trustee i, who can decrypt it with the know l­

edge of Xi as DecryptVerEnc with inputs (xi, ci, P 1;, · · ·, P80;) and output(si), 

which is the share of the citizen's secret key. The LEA stores the value of Di 

against trustee i' s identity along with citizen j' s identity. 

In the above protocol the LEA need not trust any other entity to check the correct­

ness of the proofs. Moreover, any other neutral entity can verify the correctness of this 

protocol due to the presence of publicly verifiable proofs. 

Update Phase 

1. Citizen: Computes X]new = x] (mod Pj -1), computes Y)new = h?new mod Pj 

and proves the relationship YJnew = DH(yj, yj) to the LEA. 

2. LEA: Temporarily stores YJnew in local directory along with the citizen's identity. 

3. Trustees: Compute {sinew= sr (mod Pj- 1)Ji = 1, · · ·, Z}, compute {Dinew 

= g;inew mod pjJi = 1, · · ·, Z} and prove the relationship {Dinew = 

DH(Di, Di)Ji = 1, · · ·, Z} to the LEA. 

4. LEA: Certifies the new public key of the citizen, replaces the old value of the 

public key with the new value in the public directory of the citizen, and updates 

the local directory by replacing the value of Di with the value of Dinew. 

5. Trustees: Delete andforget the old shares. 

The modified update protocol enforces the correct and synchronised update of shares 

when public key is updated; this enforcement was absent in the BDS scheme. The 

trustees have to be trusted to perform step 5 correctly, as there are no known techniques 

to provide such guarantees. 
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58 CHAPTER 4. KEY RECOVERY SYSTEMS 

Key Recovery Phase The users are expected to use the ElGamal cryptosystem to 

securely communicate using certified public keys. The ciphertext in this system will 

thenbeoftheform(gk,My~) = (A,B)forthepublickey(ya,g,p). WhentheLEA 

obtains a court order to wire-tap the communication of a user, it intercepts the cipher­

texts sent to the user. The ciphertext component A along with the court order are sent 

to the trustees. The trustees then engage in a multi-party protocol to compute y~ from 

A using their respective shares by computing C = A rr}=1 a;, where ai is the share held 

by the trustees at that time. When the LEA is given C it can compute the message as 

M=BfC. 

The LEA intercepts the ciphertext pair (A, B) = (gj, Myj) sent to citizen j, ob­

tains a court order to wiretap the citizen's communication and presents A along with 

the court order to the LEA. The LEA then engages in the key recovery protocol, ex­

plained in the previous paragraph, with the trustees. If decryption fails after this pro­

tocol, then each trustee proves that it used the correct value of its share using the proof 

for equality of discrete logarithm. This proves that log
9

j Di = logE;_
1 

Ei mod pj, 

which ensures that the trustees have used the discrete logarithm of Di (the share si) to 

compute Ei from Ei-l· The LEA and the trustees engage in the following protocol; 

1. LEA: Sends A to trustee 1. 

2. Trustees: Compute {Ei = Et!_ 1 mod Pjli = 1, · · ·, l}, where E0 = A, and 

compute proof of equality of discrete log as {LogEq with input 

(si,gj,Ei-I,Di,Ei,Pj) and output (di,ei)li = 1,···,l}. Send {Ei,di,ei} to 

the LEA. 

3. LEA: Computes {CheckLogEq with input (di, ei, gj, Ei-1, Di, Ei,Pj) 

with output (checki)li = 1, · · ·, l}. If checki is FAIL register fraud against 

trustee i. 

4. LEA: Computes M = B / Ei mod Pj· 

This protocol guarantees message recovery or identification of malfunctioning trustee 

which ever the case may be. 

Security Analysis The security of the improved proposal relies on the: security of 

publicly verifiable encryption [3] and the BDS scheme. 
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4.3. PRIVATE KEY RECOVERY 59 

Theorem 4.1 Nobody except the corresponding trustee can obtain infonnation about 

the private key of the user from the verifiably encrypted ciphertexts if the verifiable 

encryption of Asokan et al [ 3] is secure. 

Proof: The users send the shares of the private-key verifiably encrypted (as pro­

posed by Asokan, Shoup and Waidner [3]) under the public-keys of the corresponding 

trustees in the first step of the set-up phase. The users are not required to reveal their 

private-keys in any other manner. 0 

Theorem 4.2 No citizen can obtain a valid certificate without legal escrow of the pri­

vate key, even by colluding with a minimum number of trustees. 

Proof: In order to avoid key escrow and at the same time obtain a valid certificate, the 

citizen must be able to perform any one of the following: 

1. Generate wrong proof that will pass the verification procedure of verifiable en­

cryption, so that a wrong pre-image of the commitment (gs;) for the encryption 

can be sent to the authorities. Since the verifiable encryption technique in [3] is 

assumed to be secure, this will not possible. 

2. Generate wrong proof that will pass the verification procedure to prove Diffie­

Hellman relationship [13], so that wrong value of shares can be encrypted for 

the escrow agent. Since the proof in the BDS scheme is assumed to be secure, 

this will not be possible. 0 

Theorem 4.3 No trustee can use wrong value of the share during key recovery phase 

and be unidentified, due to publicly verifiable proof of knowledge. 

Proof: If the trustee uses a different value in the key recovery phase, it must be able 

to generate wrong proofs for the proof of equality of discrete logarithms to avoid iden­

tification. Since the proof of equality of discrete logarithm is assumed to be secure, 

malicious trustees cannot remain unidentified. 0 
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60 CHAPTER 4. KEY RECOVERY SYSTEMS 

Computational Requirements The robustness of the improved proposal is a result 

of extra computations. The inclusion of publicly verifiable encryption in the set-up 

phase is the major source of the computational overhead. Since the set-up protocol is 

performed only once per user, it is not considerable when the robustness of the pro­

tocol is taken into account. The computational requirement for the publicly verifiable 

encryption is; 

Prover: The major computations that the prover has to perform are 2N + 1 hash 

computations and N exponentiations, where N is the security parameter of the 

protocol, which is 80 in the improved proposal. Asokan et al [3] suggest that 

each party ca11 do this using under 2000 modular multiplications. 

Verifier: The verifier has to perform 2N x + 1 hash computations and N exponen­

tiations, where x is the number of 1' s in the challenge c. 

The extra computational overhead in the update phase in the improved proposal 

as compared to the BDS scheme, is due to the Diffie-Hellman relationship proof that 

has to be performed once by each trustee and l times by the LEA. In the key recovery 

phase, if message recovery is successful then computational overhead will be zero. 

Observations 

The time-limiting escrow mechanism by Burmester, Desmedt and Seberry achieved 

(assuming some trust relationships) the much required time-limiting property in private 

key recovery systems. At the same time, both the original scheme and the improved 

scheme will succumb to the problems detailed in the next section. This is because both 

the schemes are fundamentally private key recovery schemes and, as will be explained 

in the next section, the concept of private key recovery may fail due to various reasons. 

Comparing the original scheme and the improved scheme, valuable information 

about key recovery systems (and the systems belonging to compliance Category 1, in 

general) can be obtained concerning public verifiability of the integrity service. Public 

verification seems to be fundamentally essential in environments where very weak 

trust relationships are noticeable. Public verification (or any form of verification for 

that matter) is an expensive procedure. Thus, a pragmatic design may require a suitable 

trade-off between the amount of trust and efficiency of operation. 
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4.3. PRIVATE KEY RECOVERY 61 

4.3.2 Private key recovery and digital signatures 

A fundamental principle of escrow systems is that only keys for confidentiality should 

be escrowed, while keys used for signing and authentication should not be. This is 

because authorities have no need to access such keys and, moreover, it puts in doubt the 

integrity of any signed message purporting to come from the key owner. This extends 

to a loss of the non-repudiation service, the lynchpin of electronic commerce services. 

Therefore, if the private keys of users were to be escrowed then the same public key 

infrastructure cannot be used for verification of digital signatures. There will be two 

entities (the user and the escrow agent) possessing the secret key corresponding to a 

public key, which contradicts the assumption for the existence of digital signatures. 

A logical solution would be to set up a separate unescrowed, public key infrastruc­

ture for digital signatures. However, this solution would allow the users to effectively 

bypass the escrow procedure by using the unescrowed public key infrastructure (in-

. tended for digital signatures) to communicate. This is because all the well known 

public key signature schemes have public keys for which corresponding encryption 

algorithms are known. Recently, Young and Yung [95] suggested a possible methodol­

ogy for the design of public keys that can be employed only in signature systems. Even 

in the case that no encryption algorithms were known for such public keys, signatures 

alone are sufficient to set up keys for confidentiality using well known protocols such 

as STS [32]. 

Open question: Can robust private key escrow systems and digital signature systems 

co-exist? 

In a key escrow system that adequately protects the rights of individuals it is not rea­

sonable that the private key is known to the authorities. Argument for the opposite case 

also exists, namely that for robust key escrow it is not possible for private keys to be 

known to individuals for reasons to be explained in the following section. 

4.3.3 Key conversion attack 

Micali [63], Kilian and Leighton [53], Young and Yung [94], and others have proposed 

escrow systems that rely only on mechanisms escrowing the private key of entities. 
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62 CHAPTER 4. KEY RECOVERY SYSTEMS 

This mechanism by itself will not guarantee key escrow. Strong traceability and en­

forceability mechanisms are also essential constituents of escrow systems. A generic 

attack on private key escrow systems without any mechanism for traceability and en­

forceability called the key conversion attack will be detailed in this section. Users 

employing this attack can convert to a new pair of keys from the certified (escrowed) 

keys to realise secure communications without key escrow. Since this conversion will 

be based on the certification procedure, the communicating parties avail the certifica­

tion service offered by the escrow system. The basis for the attack is the existence of 

secure proxy public keys. 

A proxy signature or cryptosystem allows the owner of a certified public key to 

delegate to a proxy, the power to sign or decrypt documents. Mambo et al. [60, 59] 

present a detailed discussion on this topic, in which proxy keys for both RSA and 

discrete logarithm based algorithms are constructed. 

The semantics for the key conversion attack are essentially similar to proxy cryp­

tography. A new key pair is derived from the certified public key for encryption ser­

vices and the owner of the public key assumes the role of the proxy, which is the case 

of self-proxy. Henceforth, all calculations will take place in the group Zp, unless stated 

explicitly. 

Let Yold be the public key corresponding to the escrowed private key Xozd, which is 

the discrete logarithm of Yold· The equations for a key conversion attack may require 

the following equations; 

Ynew = h(Yozd, r), 

Xnew = h(xozd, fs(r)) 

where r is a random number and h, h and fs are publicly known functions. 

A mechanism for a key conversion attack based on the proxy public key system [60] 

is presented. In this discussion g is a generator of the group z;. To convert to a new 

key pair the following operations are performed by the owner of the public key and 

collaborating entities; 

Owner: Select k ER Zp. 

Compute K = gk. 
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4.3. PRIVATE KEY RECOVERY 63 

Compute the new secret key, X new = X old + kK mod (p - 1). 

Broadcast K. 

Sender: Obtain Yold from a registry and compute Ynew = YoldK K. 

Encrypt the message, M, using the new public key E = EYnew ( M). 

Send encrypted message E to the owner. 

Owner: Decrypt the message using the new private key, M = Dxnew (E) 

Theorem 4.4 If there exists a secure algorithm for the generation of proxy key-pair for 

a public-key cryptosystem employing a random value, then the key conversion attack 

can bypass any private key escrow scheme that employs the public key cryptosystem. 

Proof: Assume that the participant and the escrow agents know the private key corre­

sponding to the certified public key of the participant. 

If there exists a secure algorithm for the generation of proxy keys for a public key 

cryptosystem employing a random value, then the participant can generate a secure 

proxy key-pair. The participant can send, in clear-text, the proxy public-key to its peer. 

Since the escrow agents, with a overwhelming probability, cannot guess the random 

value, they cannot compute the private-key corresponding to the proxy public-key. 

The authenticity of the proxy public-key can be validated by employing the certificate 

for the original public key. Therefore, with a high probability, the participant can cir­

cumvent the private key escrow mechanism. D 

Since it is believed that the proxy keys of Mambo et al. [60] are indeed secure, the 

claim holds true in the situation that discrete logarithm based public keys are used. It 

is evident that users may perform the key conversion attack by publishing a K value 

of their own choosing. Notice that it is an assumption that users may not have any 

other means to authenticate the K value as belonging to the correct user. However, the 

property of the proxy key ensures that whatever value of K is used in encryption, mes­

sages may be decrypted only with knowledge of the certified private key. Therefore, 

confidentiality of the message is ensured, although reception by the intended receiver 

is not. 
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64 CHAPTER 4. KEY RECOVERY SYSTEMS 

It is clear that any party, in particular a malicious escrow agent, can publish a K 

value claiming to be from the user. In the general case this means the encrypted mes­

sage can never be decrypted by any party. In the case when the escrow agent publishes 

K, it alone will be able to decrypt the message. Now since the escrow agent always has 

the power to decrypt, and can also be assumed to control communications to the user, 

this actually achieves nothing that cannot be done without use of a proxy key. However, 

these arguments lead to the conclusion that an escrow agent who wishes to prevent the 

attack must prevent all communications from taking place between legitimate parties. 

Analysis of a Private Key Recovery System 

An analysis of the auto-recoverable, auto-certifiable cryptosystems by Young and 

Yung [94] for private key escrow in software systems will be presented. In order 

to highlight the broad applicability of the key conversion attack, a drawback of the 

scheme by Young and Yung, henceforth termed as YYS, will be detailed. The draw­

back will allow rogue users to avail cryptologic services from the certification infras­

tructure and by-pass key recovery. 

System Settings: The system set-up for YYS consists of a common prime modulus 

r, such that q = 2r + 1 is a prime and p = 2q + 1 is a prime. The value of r is chosen 

to render the discrete logarithm problem intractable in the groups Z2q and Zp. Suitable 

generators 9 E Zp and 91 E Z2q are determined and published as system parameters. 

Each escrow authority, EAi, chooses zi ER Z 2r and computes Yi = 9fi mod 2q. The 
m 

common public key of all the escrow authorities is calculated as Y = IT Yi, where 
i=1 

m is the number of authorities, and the certificate for the tuple (Y; 91 , 2q) is published 
m 

securely. Note that the private key corresponding to Y is z = L zi mod 2r. 
i=1 

Key Generation: The key generation algorithm encrypts the private key under the 

public key of the authorities, Y, using the so-called "double decker" encryption. Each 

participant chooses k ER Z 2r and computes C = 9~ mod 2q. The private key, x, is 

calculated to satisfy the equation Ykx = 9~ mod 2q. The public key, y, is calculated 

as y = 9x modp. 
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4.3. PRIVATE KEY RECOVERY 65 

The participant then calculates part of a certificate of revocation, v = gy-k mod p. 

Non-interactive proof of knowledge transcripts, P 1 , P2 and P3 are computed simulta­

neously, so that: 

1. P1 proves the knowledge of kin C; 

2. P2 proves the knowledge of k in v; and, 

3. P3 proves the knowledge of k in v 0 . 

The participant publishes securely the auto-certified public key tuple to be ( C, v, P1 , 

P2 , P3 ) and (y, g,p). Note that ( C, v, P1 , P2 , P3 ) is the certificate for the public key, 

(y, g, p), of the participant. 

Secure Communication: The sender obtains securely the certificate of the partici­

pa?t and verifies the proof transcripts ( P1 , P2 , P3 ) by employing the public key of the 

authority, (Y, g1, 2q), to check the certification of the public keys and the enablement 

of key recovery. 

The public key tuple of the receiver, (y, g,p), is employed along with a suitable 

public key encryption algorithm to securely send a message to the participant. When 

the ElGamal encryption algorithm is employed, a message c is encrypted as (b 

cyr mod p, a = gr mod p), where r is a random value. 

Key Recovery: When provided with suitable warrants and the ciphertexts, (b, a), 

wire-tapped during the secure communication phase, the authorities can decrypt the 

private key, x, corresponding to the certified public key tuple ( C, v, P1 , P2 , P3 ) (y, g, p) 

and then decrypt (b, a) to obtain c, the message communicated during the secure com­

munication phase. 

The m authorities calculate the private key, x, of the participant by computing the 

following algorithm in a distributed manner: 

Set s0 =a 
For i in 1 to m and j in 0 to m - 1 do 

Si = sfi modp 
EndFor 
Decrypt c = bj(s?rJ mod p 
Output c 
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66 CHAPTER 4. KEY RECOVERY SYSTEMS 

Note that during the first iteration of the for loop, j = 0 and i = 1 therefore Sj = s0 = 

a and Si = s1. That is, authority i must wait for the output, si_1, from the previous 

authority to compute si and the first authority employs a to compute s 1 . 
m 

The algorithm works because yk = IJ si mod 2q and the private key can be de-
i=l 

crypted as x = cy-k mod 2q by using the value C available as a part of the public 

key of the participant. Instead of revealing the private key, x, the algorithm performs 

an ElGamal decryption and reveals the message, c, which is not meant to be a long 

term secret. 

Key Conversion Attack The participant chooses r 1 ER Zq, computes R = gr1 mod 

p, and publishes R in its personal directory that can be accessed by the sender. The 

sender obtains securely the public key of the participant from the authorities as ( C, 

v, P1 , P2 , P3 ) and (y, g, p), obtains the value of R from the personal directory of 

the participant, computes the new public key as Ynew = yRR mod p, encrypts the 

message cas (b = cy~ew mod p, a = gr mod p), and sends (b, a) to the participant. 

Upon receiving (b, a), the participant calculates the new private key as Xnew = x + 
r1R mod 2q and decrypts c = b/(axnew) mod p. 

Since the authorities only know the discrete logarithm of y and, with a good proba­

bility, will not know the discrete logarithm of R, they cannot calculate the discrete log­

arithm of Ynew' if the proxy cryptosystem of Mambo et al. [60, 59] is secure. Therefore, 

they cannot decrypt the ciphertext (b, a) encrypted using the public key Ynew· 

4.3.4 Inference 

Although private key escrow presents itself as an efficient and easy mechanism for es­

crow enablement, the notion suffers fundamentally from many problems. Privacy of 

participants, lack of enforcement mechanisms to prevent attacks such as key conver­

sion explained in Section 4.3.3, and the paradoxical state of escrow enforcement and 

the existence digital signature systems explained in Section 4.3.2 are the important 

issues. 
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4.4 Session Key Recovery 

A session key recovery system is a short-term key recovery system. In such recov­

ery systems certified long-term keys are employed to establish a session key which is 

then securely communicated to the escrow agents by employing the respective certi­

fied long-term keys. The advantage with this approach is that the user has complete 

control over the key recovery process. It is also inherently time-limiting, which was 

not the case with private key recovery systems. The disadvantage with this approach is 

the overhead in communications and difficulty in enforcing the compliance guarantee 

(because the key recovery service requires the discretion of the user). The latter obser­

vation is a security problem in many situations. A solution for this problem would be 

constant monitoring of user activities and their conformance to the system rules. As 

discussed in Section 2.3.1, enforcement of compliance can be achieved by designing 

an on-line or off-line monitor in order to realise enforceability Level 0 or enforceability 

Level 1, respectively. 

Verheul and van Tilborg [89] proposed a message format for the compliance verifi­

cation procedure, meant to be employed by an off-line monitor. Thereby their proposal 

was able to accomplish enforceability Levell only. As was discussed in Section 3.3.2, 

the proposed message format is not suitable as a integrity verification method. But, 

it may be possible to use the message format in a system that employs enforceability 

Level 0, as will be explained in Section 4.5. 

Apart from Verheul and van Tilborg's proposal there has been no significant pro­

posal meant for software implementation without any reliance on tamper resistance. 

Desmedt [30] presented a proposal for achieving traceability of ciphetiexts in software 

implementations. But the viability of this proposal was seriously questioned by Knud­

sen and Pedersen [54], who demonstrated their concerns with practical attacks. The 

protocol failure in the proposals by Desmedt [30], and Verheul and van Tilborg [89] 

can be traced to inadequate or flawed integrity verification mechanisms which resulted 

in systems with very weak enforceability property. Reasonably secure integrity ver­

ification mechanisms are fundamental components for robust traceability of message 

formats. Most of the practical session key recovery proposals such as the Clipper pro­

posal [88] and that of Gennaro et al. [42] (which has been incorporated into IBM's 
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68 CHAPTER 4. KEY RECOVERY SYSTEMS 

Secure Way [50] product line) critically depend on some form of tamper resistance and 

strong trust relationships to achieve this goal. 

Session key-recovery, by itself, is not sufficient for a robust key recovery system as 

it would be very difficult to enforce compliance and achieve robust traceability. This 

research concludes that to achieve robust key-recovery systems, a robust traceability 

architecture, a reasonably secure integrity verification mechanism and a strong enforc­

ing system are essential. The next section will present an architecture that employs this 

philosophy. 

4.5 Hybrid Key Escrow- A New Paradigm 

It is evident that a key recovery system must provide traceability, enforceability and 

compliance checking mechanisms to preserve its properties in an open environment [ 40, 

29]. In the Clipper proposal [88] (see Section C.2), the LEAF component of the mes-. 

sage format traced source and destination of messages. A 16-bit checksum was in­

tended to be the compliance checking mechanism to ensure legal formation of the 

LEAF component. The rule programmed into the Clipper chip that would disallow 

the decryption of ciphertexts with illegal LEAF components2 provided an enforce­

ment mechanism. The attacks reported by Blaze [10] applied to the algorithms used 

for implementation of the compliance checking mechanism and not necessarily to the 

enforcement mechanism. 

An easily understandable and implementable escrow system with robust enforce­

ability properties can be realized when on-line authorities (servers) are used in the 

design. Such systems can be made scalable by partitioning the network into domains 

with each domain having its authority- which is similar to the architecture employed 

by the WWW (world-wide web) service and the TCP/IP v4 communication protocol 

suite [36]. This would result in a better design than a monolithic system presented in 

the Clipper proposal. 

A new paradigm for the design of key recovery is proposed in Section 4.5.2 that 

uses partial private key escrow for enforceability and session key recovery for plain­

text recoverability. This distinction is essential for engendering user trust in the sys-

2 Along with the secrecy of the SKIPJACK algorithm, which was used by the Clipper chip. 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 69 

tern. The new paradigm possesses traceability and compliance checking properties. 

The proposal employs the the compliance checking mechanism of Verheul and van 

Tilborg [89]. 

4.5.1 The Binding ElGamal Proposal 

This scheme was proposed by Verheul and van Tilborg [89]. It employs session key 

recovery and a multi-party extension of the ElGamal encryption scheme with a mech­

anism for checking the compliance of message formats. It provides an effective mech­

anism for compliance checking of message formats in the system. The Clipper [88] 

proposal possessed a compliance checking mechanism that checked for the legal for­

mation of the LEAF component of the message format. The message was not allowed 

to be decrypted if the LEAF was ill-formed. This policy mechanism was programmed 

in the chip providing an effective way to enforce compliance. Such an enforcement 

mechanism is absent in the binding ElGamal proposal, which directly contributed to 

the attacks on the system, as explained in Section 3.3.2. 

4.5.2 Hybrid Key Escrow with Strong Binding 

The general idea of this scheme is to allow for the partial escrow of the private key 

of users and the recovery of entire session key. Thus, no entity will know the private 

key corresponding to a certified public key in the system. The public key infrastructure 

will consist of independent domains, with an authority controlling each domain. The 

private key corresponding to the certified public key is made up of two secret shares. 

One share is held by the user and the other by the authority of the domain in which the 

user is registered. The user cannot sign or decrypt messages employing the certified 

key pair without the participation of the authority, and vice versa. This property along 

with rules for formation of message formats can be used to realise robust enforceabil­

ity mechanism. The scheme uses the binding ElGamal scheme of Verheul and van 

Tilborg [89] for checking compliance of message formats in the system. 

Traceability Architecture 

The traceability architecture, proposed by Boyd '[11], allows a user and the authority of 

the system to share the secret key corresponding to a certified public key. The system 
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70 CHAPTER 4. KEY RECOVERY SYSTEMS 

settings are as follows. 

• The system operates in the group z;, where p = 2q + 1 and p and q are large 

pnmes. 

• g E z; generates the group. 

All operations will take place in the congruence class modulo p, unless stated other­

wise. At the end of this protocol the user's public key will be certified in the system 

with the user and the authority possessing shares of the secret key corresponding to the 

certified public key. 

1. A user a chooses a secret value x 1 , with (x 1,p- 1) = 1. 

2. The authority calculates x 2 = h(Kr, Ida), where Ida is the identity number of 

user ain the system and Kr is the authority's master secret key. 

3. The authority calculates w = gx2 and sends w to user a. 

4. User a checks that w 2 # 1 and wx1 # 1, calculates v = gx1 and sends v to the 

authority. 

5. The authority certifies Ya = gx1 x2 as the public key of user a, for use in the 

system. The certificate will be Pa. 

6. The authority sends the public key and its certificate to user a. 

? 

7. User a checks that Ya · wx1 and the validity of the certificate. If both checks are 

positive, then user a accepts the public key and certificate. 

The advantage of this architecture is that it is independent of the wiretapping mech­

anism. Wiretapping can be introduced in many ways. We propose an architecture in 

which the law enforcement agency is a special user in the system. The law enforce­

ment agency (LEA) registers as the first user by following the user registration protocol 

and obtains the public key as Ylea = gxzeabe, where Xzea is the secret key of the LEA and 

be is the authority's secret key corresponding to Yzea· The public key of the LEA can 

either be contained as a part of the user's certificate or the authority's certificate. The 

authority in the system is trusted to the level that it will follow the relevant procedures 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 71 

before assisting the LEA to wiretap communications. Since, the LEA is abstracted as 

a user in the system, the normal users of the system do not have to trust the LEA. 

An alternative architecture could use a public key corresponding to a secret key 

shared between a number of escrow agents, who are in turn responsible for recovery of 

session keys. In this scenario the authority's responsibility with regard to compliance 

checking is simply to check that the session key is encrypted with the escrow agents' 

public key. 

Function Definitions 

The essential operations in the system are presented as functions to improve clarity of 

discussion. The inputs to the function will be placed inside the brackets that follow 

the name of the operation and the result set (if any) will be on the left hand side of the 

equation. 

R = Enc{Ya,Yiea} (S, k) 

Compute Ra = Sy~ 

Compute Rzea = Syfea 

Compute C = gk 

Assign R +- { Ra, Rzea, C} 

This function takes a messageS and performs a multi-ElGamal encryption using the 

public keys Ya and Yzea· The outputs of the function are exponentiation C of the base g 

to the random value k and the ciphertexts Ra and Rzea corresponding to the respective 

public keys. 

B = formBind(E, R, Ya, Yiea, k) 

Choose j ER Zp 

Compute D = gj 

Compute F = (Yzea/ Ya)j 

Compute v = H(F, D, C, Ra, Rzea, E) 

Compute z = vk + j mod q 

Assign B +- {E, R, D,F, z} 
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72 CHAPTER 4. KEY RECOVERY SYSTEMS 

This function forms the binding parameters for the ciphertext available in its input. 

E = enc(S, M) is the symmetric encryption of the message M with the session keyS. 

The output of this function will contain a non-interactive proof (F, D, z), that can be 

used to check if the same message S is encrypted for the receiver and LEA using their 

respective public keys and random number k, which is the discrete logarithm of C. 

checkBind(B, Ya, Ylea) 

Compute v = 1-l(F, D, C, Ra, Rzea, E) 
7 

Check gz · cv D 
7 

Check (Ylea/Ya) · (Rzea/ Ra)v F 

This function checks the non-interactive proof generated by formBind( ... ) using the 

public keys of the relevant parties. 

T = PartDecx1 (B) 

Compute C' = cx1 

Assign T ~ {E, Ra, C'} 

This function performs a partial decryption of the ElGamal ciphertext using one of 

the secret shares conesponding to the public key with which the encryption was per­

formed. The output of this function will allow the owner of the other secret share to 

decrypt the message. 

S = Decx;(T) 

S = Ra/C'x; 

This function performs ElGamal decryption. Its output is the message S. 

The Scheme 

When a sender needs to send a confidential message to user A, he/she encrypts the 

message M using a well chosen session key S by employing a standard symmetric 

key encryption algorithm to obtain E. The sender encrypts the session key under the 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 73 

public keys of the receiver and the LEA to obtain Ra and Rzea respectively. (Here we 

assume that only one LEA is involved, but two or more could be accommodated.) The 

sender then binds E with C, Ra and Rzea to obtain the binding parameters. Ida, E, C, 

Ra, Rzea and the binding parameters are sent to the authority. The steps followed by 

the sender can be summarised as: 

• ChooseS 

• Encrypt message: E = enc(S, M) 

• Choose k ER Zp 

• Encrypt session key: R = Enc{ya,Yzea}(S, k) 

• Form binding parameters: 

B = forrnBind(E, R, Ya, Ylea, k) 

• Send to Authority: {B,lda} 

The authority checks for the legal formation of the binding parameters and, if they are 

correct, alters C using the secret share x2 corresponding to the user's public key to 

obtain C' so that A can decrypt the session key using her secret key. Note that the 

correct value x2 = h(Kr, Ida) can only be obtained by the authority if the correct 

identity Ida is sent with the message. The steps followed by the authority can be 

summarised as: 

• Check binding parameters: 

checkBind(B, Ya, Ylea) 

• Compute x2 = h(Kr, Ida) 

• Partial decryption: T = PartDecx2 (B) 

• Send to Receiver A: {T} 

On receipt of the partially decrypted message, A performs a standard ElGamal decryp­

tion to obtain the session key S and decrypts the ciphertext E using the session key to 

retrieve the message M. The steps followed by A are: 
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74 CHAPTER 4. KEY RECOVERY SYSTEMS 

• Decrypt session key: S = Decx1 (T) 

• Decrypt message: M = dec(S, E) 

It is evident that the authority cannot obtain the message M with any of the information 

it possesses. The message can be decrypted only by the receiver, and law enforcement 

agency in the domains of the sender and receiver. To wiretap any communication the 

LEA has to; --. 

1. approach the authority of their domain, 

2. produce a court order for wiretapping the communications to a user, 

3. request the authority to alter the message component C using the authority's 

secret key corresponding to the LEA's public key to get Czea' 

4. perform standard ElGamal decryption of Rzea using Czea and LEA's secret key 

to obtain the session keyS, and, 

5. perform symmetric key decryption onE using S to retrieve M. 

Compliance Guarantee Specification 

As noted in Section 2.3, the compliance specification for the scheme presented in the 

previous section can be presented as follows: 

Message Format: { E, Ra, Rzea, C, D, F, z} such that the tuple is a verifiable encryp­

tion of the form: 

This type was classified as Class 1, in Section 2.2.1. 

Compliance Category 1: Restricted confidentiality and universal integrity for themes­

sage encrypted in the ciphertext ( Ra, C) is the goal of this message format. 

Enforceability Levell: An on-line authority was essential for the communication be­

tween users; the security analysis in the next section will provide analysis . 
.. · 

The Clipper proposal [88] has a similar specification: 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 75 

Message Format: The LEAF (law enforcement access field) component contained 

the ciphertexts of the session key and the proof transcripts for integrity verifi­

cation. The proof transcript was not globally verifiable as the knowledge of the 

session key was essential for the verification procedure. 

Compliance Category 1: Restricted confidentiality and universal integrity for theses­

sion key is the goal of the message format. 

Enforceability Levell: Due to the secrecy of the algorithm, it was assumed that only 

Clipper systems can access message formats formed by other Clipper systems. 

Due to the tamper-resistant nature of the systems and the secrecy of the algo­

rithm, the use of the system during every communication was essential. That is 

the Clipper system had to be on-line during every communication phase involv­

ing another Clipper system. 

Security 

The scheme achieves the properties essential for robust key recovery systems. First 

note that the key conversion attack is not possible. This is the case since no user 

knows the complete information of the private key corresponding to their public key, 

so any proxy key that relies on knowledge of the discrete logarithm of the public key 

cannot be obtained by any user. The attack by Pfitzmann and Waidner [73] and the 

attack presented in Section 3.3.2 on the binding ElGamal [89] proposal will not affect 

the proposal presented in Section 4.5.2. If a sender transmits a ciphertext that was 

not encrypted with the session keyS, which was encrypted under the certified public 

keys of the user and the LEA, then the recipient (see Section 3.3.2) will not be able to 

decrypt it since he/she will not know the actual session key. The individual security 

requirements can be determined as follows: 

Confidentiality If a sender uses the prescribed protocol then the properties of multi­

ElGamal, proven by Verheul and van Tilborg [89, Theorem 2.3] guarantee the 

plaintext is only available to the chosen recipient and the LEA. 

Escrow enforcement If the authority checks that the binding is correct then any mes­

sage encrypted with any user's certified public key must be potentially decrypt­

able by the LEA. This follows from the properties of binding ElGamal. It is 
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76 CHAPTER 4. KEY RECOVERY SYSTEMS 

proven by Verheul and van Tilborg [89] that the protocol ensures, under rea­

sonable assumptions, that both parts of the multi-ElGamal encryption contain 

the same plaintext. The important extra point is that only those ciphertexts for 

which a corresponding binding exist will be partially decrypted by the authority. 

Due to this property the attack detailed in Section 3.3.2 will not be successful. 

This is because the authority, who is trusted in this regard, will not assist the 

hidden receiver (see Section 3.3.2) to decrypt the message format. 

Compliance If any encryption algorithm is used which requires the discrete loga­

rithm of any public key to be known for decryption then the ciphertext must pass 

through the authority for decryption to take place. This follows immediately 

because no user knows the complete private key corresponding to any public 

key. 

Note that, in this architecture, although the users can perform a variant of the Diffie­

Hellman key exchange protocol employing their certified public keys to avoid escrow, 

the central authority has a guarantee for accountability from these users. This was not 

possible in any of the previous key escrow proposals. The property of compliance that 

we can prove is not as strong as we might like. Ideally we would like to show that any 

encryption algorithm that uses a certified public key (and no other secret information) 

in any way whatsoever must be subject to escrow enforcement. This seems too diffi­

cult to achieve and so we cannot claim unconditionally that our architecture enforces 

compliance even though it avoids all the known attacks on other schemes. 

4.5.3 Source Traceability 

The message format (LEAF component) of the Clipper proposal [88] had the ability 

to robustly trace the source and the destination based on various assumptions. The 

binding ElGamal proposal by Verheul and van Tilborg [89], which the proposal for 

hybrid key-recovery system in Section 4.5 .2 employed, cannot robustly trace the source 

of the message format. In order to provide this capability to the hybrid key-recovery 

system, the sender of the message can be expected to sign some parts of the message 

format that can be universally verified. In situations where privacy is essential, forms 
,· 

of designated verifier proof or group signature system can be employed. For reasons 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 77 

stated in Section 4.2, the emphasis in this chapter will be on publicly verifiable message 

formats. 

For this purpose, if an unescrowed signing key is issued for all participants in the 

system then the hybrid system will also be susceptible to the deficiencies stated in 

Section 4.3.2. Thereby, a signature system for the hybrid key-recovery paradigm is 

essential. The design for a suitable- signature algorithm for this purpose will result in 

the following message transactions and procedures: 

1. the private key corresponding to the certified public key of the sender will be 

shared by the sender and its authority as suggested in Section 4.5.2; 

2. the sender can form valid signature tuples, which can be universally verified, 

only by interacting with its authority; 

3. the sender's authority will assist the sender to form valid signature tuples only 

after it verifies that the binding ElGamal data is correctly verified; 

"4. the receiver's authority will assist the receiver to decrypt message formats only if 

it correctly verifies the accompanying signature tuples and the binding ElGamal 

data. 

When there exists some implicit trust relationship between the sender's authority and 

the receiver's authority, the receiver's authority may just rely on the signature generated 

by the sender and the sender's authority, without verifying the binding ElGamal data. 

Many other alternatives are possible depending on how message formats are verified 

by the authorities and the trust relationship they share. 

This section will propose a joint signature scheme that uses the traceability ar­

chitecture proposed by Boyd [11], the Schnorr signature scheme in designate verifier 

mode [81] and the signature scheme by Horster, Michels and Petersen [49] (HMP) 

for the generation of digital signatures. Joint signature scheme is essential for source 

traceability in the hybrid key recovery system due to the reasons stated in Section 4.3.2. 

System Entities 

The joint signature system consists of a group of signers, labelled as 1, · · ·, l for an 

integer l. This analysis concentrates on the case when l = 2. This is because of 
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78 CHAPTER 4. KEY RECOVERY SYSTEMS 

the design assumption for a single authority corresponding to a particular user: that 

is the user and authority perform the joint signature procedure. The joint signature 

scheme can be easily extended to include more than two signers, but the increase would 

also result in a change in the verification equation and an _increase in the size of the 

signature tuple. The group of l signers will be labelled as S = { s 1 , · · · , s 1}. Any 

global verifier can know the identity of S from the public key certificate and cannot 

obtain any information about the individual signers, if the information is not certified. 

A certificate authority, CA, maintains the public key certificate repository. The system 

settings and description is essentially the same as the hybrid key recovery systems 

explained in Section 4.5.2. 

Signature Generation and Verification Process 

The signature process is distributed and consists of the following algorithms: 

1. partSign with inputs (m, xi, w, q) and outputs (c, d): generates a partial signature 

tuple (c, d) on the message m using the secret key share xi. It employs the 

Schnorr signature generation algorithm in the designated verifier mode. 

2. partCheck with inputs (m, c, d, x j, y, g, p) and outputs (1 or 0): checks the cor­

rect formation of the tuples (c, d) on the message musing the other secret share 

(xi I i =/=- j) and, outputs 1 for success or 0 for failure. Note that the 3-tuple 

(m, c, d) can be checked only with the knowledge of (xj I i =1=- j). It employs the 

Schnorr signature verification algorithm in the designated verifier mode. 

3. completeSign with inputs (d,xj,g,q) and outputs (d',r): completes the partial 

signature so that the 4-tuple (m, c, d', r) can be successfully checked by a univer­

sal verifier, if the 3-tuple (m, c, d) was successfully checked using the function 

desigCheck. It uses the HMP signature generation algorithm. 

4. completeCheck with inputs (m, c, d', r, y, g, p) and outputs (1 or 0): checks if 

the 3-tuple (c, d', r) is a valid signature on m by the certificate holders of the 

public key y. It uses a combination of the Schnorr (in designated verifier mode) 

and HMP signature verification algorithms. 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 79 

Figure 4.1 shows a graphical representation of the message dynamics in the joint sig­

nature system. The protocol and algorithms are shown in Table 4.1. The signature 

scheme is valid because: 

Signer 1 (Sender) Signer 2 (Sender Authority) Verifier 
partSign: 
k1 ER z; 
c = 1-l(milwk1) 
d = k1 - cx1 mod q 

c,d,m 

partCheck: 

c ? 1-l( mliycgxzd) 
completeSign: 
kz ER z; 
r = gk2 
d' = dx2 - k2r mod q 

c,d',m,r 

Table 4.1: Joint signature scheme 

9
x2(cx1 +d) 

ycgx2d 

Thus, wk1 = ycgx2d is used in partCheck. Now, 

Thus, wk1 = ycgd' rr is used in the function completeCheck. 

Security analysis 

completeCheck: 

c ? 1-l(miiycgd'rr) 

(4.1) 

(4.2) 

(4.3) 

Formal security analysis for signature schemes has been very difficult, which is the 

reason that many signature systems believed to be secure do not have a concrete proof 
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(m, c, d) 

partSign(m, Xt, tu) 

CHAPTER 4. KEY RECOVERY SYSTEMS 

(m, c, d', r) 

(m, c, d', r) 

(m, c, d) 

\----o>J partCheck(m, c, d, x2 , y 

/<>-----1 completeSign(d, .'C2 ) 

(m, c, d', r) 

J-----; completeCheck(m, c, d', r, ) 

Check 

Figure 4.1: Message dynamics in the joint signature system 

of security but only in specialised models of security [74] working under strict as­

sumptions [5]. We would ideally like the proof of security to prove the equivalence of 

"breaking" a signature scheme to solving a known hard problem. We present security 

arguments of our scheme that facilitate a better understanding of the system, so that at­

tempts to prove its security could be efficient and successful. This section will discuss 

the desirable properties of joint signature schemes in general followed by an analysis 

on a model of the joint signature scheme. In order to improve clarity, the analysis will 

assume only two signers sharing a public key. 

Security properties The desirable security properties of the joint signature scheme 

(see figure 4.1) are stated in this section. 

Security Property 4.1 Only signer I can compute the function partSign to obtain 

valid signature tuples that can be verified by signer 2. 

Security Property 4.2 Only signer 2 can compute the function partCheck to check the 

validity of partial signatures when signer I computes the function partSign. 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 81 

Security Property 4.3 Function completeCheck can be universally checked and out­

puts I when valid outputs of the complete Sign are given. 

Security Property 4.4 Signer 2 cannot form valid universally verifiable signatures 

using the function complete Sign without the outputs of the function partSign as com­

puted by signer I. 

Security Property 4.5 Only signer 2 can compute the function complete Sign to obtain 

valid joint signature tuples when the outputs of the function partSign as calculated by 

signer I are given. 

Theorem 4.5 The proposal for the joint signature system satisfies: 

I. security property 4.I, if the Schnorr signature is not forgeable, 

2. security properties 4.2, if the decisional Diffie-Hellman problem is intractable, 

and, 

3. security property 4.3. 

Proof' 

1. The algorithm for the function partSign is a direct application of the Schnorr 

signature scheme with the base for generating the challenge as w = gx2 (for 

signer 1) instead of g, as is the case in the Schnorr signature scheme. 

2. Following the previous arguments, to check the validity of the Schnorr signa­

ture triplets the verifier should possess the knowledge of the discrete logarithm 

log9 w mod p. This is because the values x 1 and x2 are chosen at random and no 

universal verifier can correlate the relation between w andy due to the decisional 

Diffie-Hellman problem [26]. 

3. The algorithm for the function completeCheck does not require any private data 

as its input. Correctness follows from equation 4.3. D 
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82 CHAPTER 4. KEY RECOVERY SYSTEMS 

It is interesting to note that in the case of standard Schnorr signature w = g mod p, so 

that everyone knows a solution for the discrete logarithm log
9 

w mod p. 

Security property 4.4 states that universally verifiable signatures can be formed 

only when both the signers co-operate. Informal analysis suggests that the proposal 

satisfies this property. We conjecture that the proposal relies on the security of the 

Schnorr signature scheme against existential forgery to achieve this property. 

Security property 4.4 aims at providing security for a signer when the other signer 

is the attacker. Security property 4.5 provides a stronger notion of security, in that it 

provides security against an external attacker. We conjecture that the proposal satisfies 

this property when the Schnorr signature scheme is secure against existential forgery. 

The next section will discuss an analysis of a model of our signature system. 

Analysis of a model The modes of attack on any signature scheme [83] are: 

• Total Break: Given a set of well formed signatures, it will be possible to com­

pute the secret key. 

• Universal Forgery: Finding an algorithm that will form a valid signature on a 

message without the knowledge of the secret key corresponding to the public 

key. 

• Selective Forgery: Forge a signature for a particular chosen message, with or 

without interacting with the original signer. 

• Existential Forgery: Forge at least one message without the knowledge of the 

private key. Note that the message value could be random without any mean­

ing [83]. 

One approach for proving the security of a signature scheme could be to show that 

existential forgery is not possible which, being the weakest form of attack, will provide 

the strongest notion of security. Unfortunately it seems difficult to achieve this proof. 

This section provides a security analysis of the proposal against a special form of 

existential forgery on the Schnorr signature system and its derivatives called (m, c)­

forgery (see Definitions 4.2 and 4.5.3). 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



4.5. HYBRID KEY ESCROW- A NEW PARADIGM 83 

In the rest of this security analysis, all arithmetic operations are assumed to be 

performed in the group of integers, Zp, unless stated otherwise. The Schnorr signature 

velification process can be defined as: 

Definition 4.1 The tuple ( c, d) is said to be a valid Schnorr signature on a message 

m by the entity owning the public key y, ifthefollowing equation is verified: 

(4.4) 

Let S denote the set of algorithms that can be used to implement ( m, c)-forgery attacks 

on the Schnorr signature scheme. Then the attack algorithms in set S can be defined 

as: 

Definition 4.2 The algorithms in set S can be modeled using a probabilistic polyno­

mial time Turing machine that on input d will return, with a high probability, m and c 

such that the tuple ( c, d) is a valid Schnorr signature on m, verifiable using the public 

key y. 

The verification process for the joint signature scheme can be defined as: 

Definition 4.3 The tuple ( c, d', r) is said to be a valid joint Schnorr signature on a 

message m by the entity owning the public key y, if the following equation is verified: 

(4.5) 

Let J denote the set of algorithms that can be used to implement ( m, c) -forgery attacks 

on the joint signature scheme. Then the attack algorithms in set J can be defined as: 

Definition 4.4 The algorithms in set J can be modeled using a probabilistic polyno­

mial time Turing machine that on inputting ( d', r) will return, with a high probability, 

m and c such that the tuple ( c, d', r) is a valid Schnorr signature on m, verifiable 

using the public key y. 

Note that algolithms in the sets S and J appear to be related. This is because a common 

strategy to implement the algorithms in sets S and J could be to attack the algolithm 

used for the hash function. That is given the partial sequence of the input, d or ( d', r), 

find the remaining input, m, and the corresponding output, c. 
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84 CHAPTER 4. KEY RECOVERY SYSTEMS 

The ( m, c) attack concentrates on the structure of the universal verification equa­

tion, which is an essential part of any signature scheme, and tries to form valid signa­

ture n-tuples on (random) messages that could be verified using the public key without 

the knowledge of the corresponding private key. Note that this attack is stronger than 

existential forgery, thereby proof of security against (m, c)-attack provides a weaker 

notion of security than a proof of security against existential forgery. So, if there ex­

ists an algorithm to perform existential forgery on a signature scheme, an algorithm to 

implement the (m, c)-attack may also exist, but not necessarily the other way around. 

The security analysis of the HMP signature scheme assumes the existance of an 

efficient algorithm to perform existential forgery on the ElGamal signature system [20] 

and its variants, as suggested by the following lemma. 

Lemma 4.1 The HMP signature system is existentially forgeable. 

Proof: The HMP signature tuple (r, s) on a message m and public key y must satisfy 

the equation g8 = ymrr mod p, where the private key x = log
9 

y. To arrange this an 

attacker: 

1. Chooses arbitrary integers band c. 

2. Computes r = gbyc mod p, s = br (mod p -l) and m = -cr (mod p -1). 

The tuple ( r, s) will then be a valid signature on the message m verifiable using the 

public key y. D 

The joint signature system can be viewed as a cascade of the Schnorr and HMP 

signature schemes as shown in Figure 4.2. Signer 1 performs the Schnorr signature 

and Signer 2 performs the HMP signature, as suggested in the protocol depicted in 

Table 4.1. Thus, the signature tuple corresponding to the message, m, and the public 

key, gx 1x 2 , is ( d', r, e). 

Theorem 4.6 If the Schnorr signature scheme can be (m, c)-forged employing algo­

rithms from the set S, then the joint signature scheme can be ( m, c) -forged employing 

algorithms from the set J. 
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4.5. HYBRID KEY ESCROW- A NEW PARADIGM 
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Figure 4.2: A Visualisation of the Joint Signature Scheme 
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Figure 4.3: Attack Scenario for the Joint Signature Scheme 
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Proof: Figure 4.3 illustrates the approach for this proof. Suppose that signer 2 is 

mounting an attack on signer 1. Let w = gx 1
, so that log

9
x 2 y = log

9 
w. Assume that 

the Schnorr signature scheme is (m, c)-forgeable. Since the HMP signature scheme is 

existentially forgeable, the attacker can obtain a valid signature tuple ( d', r) on some 

message value d that can be verified using w as the public key. Since the Schnorr 

signature is assumed to be (m, c)-forgeable, the tuple (m, c) can be formed when 

given d, so that the 3-tuple (m, c, d) satisfies the equation c ? 1-l(m!!Ycwd). But the 

HMP signature on dis (d', r) so that wd = gd' rr. Thus c ? 1-l(ml!ycgd' rr), which 

is the signature verification scheme for the joint signature scheme. Thus the 4-tuple 

(m, c, d', r) is a (m, c)-forged signature on the joint signature scheme. D 

Theorem 4. 7 If the joint signature scheme can be ( m, c) -forged employing algorithms 

from the set J, then the Schnorr signature scheme can be (m, c)-forged employing 

algorithms from the set S. 
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86 CHAPTER 4. KEY RECOVERY SYSTEMS 

Proof: Figure 4.4 illustrates the approach for this proof: 

J 
d 

d' !»-

Existentially Forge HMP ~ MC Forge Joint Signature 
r !»-

m 

c 
_.,.. 

Figure 4.4: Attack Scenario for the Schnorr Signature Scheme 

Suppose that signer 2 is mounting an attack on signer 1. Let w = gxl, so that 

log
9

x 2 y = log9 w. Assume that joint signature scheme is (m, c)-forgeable. There 

exists an existential forgery on the H1v1P signature scheme. Find existentially forged 

signatures ( d', r) on d such that wd = gd' rr. Since joint signature scheme is assumed 

to be ( m, c)-forgeable, find ( m, c) so that ( m, c, d', r) is a valid joint signature 

satisfying the equation c 
7 1-l(milycgd' rr). Thus c 7 

1-l(mliyciud), which is a (m, c)-

forged Schnorr signature tuple ( d, c) on m. 0 

Corollary 4.1 Joint signature scheme is (m, c)-forgeable if and only if Schnorr sig­

nature scheme is (m, c)-forgeable. 

Proof: The proof follows from the proofs for Theorems 4.6 and 4.7. 0 

Lemma 4.2 If signer 2 can form signature tuples without the help from signer 1, then 

so can a universal attacker without the help of signer 1 and signer 2. 

Proof: The public key is of the form y = gx1x2 = gx. Therefore, x~ = 1 is a valid 

share because y = gx = gxx~ 

By symmetry of arguments, if signer 2 can form valid signature tuples that can be 

verified employing the public key y with the knowledge of x 2 and without the knowl­

edge of x 1 , then a universal attacker can form valid signature tuples that can be verified 

employing the public key y with the knowledge of x~ and without the knowledge of x. 

0 
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4.6. SUMMARY 87 

The above lemma is important because it suggests that the signers have no addi­

tional advantage compared with an universal attacker to forge joint signature tuples 

without the assistance from its peer. This lemma provides additional understanding 

about the proposals achievement of security Properties 4.1, 4.4, and 4.5. 

Maurer and Massey [58] presented a folk theorem that suggested that cascaded 

ciphers will be at least as difficult to break as its component ciphers. Similarly, the 

following observation on the joint signature scheme, which is a cascaded signature 

system, can be made as: 

Observation 4.1 A joint signature scheme's security against ( m, c) -forgery will not 

be any more secure than the most secure (against (m, c)-forgery) signature scheme in 

the cascade. 

Evidence for Observation 4.1 can be found in Theorems 4.6 and 4.7, and in Corol­

lary 4.1. The joint signature scheme was a cascade of the HMP signature scheme and 

the Schnorr signature scheme. Lemma 4.1 indicates that the HMP signature scheme is 

existentially forgeable. The (m, c)-forgery is a stronger attack than existential forgery. 

The security for the joint signature scheme primarily relies on the the security of the 

Schnorr signature scheme against (m, c)-forgery. 

4.6 Summary 

Three forms of key recovery techniques, namely private key, session key and hybrid 

key recovery schemes were discussed. The inherent problem with the private key and 

session key recovery systems for software implementations were discussed. A new 

key recovery paradigm called hybrid key recovery was presented. It was shown that 

hybrid key recovery achieves, relying only on the certification procedure and an on­

line authority, every security aspect that the Clipper proposal achieved by relying on 

tamper-resistant hardware and secrecy of the confidentiality algorithm. The hybrid key 

recovery proposal seems to be the only practical, open, certification-based, robust (as 

is possible), software key recovery proposal currently available in the open literature. 

The following comparison between the Clipper proposal [88] and the scheme proposed 

in Section 4.5.2 can be made: 
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88 CHAPTER 4. KEY RECOVERY SYSTEMS 

Compliance: The LEAF component, which was essential for the verification of com­

pliance, is replaced by the publicly verifiable message format proposed by Ver­

heul and van Tilborg [89]; 

Enforceability: the reliance on tamper resistance and secrecy of algorithms is re­

placed by trusting the on-line authority and by the traceability architecture pro­

posed by Boyd [11]. 

A key-recovery system is perfect if it can guarantee a proposition of the following 

form: secure communications to/from a user is possible if and only if the escrow au­

thority (and the law enforcement agency) can have access to the confidential message 

·being communicated. Perfect key recovery is an unsolved issue because any two con-

spiring rogue users can employ a secure key agreement protocol to effectively by-pass 

key recovery. In fact, the findings of this research suggests the impossibility of perfect 

key recovery systems. This result may be traced back to the modeling of cryptosystems 

by Shannon[84] used widely in the design of cryptologic systems, which assumes an 

insecure physical communication channel and a secure cryptographic algorithm as the 

only requirements for secure logical communication channel. The original work on 

public-key cryptosystems by Diffie and Hellman [33] adopted this strategy. Most key 

recovery systems tend to provide an authenticated channel that is unique for a pair of 

users, otherwise unique key recovery will not be possible - conceptually, the partici­

pants can utilise the lack of the uniqueness property to by-pass key recovery. On the 

other hand, the provision of such a channel along with the modeling of cryptosystems, 

provides a clear advantage for the conspiring users of the system in by-passing key 

recovery. 

The proposal presented in. Section 4.5 provides an auditing tool that can be em­

ployed to hold the conspiring users accountable in the case of an illegal usage. This 

seems to be the best possible solution for key recovery systems. The requirement for 

key-recovery can be summarised as follows: 

Service Phase: The escrow agency provides the users with a service, which the users 

cannot achieve without the assistance of the agency. The Clipper proposal in­

tended to provide an infrastructure for secure communications based on a secret 

algorithm. In the hybrid key-recovery proposal, the agency provides a robust 
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4.6. SUMMARY 89 

certification infrastructure. Thereby, this phase symbolises a transfer of service 

from a powerful agency to normal users; 

Compliance Phase: The users, in response to the service, grant some privileges to 

the agency. This phase provides "plain-text access" to the agency. 

The literature review of this research found that almost all commercial, public-domain 

proposals (excluding the Clipper proposal) did not achieve robustness in the second 

phase. The proposed hybrid-key recovery systems seems to be the only mechanism 

available for certification-based, software key-recovery system that encompasses all 

the properties evident in the Clipper proposal, in a much better fashion. 
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Chapter 5 

Anonymous Token Systems 
Dazzling achievements are possible, which can make a 
man's name live for thousands of years. But above this 

level, far above, separated by an abyss, is the level 
where the highest things are achieved. These things are 

essentially anonymous. 
-SIMONE WElL 

(1909- 1943) French philosopher 
"La Table Ronde;' "Human Personality;• 1950. 

The confidentiality service is provided to data by employing a key, which results 

in a ciphertext. An interesting scenario occurs when the data is a representation of the 

identity of participants in the system. The result of providing the confidentiality service 

to the identity of participants is the anonymity service. A collection of ciphertexts that 

are essential for the provision of the anonymity service is called a token. Two methods 

for achieving the anonymity service are: 

1. the token is a function of a random string, so that there exists no relationship 

between the token and the identity of the participants; and, 

2. the token is a function of a random string and the identity of the participant, 

such that the relationship between the identity and the token is confidential and 

is known only to the participant, and optionally to a trustee. 

The second approach is more comprehensive and can be employed to model the first 

approach. Such a model, for example, may provide all the participants in the system 

with the same identity. A class of systems, which provides confidentiality service to 

an identity of a participant, called the anonymous token systems (ATS) is the interest 

of this chapter. The word token denotes the security objects (ciphertext or ciphertexts) 

that provides the confidentiality service to the identity. The token will belong to com­

pliance Category 1, as discussed in Section 2.3, if the ATS accommodates mechanisms 
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92 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

for tracing1
. It will belong to compliance Category 0, as discussed in Section 2.3, if 

the ATS does not provide mechanisms for tracing. The ATS employed in Sections 5.3 

and 5.4 belong to the former category and the ATS which could be used in Section 5.5 

would belong to the latter category. 

ATS requires compliant cryptologic protocols because of the following potentially 

conflicting requirements for: 

1. the authorities, who require every anonymous participant to be authorised and 

the authorisation procedure will require a suitable form of authentication; and, 

2. the anonymous participants, who require the anonymity service. 

·Additionally, the authorities may require the revocation of anonymity service, which 

would contradict fundamentally the requirements of the participants. The only known 

approach to solve such fundamental conflicts requires the authorities and the partici­

pants to trust a set of revocation authorities, who can perform the revocation service. 

Such systems require potentially additional compliance tests because every participant 

must prove the ability of the revocation authorities to perform the revocation. Although 

the above discussion may provide a picture where compliance testing and anonymity 

service are at the opposite ends of a spectrum, it is possible to achieve both the re­

quirements with suitable assumptions. Such systems provide compliance verification 

equations for environments with the anonymity service. 

Electronic cash (e-cash) provides anonymity for the sink (or receiver) of the token 

(signature ciphertexts). The blind signature technology has been the only known effi­

cient technique for the design of anonymous token systems (e-cash systems). Group 

signature schemes, on the other hand, provide anonymity for the source (or signer 

or sender) of the token. The signer is anonymous and the receiver of the signature 

does not obtain anonymity service. The primary interest of this chapter is to employ 

techniques that provide the anonymity service for the sink of the token, such as the 

electronic cash technology, to design an ATS. 

The ATS can be treated as a black-box that provides the integrity service to are­

lationship between an identity and the data, and the confidentiality service to the rela­

tionship. Secure selection protocols (SSP) allow robust linkage of tuples of the form 
1When tracing of the identity is required, the anonymity service must be restricted. Thereby, only 

restricted confidentiality service can be provided for the identity of participants. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



93 

(I, D), where I is an identity and Dis a data and provide confidentiality to the tuples. 

The word selection suggests that the data D may be the choice (selection) of an entity 

with identity, I, and the word secure implies the provision of the confidentiality and 

the integrity services for this selection. 

Three possible approaches for providing the confidentiality service to the relation­

ship would be to provide the confidentiality service for I, for D, or for both I and 

D. This chapter is interested in the first or third approach, namely confidentiality for 

the identity I, depending on the application. The peer-review protocol presented in 

Section 5.3 adopts the first approach and the proposals for electronic auction and elec­

tronic voting systems adopt the third approach. These approaches result in the design 

of compliance verification equations that can operate in an anonymous environment. 

A concrete proposal to achieve anonymity in electronic systems was first proposed 

by Chaum using blind signatures [ 19, 28]. Since then, research for the provision of the 

anonymity service, especially fore-cash systems, has been extensive [70, 92, 12, 55]. 

Like security systems, the effective anonymity provided by such systems critically 

depends on the weakest link in the communication infrastructure - in this scenario, 

the word weakest refers to the ease of tracing transactions. If a layered anonymity 

system is assumed, comprising of a logical anonymity channel operating over a physi­

cal anonymity channel, then the effective anonymity would be the weakest anonymity 

service provided by one of the two layers. That is, if a perfectly anonymous logical 

channel is layered over a physical channel providing weak anonymity service, then 

the total system will provide a weak anonymity service. Both the physical and logi­

cal layers must provide sufficient anonymity service, in order to achieve the required 

level of effective anonymity. There has been significant advancement in the research 

for the provision of the anonymity service in physical channels by employing mix­

networks [51, 2]. 

The subsequent discussions will assume the presence of an anonymous physical 

channel and concentrate on the dynamics of the anonymous logical channels. This 

separation of concerns yields an efficient analysis and design approach. 

This chapter will present an analysis of anonymous token systems, the electronic 

cash technology and then employ the concepts to propose a generic schema for the 

design of secure selection protocols. The schema will then be employed to design a 
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94 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

peer-review proposal and an auction system. A conceptual design for a basic electronic 

voting system employing the schema will also be presented. 

5.1 Overview of Anonymous Token Systems 

The aim of anonymous systems is to hide the identities of registered users. Thus, 

anonymity can be modeled as the confidentiality service for an identity. Encryption 

algorithms provide the confidentiality service to a message by employing a key. The 

confidentiality service is guaranteed as long as the encrypted message is suitably pro­

tected and not transmitted over insecure channels. On a similar note, anonymity sys­

.tems provide confidentiality for an identity as long as the identity is suitably protected. 

Cryptologic services assist in the process for the maintenance of confidentiality and do 

not assist in the creation process, which is an issue external to cryptography. 

An anonymous token system (ATS) is a suite of protocols that can be used for 

anonymous transfer of credentials - that is the identity of the source of the credential 

is hidden from the destination and all other parties. The protocols in the suite are 

token issuing, token utilisation, token submission and tracing. The tracing protocol is 

relevant only when restricted anonymity is a requirement. 

The ATS is a specialised authentication system, generically represented as in Fig­

ure 5.1. In the figure, the interactions are represented by the lines connecting the 

TIA 

tr 

submit 

Client TAA 

utilise 

Figure 5.1: Basic Anonymous Token System 
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5.1. OVERVIEW OF ANONYMOUS TOKEN SYSTEMS 95 

respective entities as follows: 

1. Token issuing protocol performed by the token issuing authority (TIA) and the 

client. This interaction does not provide immediate anonymity service. Let I be 

a set of tuples that contain all the legal tuples that describe possible conversations 

of this protocol. Every instance of a legal conversation could then be represented 

by the tuple issue E I, as shown in Figure 5.1. When the blind signature tech­

nique is employed TIA assumes the role of a signer and the client the role of a 

honest verifier; 

2. Token utilisation protocol performed by the client and the token accepting au­

thority (TAA). The client can remain anonymous during this interaction. Let U 

be a set of tuples that contains all the legal tuples that describe possible conver­

sations of this protocol. Every instance of a legal conversation could then be 

represented by the tuple utilise E U, as shown in Figure 5.1. This protocol al­

lows the client to submit the anonymous token, obtained as a result of the token 

issuing protocol, to the TAA without identifying itself, in return for a specified 

security service; 

3. Token submission protocol between the TAA and the TIA allows the TAA to 

submit the tokens it has accepted during the token utilisation protocol. LetS be a 

set of tuples that contains all the legal tuples that describe possible conversations 

of this protocol. Every instance of a legal conversation could then be represented 

by the tuple submit E S, as shown in Figure 5.1. In the case of electronic 

cash systems, there exists a bijection between the set of conversations for the 

submission protocol, S, and the set of conversations for the utilisation protocol, 

U. Therefore, U uniquely and unambiguously describes S. In order to simplify 

the representation, it will be assumed that S = U and submit = utilise, which 

is the case in the popular proposals for the electronic cash technology [12, 38]. 

Although this research has not identified a scenario where submit =/:- utilise, it 

may have useful applications. Therefore, the thesis must accomodate such a 

scenario, which future applications may employ. 

4. Tracing protocol between the set of trustees and any authorised entity provides 

a mechanism for determining the tuple utilise E U given issue E I, or issue E I 
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96 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

given utilise E U. LetT be a set of tuples that contains all the legal tuples that 

describe possible conversations of this protocol. Every instance of a legal con­

versation could then be represented by the tuple tr E T, as shown in Figure 5.1. 

In the simplest form, the token issuing protocol allows the client to authenticate to 

the TIA and obtain a certificate on a pseudonym. The token utilisation protocol allows 

the client to prove to the TAA that it has authenticated to the TIA, without identifying 

itself or the public tuple (issue E T) of the token issuing protocol. The properties of 

the transactions in ATS that were identified as important are as follows: 

FPO : Valid token issuing tuples, issue E I, can be formed only with the assistance of 

the TIA. 

FPl : issue E I and utilise E U must possess a one-to-one relationship; 

FP2: for every entity, excepting the client, it must be intractable (or difficult) to com­

pute utilise given issue; 

FP3: for every entity, excepting the client, it must be intractable (or difficult) to com­

pute issue given utilise. 

The issues in ATS that were identified as important are as follows: 

Authorisation: all the tuples in the set I can be formed only after an interaction with 

the TIA, and given a legal tuple issue1 E I it must be intractable to compute an­

other tuple issue2 E I, without interacting with the TIA. An intuitive approach 

to achieve this property is to include secure signature ciphertexts as a part of the 

legal tuples in the set I. Property FPO is important for this issue. 

Anonymity : given issue it must be infeasible to determine utilise. And, given utilise 

it must be infeasible to determine issue. Properties FP2 and FP3 are central to 

this issue. 

Reusability : the number of successful token utilisation protocols must be uniquely 

determined by the number of successful token issuing protocols. In the simplest 

case, there must exist a bijection between the set U and the set I. FPl is an 

essential property in this regard. 
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5.2. EXAMPLES AND APPLICATIONS OF ATS 97 

Traceability : optionally it may be necessary to uniquely determine: 

• the tuple utilise E U given the tuple issue E I. This issue is called token 

tracing, which is known as coin tracing in electronic cash systems; 

• the tuple issue E I given the tuple utilise E U. This issue is called client 

tracing or client identity tracing, which is known as owner tracing in elec- . 

tronic cash systems. 

FPl is fundamentally important for all solutions for tracing. 

The requirements for anonymity and traceability are contradictory requirements, 

but they can be achieved by providing: 

restricted confidentiality service for the identity of the client, which achieves a trust­

based anonymity service and a traceability service, to achieve Properties FP2 

and FP3; and, 

universal integrity service for the tuples issue E I and utilise E U to achieve Prop­

erty FPl: in order design compliance checking mechanism for the verification 

of traceability. 

Therefore, there will exist message formats, in ATS with support for anonymity revo­

cation, that can be classified under compliance Category 1, as discussed in Section 2.3. 

5.2 Examples and Applications of ATS 

The previous section provided the properties of ATS. The concrete solutions that achieve 

these properties are presented in Section 5.2.1. Section 5.2.2 will present an explana­

tion for the protocol failure in the proposal for a payment system that employed an 

ATS, without explicitly identifying with this terminology. Section 5.2.3 will propose 

a generic schema for the design of a class of protocols called secure selection proto­

cols by employing the ATS. The schema will present a design heuristic to avoid design 

flaws identified in Section 5.2.2. 
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98 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

5.2.1 Electronic Cash Technology Based on the Discrete-Log Prob­
lem 

The electronic cash technology is a natural candidate for an ATS. The aim of the 

electronic cash technology is to hide the relationship between the set of withdrawal 

transcripts and the spending transcripts. The withdrawal protocol, which allows the 

customers to create e-coins with the assistance of the bank, generates the withdrawal 

transcript. The spending protocol, which allows the customers to prove ownership of 

the so-formed e-coins to the merchant, generates the spending transcripts. Therefore, 

the withdrawal protocol is an ideal candidate for the token issuing protocol and the 

spending protocol can be the token utilisation protocol. 

Popular approaches for the design of electronic cash systems are based on tech­

niques that facilitate the creation of specialised certificates for keys. The certification 

procedure prevents any entity, other than an optional trusted third party, from deter­

mining the identity of the owner of the key from the information contained in the 

certificate and the key. The certification mechanism may ymploy a suitable fonn of 

verifiably encrypted signature tuples to achieve the goals. Such a specialised certifica­

tion procedure, invariably, achieves the properties required for an ATS. 

Chaum and Pedersen [18] presented an electronic cash scheme based on the dis­

crete logarithm problem by employing a blind Schnorr signature scheme [81]. This 

proposal has been widely researched and employed in many subsequent proposals, in­

cluding the proposal for a restrictive blind signature scheme by Brands [12] and its en­

hanced version supporting anonymity revocation by Frankel, Tsiounis, and Yung [38]. 

This section will explain the dynamics of the e-cash scheme by Frankel, Tsiounis, and 

Yung. 

The system consists of the i:nint (or bank) acting as the TIA, the customer (client), 

the merchant acting as the TAA and a trustee. The bank and the customer employ the 

token issuing protocol (withdrawal protocol) to compute the tuple, issue E I, and, a 

tuple Sc known only to the client, and another tuple Stia known only to the TIA. The 

tuple issue "' Sc "' Stia' where"' is the tuple concatenation operator, must be unique 

and, usually, a function of the long term private keys of the TIA and the client. The 

steps involved in the token issuing protocol (withdrawal protocol) are as follows: 

1. The mint commits to two inputs, a' = h1 ( w) and b' = h2 (I, w) such that h1 and 
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5.2. EXAMPLES AND APPLICATIONS OF ATS 99 

h2 are one-way functions, and w is a random, secret value; 

2. The customer employs the commitments to calculate ·secret, integrity keys a = 
h3 (a', u, v) and b = h4 ( b', u, v, s) , such that h3 and h4 are one-way functions 

and u, v and s are random, secret values; 

3. The customer computes the checksum of the parameters to be signed by employ­

ing the secret, integrity keys computed in the previous step as: c = 1l( · · · , a, b); 

4. The customer encrypts the checksum, c, by employing a probabilistic encryption 

scheme as c' = f 1 ( c, u) and sends c' to the mint; 

5. The mint calculates the signature of c' by employing its private key X B as r' = 
S(c', w, Xs) and returns the signature r' to the customer; 

6. The customer encrypts the signature r' by employing a probabilistic encryption 

scheme as r = h(r', u, v). 

At the end of this process the mint and the customer would have the knowledge of 

issue= (a', b', c', r'), the withdrawal transcript, the mint's secret values are Sc = (w) 

and the secret values of the customer are Sc = (a, b, c, r, u, v, s). Note that the tuple 

partspend = (a, b, c, r) would be a subsequence of the spending transcript, utilise E U. 

Suppose the verification equation for the signature system is represented by 

V(r, c, Ys) := o, where o E {0, 1} and 1 denotes successful verification only when 

r = S(c, w, Xs). It should be true that: 

V(r', c', Ys) = V(S(c', w, Xs), c', Ys) = 1 (5.1) 

if the bank did indeed sign c' (step 5). That is, the message c', which is known to the 

mint, and the mint's signature must be successfully verified. 

In order to successfully verify the blinded version of the signature tuples, ( c, r), the 

following equation must be valid: 

(5.2) 

Substituting for r' and c' in terms of r and c the following equation can be deduced: 

V(r, c, Ys) = V(h(S(fi(c, u), w, Xs), u, v), c, Ys) = 1 (5.3) 
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100 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

which is the universal verification equation employed by the merchant during the 

spending protocol (token utilisation protocol) to determine the bank's signature. The 

composition of functions denoted by V (h ( S ( · · ·), · · ·)) represents signature, unblind­

ing (a probabilistic encryption process) and verification operations. Thus, the scheme 

provides a mechanism for the verification of a blinded (encrypted2) signature tuple. 

Comparing Equations 5.1 and 5.3, there must exist a bijection between the sets of 

tuples I= { (S(c', w, XB), c')} andU = {(h(S(fi (c, u), w, XB), u, v), c)} to achieve 

the properties discussed in Section 5.1. Function h provides confidentiality for the first 

term in the tuples and function h provides the confidentiality service for the second 

in the tuples. The signature function S guarantees the bijective property between the 

two sets. In the scheme by Chaum and Pedersen [18] and its variants [12] and [38], 

the functions S(c', w, XB) = w + c'XB, 1-l, fi(c, u) = cju and h(r', u, v) = r'u + v 

achieved Properties FPO, FPl, FP2 and FP3. 

In order to enable universal tracing, the clients must encrypt their identity for the 

trustees in a ciphertext, e, by employing a probabilistic encryption algorithm such as 

the ElGamal encryption algorithm. The clients must then prove to the TAA that the 

identity encrypted in e is the same as the identity embedded in the certified integrity 

key, b, (Steps 2 and 3 of the token issuing protocol) which is available as a part of 

the tuple partspend - a subsequence of the spending transcript utilise, in minimal 

knowledge [38]. Since, b is also a ciphertext that provides confidentiality service to 

the identity of the customer, the spending protocol employs a publicly verifiable en­

cryption algorithm of type Class 1, as discussed in Section 2.2.1. The tuple describing 

the resulting conversation of this proof is called traceproof. The spending transcript 

would then be, utilise = partspend "' e "' traceproof, where "' is the tuple con­

catenation operator. The spending transcript provides the proof of participation in the 

token issuing protocol due to the partspend tuple and the proof of traceability of the 

customer due to the tuple e " traceproof. 

The proposals for electronic cash proposal by Brands [12] and Frankel, Tsiounis 

and Yung [38] (FTY scheme) are ideal candidates for ATS. The FTY scheme is iden­

tical to the Brands scheme, with the exception of the universal tracing service for the 
2Blinding may be treated as a form of encryption. The primary goal for both these terminologies is 

confidentiality. Section 6.2 presents a future research direction that employs this interpretation for the 
design of ATS. 
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5.2. EXAMPLES AND APPLICATIONS OF ATS 101 

set of trustees. Appendix D presents a detailed description of the FTY scheme. 

5.2.2 Analysis of a System that used ATS 

The restrictive blind signature scheme proposed by Brands [12] is a good example for 

an ATS. It achieves all the properties of the ATS (see Section 5.1) as discussed in the 

previous section. 

Radu, Govaerts and Vandewalle [76] proposed an electronic payment system (RGV 

proposal) that used the proposal by Brands as an ATS. The flaw in the RGV proposal 

outlined in Section 3.3.1 suggests that a system that employs a secure ATS may still 

be insecure. Therefore, systems that employ ATS must be carefully designed. A pri­

mary problem with the RGV proposal was its effort to correlate the anonymity service 

provided by independent systems. The resulting deficiency of the protocol can be de­

scribed in terms of the properties of an ATS. 

The withdrawal phase consisted of three phases: geLpseudonym, 

withdraw_big_coin and exchange_big_coin. Let PSi be the set of legal transcript tu­

ples of the get-pseudonym protocol between participant i and the TIA. Similarly , let 

BGi be the set of legal transcript tuples of withdraw_big_coin and XBGi be the legal 

transcript tuples of exchange_big_coin. Note that psi/'"", bgi /'"", xbgi E I, where I is the 

set of legal tuples of the token issuing transcripts, as discussed in Section 5.1, /'"",is the 

tuple concatenation operator, psi E PSi, bgi E BGi, and xbgi E XBGi. 

In order to provide robust traceability in the scheme, there must have been a bijec­

tion between PSi, BGi and XBGi. Although, there existed a bijection between the 

sets BGi and XBGi, the flaw outlined in Section 3.3.1 proved the non-existence of 

such a relationship between PSi and BGi. This flaw allowed the customers to link a 

tuple from PSi with a tuple from BGj, which allowed participant i and participant j to 

transfer funds between themselves without the knowledge of any authorities. Since the 

exchange_big_coin protocol did not provide mechanisms for trustees to trace univer­

sally the tuples from the set X B G j, participant j could perform a perfect crime [92]. 

The proposal does not achieve Properties FPO and FPl because the participants 

can collude to obtain unauthorised valid tuples and avoid tracing. 
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102 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

5.2.3 A Generic Schema for the Design of SSP 

ATS can be employed as a sub-system to provide the anonymity service. A protocol 

sub-system, which achieves the requirements that are specific to the application in­

stance of SSP, can be securely interfaced with the ATS. The word "securely" is stressed 

to highlight the potential pit-falls of such an interfacing, namely the deficiency in the 

RGV proposal described in the previous section. 

SSP deal with the provision of the confidentiality and the integrity service to a 

tuple of the form (I, D), where I represents the identity of a registered user and D 

represents the choice of the user, or simply a data that is to be associated with the user. 

The confidentiality service for the tuple is essential to prevent unauthorised entities 

from associating the value of D with an identity I. The integrity service is essential to 

prevent any entity, including I, from altering the value of D in an unauthorised manner. 

There are many instance applications of SSP, namely peer-review systems, electronic 

auction systems, electronic voting systems, and payment systems that may be more 

complex than a simple e-cash system. 

In this section, a generic design schema for SSP is presented. The schema employs 

the ATS as a sub-system, by interfacing it with an application specific protocol sub­

system. The ATS is employed as a specialised certification system that is used by the 

protocol sub-system. The public-keys certified by the ATS are employed in a suitable 

manner to provide confidentiality and integrity services to various messages. The pro­

tocol sub-systems will not generate certificates for newly generated public-keys that 

are not related to the public-keys certified by the ATS. This approach guarantees the 

prevention of deficiencies such as the RGV proposal. The three phases of the schema 

are as follows: 

Token Issuing Phase: The participants in the system authenticate to the token issuing 

authority (TIA) and obtain a certificate, which is the anonymous token, for their 

pseudonym- the pseudonym is known only to the participant during this phase; 

Service Registration Phase: The participants anonymously contact the token accept­

ing authority (TAA), present the anonymous token and prove ownership of the 

token, and submit the data (the choice) to the TAA in a suitable form (such as a 

plaintext, verifiably encrypted ciphertext for a trustee, a commitment, a signature 
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5.2. EXAMPLES AND APPLICATIONS OF ATS 103 

and so on); 

Service Delivery Phase: the participants, anonymously either enable the service they 

had registered for or obtain the results of their choice. 

The cumulative result of the three phases is the confidentiality service for the identity of 

the participants and the integrity service for the choice of the participant. The protocol 

sub-system may additionally provide restricted confidentiality service for the data, if 

required. 

A crucial aspect of the schema is the interfacing of the two sub-systems, namely 

the ATS and the protocol sub-system. A prudent practice for the design of the protocol 

sub-system is to avoid the design of protocol goals that will fundamentally contradict 

the services of the ATS. The ATS provides the anonymity service and optionally the 

anonymity revocation service and non-transferability services. The design of the pro­

tocol sub-system must not duplicate these services. An example of a duplication of 

service that would potentially undermine the services of the ATS would be the inde­

pendent provision of anonymity service by the protocol sub-system. Such a provision 

will undermine the traceability and the anonymity revocation services of the ATS, as 

demonstrated in Section 5 .2.2. 

In general, the interfacing can be visualised as a transfer of service from the pro­

viding protocol sub-system to the client protocol sub-system. Once such a transfer 

happens the client protocol sub-system must preserve the services. For example if 

a key-agreement sub-system is interfaced with a client protocol sub-system, then the 

client protocol sub-system must preserve the confidentiality and integrity properties of 

the session-key provided by the key-agreement sub-system. 

The schema will be employed to design a peer-review system in Section 5.3, an 

electronic auction system 5.4 and to discuss the possibility of an electronic voting 

system employing the schema in Section 5.5. The ATS used in these applications are 

thee-cash techniques discussed in Section 5.2.1. Future developments in the design 

of ATS, as, for example, discussed in Section 6.2, can be easily incorporated in the 

schema without affecting the goals of the individual applications. 
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104 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

5.3 Analysis and Design of a Peer Review System 

This section will propose a solution for an instance of SSP called the peer review prob­

lem. The peer review problem consists of a set of participants called peers, having two 

roles in the system, namely that of the reviewer and the candidate to be reviewed. No 

participant should review itself: a solution to the peer review problem is a permutation 

of a set of participants with no fixed points. The properties of the peer review protocol 

are: 

1. The solution must define a permutation without any fixed points. 

2. Every reviewer is also a candidate. 

3. The solution must provide one-way anonymity service for the reviewers. That 

is the reviewers know the identity of the candidate, but the candidate does not 

know the identity of the reviewer. 

The proposal will employ the three phased protocol schema, detailed in Section 5.2.3, 

to solve the problem. 

Any form of peer review system must contain at least four participants and at least 

three of them must be honest, in order to provide minimal confidentiality service 

for the identity of the reviewer. Otherwise, in the case of anonymous peer-review 

systems, the system cannot provide anonymity. Suppose that A, B and C are the 

participants, and the set of ordered pairs containing the reviewer and the candidate is 

{ (A, B), ( B, C), ( C, A)}. A will know that C is its reviewer because it is reviewing B 

and if B is reviewing A then C has to review itself, which is not allowed. Suppose that 

there are four participants with D being the fourth participant, and C and D are the two 

dishonest participants - without loss of generality. C and D can collude by revealing 

their choices to each other, which would effectively reduce the four participant system 

to a three participant system that does not provide the required confidentiality services. 

The reasoning for the case when n = 2 is trivial. 

A challenging (and interesting) problem that is inherent in the problem statement 

is that when two participants collude they will be able to obtain some information that 

could weaken the anonymity of honest participants. The information that colluding 

participants obtain is inversely proportional to the total number of participants in the 
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5.3. ANALYSIS AND DESIGN OF A PEER REVIEW SYSTEM 105 

system and directly proportional to the number of colluding participants. Overcoming 

this predicament could be difficult without weakening the security services for honest 

participants. A solution for this situation remains an open-problem, which seems to be 

similar (but not same) to the receipt-freeness problem in electronic voting systems [69]. 

The compliance requirements of this problem can be stated as follows: 

1. the identity of the reviewer must be confidential; 

2. every reviewer must be an authenticated candidate; 

3. the relationship between the reviewer and the candidate cannot be changed after 

successful completion of the peer review protocol - that is integrity service for 

the tuples of the form (reviewer ID, candidate ID) must be universal; and, 

4. it must be possible to revoke the confidentiality service provided to the identity 

of the reviewer by a set of trustees. 

When the schema is employed to solve this problem, the anonymous token, AT, must 

provide confidentiality service to the identity of the reviewer and the peer review pro­

tocol must provide universal integrity service to the selection of the reviewer or the 

candidate, depending on the approach taken by the peer review protocol sub-system. 

5.3.1 Basic solution 

A simple solution to solve the peer review problem may consist of three steps. 

Step 1 Every participant wishing to participate in the protocol signs a random mes­

sage and publishes the signature and message in a publicly readable bulletin 

board, B 1 . Let the number of signatures in B 1 be n, which is the number of 

participants. 

Step 2 Each participant generates a random pseudonym and anonymously publishes 

its pseudonym in a publicly readable bulletin board B 2 • The step completes 

when n pseudonyms are published. Let the set of pseudonyms be represented 

byPS. 
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106 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

Step 3 Each participant in turn chooses a pseudonym from B 2 , such that it does not 

select the pseudonym it submitted. Let this choice be ps. The participant then 

generates the proof for its knowledge of the secret corresponding to one of the 

pseudonyms in the set P S\ {ps}, without revealing its pseudonym. It signs 

its identity, choice and the proof, and submits the signature along with the 

message to a bulletin board B 3 . It also removes its choice from Br, so that 

nobody else can make the same choice. This phase completes when n valid 

messages along their signatures are present in the bulletin board B 3 . Anyone 

may check if every public key used for verifying the signatures in B 1 is also 

used in B3. 

Drawbacks and solution: The protocol proposed assumes honest participants, which 

may not be very desirable. The protocol has the following drawbacks: 

Pl Two participants, say i and j, can reveal their pseudonyms as ui and Uj to each 

other, so that they can select each other. 

P2 Two participants, say i and j, can generate the transcripts in Step 3 for each other, 

so that they can select themselves. 

P3 Since vi is only a short term secret, participant i can reveal this value to j, so that 

j can select twice. This would allow j to select itself. 

P4 The system does not provide anonymity revocation, which may be required in 

common applications. 

PS An attacker can mount a denial of service attack on the system and be unidentified, 

because Step 2 does not guarantee that only the participants involved in Step 1 can 

submit only one pseudonym. 

It seems difficult to overcome problem Pl. Moreover, P1 does not adversely affect 

the goals of the protocol when the number of honest participants are in majority. But 

P2 and P3 do adversely affect the goals of the protocol. These problems can be solved 

if the participants are forced to use their long term secret values, namely the private key 

corresponding to their certified public key, to generate the transcripts in Step 3. The 

assumption is that the participants would not, in their own interest, reveal their long 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



5.3. ANALYSIS AND DESIGN OF A PEER REVIEW SYSTEM 107 

term private key to anyone- the private key corresponding to the certified long term 

public key may provide access to the participant's bank account or health care system 

records or some crucial information repository or source. P4 can be solved by linking 

Step 2 to Step 1, so that the link can be computed if necessary. P5 can be solved by 

issuing only one anonymous token to every participant who registered in Step 1 and 

accepting only one pseudonym for every anonymous token in Step 2. The next section 

will present a method for solving some of the abovementioned problems. 

It is interesting to note that problems with similar traits as P2 and P3 are observed in 

other protocol applications as well. Non-transferability of electronic cash [72], receipt­

free electronic voting [69] and prevention of purchase of votes [66] are some examples. 

5.3.2 The Protocol Schema 

It will be assumed that all participants possess certified public keys that support digital 

signature and authentication schemes. The necessary entities in the system are a token 

issuing authority (or token issuer) TIA, whose public key Yt is available to all the 

participants through a secure channel and a token accepting authority (or supervisor) 

TAA whose role is to act as a monitor of the system. There need be no explicit trust 

placed on TAA due to the use of publicly verifiable proof systems. Let the system have 

n (such that n > 3) participants. The three phases of the schema are: 

Phase 1 (Token Issuing Phase): Participant i generates a message Ci (for commit­

ment), signs this message using its public key, say Yi, sends the message and 

the signature, say Di, to TIA and obtains an anonymous token (which is also a 

certificate), A7i, such that only participant i knows the ordered pair, (Yi, ATi). 

All participants must participate in this phase before proceeding to the next 

phase. The participation can be checked when n unique, valid signature tu­

ples, (Ci, Di), are submitted and n tokens are withdrawn from TIA. 

Phase 2 (Service Registration Phase): Participant i (anonymously) submits ATi to 

TAA, proves ownership of ATi, submits its pseudonym, ui = secret(vi), 

where secret could be a one way function, and keeps vi as its secret. Af­

ter verifying the proof transcripts, TAA publishes ( ui, ATi) in a publicly 

accessible directory, along with the proof transcripts. All participants must 
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108 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

participate in this phase before proceeding to the next phase. The participa­

tion can be checked when n tokens are submitted to TAA. In order to create a 

strong link between Phase 1 and this phase, the value of ui must be a function 

(or part) of the anonymous token ATi. In other words, it cannot be randomly 

generated during this phase. 

Phase 3 (Service Delivery Phase): Participant i chooses its reviewer to be the owner 

of the pseudonym Uj, such that j ::j:. i, generates transcripts to prove that it 

knows the secret value corresponding to one of the n - 1 public values in the 

set { uz I l ::j:. j} and commits to the choice by signing the choice and the 

transcripts of the proof. If TAA successfully verifies the proof transcripts and 

the signature, it publishes the tuple (yi, Uj) along with the proof and signature 

transcripts in a public directory. Participant j can query the public directory 

(or, to achieve maximum anonymity, download the entire database to a secure 

storage area that it controls and query the local copy of the database) to know 

the identity of its candidate, Yi· If n participants complete this phase and 

the public key used for verifying Di was used to verify the signature of the 

commitment to the choice then, TAA announces the protocol to be complete. 

If participant n cannot prove that it knows the secret corresponding to one of 

the n - 1 public values in the set { u1 ll ::j:. j}, then Uj must be its pseudonym. 

This event results in a deadlock3 . In which case, TAA announces the protocol 

to be incomplete and all the participants must start the protocol anew from 

Phase 1. 

Since the technology used to generate ATi provides computational anonymity, the 

resulting system will provide fair peer review. If ATj can be linked to y j in Phase 1, 

then yj can be linked to Yi, by linking the tuple (yj, ATj) with the tuple ( Uj, Yi), which 

would be publicly available from Phase 2 of the protocol. 
3The analysis of the probability of deadlock occurrence as a function of the number of participants 

is presented in Appendix E. The preliminary analysis suggests the probability to have an upper bound 
of 1/ ( 1 + n), where n is the total number of participants. 
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5.3. ANALYSIS AND DESIGN OF A PEER REVIEW SYSTEM 109 

5.3.3 The Protocol 

The cryptographic tools to be used in this section are proof of equality of discrete 

logarithm (PEDL) (see Appendix B.l), partial proof of knowledge of discrete loga­

rithm (PPEDL) (see Appendix B.1.2) and the electronic cash technology as proposed 

by Frankel, Tsiounis and Yung (see Appendix D). 

System setup The supervisor of the system, TAA, selects a large prime p such that 

computing discrete logarithms in Zp is intractable. TAA also selects a generator g, of 

the group z;. Henceforth, all arithmetic will be performed in the congruence class 

modulo p, unless stated otherwise. The token issuer, TIA, possesses a public key Yt 

of the form Yt = gxt, where Xt ER z; is the private key corresponding to Yt· The 

tuple (g, p, Yt) is published as the public parameters for the selection system. The 

supervisor maintains two bulletin boards with read permission for everyone and edit 

permission only for the supervisor. Let the two bulletin boards be labelled A and B. 

Bulletin board A will contain unselected pseudonyms and bulletin board B will contain 

the selected pseudonyms. 

Let there be n participants in the system, such that n 2: 4. The public key of 

participant i, Yi(= gXi I Xi ER z;), is published in a certified public directory with Xi 

as the corresponding private key. Every participant in the system possesses a certified 

public key. 

Additional system parameters required for the anonymous token system (see Ap­

pendix D) are also published. 

Phase 1 Participant i generates and signs a message to obtain a message-signature 

tuple ( Ci, Di) and, sends the tuple to TIA (who verifies the signature using i's public 

key). The token will be a blind signature on a message by TIA that can be verified 

using its public key Yt· Participant i chooses a random value vi ER z; and com­

putes ui = gv;. The participant then lets ui be the message to be blindly signed by 

TIA and obtains an anonymous token ATi by executing the Issue Token protocol of the 

anonymous token system (see Appendix D) with TIA. Thus, ATi := (ui, Certu;)i := 

IssueToken(i, TIA, {vi}i, {xt}TrA)· 
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110 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

Phase 2 The following steps are performed by individual participants and the TAA: 

Step 2.1 

Step 2.2 

Step 2.3 

Participant i anonymously contacts TAA, presents the tuple (ATi, ui) to 

TAA, engages in the UtiliseToken protocol with TAA. This step is repre­

sented by the equation: 

as explained in Section D.2. Note that the tuple (vi, xi) are the private 

keys corresponding to the pseudonym and the long term public key, re­

spectively, ofParticipant i. Additionally, his the public key of the trustee, 

if one exists, who can revoke the anonymity service from Participant i (re­

fer to Appendix D, Section D.2 for details). TAA checks if ATi is a valid 

token issued by TIA on ui. 

If TAA successfully verified the transcripts then it publishes the tuple 

(A1i, Ui, Proof uJ in a public directory. 

TAA enters ui into A. 

All participants must complete this phase before the protocol can proceed to the next 

phase. 

Phase 3 The following steps are performed by individual participants and TAA: 

Step 3.1 Participant i authenticates to TAA using its public key Yi ( = gxi). 

Step 3.2 Participant i chooses a pseudonym Uj such that j =J. i from A. 

Step 3.3 Participant i presents Uj to TAA along with the output of the algorithm for 

partial proof of discrete logarithm, PPEDLGen (see Section B.1.2), with 

input ( { uz ll =J. j}, ui, vi, xi) and output ( di, , ci, {Cit ll =J. j} ). { Uz ll =J. 

j} is the set of pseudonyms of all the participants of the system excepting 

Uj, which is the choice of Participant i. 

Step 3.4 TAA verifies the output of the algorithm sent by Participant i using the partial 

proof of discrete logarithm algorithm, PPEDLVer (see Section B.1.2), with 
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5.3. ANALYSIS AND DESIGN OF A PEER REVIEW SYSTEM 111 

input ( { Uz I l # j}, Yi, di, , ci, { cil I l =J j}) and output in {0, 1} 

( {SUCCESS, FAILURE}). If it successfully verifies the transcripts using 

the public key Yi· it removes Uj from A, adds it to B and publishes the tuple 

( Uj, Yi) along with the transcript ( { Uz ll =J j}, Yi, d, , c, { cz ll =J j}) in 

a public directory .. 

Step 3.5 Participant j can consult the public directory (in a secure manner- to achieve 

maximum anonymity) to find Yi as its candidate to be reviewed. Participant 

j keeps this knowledge as its secret. 

When Participant n (the last participant), with public key Yn( = gxn ), engages in 

the protocol for Phase 3, there will be only one entry in A. If the last entry is un 

(the pseudonym of Participant n), then there will be deadlock. In the case of a dead­

lock, Participant n cannot generate valid transcripts in Step 3.3, as it will not possess 

the knowledge of discrete logarithm for any of the elements in the set { Uz I l =J n }. 

Participant n must then prove that it knows the discrete logarithm of Un by sending 

the output of the algorithm for PPEDLGen with input ( { un}, Un, Vn, Xn) and output 

(dn, en, en) to the TAA4 . Observe that the algorithm PPEDLGen with the input set 

containing only one element ( { un}) will be similar to the Schnorr signature algorithm, 

which proves the knowledge of discrete logarithm of a given value- in this scenario 

the transcripts prove the knowledge of discrete logarithm of Un and Yn simultaneously. 

If TAA successfully verifies the PPEDLVer with inputs (un, Ym dn, Cn, en) and output 

in {0, 1 }, then it publishes the tuple ( Un, Yn, dn, Cn, en) in a public database and an­

nounces the protocol to be incomplete. In this case all participants must restart the 

protocol from Phase 1. If no deadlock occurs then the protocol iteration is announced 

to be complete. This can be detected when the last participant successfully completes 

Step 3.4, in Phase 3. 

Anonymity revocation: The ATS employed in this proposal supports anonymity re­

vocation. Let the tuple utilisei E U describe the token utilisation conversation cor­

responding to the token ATi. Anonymity revocation is achieved by determining the 

tuple issuei E I, describing the token issuing conversation, corresponding to utilisei. 
4cn is twice because the set { un} in the input contains only one element. 
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112 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

As discussed in Section 5.1, the trustee has the power to determine issuei, which will 

contain the identity of the customer owning the token ATi. Appendix D presents the 

equations for the mechanisms. 

Thus, the TAA, TIA or any other authorised entity can engage in the Trace protocol, 

explained in Appendix D.2, with the trustee to obtain the tuple (yi, ATi), which can 

link Yi to ui when the public information (ATi, ui) is produced. 

5.3.4 Security Analysis 

This section will present an analysis of the phases to elucidate its achievement of the 

desired properties. 

Property 1 (Permutation without fixed points): In Phase 1, when Participant i au­

thenticates to TIA using its public key Yi, it receives only one A]i. If more than 

one token was issued to Participant i using Yi, then TIA can be held responsible 

(all transcripts are publicly verifiable and signed by individual entities). Phase 

2 allows only one pseudonym to be submitted for every ATi. Phase 3 requires 

Participant i to prove its knowledge for at least one pseudonym in the set of 

pseudonyms that does not contain its choice. In order to pass this phase, Partici­

pant i cannot choose itself. Thereby, the protocol is a permutation without fixed 

points. 

Property 2 (Bijection between the sets of reviewers and candidates): Since every 

user is allowed to submit only one pseudonym and selects a different pseudonym 

(from the set of submitted pseudonyms), every reviewer is also a candidate. 

Property 3 (Anonymity service for the reviewers): Reviewers are anonymous from 

the candidate and the candidate is not anonymous from the reviewer. Since ev­

ery user chooses the pseudonym of its reviewer after authentication (using the 

public key, say Yi), this choice is public and the reviewer (say Uj) can know the 

identity of the candidate. From the publicly known tuples (ATj, Uj) and ( Uj, Yi) 

(in Phases 1 and 2), candidate i cannot know the identity of reviewer j (yj), if 

the technique used for generating anonymous tokens does provide anonymity. 

Candidate i cannot obtain the tuple (y j, Uj) by observing the protocol runs in 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 113 

Phase 3, if the proof system used is witness indistinguishable. Proposition 5.1 

provides the proof for this property. 

Theorem 5.1 Assuming that the participants do not collude and the electronic cash 

technology prevents any entity other than participant ito compute the tuple (yi, AT;;), 

the system provides the anonymity service to the reviewers. 

Proof TAA, by itself or in collusion, cannot correlate the values Yi and ui, using the 

public knowledge (ATi, ui)· Since the functions PPEDLVer and PPEDLGen provide a 

proof that is witness indistinguishable (see [23]), TAA, by itself or in collusion, cannot 

correlate the value Yi with ui using the outputs of the function PPEDLGen, as com­

puted by Participant i. 0 

If the proof systems used for the anonymous token technology and partial proof of 

knowledge protocol construct are publicly verifiable, then the trust level on the token 

issuer, TIA, and the supervisor, TAA, can be considerably reduced. The advantage 

of this approach is that it does not make any assumptions on the possible inclusion 

of anonymity revocation mechanism. This is an advantage of abstracting anonymous 

token, ATi, to provide this service. Anonymity revocation mechanisms can be built 

into the token technology without affecting other core functionality of the protocol 

(permutation without fixed points). 

5.4 Analysis and Design of Sealed-Bid Auction System 

The fundamental goal of auction systems is the distribution of scarce resources among, 

potentially, many bidders based on well devised rules to determine the winning strat­

egy [64]. A common approach to protect the interests of individual bidders, from 

conspiring bidders and auctioneers, is the sealed bid auction system. A seal is em­

ployed to provide secrecy for a bid, until a pre-defined event. In the physical world, 

the sealed bid may simply be a sealed envelope that encloses a paper containing the 

value of the bid, along with optional non-repudiation information from the bidder. The 

sealing process guarantees a fair auction procedure for honest bidders. At the same 

time, there must be mechanisms to open the seal, after the occurrence of the specified 
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114 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

event, to reveal the winning bidder in order to avoid disavowal after participation. A 

requirement for some systems, but not necessarily for the sealing method, is to protect 

the secrecy of the losing bids. This requirement provides restricted privacy for the los­

ing bidders. The word "restricted" is important because once the identity of the bidders 

is known and the identity of the winning bidder and the corresponding bid value are 

published, automatically some information about the bid values of the losing bidders 

is revealed. The only approach to provide complete privacy for losing bidders would 

be to refrain from publishing the identity of all the bidders. 

In order to electronically implement the sealed bid auction procedure, the first step 

is to design a suitable sealing process. Towards this end the requirements specific to 

the sealing process must be identified. Once such a sealing process is devised, this 

abstraction can be used along with other techniques to achieve a complete auction 

system. 

5.4.1 Literature Review 

Confidentiality of the bid has been of paramount importance for the design of elec­

tronic auction systems. To achieve confidentiality of bid some proposals [61, 52] used 

secret-sharing primitives to distribute the value of the bid among many trustees. If at 

least a threshold of the trustees are honest, they will not assist in opening the bid be­

fore the closing period. This approach generally results in inefficient systems, when 

public verifiability is required. This is because there exists no efficient protocol con­

struct for publicly verifiable encryption [86] which is an essential building block for 

publicly verifiable secret sharing schemes. The other approach to publicly verifiable 

secret sharing is that of Schoenmakers [82], which is more efficient than the scheme 

by Stadler [86]. However, its application to the auction scheme will remain inefficient, 

as compared with the scheme to be proposed in the subsequent sections. An estima­

tion for the number of exponentiations required for this approach will be provided in 

Section 5.4.4. 

Sakurai and Miyazaki [80] proposed an elegant auction system where the confiden­

tiality of bid is controlled only by the bidder. For non-repudiation of the bid, Sakurai 

and Miyazaki used the undeniable signature scheme. Unfortunately, the computational 

and communicational complexity of the scheme [80] is dependent on the number of 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 115 

participants, thereby rendering their system inefficient for large scale auction systems. 

Moreover, the scheme requires every bidder to be on-line, which may not be a desirable 

property in large scale auctions over open networks. 

Sako [79] attempted to modify their proposal [80] using group encryption (for a 

group of trusted auctioneers), instead of the undeniable signature scheme, for sealing 

the bid. Due to this approach, the proposal by Sako lost the primary advantage realised 

by the proposal by Sakurai and Miyazaki, which is user-controlled confidentiality for 

the bid. 

Harkavy et al [47] proposed an auction scheme based on secure distributed comput­

ing primitives. Although they claim the system to be moderately efficient, the security 

arguments for their scheme remain unclear. 

The following are the properties important for the design of sealed bid auction 

systems: 

Confidentiality of bid: Only the bidder must know the bidding strategy until the clos­

ing period. 

Non-repudiation of bid: The winning bidder must not be able to repudiate or change 

the bidding strategy. 

Publicly verifiable auction: Any monitor must be able to verify the validity of the 

auction procedure. 

Anonymity of bidder: The bidder-bid relationship must be known only to the bidder, 

unless the bid conforms with the winning strategy. 

Independence of auction rules: The security protocols for auction rules must be in­

dependent of the auction rules. 

5.4.2 The Approach 

The system consists of two sub-systems, an anonymity sub-system that provides anonymity 

to all its users and an auction sub-system that allows the users to participate in the auc­

tion procedure. Thus the system, in effect, provides an anonymous auction service. 

The auction sub-system can be explained in terms of the following physical world en­

tities. The auction system consists of a "magic seal," that will allow only the entity 
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116 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

that sealed the bid, to open it. The bidders place their bid values inside an envelope 

and apply the "magic seal" to it. In order to register in a particular auction protocol, 

the bidders send the envelope to the auctioneer using a registered post service, which 

guarantees that the sealed bid will reach . the auctioneer, who will not repudiate the 

receipt. When the actual auction procedure starts the bidders assist the auctioneer to 

break the "magic seal." 

5.4.3 An Abstraction of the Sealed Bid 

This section will propose a mechanism for sealing the bid, which is central to the notion 

of the sealed bid auction procedure. The sealing process can be defined as follows: 

Definition 5.1 The sealing process is represented by: 

(Proofs) := Seal(b, r, I) 

where (Proofs) contains the sealed bid values along with the transcripts for proof of 

knowledge of the bid value, b, a randomiser, r, and the identity (or public key) ofthe 

sealer (or bidder), I. Given (Proofs) the following must be true: 

Hiding: It must be intractable to detennine the values ofb orr. 

Binding: It must be intractable to detennine distinct tuples ( b, r) and ( b', r') such that, 

((Proofs) := Seal(b, r, I)) AND ((Proofs) := Seal(b', r',I)) 

Non-repudiation: It must be intractable to detennine (b, r, I) and (b', r', I') such that, 

((Proofs):= Seal(b,r,I)) AND ((Proofs):= Seal(b',r',I')) 

unless (b, r, I)= (b', r', I'). 

The requirements for non-repudiation encompass the requirements for binding. 

There may be many approaches to realise the sealed bid. The most prominent of 

them would be: 

1. the signed commitment approach. Here the bidder can use a suitable commit­

ment scheme [71, 27] to commit to the bid and then sign the commitment value. 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 117 

2. the signed encryption approach. Since semantically secure encryption schemes [45] 

can be idealised to be a commitment scheme, an encryption scheme can be used 

instead. 

The first approach can be used when universal confidentiality is a requirement for 

the sealed bid. If revocation of the confidentiality service5 from the sealed bid without 

the participation of the bidder is required, then the latter approach along with suitable 

key recovery techniques can be employed. In which case, the bidder can be expected 

to encrypt the value of the bid under the public key of a trusted entity. The proposal 

in this thesis will employ the first approach to provide universal confidentiality service 

for the sealed bid. 

A Concrete Proposal for the Sealed Bid 

Based on the Definition 5.1, a three-pass, Schnorr type [81, 27] protocol is designed to 

accomplish a sealed bid. 

System Settings A prime order subgroup G of z; is chosen to be of order q such 

that, p = 2q + 1 for sufficiently large prime p, so as to render the discrete logarithm 

problem intractable. Two generators, 9 and 91 , for the group are published such that 

nobody knows6 log
9 

91 . All operations are carried out in either z; or Zq depending on 

the group being operated upon. The public key of the sealer (bidder) is certified to be 

Y1 = gx1 and Y2 = 9f2
• 

Sealing Protocol An interactive protocol between the sealer and the receiver (of the 

seal) is as shown in Table 5.1. The sealer wishes to commit to the bid value b E Zq 

and identify himself/herself using the public keys y 1 and y2 • The sealer forms the com­

mitment S to the bid value b and another commitment B for purpose of identification, 

and sends the two commitment values to the receiver. The receiver picks a random 

challenge c and returns challenge. The sealer then forms the response (s 1 , s2 ) with 
5Note that revocation of the confidentiality service for the sealed bid is different from the revocation 

of the confidentiality service for the identity -anonymity revocation. 
6When g1 is the public key of a trusted entity or a Diffie-Hellman value of the public key of the trustee 

and the bidder, a similar approach can be used to design the signed encryption approach mentioned in 
the earlier section. 
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118 CHAPTERS. ANONYMOUSTOKENSYSTEMS 

Sealer 
a, d1, dz ER z; 

S = gbgf, B = gdigf2 

s1 = d1 - cx1, Sz = dz - cxz 

t 1 = s1 - be, t2 = s2 - ac 

S,B 

c 

Table 5.1: The Sealing Protocol 

Receiver 

respect to the public key (y1 , y2) and the commitment B. The sealer now uses (sb s2) 

·to respond to the commitment S as t 1 and t2 . The idea behind this concept is that, 

the tuple (S, B, c, s1, s2 ) is unique (with an overwhelming probability) in every proto­

col run and could not have occurred previously if the sealer or the verifier is honest. 

Therefore the responses t1 and t2 are unique in every protocol run. And so, the tuple 

(S, B, c, tb t2 ) is also unique in every protocol run, with an overwhelming probability. 

The following theorems for the proposal will assist in understanding its accom­

plishments and security. 

Theorem 5.2 The proposed protocol belongs to the class of honest verifier zero-knowledge 

protocols. 

Proof: The protocol belongs to the three pass, honest verifier class because the pro­

tocol follows the commitment-challenge-response model (see Appendix A), and the 

prover cannot verify the randomness of the challenge, c, chosen by the verifier. The 

protocol transcripts can be easily simulated by calculating B = (Sy 1y2 )cgt1 gi2 after 

choosing S, c, t 1 and t2 • D 

Theorem 5.3 If the values in the tuple (S, B, c, t 1 , t2 ) cannot be altered, then the pro­

tocol possesses the properties required for binding to the value of b. 

Proof: It is assumed that the system setup guarantees that nobody knows the discrete 

logarithm log
9 

g1 , and computing discrete logarithm is intractable. To open the seal, 

S = ghgf for a, b ER Zq, the sealer must reveal the tuple (b, a) and the verifier will 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 119 

check the equation S = gb gf. Given S and knowing a and b, assume that it is possible 

to open the commitment as b' =I= b. For this to happen the sealer must be able to 

reveal the tuple (b', a') such that S = l' g]:'. If the sealer can calculate the tuple (b', a') 

after calculating the commitment from the tuple (b, a) then it can compute the discrete 

logarithmlog
9

g1 = (b'- b)/(a- a'). 0 

The above proof is an adaptation of the proof for a theorem presented by Pedersen [71, 

Theorem 3.1]. 

Corollary 5.1 Given the tuple (S, B, c, t 1 , t2 ), it will be infeasible to determine the 

value of b. Thereby, the protocol hides the value of b. 

Proof: The value of S is uniformly distributed in G if the value a is uniformly dis­

tributed in Zq. Thus, by itself S hides the value of b as discussed in the proof by 

Pedersen [71, Theorem 3.1]. 

Theorem 5.2 proved that the tuple (S, B, c, t1, t2) can be formed without know­

ing the tuple (b, a) or interacting with the sealer. T~erefore the tuple hides the value of 

b according to the honest-verifier zero-knowledge proof technique (see Appendix A).O 

Theorem 5.4 When the sealer does not know the private keys corresponding to the 

public keys y1 and y2, and the discrete logarithm problem is hard, the sealer convinces 

the receiver with a probability oflj2iqi, where jqj is the size of q in bits. 

Proof: The sealer can cheat the receiver by guessing the challenge correctly in ad­

vance without knowing the private keys corresponding to the discrete logarithm prob­

lem. Then by Theorem 5.2 the sealer can form correct transcripts. If jqj = log2 q, then 

the number of legal challenges will be of the form 2lql. When the receiver chooses the 

challenges at random, as prescribed by the protocol, the probability that the sealer will 

correctly guess the challenge is 1 j2lql. o 

The Non-Interactive Version 

The interactive protocol suggested in Table 5.1 can be converted into a non-interactive 

version using the Fiat-Shamir heuristic [37]. For this purpose, a collision intractable 
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120 CHAPTERS. ANONYMOUSTOKENSYSTEMS 

hash function 1-l: {0, 1}* 1--7 'llq will be employed. The sealer performs the following 

function with the bid b, his/her private key (x 1 , x2 ) and the commitment value bas the 

inputs to obtain the output as (S, t 1 , t 2 , c). 

Function Sealer 

with input: (x 1, x2, b, a, g, g1,p, q) 

and output: (S, t 1, t2, c) 

d1, d2 ER 'll~ 

Compute: 

S = gbgf mod p, B = gd1 gt2 mod p 

c := 1-l(y1, Y2, S, B) 

s1 = d1 - cx1 mod q, s2 = d2- cx2 mod q 

t 1 = s - be mod q, t2 = s - ac mod q 

End Function Sealer 

The outputs of the sealing function can be verified by employing the following func­

tion: 

Function VerifySeal 

with input: (S, t1, t2, c, Y11 Y2, g, g1,p) 

output: (Result) 

Ifc 
7 

1-l(y1,Y2,S,(Sy1y2)cgt1 gf2 modp),then 

Result -r Pass 

Else 

Result -r Fail 

Endlf 

End Function VerifySeal 

In this function the verifier checks the sealing transcripts against the public key of the 

sealer. 

To open the seal the sealer can release the tuples (b, a). The values can be checked 

against the seal as follows: 

Function VerifyOpenedSeal 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 121 

and output: (Result) 

If S ? l9f, then 

s1 = t1 + ac mod q, s 2 = t2 +be mod q 

Else 

Result +- Fail 

Go To End Function 

Endlf 
? 

If c · 1l(y1, Y2, S, (YIY2)c951 9? mod p), then 

Result +- Pass 

Else 

Result +- Fail 

Endlf 

End Function VerifyOpenedSeal 

In this function the verifier checks the tuples (b, a) against the commitment value S. If 

they are correctly verified the actual signature value ( s1 , s2 ) is computed from t 1 and 

t2 • The value of ( s1 , s2 ) is then checked for proper signature. Note that this is optional, 

because if the seal tuples pass the Verify Seal function and the tuple ( b, a) are correctly 

verified against S, then (s1 , s2 ) will be a legal signature tuple on S. 

5.4.4 The Complete Auction System 

A three phased auction system design that employs an anonymous token system (see 

Appendix D for nomenclature) and the process for sealing the bid proposed in Sec­

tion 5.4.3 will be presented in this section. 

System Settings: The system consists of a set of bidders B, a mint, M, for issuing 

electronic coins, a registrar, R, an Auctioneer, A, and a trustee /. 

A suitable prime-order subgroup, G of z;, of order q, is chosen such that p 

2q + 1 is a large prime and the discrete logarithm problem is intractable. Suitable 

generators, 9 and 91, are chosen such that log9 91 is not known to any entity. The 

arithmetic operations are performed in the relevant groups. A suitable hash function 

1l : {0, 1 }* H-Z~ is chosen. Additional system setting requirements for the ATS (See 

Appendix D) are published along with tuple (p, q, 9, 91 , 1-l). 
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122 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

The public key of the following entities are published: 

1. The public key of each bidder, I = gu 1 , where u 1 is the corresponding private 

key. 

2. The public key of n, Yr = gXr' where Xr is the corresponding private key. 

3. The public key of A, Ya = gxa, where X a is the corresponding private key. 

4. The public keys of the mint, M, y M = gxM and the trustee fr = gxT. 

The Three Phases 

· The pictorial representation of the model for an auction system is presented in Fig­

ure 5.2. The three phases in the auction system are: 

Submiffoken ,-··-------···----------------------·---------···------·-·-------- UtiliseToken 
Anonymity Revocatio~ ' ---·------···------·-·--------·--·------·--·----- Bid Registration 

I i 

I c:J , 
i ' 
' ' L--·--·--~ 

M 

IssueTo en 

ATS 

i ,----..: 
!Write 

R 

I 
I 

:Read 
I : ___ ,----.. 

A 
Write 

'·-···-···----······-·--·---·--·-·-------·-··--·- Bid Submission 

Basic Auction sub-protocol 

Figure 5.2: System Dynamics of the Auction System 

Phase 1 (Token Issuing Phase): consists of the IssueToken function in the ATS. Bid­

der, Bi owning the public key I wishing to participate in individual auction activ­

ities, engages in the IssueToken protocol with the mint, M, to obtain (Ai, CertA;): 

The interpretation for the token system is available in Appendix D. 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 123 

Phase 2 (Service Registration Phase): consists of the UtiliseToken function of the 

ATS system and, the Sealer and VerifySeal functions presented in Section 5.4.3. 

The bidder, Bi, performs the following tasks: 

1. presents the tuple (Ai, CertAJ toR; 

2. engages in the UtiliseToken protocol to convince its ownership of the tuple 

without revealing its identity. The protocol will be of the form: 

If the UtiliseToken function is successfully executed, then (Proof A) will 

contain A1; = gu 1 s and A 2; = gf (see Appendix D), such that Ai = A 1;A2;. 

3. chooses its bid value, b E .Z~; 

4. seals the bid using the sealing function explained in Section 5.4.3. It 

chooses a ER .Z~ and computes the following: 

(S,s1 ,s2,c) := Sealer(u1s,s,b,a,g,gbp,q) 

Here (S, ~ 1 , s2 , c) are the outputs of the sealing function and (u1s, b, a,p, q) 

are the inputs (see Section 5.4.3). If R verifies the sealing function cor­

rectly as: 

Pass 
? 

where (S,s 1 ,s2 ,c,A1;,A2;,9,h,p) are the inputs to the function and the 

output is either pass for successful verification or fail for unsuccessful ver­

ification. 

If R is satisfied with all the proofs in this section it signs the tuple as: 

Where Sign is a suitable signature algorithm that signs all the inputs 

using the private key Xr. R then stores: 
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124 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

along with (Proof L) and CJR; in a publicly readable directory DEn, indexed by 

Al;· 

n refrains from accepting registration after a specified time, end of bid registra­

tion time (EBRT). 

Phase 3 (Service Delivery Phase): bid submission phase, consists of the VerifyOpened­

Seal sub-protocol. This phase starts after the EBRT and finishes when the end 

of bid submission time (EBST) is reached, that is A accepts bids during the pe­

riod between EBRT and EBST. This is the actual bidding phase and only those 

bids received in this phase are counted7 • In this phase, Bi contacts the auction­

eer, A and authenticates using its pseudonym A1;. Bi opens the commitment by 

sending (b, a) to A. On receiving the tuple, A: 

1. obtains the registration transcripts from DEn using A1; as the index into 

the database; 

2. verifies the signature on the transcript by R; 

3. obtains the seal values, (S, 8 1 , 8 2 , c), from the transcript; 

4. verifies the opened commitments as; 

? 

Pass · VerifyOpenedSeal(a, b, S, 8 1 , 82, c, A1;, A 2;, g, g1,p, q) 

and aborts the submission process when the result is not Pass; 

5. signs the bid tuple (b, a) along with the the seal values (S, 8 1 , 8 2 , c) as: 

where Sign is a suitable signature function, X a the private key and (S, s1 , 8 2 , c, A1;, A2J 
that is being signed to result in the signature tuple CJ A;; 

6. returns the signature tuple CJ A; to Bi as a receipt of the bids; 

7. stores the tuples (b, a) along with CJ A; and (A1n A2J in a publicly readable 

directory DB A' indexed by b. 

7R is trusted not to accept sealed bids after EBRT and A not to accepts opened bids after EBST. 
This assumption is valid because DB n and DB A are publicly readable and can be suitably monitored 
for potential breach of trust. 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 125 

Announcement of Results: When the auction is terminated, the highest bid, b, is 

chosen from the database (which is publicly readable, thereby providing public ver­

ifiability) and Bi (the owner of the bid b) is announced as the winner. Bi identifies 

with A using the pseudonym, A 1;, which is available in DB A and avails the auctioned 

goods. Note that the anonymity of the winning bidder need not be revoked, but can be 

if necessary. 

Anomalies: There can be two cases of anomalies that could occur: 

1. the winning bidder does not claim the goods; or, 

2. the auctioned goods are denied to the winning bidder. 

In the first case the winning bidder does not claim the goods and thereby does not 

pay for the goods. In which case, A or any other entity can approach the trustee T 

and engage in the tracing protocol to compute the identity, I, of Bi, possessing the 

pseudonym, A1;. This is computed using the tracing protocol described in Appendix D 

as: 

(I, ProofT) := Trace(X, T, (Ai, CertA;), (Proof AJ, {XT }T) 

Note that all the information required for tracing are present in DB A and DB R· 

In the second case when the auction goods are denied to the winning bidder (due 

to software glitch or some other error), Bi can approach R with the receipt, a A;, that it 

received during the bid submission phase, identify itself using the pseudonym A l; and 

avail the goods or other compensations. 

Analysis 

The accomplishments of the protocol against the requirements stated in Section 5.4.1 

will be verified in this section. 

Confidentiality of bid: The confidentiality of the bid is provided by the hiding prop­

erty of the sealing function, until the bid submission phase. Since, with an over­

whelming probability, only the bidder can open the commitment values correctly, 

the scheme provides user-controlled confidentiality for the bid. 
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126 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

Non-repudiation of bid: This property is provided by the non-transferability prop­

erty of the electronic cash scheme and the non-repudiation property of the seal­

ing function. The non-transferability property of the e-cash system is important 

because if the bidder transfers the power to spend the coin to another entity it 

would have to reveal the values of u 1 s and s to that entity, and u 1 is a long term 

secret key of the bidder's account with the mint. 

Publicly verifiable auction: Since all the proof transcripts in the system are publicly 

verifiable, the proposed auction system possesses this property. 

Anonymity of bidder: Restricted anonymity is provided to all the bidders using the 

e-cash system as an anonymous token issuer. Note that the anonymity of the 

winning bidder is also preserved. 

Independence of auction rules: All the bid values, b, will reside in DB A in clear­

text. Any suitable auction rules can be employed to determine the winning bid­

der. 

Comparison Based on Efficiency 

This section will compare the computational requirements of the scheme proposed 

in Section 5.4.4, the proposals using publicly verifiable secret sharing (PVSS) [82] 

schemes, such as that of Franklin and Reiter [61], and the auction scheme proposed by 

Sakurai and Miyazaki [80]. The number of modular exponentiations by each entity for 

achieving confidentiality of bid were counted. The results are presented in Table 5.2. 

An estimate (based on the publicly verifiable secret sharing scheme proposed by 

Schoenmakers [82]) of the number of modular exponentiations by each entity for 

achieving confidentiality of bid in schemes employing PVSS, such as that of Franklin 

and Reiter [61), is presented. The use of at out of n scheme with t = 2 and n = 2, 

which is the simplest mode, will be assumed. The estimates are presented in Table 5.2. 

The protocol proposed by Sakurai and Miyazaki [80] accomplishes anonymity of 

losing bidders and user controlled anonymity using undeniable signatures. The esti­

mate assumes the following variables: Lis number of bids, J E {0, · · ·, L- 1} is the 

index of winning bid value, J is the index of the winning bid and B the number of 

winning bidders. The assumed values are: L = 10 and N = 100. The estimates are 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 127 

presented in Table 5.2. In the table, the best case condition occurs when J = 0 and the 

worst case condition occurs when J = 9. 

Bidder Auctioneer 
The proposala 20 5N/2N 

PVSS schemesb 4n + 2t 4nN 
Sakurai et al. c lOJ + 3 (Losing Bidder) 6JN +6B 

lOJ + 13 (Winning Bidder) 

Table 5.2: Computational Comparison of Proposals 

a Anonymity for winning and losing bidders. 
bNo anonymity for winning and losing bidders. 
c Anonymity for losing bidders. 

The following observations are made on Table 5.2: 

Trustee 
15N 

4(n + t)N 

1. the bidders need to perform a constant number of exponentiations in the scheme 

proposed in this thesis; 

2. the number of exponentiations that the auctioneer needs to perform: 

(a) is linear with the number of bidders, in the scheme proposed in this thesis; 

(b) is directly proportional to the number of bidders and the number of trustees 

in PVSS schemes; and, 

(c) is directly proportional to the product of the number of winning bidders 

and number of bids and, to the number of bidders, in [80]. 

The proposal possesses a superior performance, in comparison with the approach 

based on the publicly verifiable secret sharing approach (without anonymity for los­

ing bidders). In comparison with the scheme by Sakurai and Miyazaki, the proposal" 

achieves the properties in a much more efficient manner with a constant number of 

exponentiations for the bidders. 

Comparison Based on the Characteristics 

This section will present the characteristics of the proposal, in comparison with the 

other schemes, to demonstrate its achievements. The characteristics of the proposal 

are: 
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128 CHAPTERS. A~ONYMOUSTOKENSYSTEMS 

1. the number of exponentiations is a linear function of the number of bidders; 

2. it is possible to provide anonymity even to the winning bidder; 

3. any type of auction rule can be employed, like highest price, lowest price or 

Vickery (second highest price). 

4. provides user controlled anonymity; 

5. any anonymity providing mechanism or sealing mechanism can be used, as long 

as they guarantee the required properties. 

6. phases 2 and 3 permit stateless operations. That is every bidder need not have 

continuous connections with the auction centre. This is very useful for imple­

mentations over stateless protocols like the HTTP protocol in the WWW appli­

cations on the Internet [36]. Suitable anonymous token issuing facility can be 

employed to have a stateless Phase 1. 

The characteristics of the schemes [61] that use publicly verifiable secret sharing 

are: 

1. users cannot control confidentiality of their bid during the bidding process; 

2. generally inefficient; and, 

3. independent of the auction rules. 

The characteristics of the scheme proposed by Sakurai and Miyazaki [80] are: 

1. it provides user controlled confidentiality for the bid values and the bid value of 

the losing bidders is not revealed. 

2. it requires reliable real time networks and, therefore, may not be suitable for use 

over the Internet; 

3. it can only operate with either the highest price or the lowest price auction rules, 

in order to provide anonymity for losing bidders; 

4. since, bidders must choose a value of the bid from a fixed set of bid values, it 

may not be suitable for all scenarios of auction; 
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5.4. ANALYSIS AND DESIGN OF SEALED-BID AUCTION SYSTEM 129 

5. the auction system depends critically on the state of the proceedings; and, 

6. if the connection of any single bidder to the network is disconnected, due to some 

reason (accidentally or maliciously), the entire auction system will be stalled. 

Thereby, it is less robust. 

5.4.5 Discussion 

The anonymous token employed in the proposal provides restricted confidentiality and 

universal integrity services for the identity of the bidder. Thereby the anonymous 

token, ATi, belongs to compliance Category 1, as discussed in Section 2.3. 

The proposal provides universal confidentiality and integrity services to the bid so 

that only the bidder can reveal the choice of the bid. Therefore the bid ciphertext, 

(S, 8}, 8 2 , c), belongs to compliance Category 0, as discussed in Section 2.3. Due 

to the modular nature of the schema, future extensions to auction sub-protocol can 

accommodate restricted confidentiality service for the bid without adversely affecting 

the anonymity service for the bidders. The modification could allow a set of trusted 

third parties to open the bid without the involvement of the bidder. Such a modification 

would result in a bid ciphertext that belongs to compliance Category 1. The scope for 

customisation and refinement of the proposed auction system is broad. The proposed 

auction system can potentially provide anonymity service for the winning bidder, even 

after the end of the bidding process. Currently, a practical limitation that may be 

applicable is its requirement for an anonymous physical channel. 

Although the problem of timing the bidding periods has been studied in the liter­

ature [87], it may not be a cryptologic problem. The solution to the problem would 

rather be trust-based involving a stable, accurate and trusted source for time. The 

cause for this reasoning can be found in the characterisation of cryptosystems in Chap­

ter 2. The definitions for the basic services, namely confidentiality and integrity, in 

Section 2.1.1 accounts only for keys, messages and ciphertexts, and is independent of 

time. 

The proposal by Sakurai and Miyazaki [80], and Sako [79] opted to provide confi­

dentiality service only for the data. The identity of the bidder was public. A character­

istic, which is not necessarily a disadvantage, of both the proposals is their inability to 

provide anonymity service for the winning bidder after the termination of the bidding 
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130 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

process. The proposals required complicated interactions to determine the winning 

bid in a specialised manner because the bid ciphertexts must be compared before the 

winning bid ciphertext can be decrypted8. Since ciphertexts are designed to appear 

random, such comparisons must be carefully designed and, usually, are not extensible 

to many modes of auction rules. The proposal in Section 5.4.4 facilitated comparison 

of bids in plaintext. This property allows the auction system to be independent of the 

auction rules, such as highest bid, lowest bid and Vickrey auction. The advantage of 

both the proposals [80, 79] is that they do not require an anonymous physical channel. 

5.5 Analysis of Electronic Voting Systems 

The design of electronic voting system has been a long standing problem in crypto­

graphic research [21, 25, 22]. The technique presented in this thesis allows a better 

analysis of voting systems by identifying the services (confidentiality and integrity) 

required for various data and the manner in which the services are provided (restricted 

or universal). The schema presented in Section 5.2.3 will be a useful tool for the design 

of an electronic voting system that requires confidentiality service for the ballot. 

The primary aim of this section is to enumerate the possible approaches for the de­

sign of a complete voting system. The advantages of a voting system that employs the 

anonymous token paradigm presented in Section 5.2.3 will be highlighted. Finally, a 

conceptual sketch for the design of an electronic voting system that utilises the schema 

presented in Section 5.2.3 will be outlined. 

5.5.1 Major Entities in a Voting System 

The major entities in the voting scheme are: 

1. Voter: This entity requires confidentiality service for its ballot as the minimum 

requirement from the system. It sends confidential electronic information (the 

ballot) to the system that must be tallied in a prescribed manner. 

2. Teller: This entity collects and stores the ballots from the voters. It must not 

know the value of the vote (in the ballot) or the voter-vote relationship. 
8The losing bid ciphertexts must not be decrypted, in order to provide confidentiality service for the 

bids of the losing bidders. 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 131 

3. Tallier: This entity counts all the valid votes collected by the teller and publishes 

the result in a publicly readable bulletin board. 

4. Monitor: This is an optional entity that can monitor and register any fraudu­

lent activities in the voting system. It could be an active participant or a passive 

observer in the system that monitors every communication and computational 

results of all the participants. Usually, when all the communications are accom­

panied by universal verifiable proof transcripts, explicit modeling of this entity 

in the system will not be essential. 

5.5.2 Requirement Analysis 

The basic properties of any voting system that are identified in the literature [68, 8] are 

as follows: 

Authorisation (BPl): Only authorised voter may vote. 

Uniqueness (BP2): No entity may vote more than once. 

Confidentiality (BP3): No entity may be able to determine the voting strategy of 

other voters. 

Integrity (BP4): Nobody may be able to duplicate or modify votes of other voters. 

Receipt-freeness (BPS): Voters may not be able to accurately prove their voting strat-

egy after their participation in the election. 

Secure e-voting systems [68] can potentially provide additional properties, which are 

not available in the contemporary manual voting systems. These advanced properties 

are as follows: 

Computerisation (APl): The voting process may take place over a computer net­

work. 

Verification of Tally (AP2): Every voter may be able to make sure that his/her vote 

has been taken into account. 

Change of Ballot (AP3): Voters may change their ballot (change the voting strategy) 

within a given period of time. 
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132 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

Revalidation of Individual Ballot (AP4): If the voter finds that his/her vote has been 

misplaced, he/she may be able to prove this to the voting authority without jeop­

ardizing ballot secrecy. 

The primary concerns of this thesis are the basic properties of voting systems. At 

the same time, prospective extensions to accommodate the advanced properties are 

possible. 

The data-structure that is central to the security of e-voting systems is the ballot. A 

ballot is a collection of votes, which correspond to individual candidates participating 

in the elections. The votes contain the choice or preferences of the voters. In order to 

. guarantee properties BPl to BP4, the system may maintain a database of tuples of the 

form integrity( confidentiality(h Bi, Kc), Ki), where: 

1. the function integrity represents the integrity service that employs a key Ki; 

2. the function confidentiality represents the confidentiality service that employs a 

key Kc; 

3. Ii represents the unique identity of voter i; and, 

4. Bi represents the ballot formed by voter i. 

There exist many possibilities to share the knowledge of the keys, Ki and Kc. The 

integrity service guarantees that the values of the ballot and the identity cannot be 

changed by any entity (possibly, excepting voter i, if the advanced properties are to 

be achieved). The confidentiality service guarantees secrecy of the tuple, (Ji, Bi), for 

voter i. Since the secrecy of the tuple can be maintained by providing universal con­

fidentiality service to Ii or Bt, there exists two approaches to achieve this goal. The 

first approach provides universal confidentiality service only for Bi, and the second 

approach provides universal confidentiality service for h The term universal confi­

dentiality suggests that the value will remain secret forever. If such a security service 

is not achievable with current technology [34], then the properties of the keys used 

for the confidentiality service may be appropriately chosen [56] to provide secrecy for 

a sufficient period. For example, the period of secrecy may be comparable with the 

average life span of the population of voters. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 
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Figure 5.3: Dynamics in a Generic Electronic Voting System 

133 

The general message dynamics are shown in Figure 5.3. In the figure, the voter 

prepares the individual ballot in a prescribed manner and send it to the teller. The 

teller forwards the collection of ballots it accepted to the tallier. The tallier verifies 

the ballots and tallies the ballots the conform with the election rules. The result of 

the tally are published in a publicly readable bulletin board. An, optional, monitor 

may eavesdrop on the communications between the voters, the teller, the tallier and the 

bulletin board to verify the adherence to the election rules. Subsequent discussion in 

this section will discuss the advantages of designing an electronic voting system based 

on the anonymous token paradigm explained in Section 5.2.3, in comparison with the 

other approaches. 

5.5.3 Techniques for Privacy of Votes 

Confidentiality for the tuple of the form (I, D), where I may represent the identity of 

a participant and D may represent the data formed or chosen by I, can be provided by 

either; 

1. providing confidentiality service forD alone; 

2. providing confidentiality service for I alone; or, 
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134 CHAPTERS. ANONYMOUSTOKENSYSTEMS 

3. providing confidentiality service for I and D. 

In the case of voting systems I is the identity of the voter and D is the vote or the 

ballot, depending on the design of ballots. The aim is to provide confidentiality service 

to the tuple, (I, D), so that no entity other than the voter can know the value of the 

tuple. 

Universal Confidentiality Service for the Ballot 

The first approach, namely confidentiality service for the ballot, has been very popular 

in the literature. The PhD thesis by Benaloh [9] is a good source of information for 

. the design of voting systems adopting this approach. In this approach universal con­

fidentiality service for the ballot is essential for the proper functioning of the system. 

Each voter encrypts the ballot for a trusted tallier and submits the resulting ciphertext. 

The encryption mechanism or the election procedure may prevent the decryption of 

individual ciphertexts. Otherwise, the encryption mechanism would result in the re­

vocation of confidentiality service from the tuples, which would effectively contradict 

the aim of the voting system. 

Many schemes [21, 25, 22] have been devised that allow the tallier to tally the 

individual ballot ciphertexts and decrypt the resulting ciphertext to obtain the tally of 

the individual ballot plaintexts. Benaloh [9] proposed a technique called homomorphic 

encryption for the design of voting systems. The homomorphic encryption technique 

uses an encryption function h and decryption function h such that: 

and; 

such that c = a 0 b, where EB and@ are suitable operators, a and b are individual ballot 

plaintexts, and c is the tally of ballot plaintexts. In order to provide confidentiality 

service for the voter-ballot relationship, no entity, other than voter, must be able to 

determine the value of a corresponding to the ciphertext h (a). This requirement is 

important because the teller in the election system may register information of the 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 135 

form {(I a, h (a)), (h, h (b)),·· ·},where Ix is the identity of the voter corresponding 

to the ballot ciphertext h ( x), to achieve Requirements BPl and BP2. 

Generally, there may be many candidates participating in an election and every 

valid ballot that selects the winning candidate must conform with an authorised for­

mat. For example, suppose that there are two candidates (generalisation to more than 

two candidates is straight forward) and every valid ballot must elect only one of the 

candidates. In order to design such a rule, a popular approach is the abstraction of the 

ballot of the form: Ba = (!I (a1), fi (a2 ) ), where ai is the vote for the ith candidate. 

That is two vote ciphertexts per voter, corresponding to each candidate, must be al­

lowed. For simplicity, suppose that ai E {0, 1 }, where 0 represents the rejection vote 

and 1 represents the acceptance vote. Then, in order to prove that Ba is a valid ballot, 

voter I a must be able to prove two statements: 

1. every ai is either 0 or 1; and, 

2. only one of the values of ai is 1 (or 0) without revealing the index i corresponding 

to the choice. 

Most proposals for ballots of this form, such as that of Cramer et al. [25, 22], do not 

achieve the second proof. They focus only on the first proof. At this stage there seems 

to be no proposal to achieve simultaneously both the proofs. Moreover, proposals for 

ballots of this form become tediously complicated when there are more candidates or 

when the ballot is more complicated, such as those ballots that must accommodate 

preference information. 

Any successful proposal for providing universal confidentiality service for the bal­

lots may be required to model a null ballot that will allow voters to reject all the can­

didates. This is essential for those elections where participation is mandatory, such as 

in Australia, and the voters do not wish to vote for any of the candidates. 

This approach may not be a viable technique for large scale voting systems be­

cause the size of the ballot increases rapidly with the number of candidates and the 

complexity of valid preference statements. 
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136 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

Restricted Confidentiality Service for the Ballot 

This section presents an alternate approach for the provision of the universal confi­

dentiality service for the voter-ballot relationship. In this approach universal confiden­

tiality service is provided to the identity of the voter (instead of the ballot). Therefore, 

this approach can accommodate restricted confidentiality service for individual ballots, 

which would result in a validation process for individual ballot plaintexts. Note that 

this was not the case with the approach outlined in the previous section, where valida­

tion of ballot ciphertexts was required. Therefore, this approach is more suitable for 

electronic systems that could replace existing large-scale, manual voting systems. 

All proposals that adopt this approach will employ a suitable form of anonymous 

token system and a schema similar to that presented in Section 5.2.3. Such proposals 

will, invariably, provide restricted confidentiality service for the ballot and universal 

confidentiality service for the identity of the voter. The anonymous token, which pro­

vides universal confidentiality and integrity services to the identity of the voter, would 

belong to compliance Category 0. The ballot ciphertext would provide restricted con­

fidentiality and universal integrity services. Therefore, it will belong to compliance 

Category 1. 

The following procedure can be noticed in popular manual voting systems: 

VStep 1 voters identify (authenticate) themselves to a voting authority in a suitable 

fashion; 

VStep 2 the voting authority verifies the identity of the voters against a ledger con­

taining the official list of voters. If the entry corresponding to the voter is not 

already marked, then the authority marks the entry, else it prevents the voter from 

proceeding to the next step; 

VStep 3 the voting authority issues a single, unmarked, uniform ballot9 to the voter; 

VStep 4 the voter registers the choice in the ballot in a voting area that provides phys­

ical confidentiality service for the choice; 
9The ballot must not, in any manner, uniquely identify the voter. This step provides universal confi­

dentiality service for the identity of the voter during the tallying phase of the election. 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 137 

VStep 5 the voter submits the ballot to a ballot-box, which intrinsically mixes all the 

votes; 

VStep 6 the ballot-box provides physical integrity to all the ballots until the event of 

its opening; 

VStep 7 the tallier(s) revoke the confidentiality service from the ballots by opening 

the ballot-box and verify the validity of the ballot; and, 

VStep 8 the tallier(s) create a tally of the votes in the valid ballots and publish the 

results in an appropriate manner. 

The identification procedure in VSteps 1 and 2 guarantee Properties BPI and BP2. The 

anonymity service provided in VStep 3 provide universal confidentiality service for the 

identity of the voter, in that even an honest voter10 cannot identify the ballot containing 

his/her choice after this step. This property of manual voting systems is popularly 

known as receipt freeness. VSteps 4 through 8 achieve the remaining properties of the 

voting system. 

The schema presented in Section 5.2.3 provides a tool for ballots that offer re­

stricted confidentiality service for the vote. This aim can be achieved by providing 

universal confidentiality service11 for the identity of the voter. 

5.5.4 A Conceptual Design for a Basic E-Voting System 

The first step in the automation of large scale elections would be to automate indi­

vidual phases of the elections. The conceptual design to be presented in this section 

introduces a mechanism that would allow the users to electronically register their par­

ticipation, say over the Internet. The voting phase must take place within a polling 

booth to achieve the property of receipt-freeness. It will employ the schema presented 

in Section 5.2.3 along with a suitable anonymous token system (ATS, see Section 5.1). 

Choice for ATS 

The ATS must provide universal confidentiality service for the identity of the voters 

(participants). Therefore, the the ATS must not provide the trace functionality, which 
10 A voter who does not place identification marks on the ballot. 
11 The ATS employed must provide universal confidentiality service for the identity. 
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138 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

provides the anonymity revocation service. A suitable choice could be the Brands 

e-cash proposal [12] that employs the concept of wallets with observers [18]. This 

scheme is an ideal choice because of the following properties of the Brands proposal: 

Non-transferability : This property assumes the existence of a private-key, corre­

sponding to the certified long-term public-key, of the owner (voter) such that 

the owner (voter), in its own interest, will not risk the exposure of the private­

key. This property prevents an owner (voter) from obtaining a e-coin (token) and 

transferring it to another entity (proxy). If the owner (voter) does transfer these­

cret corresponding to thee-coin (token) then it risks the exposure of its private 

key, which would be against its interests. 

Observer paradigm : There exists an observer, which is a physical device, corre­

sponding to each owner that prevents the use of the token more than once (double­

spending). At the same time, the paradigm guarantees that the observer cannot, 

even in collusion with the bank (TIA) that issued thee-coin (token), undermine 

the privacy (anonymity) of the owner (voter). 

The Brands proposal provides an anonymity revocation (restricted confidentiality ser­

vice for the identity of the voter) mechanism when thee-coin (token) is double-spent. 

Since the observer paradigm prevents double-spending this threat to voter privacy is 

avoided. 

Since the proposal by Frankel, Tsiounis and Yung, (FTY scheme) detailed in Ap­

pendix D, is exactly the same as that of the Brands proposal excluding the tracing 

operations, the discussions in the rest of this section will employ the function defini­

tions explained in Section 5.1 and Appendix D. It is important to note that the Trace 

function explained in Appendix D.2 will not exist, and the owners (voters) will not 

enable tracing while employing the Utilise Token function. 

System Settings 

The system consists of sets of Voters V, authorisation authorities A, tellers B, and 

talliers T. A chooses primes p and q such that p - 1 = o + k for a specified constant 

o, and p = 1q + 1 for a small integer I· A unique subgroup Yq of prime order q of 

the multiplicative group Zp and generators g, g1 , g2 of Yq are defined. The secret key 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 139 

of A, XA ER 'llq is created. T chooses a private-key as Xr ER 'llq and computes the 

public key YT = 9-;r. B chooses a private key x B ER 'llq and computes its public 

keys as hs = 9Xs, hBl = 9~s, hB2 = 9-;s. Henceforth the set of keys for A will be 

represented as YA {h, hb h2}, and that of be Bas YB = {hs, hBl, hB2}· A securely 

publishes p, q, 9, 91, 92 , a secure hash function 1-l, its public keys YA, the public keys of 

B, ys, and the public key ofT, YT· 

A associates every voter vi E V with the identity Ii = 9fi, where xi E gq must be 

securely generated by the voter such that 9fi 92 =f: 1. The secret-key of the voter, xi, 

must satisfy the assumption for non-transferability mentioned in the previous section. 

This could be guaranteed if the private key Xi provides access to the health information 

of the voter or is a part of the voter's electronic passport. The voter must prove the 

knowledge of discrete logarithm of I with respect to 91 • 

A will assume the role of the TIA, B will assume the role of the TAA and V will 

play the assume of the clients, as in the schema in Section 5.2.3. The system dynamics 

for the resulting voting system will be as shown in Figure 5.4. In the figure protocols 

belonging to the ATS are: IssueToken, UtiliseToken and SubmitToken. The protocols 

belonging to the basic voting system are SubmitConjBallot, which allows the voters to 

encrypt their ballot for T, and SendConjBallot, which allows B to forward the ballots 

it collected to T for tallying. 

Trust Assumptions 

The following assumption about the voting authority, A, is essential: 

Authorisation and Uniqueness: A will issue a single token to every authorised voter. 

The assumptions about the teller, B, are: 

Fairness: B will present the available choices of candidates to the voters during the 

ballot submission phase; 

Enforcement: B will prevent the voter's electronic agent from communicating with 

other entities during the ballot submission phase; 

Communication: B will send the ballots it collected only to T. 

The following assumptions about the talliers, T, are essential: 
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140 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 
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Figure 5.4: System Dynamics of a Basic Voting System 

Receipt-freeness: Twill not assist any entity to verify the integrity of individual bal­

lots; 

Fairness: Twill not alter or modify the ballots it receives, will tally every valid ballot 

and publish the result of the tally. 

Although these trust assumption do not significantly depart from the trust assumptions 

of the manual voting systems, future research may provide avenues to improve the sit­

uation in electronic voting systems. Such improvements should result in more flexible 

trust assumptions. 

Registration Phase 

This phase can be executed over an open network or in a registration booth some days 

before the start of the election. This phase consists of the following steps: 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 141 

1. voter vi E V with a public-key Ii = g~i contacts A and authenticates by employ­

ing its public key, Ii; 

2. A consults with an electronic ledger to check if vi has already participated in this 

phase. If vi has not participated in this phase it proceeds to the next step; 

3. vi engages in the token issuing protocol (see Section 5.2.3 and Appendix D.2) 

with A, to obtain an anonymous token ATi, as follows: 

The anonymous token ATi contains two pseudonyms of the form g~18 and g2 
(see Appendix D.2), where s ER 'llq is an output of the token issuing protocol 

known only to the voter; 

4. A records the participation of vi in the electronic ledger. 

At the end of this phase, vi must possess an anonymous token ATi that will grant 

access to an electronic ballot and YT the public key of T, which can be obtained from 

A in a secure fashion. 

This phase is represented as lssueToken in Figure 5.4. It achieves VSteps 1 and 2 

of the election protocol, as explained in Section 5.5.3. 

Ballot Submission Phase 

Restricted confidentiality and universal integrity service for the ballot is essential. The 

confidentiality of the ballot is essential because only T must be able to verify the 

validity of the ballot. This is also essential to prevent the announcement of election 

results before the completion of the elections in all the election booths. The universal 

integrity service ensures that the ballot communicated by V to T through B is not 

altered. 

In order to participate during this phase the voter, Vi, is expected to visit a polling 

booth along with the anonymous token ATi (say, in a smart card) it obtained during the 

registration phase. The polling booth must contain a polling machine representing the 

teller, B. The voter must possess a hand held device to perform the cryptologic com­

putations. The hand held device may be provided by authorised the election officials 
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142 CHAPTERS. ANONYMOUSTOKENSYSTEMS 

before entering the polling booth. It can also be a third generation mobile telephone 

that is owned by the voter, and therefore trusted. If this is the case, the officials must 

make sure that the telephone can communicate only with B until the voter completes 

this phase. vi must not authenticate to B with its original public-key, Ii. 

This phase consists of the following steps: 

1. vi submits its anonymous token ATi with B and engages in the token utilisation 

protocol (see Section 5.2.3 and Appendix D.2), as follows: 

where null symbolises the absence of trustees for tracing purposes and YA is the 

set of the public keys of A, which is required to verify the certificate, Cert AT;, 

for the anonymous token, ATi. If the token utilisation protocol is successfully 

executed, B stores Proof AT; in a private database and allows vi to proceed to the 

next step; 

2. B sends the choice of entities to vi; 

3. vi computes the ballot bi E Yq in a prescribed fashion to represent its voting 

strategy; 

4. vi chooses k ER Yq and encrypts the ballot for T as (ei = biy~, fi = g~, 

ci = H(ei, fi), ri = k- cis mod q), where gf2 is the authorised pseudonym of 

the voter available in ATi; 

6. B sends (ATi, ei, ci, ri) toT in a confidential channel. 

7. T stores the tuples in a private, secure database. 

If proof of participation in this phase is essential (such as in Australia where par­

ticipation in elections is mandatory), then vi engages in the token issuing protocol with 

B to obtain an anonymous token as a receipt of participation. The interactions are as 

follows: 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 143 

In above protocol, B performs a restrictive blind signature [12] (see Appendix D for 

details) on the pseudonym tuple of the form (gr;ssr, g~r), where sr ER Zq is a randomly 

chosen value by vi. The interpretation of the syntax is available in Appendix D.2, 

which is the same as explained in the registration phase. In order to prove to A about 

its participation in this phase, vi authenticates to A and performs the token utilisation 

protocol by employing RTi as follows: 

(Proof RrJ := UtiliseToken(RTi, CertRr;, A, YB, null, {sn sul}RrJ 

where null symbolises the absence of trustees for tracing purposes and y B is the set 

of the public keys of B, which is required to verify the certificate, Cert RT;, for the 

anonymous token, RTi. This use of ATS is possible because: 

1. the ATS in the registration phase provides confidentiality to tuples of the form 

(h Ali) as explained in Section 5.1 by Properties FP2 and FP3; and, 

2. the ATS in this phase provides confidentiality to tuples of the form (ATi, RTi) 

as explained in Section 5.1 by Properties FP2 and FP3. 

At the end of the elections A will have a list of information of the form (Ji, RTi) and 

B will have the list of all ATis it had accepted. If the ATS achieves properties FPl 

an FP2, the values (Ji, RTi) and ATi cannot be correlated when there are many voters 

who wish to maintain their privacy. 

This phase achieves VSteps 3, 4 and 6 described in Section 5.5.3. It does not 

achieve VStep 5 because the individual ballots are not mixed. This is because each 

ballot tuple,(ATi, ei, ci, ri), is different, with a high probability -the anonymous 

tokens ATi must be unique in order to achieve Property FPO and FPl described in 

Section 5.1. It achieves the essential goal (privacy of vote) of VStep 5 by arguing 

the intractability to determine the identity of a voter, Ii, who owns the token ATi. 

Moreover, it provides an end-to-end integrity service between the voters and T, which 

was not the case in manual voting systems. In manual voting systems, every link of 

communication must be physically secure to guarantee the integrity of the ballots. 

Tallying Phase 

The ballot tuples sent by B to T during the ballot submission phase will be of the form, 

(Ali, ei, ci, ri)· For each ballot tuple, T performs the following steps: 
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144 CHAPTERS. ANONYMOUSTOKENSYSTEMS 

1. retrieves the pseudonyms, (gfiS, g~) from ATi; 

? 

3. checks if, ci .:_ 1i(ei, h); 

4. decrypts ballot as, bi = ed J{T, where Xr is the private key ofT corresponding 

to the public key Yr; 

5. decodes bi and determines the individual votes and the validity of the ballot; 

6. tallies the ballot, if it is valid. 

On completion of the tallying process, T publishes the result of the tally in a pub­

licly readable bulletin board. Note that the ballot tuples, (ATi, ei, ci, ri), must not be 

published to achieve receipt-freeness. This phase achieves VSteps 7 and 8. 

Security Analysis 

The achievements of the above proposal is presented by comparing them with the basic 

services mentioned in Section 5.5.2, as follows: 

Authorisation (BPl): If A is trusted to issue valid anonymous tokens only to au­

thorised voters and the electronic cash system presented by Brands (see Ap­

pendix D) prevents entities from forging the signature of the bank (A in our 

proposal) then only authorised voters can participate in the ballot submission 

phase. That is the ATS used possesses the authorisation property described in 

Section 5.1. 

Uniqueness (BP2): If the proposal by Brands prevents double-spending of e-coins 

then the proposal prevents voters from voting more than once and remain unde­

tected. That is the ATS used possesses the authorisation and reusability prop­

erties described in Section 5.1. The system must only allow a single use of 

the token. The reusability property can be enforced by the use of the observer 

paradigm described in Section 5.1. 

Confidentiality (BP3): If the ATS (Brands e-cash proposal) used possesses the anonymity 

property presented in Section 5.1 and the voters use suitable anonymous physical 
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5.5. ANALYSIS OF ELECTRONIC VOTING SYSTEMS 145 

channels then the proposal preserves the confidentiality service for the voter-vote 

(or voter-ballot) relationship. 

Integrity (BP4): If the Schnorr signature scheme [81] employed in the SubmitConf 

Ballot protocol and the tallying phase is secure (unforgeable) then the ballot 

submitted by the voter cannot be altered without the knowledge of private key, 

(ui, s), of the voter, vi. 

Receipt-freeness (BPS): If the tallier, T, is trusted not to publish the ballot-token 

tuples sent by B, B does not forward the tuples to any entity other than T and 

the ATS possesses the non-transferability property presented in Section 5.1, then 

the proposed protocol prevents the voters from proving the content of their ballot 

to other entities. Note that such trust assumptions were generically categorised 

as "untappable channels" and "strong physical security" by Okamoto [69]. 

The directed, simple trust assumptions, modular nature of the framework and the pro­

posed design will be ideally suited for future design !3-nd implementation developments. 

The security analysis of the resulting systems will also be simple to comprehend as 

shown above. 

5.5.5 Comments on Electronic Voting Systems 

The design of electronic voting systems is a specialised topic that must deal with many 

technical and sociological considerations. The literature contains only partial voting 

systems that do not address all the important requirements. Most proposals address the 

properties for specialised voting systems that cannot be widely used. 

This section presented a basic electronic voting system to automate the important 

aspects of modem elections. In its present form it is not suitable for deployment over 

open networks if achievement of receipt-freeness is essential. 

A concept called deniable encryption was proposed by Canetti, Dwork, Naor and 

Ostrovsky [16]. This concept allows an entity to encrypt a message min the ciphertext 

c under the public key key of a receiver. The important property of this scheme is 

the ability of the sender to prove the encrypted message to be m or m', depending on 

its choice. Canetti et al. have already identified the usefulness of such an encryption 

scheme in voting systems to achieve receipt-freeness. This is because the scheme 
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146 CHAPTER 5. ANONYMOUS TOKEN SYSTEMS 

allows the voters to exercise their choice during the ballot submission phase and still 

pretend that they have cast the vote as agreed with some entity, who could possibly be 

coercive. 

Another important aspect of electronic voting systems would be key sizes. Since 

the privacy service provided by election systems must, at least, range over the average 

life expectancy of the citizens of a country, the choice for the size of the public keys 

of T, especially, is critical. Although there exists no scientific method to determine 

the size of the keys as a function of the period of privacy requirement, there do exist 

empirical estimates by Lenstra and Verheul [56]. 

Real life voting systems demand solutions to many important issues, such as receipt-

freeness [69]. Receipt-freeness is the property by which the voting officials can be 

convinced that the voters cannot prove their choice to other entities. This is essential 

to prevent vote-buying. VSteps 3 and 5 of the contemporary voting system perfectly 

achieves this property assuming honest voters. It robustly achieves this property as­

suming dishonest voters and honest election officials, if the ballots are physically sep­

arated from individual votes. Currently, it seems difficult to achieve receipt-freeness in 

electronic voting systems that could operate over unprotected, open networks, such as 

the Internet. 

A more important aspect is that the manual voting systems provide universal con­

fidentiality service forever. This is because the physical security plays a major role 

in such a guarantee. Since the confidentiality service provided by every known cryp­

tographic algorithm decays with time [34] and with every improvement in the crypt­

analytic technology, electronic voting systems employing contemporary cryptographic 

algorithms cannot provide universal confidentiality forever. This aspect of the technol­

ogy may allow a powerful adversary, such as government owned intelligence services, 

to record various ciphertexts during the election period and engage in cryptanalytic 

techniques that may take some years. This problem can be solved by devising algo­

rithms for information theoretic security services, as opposed to complexity theoretic 

security services. Such algorithms become fundamentally essential when electronic 

voting systems are employed for nation-wide elections. Almost all known public-key 

technologies provide only complexity theoretic security services. 

The requirements for electronic voting systems have their epicenter in sociologi-
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5.6. SUMMARY 147 

cal considerations and any technological solution must be able to address them in an 

uncompromising manner. This is a challenging form of compliant cryptologic system 

that requires a robust solution to bridge the requirements for the identification of vot­

ers (to achieve BPl and BP2) and, confidentiality and integrity service for individual 

ballots (to achieve BP3 and BP4). Any robust solution for such systems must strive to 

provide information theoretic security that should withstand decades of cryptanalytic 

attacks. The number of years of security provided by such algorithms must at least be 

greater than the average-life span of the population that uses the voting system. 

5.6 Summary 

The analysis of cryptologic systems in terms of the basic services, namely confidential­

ity and integrity, and the manner of provision of these services, restricted and universal, 

assisted in a simple analysis of a class of protocol systems called secure selection pro­

tocols. A generic schema was presented that facilitated identical proposals for two 

seemingly different protocol applications, namely peer-review system and electronic 

auction system. 

The conflicts in the interest of various participants were interestingly similar when 

expressed in terms of the cryptologic objectives. When dealing with systems that 

provide restricted confidentiality and universal integrity services to tuple of the form 

(I, D), it was realised that the approach for providing confidentiality service to the 

identity, I, rather than to the data, D, resulted in a more comprehensible system. 

The restricted nature of the confidentiality service was modeled into the ATS, which 

allowed the selection protocol to be independent in providing the integrity service. 

Therefore, the anonymous tokens issued using the ATS belonged either to compliance 

Category 1 when restricted anonymity (confidentiality) service was provided and com­

pliance Category 0 when universal anonymity service was of interest. 

Further relationship between the selection subsystem and other compliant system 

was evident especially in the electronic auction system in Section 5.4. The proposal in 

this section provided user controlled confidentiality service for the bidders. The corre­

sponding ciphertexts (S = l gf) provided universal confidentiality service to the bid. 

Therefore these ciphertexts belonged to compliance Category 0. It may be possible to 
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extend the scheme to provide a trustee controlled confidentiality service by incorpo­

rating a suitable key recovery technique (such as those in Chapter 4). The resulting 

ciphertexts would then belong to compliance Category 1, as they would provide re­

stricted confidentiality service. It is important to realise that the mode of provision of 

the confidentiality service (for the data or selection) in this model does not affect the 

mode of provision of the anonymity service (confidentiality service for the identity). 

The approach facilitated a modular design technique for the synthesis of protocols 

and reuse of existing protocols. When perfectly designed, the coupling of the sub­

systems could be such that individual sub-systems may be replaced by functionally 

identical systems. For example, an efficient technology for the ATS is available, it 

· may be possible to patch the security software by replacing the code for the older ATS 

with the code for the latest ATS. Modularity in protocol design is a relatively new field 

of study and the schema in Section 5.2.3 may provide useful information for research 

in that direction. 
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Chapter 6 

Summary and Research Directions 
How nature loves the incomplete. She knows: if she 

drew a conclusion it would finish her. 
-CHRISTOPHER FRY, 1950 

Talent jogs to conclusions to which Genius takes giant 
leaps. 

-EDWIN PERCY WHIPPLE (1819- 1886) 

The fundamental nature of confidentiality and integrity in cryptologic protocols 

was established. The resulting visualisation of cryptologic systems provides simple 

conceptualisation, analysis and design techniques. These results facilitate a simple, 

cryptologic definition for the term compliance, which has been previously stated only 

in a non-cryptologic language for specialised situations such as legal wiretapping of 

encrypted communications [ 40]. The thesis identifies compliance to be a broader cryp­

tologic phenomenon, encompassing the entire class of cryptologic protocols. This 

identification allows for the correlation of seemingly disparate protocols such as fair 

electronic cash [38] and fraud detectable key recovery [89]. 

Various protocols that exhibit a particular form of compliance guarantee were anal­

ysed and designed. This was achieved by using the threads of reasoning established 

earlier in the thesis. The thesis concentrated on key recovery protocols and on a class 

of protocols called secure selection protocols (SSP). A new paradigm called hybrid 

key recovery proposed to achieve robust key recovery. A design schema for SSP was 

proposed employing a concept called anonymous token systems ATS. The analysis of 

protocols in this thesis is explained in terms of the basic services, namely the confien­

tiality and the integrity services. Such an explanation highlights the new analysis and 

design philosophy that the thesis propounds. 

Section 6.1 will present a chapter-wise summary of the thesis, in order to high­

light its contributions. Section 6.2 will present potential research directions that were 
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identified during the course of the research and Section 6.3 will conclude the section. 

6.1 Summary of the Chapters 

In Chapter 2, the thesis presented a simple and intuitive representation of cryptologic 

systems, and employed the technique to analyse and design the class of protocols called 

compliant cryptologic protocols. It was realised that the definition of compliance in 

cryptosystems is broad and covered many areas of cryptologic protocols. Thereby, a 

classification of message formats used in protocols was used to characterise crypto­

logic systems. The classification was employed to restrict the scope of the thesis to 

.those cryptologic protocols that employ message formats that provide restricted confi­

dentiality and universal integrity services to various messages. 

The term compliance was defined as a guarantee by the system to its participants. 

The guarantee was either restricted or universal service for specified messages. The 

elements in the fundamental set of services that encompasses all possible services re­

quired for cryptologic protocol construction was enumerated as confidentiality and 

integrity. Although, without loss of generality, these services were assumed to be in­

dependent of each other, there exists a fine relationship between them. For example, in 

order to achieve robust integrity services, protocols must establish confidential keys. 

Suppose Alice and Bob require to communicate confidently without Carol being able 

to modify the messages. Carol can perform every logical operation that Alice and Bob 

can perform, if she can modify the messages without the knowledge of Alice and Bob. 

Since cryptography is modeled on the secrecy of keys, Alice and Bob can gain rea­

sonable confidence about the inability of Carol if they possess a secret that Carol does 

not. 

The importance of publicly verifiable encryption techniques, in particular, for the 

design of restricted confidentiality and universal integrity services was highlighted. 

Various classes of publicly verifiable encryption techniques were enumerated. 

In Chapter 3, a technique for the analysis of the integrity goals of various protocols 

was presented. The foundation for the technique was based on the content established 

previously by the thesis. An informal syntax for the technique was created and em­

ployed in the analysis of an encryption scheme meant to be secure against the adaptive 
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6.1. SUMJvfARY OF THE CHAPTERS 151 

chosen ciphertext attack, an efficient electronic cash system and a fraud detecting key 

recovery proposal. The analysis assisted in the development of precise understanding 

of the goals for these systems, which resulted in either the development of an alternate 

proposal or the identification of drawbacks. 

In Chapter 4, the popular types of key recovery were analysed, which resulted in 

the proposal of a new paradigm for the design of key recovery systems. The paradigm 

was called hybrid key recovery. The analyses in this chapter employed heavily the 

concepts in Chapter 2. The chapter highlighted the inherent problems associated with 

private key recovery and session key recovery systems. Furthermore, it explained the 

reason for the robustness of the hybrid key recovery systems against the problems 

faced by session key and private key recovery systems. In order to provide source 

traceability in the hybrid key recovery proposal, a new signature scheme called the 

joint signature scheme was developed. The joint signature scheme provided the control 

for an authority over the use of a public key in signature processes by the participants. 

It was argued the resulting system with hybrid key recovery and source traceability 

emulated closely the properties of the Clipper proposal in a better fashion, and was the 

only proposal suitable for robust software implementation that is available currently. 

In Chapter 5, a specialised form of confidentiality service, called anonymity ser­

vice, was studied. The concepts developed in Chapter 2 were employed to study and 

analyse the properties of existing electronic cash proposals. An abstraction called 

anonymous token system (ATS) was detailed and the usefulness of the electronic cash 

proposals for the design of ATS was demonstrated. The abstraction was employed to 

propose a generic schema for the design of a class of protocols called secure selec­

tion protocols (SSP). SSP deals with tuples of the form (I, D), where I represents the 

identity of the participant and D the data preferred by the participant, which would be 

its selection. The goal of SSP was the provision of confidentiality service for the rela­

tionship between I and D, and integrity service for the selection, (I, D). The schema 

was employed to design a peer-review system and an electronic auction system. The 

modularity of the schema was evident in the resulting system designs, which provided 

a functional independence for the sub-system that provides the confidentiality service 

for the relationship and the sub-system that provides the integrity service to the tuple. 

The concepts developed in Chapter 2 were used to analyse the requirements for the 
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152 CHAPTER 6. SUMMARY AND RESEARCH DIRECTIONS 

design of electronic voting systems. It was argued that the simplest and most effective 

approach for the design of a large scale, electronic voting system would be the use of 

the proposed schema for the design of SSP. The deficiency in current cryptographic 

knowledge available in the open literature for the design of electronic voting system 

was also detailed. 

6.2 Research Directions 

Detailed classification of cryptologic protocols: A precise classification of crypto­

logic protocols is possible based on the mode of compliance employed. Such a classifi-

. cation would readily yield an understanding of the manner in which various cryptologic 

services to the messages employing keys interact to achieve a complex goal. This goal 

seems to be an ideal first extension to this thesis. 

Formal syntax for the representation of cryptologic protocol goals: The integrity 

verification technique presented in Chapter 3 employed a rather informal syntax, which 

by its potential was extremely successful in accomplishing its goals. Ideas from this 

chapter will assist greatly in the development of a formal syntax for the representation 

of cryptologic goals. Although, research for the representation of the confidential­

ity goal has commenced [1], the research for the representation of the integrity goal 

requires more input. 

Joint signature scheme: The joint signature scheme that was proposed in Section 4.5.3 

achieved adequately and robustly the requirements for source traceability in the hybrid 

key recovery system. The variation of the global signature verification equation with 

variable number of participants in the signature generation protocol may be a poten­

tial drawback in some applications. It may be useful to research for joint signature 

schemes that do not have this property. 

The relation between joint signature schemes and proxy signature schemes [60] 

may be a productive area for research. 

Alternate proposal for the design of anonymous token systems: Currently blind 

signature schemes [18] are the only known technique for the design of anonymous to­

ken systems (ATS, see Chapter 5). Intuitively, the goals of an ATS can be achieved 

using suitable verifiable encryption of signature tuples. Although there are results in 
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6.2. RESEARCH DIRECTIONS 153 

the literature dealing with verifiable encryption of signatures [41, 4], they are rudimen­

tary and do not yield to the goals of anonymity service because these schemes provide 

confidentiality service only to parts of the signature tuple. In order to design robust 

anonymity services, it must be possible to encrypt the entire signature tuple, namely as 

explained in Section 5.2.1. 

An approach may be to employ a probabilistic encryption algorithm [43] along 

with a robust signature scheme. The steps involved during the token issuing protocol 

would be: 

1. the client commits to a randorniser r as C = commit(r), where commit is a 

suitable commitment scheme; 

2. the TIA could produce the token by performing the following signature, a = 

Sign(! (C)), where f is a suitable randomising function that could additionally 

embed the identity of the customer for tracing purposes, and returns a to the 

client; 

3. the client could generate the anonymous token from a by performing the encryp­

tion function as, AT= ProbEnc(a, r). 

During the token utilisation protocol, the client would have to prove its knowledge of 

the signature of TIA, a, and and the randomiser, r, to the TAA in minimal or zero 

knowledge by revealing the value of AT. Note that ProbEnc must completely hide a 

and at the same time allow the TAA to verify its structure. That is TAA must verify 

robustly that the hidden a is indeed a signature of the TIA. 

Concrete proposal for electronic voting system: A concrete proposal for the design 

of a robust electronic voting system can be made by employing the generic schema 

presented in Section 5.2.3. Due to the highly sensitive requirements of large-scale, 

practical election systems, it may be useful to design an ATS and a basic tallying sub­

system that is information theoretically secure. Such a system will emulate closely the 

existing manual voting systems. 
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154 CHAPTER 6. SUMMARY AND RESEARCH DIRECTIONS 

6.3 Conclusion 

The thesis analysed and designed many cryptologic protocols by viewing them to be 

a composition of confidentiality and integrity services. It is possible to categorise 

message formats in the cryptologic systems based on the manner in which the basic 

services are rendered, namely restricted or universal service. 

The notion of compliance in cryptologic systems was formalised and a classifica­

tion of message formats in such systems was proposed. This classification will be very 

useful in the characterisation, analysis and design of many cryptologic protocols. 

The development of a successful, informal syntax for the representation of the in­

tegrity goal suggests the existence of a formal syntax. It may be possible to develop a 

common syntax for the representation of cryptologic protocols that specifies the con­

fidentiality and integrity services provided to various messages being communicated 

within the cryptologic system. 

The hybrid key recovery system demonstrated the existence of a robust software 

key recovery system that could emulate closely the achievements of the Clipper pro­

posal in a more efficient, scalable and secure fashion. 

The approach to solve many protocols belonging to the class of secure selection 

protocols based on a common framework provides evidence for the existence of strong 

relationships between protocols that are seemingly different. 

An effort to render various designs of cryptologic protocols to be modular was 

successful. It may be possible to design cryptologic protocols in a modular manner, 

which will emulate closely the developments in the techniques for computer software 

design. A formal syntax for the representation of cryptologic protocols would be the 

first step in this direction. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Appendix A 

Honest Verifier Zero-Knowledge Proof 

There are many ways of proving the knowledge of a secret. In the traditional 

password-based systems, this was achieved by revealing the secret to the verifier. Such 

a system would be efficient and useful only in trusted environments, such as in military 

operations with a well established chain of command. If such a trust relationship does 

not exist then alternate mechanisms are essential. Zero-knowledge proof (ZPK) tech­

nique is one such mechanism. The concept was first proposed by Goldwasser, Micali 

and Rackoff [44] and its application in identification protocols was demostrated by Fiat 

and Sharnir [37]. 

ZPK, as the acronym may suggest, allows a prover to prove its knowledge of a se­

cret without revealing it. Such an approach allows the verifier to gain confidence about 

the assertion of the prover ("I [prover] know a secret.") and no additional knowledge. 

The technique is highly suited for many applications such as identification and entity 

authentication in untrusted environments. 

Prover Verifier 

w 

c 

r 
r =a- ex mod q 

Table A.1: The Schnorr Identification Protocol 

In order to explain the properties of z PK, an identification scheme will be analysed. 

Schnorr [81] proposed an identification scheme that assumes the intractability of the 
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156 Appendix A. Honest Verifier Zero-Knowledge Proof 

discrete logarithm problem. Let p = 2q + 1 be a large prime such that q is also a prime. 

The value of p must render the discrete log problem to be intractable. Let the secret 

of the prover be x ER Zq. The public image of the secret would bey = gx mod p, 

where g E Qq is a generator and Qq c z; is the prime order sub-group. The prover 

and the verifier engage in a protocol described in Table A.l. This protocol requires 

three communication runs between the prover and the verifier. The runs are named 

commitment, challenge and response, in that order. Therefore, it is called a three-pass 

protocol. 

Observing the transcript of the protocol run, ( w, c, r), it appears that the verifier 

cannot obtain any additional knowledge, other than the assertion of the prover. This 

· is because, there exists a simulator that the verifier can employ to generate such tran­

scripts, without interacting with the prover. The simulator performs the following 

computations: 

2. compute w = ycgr mod p; 

3. output (w, c, r). 

If both parties act correctly then ( w, c, r) is indistinguishable from the simulated runs. 

Due to the existence of such a simulator, the protocol possesses some properties of 

ZKP. Since the verifier could have generated the tuples without interacting with the 

prover, the verifier would not gain any additional information. 

The above analysis of the protocol made a crucial assumption, which being the ver­

ifier will choose c in a random fashion. A dishonest verifier can, for example, compute 

the challenge as c = 1-l(w), where 1-l is a secure hash function, instead of choosing it 

randomly. This may allow the dishonest verifier to obtain additional information other 

than the assertion of the prover because there exists no simulator for a protocol run of 

the form (w, c = 1-l(w), r) that cannot compute the pre-image of 1-l. The deficiency 

can be overcome by requiring the verifier to commit to the challenge, before the prover 

could send its commitment. The resulting protocol is as shown in Table A.2. 

Assuming that the verifier is honest, he randomly selects the challenge as pre­

scribed by the protocol in Table A.l, the identification protocol would possess the 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



157 

Prover Verifier 

c 

w 
w = ga modp 

c 

? 
C · gc mod p 

r 
r =a- ex mod q 

Table A.2: The Perfect-ZKP Schnorr Identification Protocol 

zero-knowledge property. For the above mentioned reasons the protocol in Table A.l 

is said to belong to the honest-verifier zero-knowledge protocol (HVZKP). Consider­

ing the number of communication runs required to complete the protocol, it is called 

a three-pass HVZKP protocol. Three-pass HVZKP protocol constructs are very useful 

in the synthesis of non-interactive protocols such as signature protocols, when used 

along with secure hash algorithms, which assumes the role of the honest-verifier. This 

technique is commonly known as the Fiat-Shamir heuristic [37], the security of which 

is currently provable only under the random oracle model [74]. 
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AppendixB 

Essential Protocol Constructs 

B.l Proof of Knowledge of Discrete Logarithm (PEDL) 

The proof of knowledge introduced by Schnorr [81] in the non-interactive mode is 

presented in this section. Here the prover P has to prove the he knows the discrete 

logarithm of a public value u, where u = gv mod p and g is a publicly known generator 

of the group z;. The prover performs the following function: 

Begin Function PEDLGen 

with input ( u, v) and output ( c, d, r) 

Choose at random k ER Zp 

Compute r = gk and c = 1-l(u, r) 

End Function PEDLGen 

d = cv + k (mod p- 1) 

output +- ( c, d, r) 

The verifier performs the following function: 

Begin Function PEDLVer 

with input (c, d, r, g, u) and output E {0, 1} 

Check gd 7 ucr 
? 

c · 1-l(u, r) 

If SUCCESS output +- 1 

Else output +- 0 

End Function PEDLVer 

159 
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160 Appendix B. Essential Protocol Constructs 

If 1-l is a cryptographically secure hash function, the verifier can be convinced that the 

prover knows log
9 

u mod p when the function PEDLVer outputs 1. 

B.l.l Proof of Equality of Discrete Logarithm (PEQDL) 

The proof presented in the previous section can be extended to prove the equality 

of discrete logarithm of two values to different bases as suggested by Chaum and 

van Antwerpen [17]. Let a prover P have the knowledge of the discrete logarithm 

v of u = 9v mod p and u1 = 93. mod p, where 9 and 91 are a publicly known genera­

tors of the group z;. The prover performs the following function: 

.Begin Function PEQDLGen 

with input (u, u1, v) and output (c, d, r rl) 

Choose at random k E R Zp 

Compute 

End Function PEQDLGen 

r = 9k, r1 = 9f and c = 1-l(u, u1 r, r1) 

d = cv + k (mod p- 1) 

output +- ( c, d, r, r 1) -

The verifier performs the following function: 

Begin Function PEQDLVer 

with input (c, d, r, r1 , 9, 91 , u, u1) and output E {0, 1} 

Check 9d ? ucr 

Check 9f ? u~r1 
? 

. c · 1-l( u, u1 , r, r1) 

If SUCCESS output +- 1 

Else output+- 0 

End Function PEQDLVer 

If 1-l is a cryptographically secure hash function, the verifier can be convinced that the 

prover knows log
9 

u mod p = log
91 

u 1 mod p when the function PEQDLVer outputs 

1. 
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B.l. Proof of Knowledge of Discrete Logarithm (PEDL) 161 

B.1.2 Partial Proof of Knowledge of Discrete Logarithm (PPEDL) 

Cramer et al. [24, 23] proposed a scheme to transform an interactive proof system into 

a proof system that will convince a verifier that the prover knows some secret, using 

a suitable secret sharing scheme with an appropriate access structure. In this section 

we propose a modification to the witness indistinguishable variant of the Schnorr iden­

tification protocol [81] proposed in [23] to obtain a more computationally efficient 

protocol construct that can be used for the proof of knowledge of discrete logarithm. 

The proposal presented in this section transforms their interactive proof system into 

a non-interactive proof system and applies the screening technique used in batch ver­

ification methods [93, 7] to the protocol proposed in [23]. The soundness and com­

pleteness properties of the protocol in [23] are not affected by the changes when a 

cryptographically secure hash function is used. This is due to the use of standard hash­

ing technique [37] for the transformation. The proposal also integrates the Schnorr 

signature scheme [81], so that the prover will provide the verifier with transcripts for 

the proof that also contains his/her signature. 

Suppose that a set of values U = { ui = gvi I i = 1, · · · , n} are publicly known 

and a prover, possessing the public key Yj (yj = gxi), wishes to prove to a verifier that 

he/she knows the discrete logarithm of at least one of the public values. For this to 

happen the verifier must allow the prover to simulate (or cheat) at most n- 1 proofs. 

Assume that the prover knows Vj, which is the secret value corresponding to Uj for 

some j E { 1, · · · , n}. The prover performs the following function: 

Begin Function PPEDLGen 

withinput(U, UjEU, Vj,Xj)andoutput(d, ,c, {ci li=1,···,n}) 

Choose at random kj ER Zp, { Ct, d1 ER Zp ll =!= j} 

Compute Tj = gki 

{rt = gdtu~l ll i= j} 
n 

(B.1) 

(B.2) 

r = IJ ri mod p (B.3) 
i=i 

c = 1i(u1, · · ·, Un, r) (B.4) 

Cj = c- L Ct (B.5) 
l#j 

d = kj- VjCj- XjC + L d1 (mod p -1) (B.6) 
l#j 
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162 Appendix B. Essential Protocol Constructs 

output +- ( d, , c, { ci I i = 1, · · · , n}) 

End Function PPEDLGen 

The verifier performs the following function: 

Begin Function PPEDLVer 

withinput(U, yj, d, ,c, {ci li=l,···,n})andoutputE{0,1} 

Check 

n 

c 
7 

Lei 
i=i 

If SUCCESS output +- 1 

Else output +- 0 

End Function PPEDLVer 

i=l 

(B.7) 

(B.8) 

If the function PPEDLVer outputs 1 when the transcripts from the prover are provided 

as inputs, then the verifier can, with a very high probability, decide that the prover 

knows the discrete logarithm of at least one of the n public values. 

Computational requirements: The function PPEDLGen requires 2n - 1 modular 

exponentiations and the function PPEDLVer requires n + 2 modular exponentiations. 

Analysis 

We shall assume that the hash function, H, used for the proof of partial knowledge, is 

cryptographically secure. 

When lUI = 1, i = j and the proof is the usual proof for knowledge of discrete 

logarithm. So the verification equation will be of the form, 

(B.9) 

which is a standard Schnorr signature with the signature inputs to the hash function 

of the form gd(yjuj)c. It is evident that this transcript can be formed without the 

knowledge of discrete logarithm of both yj and Uj, if and only if the Schnorr signature 

can be forged. Thus, based on the assumption that the Schnorr signature is unforgeable, 

the above equation is sound, in that the prover cannot cheat the verifier. 
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B.2. Publicly Verifiable Encryption Scheme 

When Yj = 1, Equation A.7 will be of the form, 

n 

c = 1-l(ul,···,Un,gdiJu~i) 
i=l 

163 

(B.lO) 

which is the verification equation for the non-interactive version of the protocol pro­

posed in [23]. If the prover can form this equation without the knowledge of dis­

crete logarithms for any of the u/s then the protocol construct proposed by Cramer et 

al. [23] is flawed or the standard hashing technique proposed by Fiat and Shamir [37] 

is flawed. Thus on the assumption that both the techniques [37, 23] are not flawed, the 

above equation is sound and complete, in that the prover cannot cheat the verifier and 

the honest prover will generate transcripts that will be accepted by the verifier. 

Observe that the Schnorr signature scheme [81] and the partial proof of knowl­

edge protocol [23] are derivatives of the Schnorr identification protocol [81]. The 

Schnorr identification scheme is a three move protocol, the moves being commitment, 

challenge and response. The protocol presented in the previous section constrains 

the prover to use the same commitment and challenge to generate (two) different re­

sponses, namely Schnorr signature and partial proof of knowledge, that can be in­

dependently interpreted by the verifier. Thus, the proposed protocol constrains valid 

transcripts to contain a message tuple (uiJ · · ·, un), commitment (r) , challenge (c), 

and the response (d) that is interpreted as a Schnorr signature on the message tuple 

and proof of knowledge of at least one discrete logarithm in the set of public values 

(ul, · · ·, Un). 

B.2 Publicly Verifiable Encryption Scheme 

The proposal for a public verifiable encryption scheme by Asokan, Shoup and Waid­

ner [3] will be presented in this section. The pseudocodes (to be presented) for the 

functions can be used to realise an off-line version of their proposal. 

B.2.1 System Settings 

Let C = Enc(t, s1 , y) be a public key encryption function that encrypts the message s 1 

of length ks under the public key y using the random string t of length kt bits and s1 = 

Dec( C, x) be the public key decryption function that decrypts the ciphertext C using the 
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164 Appendix B. Essential Protocol Constructs 

private key x corresponding the public key y. The OAE encryption function of Bellare 

and Rogaway [6], which is based on the RSA problem, is recommended. The one way 

function is realised by modular exponentiation as O(m) = gm mod p, where g E z; is 

a generator. A set of hash functions are chosen such that 7{ 1 : {0, 1}160 -+ {0, 1}ks+kt, 

1-i2 : {0, 1}*-+ {0, 1P60 , 1-i3 : {0, 1}*-+ {0, 1P60 and 7{4 : {0, 1}*-+ {0, 1}80 . To 

verifiably encrypt a message s1 E z; under the public key y, the sender I prover use 

the functions in the following sub-sections. 

B.2.2 Function VerEne 

1. Select random number r and compute the hash of the value as (t, s 2), which 

are the higher and lower order bits of the result, respectively. Use t as the ran­

domiser to encrypt s2 under the public key y. Compute the commitment to the 

encrypted message as g52
, where g E z; is the generator of the multiplicative 

group. Compute the hash value of the ciphertexts and the commitments as h. 

2. In a challenge-response mode h is sent to the verifier who chooses a challenge 

c E { 0, 1}. In our applications we make use of the standard hashing approach to 

realise an off-line version of the protocol. The user generates many hash values 

{ hj lj = 1, · · · , n}, where n is the security parameter which is 80 in our case. 

The prover then computes the hash value of all hj to obtain the challenge c. The 

prover then uses the bits of c as the challenge. 

3. If the lh bit of the challenge cis 0, the prover opens the encryption and does not 

send message information. If the bit is 1 the prover does not open the encryp­

tion but sends message information that can be decrypted using the private key 

corresponding to the public key used for encryption. 

The algorithm can be described by the function VerEne as follows: 

Function VerEne with input (s1 , g,p, y) 

and output (c, D, P1 , · · ·, P80 ) is 

Compute D = g81 mod p; 

For each j = 1, · · · , 80 do 

Select at random: r j E { 0, 1} 160
; 
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B.2. Publicly Verifiable Encryption Scheme 

done; 

Compute: ( tj, s2i) = 1l1 (r); 

Encrypt: (Aj,Bj) = (Enc(tj,s2i,y),g82i modp); 

Compute: hj = 1i2 (Aj, Bj); 

Compute: c = 1i4(h1, · · ·, hso); 

For each j = 1, · · · , 80 do 

done; 

If Cj is 0 then 

/* Cj is the jth bit of c* I 

Assign: Pj +- {r }; 

Else 

Compute: s3j = s 1 + s 2i mod p; 

Assign: Pj +- { Aj, s 3i}; 

Endlf; 

End Function VerEne; 

B.2.3 Function Check VerEne 

165 

1. The verifier recomputes the hash value hj in two different ways. If ;th bit of cis 

0, the encryption can be recomputed with the value of r and hence the value of 

hj. If the bit is 1 the verifier recomputes the hash value hj using the ciphertext 

and the commitment. 

2. The verifier then checks if the challenge was generated properly by recomputing 

the value of c from the values of hj. If the verifier is able to check this correctly 

then the proof is accepted. 

The algorithm can be described by the function Check VerEne as follows: 

Function CheckVerEnc with input (c,p, g, D, P 1, · · ·, P 8o) 

and output (check) is 

For each j = 1, · · · , 80 do 

If Cj is 0 then 

Assign: {rj} +- Pj; 

Compute: (tj, s2j) = 1l1(rj); 
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done; 

Else 

Appendix B. Essential Protocol Constructs 

Encrypt: (Aj,Bj) = (Enc(tj,s 2j,y),g 82j modp); 

Compute: hj = 1i2 (Aj, Bj); 

Assign: { Aj, s3j} +- Pj; 

Compute: hj = 1i2 (Aj, g83
j /D); 

Endif; 

? 

If c · 1i4 (h 1 , • • ·, hso) then 

Assign: check+- PASS; 

Else 

Assign: check +- FAIL; 

Endif; 

End Function CheckVerEnc; 

B.2.4 Function DecryptVerEnc 

1. The receiver locates the ciphertext with message information by locating the bit 

position in the challenge c that has a value 1. Note that during decryption j has 

to be selected at random in order to avoid fraud. 

2. The receiver can then decrypt the ciphertext using its private key to obtain the 

message. 

The algorithm can be described by the function DecryptVerEnc as follows: 

Function DecryptVerEnc with input (x, c, P1 , · · ·, P 80 ) 

and output (s1) is 

Forever do 

done; 

Select at random: j E { 1, · · · , 80} 

if Cj is 1 then 

Assign: {A, s3 } +- Pj; 

Break For loop; 

Endlf; 

Decrypt: s2 = Dec(x, A); 
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B.2. Publicly Verifiable Encryption Scheme 

Compute: 8 1 = 83- 82 mod p; 

End Function Decrypt VerEne; 

167 
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Appendix C 

Key Escrow Proposals 

C.l Key Escrow with Limited Time Span 

The proposal by Burmester, Desmedt and Seberry [13] is briefly outlined in this sec­

tion. 

C.l.l System Settings 

The user generates a large prime p such that p - 1 has two large prime factors PI and 

p2 , such that PI = p2 = 3 mod 4, so that -1 is a quadratic non-residue in the fields 

Zp1 and Zp2 • The user then publishes p and g E Zp, such that the order of the element 

g is PIP2· 

C.l.2 Set-up Phase 

The user chooses a secure private key a E R z;_I and computes l shares { si I i = 

1, · · ·, l} of a, such that ITsi = a (mod p- 1). The user then computes the public 

key Ya = ga (mod p). The user publishes Ya along with p and g. He/she then 

engages in a multi-party protocol with the law enforcement agency (LEA) and the l 

trustees in order to obtain a certificate. The multi-party protocol essentially consists of 

the following steps; 

1. The user securely communicates the respective shares to the corresponding trustees 

and publishes zi = gs; for i = 1, · · · , l in a bulletin board. 
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170 Appendix C. Key Escrow Proposals 

2. Each trustee checks if it has received the discrete logarithm of the respective 

zi published in the bulletin board. If not the trustee registers a fraud message 

against the user with the LEA. 

3. The user sends z1,2,. .. ,k = g 81
···sk for k = 2, · · ·, l to the LEA along with the 

proofs for z1,2,. .. ,k = DH(z1,2,. .. ,k-b zk) for k = 2, · · ·, l. It could be noted 

zl,2,-··,l = Ya· 

4. If no fraud was registered against the user by any of the trustees, the LEA checks 

the proofs for z1,2,. .. ,k fork = 2, · · · , l by reading the individual values of zk from 

the bulletin board. 

5. If the LEA checks the proofs successfully, then it certifies Ya = z1,2,. .. ,z as the 

users public key in the system. 

C.1.3 Update Phase 

The homomorphic property of the squaring operator on the private key is used in this 

phase. The use r computes the new private key as anew = a 2 and trustee i updates 

the ith share as Sinew = SI. After computing the new share, at least a threshold of 

the trustees are trusted to erase and forget the old shares. The user then proves to 

the LEA that Yanew = ganew is the Diffie-Hellman of the old public key Ya, that is 

Yanew = DH( Ya, Ya ), to obtain a certificate for the new public key. 

C.1.4 Key Recovery Phase 

The users are expected to use the ElGamal cryptosystem to securely communicate 

using certified public keys. The ciphertext in this system will then be of the form 

(gk, My!) = (A, B) for the public key (ya, g,p). When the LEA obtains a court 

order to wire-tap the communication of a user, it intercepts the ciphertexts sent to the 

user. The ciphertext component A along with the court order are sent to the trustees. 

The trustees then engage in a multi-party protocol to compute Y! from A using their 

respective shares by computing C = A rr}= 1 ai, where ai is the share held by the trustees 

at that time. When the LEA is given C it can compute the message as, M = B j C. 
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C.2. The Escrowed Encryption Standard 171 

C.2 The Escrowed Encryption Standard 

The Clipper proposal [88] was announced by the U.S. government in early 1993. It is 

a symmetric key based solution that is referred to as the escrowed encryption standard 

(EES). Its primary purpose was to provide strong encryption services for U.S. citizens 

and, at the same time, provide mechanisms for legal wire-tapping activities by the law 

enforcement agencies. The scheme envisaged a tamper-resistant hardware device that 

could be manufactured only by U.S. government approved organisations. 

The proposal aimed at developing a hierarchy of secret keys, called unit keys, that 

could be known only to the hardware device -even the citizen owning the device could 

not know the unit key corresponding to the device. The only exception to this aim was 

the existence of two independent escrow agents who have shares of the unit key. The 

escrow agents can collaborate and compute the unit key. 

The design of the scheme also required all interoperable clipper chips to possess 

the knowledge of a common key, called the family key. Like the unit keys, the family 

key is not know to the citizen. The role of the family key is to protect the integrity of 

the message format and secrecy of the session keys. 

The rest of this chapter will explain the chip programming, communication, and 

wiretapping phases of the proposal. 

C.2.1 Chip Programming Phase 

Individual integrated circuits (chips) implement the Clipper proposal in a tamper­

resistant environment and employ a declassified algorithm called Skipjack, which is 

a 64 bit block cipher with a key size of 80 bits. Each chip contains a unique unit key 

and share a common family key with all the interoperable chips. 

Let the unique unit key be UK A, where A is the entity owning the chip. This key is 

generated and shared by the escrow agents such that UK A= K 1 EB K 2 , where EB is the 

XOR operation and Ki is the secret share of the unit key for the ith escrow agent. This 

step requires each escrow agent to maintain a secure database that can store Ki against 

the identity of the user, A, and maintain the confidentiality of the share. The family key 

FK of the domain of operation is also stored in the chip. 

The encryption algorithm and algorithm for the verification of integrity rules are 
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172 Appendix C. Key Escrow Proposals 

wired into the chip. 

C.2.2 Communication Phase 

When user A, owning chip A, needs to securely communicate with user B, owning 

chip B, it performs the following operations: 

1. a session key, k, is calculated by A and B by employing a suitable, external 

procedure; 

2. A provides the message, m, to be communicated and the session key, k, to chip A 

computes and outputs the following values: 

(a) E(k, m), where E is the encryption algorithm of the Skipjack cipher; and, 

(b) LEAF(A, k) = E(FK, D(A, k)), where LEAF is an algorithm in all clip­

per chips andD(A,K) = (IDA,E(UKA,k),f(A,k,IV)), where IDA is 

the identity of user A available in the chip and f is an algorithm providing 

integrity to (A, k) by employing the IV as the initialisation vector. 

3. A sends (E(k, m), LEAF(A, k)) to Busing an insecure channel; 

4. B provides (E(k, m), LEAF(A, k)) along with k and A to chipB, which per­

forms the following operations; 

(a) the LEAF component is decrypted by employing FK to obtain D(A, k); 

(b) the integrity of the decrypted value is verified by recomputing f(A, k, IV) 

and checking its equality with the checksum present in D(A, k ); 

(c) if the previous checksum fails, the chip aborts the process without decrypt­

ing the message; 

(d) the session key k is employed to decrypt the message m from E(k, m), 

which is available in D(A, k), and outputs m. 

Observe that although B knows k and E(k, m), it cannot determine the value 

of m if it does not know the Skipjack algorithm, E. Thus, the secrecy of the 

encryption algorithm was an essential enforceability mechanism. 
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C.2. The Escrowed Encryption Standard 173 

C.2.3 Wiretapping Phase 

The procedure for wiretapping consists of the following steps: 

1. the law enforcement agency (LEA) must obtain a legal authorisation for wire­

tapping communications between A and B; 

2. the LEA presents the authorisation to the escrow agents who would then collude 

to calculate the unit key as UK A= K 1 EB K 2 , and provide UK A to the LEA; 

3. the LEA wiretaps insecure channel used in the third step of the communication 

phase to obtain (E(k, m), LEAF(A, k)), decrypts the session key k from the 

LEAF component by employing UK A and FK, and decrypts the message m by 

employing k and E(k, m). 

The flaw in the proposal is in the second step of the wiretapping phase, where 

the escrow agents reveal the unit key, UK A, which is supposed to be the long-term, 

secret key of user A. This flaw allows the LEA to obtain a single legal authorisation, 

and decrypt the past present and future communications of A. The proposal by He 

and Dawson [48] improved this scenario, but still depended on tamper-resistance and 

secrecy of the encryption algorithm. 
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AppendixD 

Electronic Cash System 

This chapter will provide a brief overview of the fair off-line cash scheme, proposed 

by Frankel, Tsiounis, and Yung [38, 39]. 

D.l Introduction 

An electronic cash system is an anonymous token system (discussed in Chapter 5) that 

is for the design of a payment system. In such systems: 

1. the tokens are treated as electronic coins; 

2. the token issual authority (TIA) assumes the role of the mint (or bank); 

3. the client would be the customer of the mint (or the bank); 

4. the token accepting authority (TAA) assumes the role of the merchant; 

5. the token issual protocol is employed as the withdrawal protocol; 

6. the token utilisation protocol is employed as the spending protocol; 

7. the token submission protocol is employed as the deposit protocol; 

8. the tracing protocol is employed as a owner-tracing protocol, if it exists. 

The first e-cash system that employed a Schnorr-like signature scheme for the with­

drawal phase was proposed by Chaum and Pedersen [18]. Brands [12] extended the 

proposal by Chaum and Pedersen to provide a restrictive blind signature scheme, which 

provided mechanisms for the merchant to embed the identity of the customer in every 
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176 Appendix D. Electronic Cash System 

coin. This mechanism required the use of the long-term private key that was employed 

in the withdrawal protocol to be used in the spending protocol, as well. As an effect, 

the Brands' proposal: 

1. achieved the non-transferability property of electronic coins, on the assumption 

that the customer will not divulge the private key to another entity; 

2. allowed for tracing customers who double-spend coins by compromising their 

private keys. 

Frankel, Tsiounis, and Yung [38] exploited the mechanism by designing a new spend-

. ing transcript that employs a publicly verifiable encryption proof. The publicly ver­

ifiable encryption mechanism was a minimal-knowledge proof system that allowed 

the customer to prove the equality of identity embedded in the coin and the identity 

encrypted for the trusted third party. Therefore, this system provides restricted confi­

dentiality for the identity of the customer- anonymity. 

D.2 System Dynamics 

System settings: The mint, B, chooses primes p and q such that p - 1 = 6 + k for a 

specified constant 6, and p = ryq + 1 for a small integer ry. A unique subgroup Q q of 

prime order q of the multiplicative group 'llq and generators 9, 911 92 of Qq are defined. 

The mint's secret key XB ER 'llq is created. Hash functions 1-l, 1-£0 ,1-£1 , · • ·, from 

a family of correlation-free one way hash functions are defined. The mint publishes 

p, q, 9, 91, 92, (1-l, 1-lo, 1-£1, ···)and its public keys h = 9xB, h1 = 9~B, h2 = 9!jB. The 

public key of the trustee, T, of the form h = 9!jr is also published, where Xr ER 'llq. 

Note that T should be a distributed entity to reduce the level of trust placed on it. 

The mint associates the user with the identity I = 9f1
, where u1 ER Qq is generated 

by the user such that 9f1 92 ::J. 1. The user is expected to prove the knowledge of discrete 

logarithm of I w.r.t. 91 . The user computes z' = ht1 h2 = (I 92)xB. 

Function IssueToken: The user identifies himself/herself to the mint (or the mint) 

and then engages in this protocol to obtain a restrictive blind signature on a pseudonym 

of the form A = (I 91) 8
, where 91 is a base and s a secret, random value. The re­

strictive blind signature, restricts the structure of A to be of this form. The value 
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D.2. System Dynamics 177 

of A is never revealed to the mint. We shall express this phase as, (A, CertA)I := 

IssueToken(I, B, { s }r, {XB} B), which should be read as, "I engages in the token is­

sual protocol with B using a (random) value s (known only to I) to obtain a certificate 

CertA for A, which are known only to I, signed by the mint using its private key X B·" 

This protocol creates a restrictive blind signature on I, so that at the completion of 

the protocol the user obtains a valid signature of the mint on (I g2 ) 8 for a random secret 

value s known only to the user. The signature verification equation sig (A, B, ui) 

(z, a, b, r) satisfies the following equation: 

(D.l) 

In our proposal the anonymous token ATi would be the tuple (ui, A, B, z, a, b), h the 

public key of the token issuer TIA and ui the pseudonym of participant i whose identity 

in the system is I. The withdrawal protocol is of the form: 

User 

s, Vj ER Zq 
A = (I 92) 8 and Ui = gvi 

z = Z
18 

X!, X2, u, v ER Zq 
Bl = gfl 
B2 = g~2 

B = [B1,B2] 
a= (a')ugv 
b = (b'YuAv 
c = 1l(ui, A, B, z, a, b) 

c' = cju 

r = r' u + v mod q 

a',b' 

c' 

r' 

The user verifies if gr' !_ he' a', (I g2y' ~ z'c' b'. 

Mint 
w ER Zq 

a' = gw, b' = (I 92)w 

r' = c' XB + w mod q 

Function UtiliseToken: The user derives two pseudonyms of the form A1 = gu1s 

and A2 = gf from A, such that A = A1A2 . The user then proves to the merchant its 

knowledge of the pre-images of A1 and A2 with respect to the reference bases g and 

g1 respectively (thereby proving the knowledge of representation of A). Additionally, 

he/she proves that his/her identity, which is hidden in A 1, has been encrypted for a 

trustee under the public key h = gXT resulting in the ciphertext D = (D1 , D2). The 
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178 Appendix D. Electronic Cash System 

user never reveals his/her identity, I, to the merchant. We shall express this phase 

as, (Proof A) := UtiliseToken(A, CertA, M, Yb, h, { s, ui} A), which should be read 

as, "A engages in the utilise token protocol with M using the certificate, Cert A· B's 

public key YB and the private data (s, ui) to generate the transcripts for a proof system 

(Proof A), which contains an encryption of the identity of the user under the public key 

f2." (Proof A) contains the following tuples, (AI, A2, Encryption12 (I)) along with the 

corresponding proof transcripts. Here Encryption 12 (I) is the encryption of the user 

identity I under the public key f2. 
This protocol is performed in an anonymous channel. The following table provides 

the sketch for the protocol. Note that, in the protocol, the tuple (DI, D2) is an ElGamal 

· encryption of the identity of the user I under the public key of T. Also note how the 

identity of the shop Is is bound to the coin when the challenge d is generated by the 

shop. 

User 
A U!S A U!S I= gi ' 2 = g2 
m ERZq 

D _ IgXrm D _ gm I- , 2- 2 

V = 1-li((D')s j(f~)ms) 
ri = d(u1s) +xi 

r 2 = ds + x2 

u; ,Al,A2,A,B,(z,a,b,r) 

d,D',J~ 

Shop 

? 
D2 =f. 1 

? ? 
A . A 1A2,A =f. 1 

? 

sig(A,B,ui) · (z,a,b,r) 
d = 1li(AI,BIJA2,B2,Is,date/time) 
so, sr, s2 ER Zq 
D' = D~o g~l D~2 

f ' _ Jsogs2 2- 2 2 

Function SubmitToken: The merchant submits the proofs of knowledge, which it 

received in the Protocol UtiliseToken, to the mint and avails credit. The mint can 

check if it has already received the tuple (AI, A2) to detect double spent transcripts. We 

shall express this phase as, SubmitToken(M, B, A, CertA, (Proof A)), which should 

be read as, "M engages in the submit token protocol with B to submit the values 

(A, CertA) and (Proof A)." 
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D.2. System Dynamics 179 

The shop deposits the payment transcripts to the mint, which checks the transcripts 

using the same checking equations that the shop employed during the payment pro­

tocol. If the equations hold then the mint deposits a suitable amount into the shop's 

account. 

Function Trace: The mint, or any other authorised entity, traces the identity of the 

user who spent a particular transcript, by contacting the trustee. When the trustee is 

provided with the transcript (Proof A), it can retrieve the ciphertext Encryption fz (I) 

and decrypt it using its private key to obtain the identity. We are only interested in the 

"owner tracing" aspect and not in the "coin tracing" aspect of fair e-cash. We shall 

express this phase as, (I, Proof T) := Trace(X, T, (A, CertA), (Proof A), {XT }T ), 

which should be read as, "X engages in the tracing protocol with Tusing the values 

(A, CertA) and (Proof A), to obtain the identity I and an optional1 proof ProofT, for 

proof of correct decryption of the ciphertext. The trustee uses its private key XT for 

this purpose." 

1 It is surprising that many proposals have not explicitly concentrated on this aspect, namely proof of 
correct revocation. 
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AppendixE 

Probability of Deadlock and 
Derangement 

Section 5.3.2 presented a peer review protocol that could potentially result in a dead­

lock situation. It will be useful to derive an equation that provides the probability of 

deadlock occurrence as a function of the number of participants, n. Every participant in 

the protocol is always presented with a set of choices, which contains the pseudonyms 

of available reviewers. The set of choices for the last participant contains a single 

element. That is, the last participant will have no choice for its reviewer. A dead­

lock is said to have occurred if the pseudonym (choice) represents the last participant. 

This is a deadlock because no participant in the protocol is allowed to choose itself. 

This appendix presents an analysis of the problem using the combinatorial problem for 

counting derangement. 

Every run of the peer review protocol results in a permutation of the set containing 

the pseudonyms of all reviewers. For simplicity, consider a protocol with only three 

participants (reviewers or peers). Let A, B and C be the pseudonyms of the three 

participants. Without loss of generality, let A exercise the first choice, B the second 

choice, and finally C. A tree representing all possible permutations and probabili­

ties for n = 3 is provided in Figure E.1. Level A depicts all the sets of choices that 

may be available for A during the protocol. Levels B and C have the same connota­

tion. {A, B, C} represents the set of choices for A, given the restriction that A cannot 

choose itself. Similar sets of choices label the respective nodes (rectangles). Consider 

the leftmost branch of the tree: if A chooses C, then B must choose A, since the pro­

tocol allows only C to choose itself. It is evident from the graph that the permutation 

(C, A, B) occurs with a probability of 1/2 and the other two permutations (B, C, A) 

181 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



182 Appendix E. Probability of Deadlock and Derangement 

{A B C} Choice Level A 
' ' 

C B 

112 112 

{A,B} {A,C} Choice Level B 

A A 

1 112 

{B} {A} {C}-- Choice Level C 

1/2 1/4 114 

Figure E.1: Tree of Selection for n = 3 

and (B, A, C) occur with a probability of 1/4. Thus the deadlock situation, where C 

must choose itself occurs with a probability of 1/4 when n = 3. The probability that 

this is not the case is 1/2 + 1/4 = 3/4. 

Notice that in Figure E.1, the tree of selection for n = 3, the leftmost sub-tree 

(containing the permutation (C, A, B)) does not represent any deadlock permutation. 

Such a sub-tree, where there will be no deadlock permutations, will exist for all values 

of n 2: 3. For example when n = 4, the first participant (say A) would have the 

choice {A, B, C, D}. Suppose A selects uniformly from this set of choices. Then A 

will select D with a probability of 1/3. The sub-tree representing this choice will not 

represent any deadlock permutations. 

An interesting pattern can be observed by examining trees of selection for three, 

four and five participants. Probability of deadlock for a given number of participants 

IS: 

l n-1 

Pn = L:ITv~k) 
k=l i=l 

where, l is the number of deadlock permutations, n is the number of participants and 

p~k) is the probability of selection of the ith participant in the kth deadlock permutation. 
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E.l. Derangement 183 

It is the case that the contribution to the deadlock probability by the first participant 

is p~k) = p~j) = 1/(n- 1) for all k and j such that k =1- j. That is the probability 

contribution by the first participant is a constant. It is also the case that the probabil­

ity contribution by the penultimate participant, i = n - 1, is also a constant in the 

above expression. The penultimate participant, in a deadlocked permutation, is always 

provided with a set of choices of cardinality two. This is because if the penultimate 

participant is provided with a set of choices of cardinality one, it will be forced to 

choose the last participant, if the last participant is not already chosen. Thereby, effec­

tively avoiding the deadlock situation. For the above reasons, p~k~ 1 = p~2 1 = 1/2 for 

all k and j such that k =I= j. The equation for probability for deadlock could then be 

reduced as follows: 

l n-2 

_ 1 """'II (k) 
Pv- 2(n- 1) ~ i=2 Pi 

It will be interesting to investigate for a recursive expression, or any form of expression 

that can be computed without having to construct the whole tree of selection, to replace 

the series representing the summation of products. Figure E.2 provides a plot for the 

first term in the above expression for pv, which is 1/2(n- 1). 

E.l Derangement 

The problem of calculating the probability of deadlock occurrence is partly related to 

the combinatorial problem called derangement [46, Chapter 8]. This area of combi­

natorics is interested in counting the number of permutations of n objects such that 

none of the objects are in their original position. This problem is also known as the 

sub-factorial problem1. A well known formula for counting the derangements [46] is 

as follows: 

n 

Derangement(n) = n! L( -1)k /(k!) 
k=O 

n 

where n! represents the factorial of n. Note that L( -1)k /(k!) is the Macluarin series 
k=O 

that converges to e-1 in the limit as n -+ oo, where e is the base of natural logarithm. 
1Thanks to Mr. Greg Maitland for introducing the term. 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



184 Appendix E. Probability of Deadlock and Derangement 

In the peer review protocol, an upper bound for the probability of deadlock occur­

rence can be computed by considering the hypothetical case where all the permutations 

are equally likely. Let N D be the number of possible permutations that result in a dead­

lock and N c be the number of possible permutations that are good (that do not result 

in deadlock). 

The proposed peer review protocol allows a fixed point to occur only in one place: 

that of the last object (or participant). Therefore, the number of possible deadlock 

permutations, when there are n participants, can be computed as follows: 

Nv = Derangement(n- 1) 

·That is, the position of the last object is fixed and the remaining objects are deranged. 

The number of good permutations is: 

Nc = Derangement(n) 

The probability of deadlock occurrence, p'v, assuming equally likely permutations will 

be: 

P'v = Nvi(Nv + Na) 

After the substitution of the values for N D and N B, cancellation of the relevant terms, 

and the approximation of the Maclaurin series to 1 I e, the following approximation can 

be obtained: 

I 1 
Pv ~ 1 + n(1 + (-~;ne) 

For large values of n, the above equation can be further approximated as follows: 

I 1 
Pv~--

1+n 

The graph that plots the exact value of the probability of deadlock and the approx­

imation, p'v, presented in this section, is shown in Figure E.2. The algorithm that was 

employed to compute the exact value of the probability of deadlock used the follow­

ing logic. To solve the problem, it would be fair to assume that Pi will choose Pj 

uniformly from the set S\{Pi}, where Sis the set of choices available for Pi, so that 

the probability that Pi will choose Pj will be Pi = 1 I IS\ {Pi} 1. The first participant 
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Figure E.2: A Graph for the Probability of DeadLock Occurrence 
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will always have n - 1 possible choices for reviewers. Therefore, p1 = 1/ ( n - 1) 

(for n = 3, p1 = 1/2). Assuming that the different participants choose independently, 

the probability of individual deadlock permutations can be computed as a product of 

the probability of every selection in the deadlock permutation. The total probability of 

deadlock can be calculated as the sum of the probability of occurrence of individual 

deadlock permutations. That is, 

l n 

PD = LliP~k) 
k=l i=l 

where, l is the number of deadlock permutations, n is the number of participants and 

p~k) is the probability of selection of the ith participant in the kth deadlock permutation. 

This study of deadlock permutations suggests that the probability of deadlock oc­

currence decreases when the number of participants increase. Although an equation to 

estimate the probability of deadlock was provided, an equation for the precise calcula­

tion of deadlock occurrence is an interesting open problem. 
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186 Appendix E. Probability of Deadlock and Derangement 

E.2 Source Code 

The source code implementation in the C language for computing the probability of 

deadlock occurrence given the number of participants is presented in this section. The 

program takes parameters representing the number of participants and computes the 

corresponding probability values for the occurrence of deadlock. The program works 

satisfactorily until n = 12. Currently, when provided with values of n 2: 13, the 

program requires significant memory and computation time on a Pentium II processor 

with 64 MB RAM. 

#include <stdio.h> 
#include <stdlib.h> 

/*Algorithm for obtaining the next permutation in a 
lexicographical order. Returns the lexicographical 
~osition of the resulting permutation contained in 
1ntarray */ 

int getNextHighPerm(int * pi, int n) 
{ 

int 1, J, count; /*primary indices */ 

int r, s, temp; /*indices for swapping purposes */ 

int lastPerm = 0; 

/* Find the rightmost place where pi[i] > pi[i + 1] */ 

for(i = n- 2; pi[i] > pi[i+1] ;i -=1); 

/*Find pi[j], the smallest element to the right 
of pi[j] and greater than it*/ 

for ( j = n - 1; pi [ i] > pi [ j] ; j -= 1) ; 

/*Interchange and then reverse pi[i + 1], ... ,pi[n- 1] */ 
/* Interchanging */ 
tern~= pi[i]; 
pi [ l] = pi [ j ] i 
pi[j] = temp; 

/*Reversing*/ 

r = n - 1; 
s = i + 1; 
while( r > s){ 

/*Swaping pi[r] and pi[s]*/ 
if(s >= 0 & s < n & r>=O & r <n){ 

temp = pi [r] ; 
pi [ r] = pi [ s] ; 
pi[s] =temp; 

} 
r -= 1; 
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E.2. Source Code 

} 

s += 1; 
} 

for(i = n- 2; pi[i] > pi[i+1] ;i -=1); 
if(i < 0) lastPerm = 1; 

return 1astPerm; 

/*Algorithm to check if there are any fixed points in 
the given permutation contained in pi*/ 

int noFixedPoint(int* pi, int n) { 

} 

/*Let us start with true and set the flag to false 
when there is a fixed point*/ 

int nfp = 1; 

int count; 

for(count = 0; 
if(pi[count] 

nfp = 0; 
break; 

} 
} 

return nfp; 

(count< n); count++){ 
==count){ 

/*Algorithm for parsing the permutation in the array 
pi, and calculating the probability weight. 

*I 

int getDLProb(int* pi, int n){ 
int dlProb= 1; 

} 

inti, j; 
int search, found; 

for(i = 0, j = n - 1; l < n - 1 & j >= 1; i++, j--) { 
found = 0; /*not found*/ 

} 

for(search = 0; search< i; search++){ 
if(pi[search] == i){ 

found = 1; 
break; 

} 
} 
if(found == 0) dlProb*= j; 
else dlProb *= (j + 1); 

return dlProb; 

187 

!* The startup function that contains the workhorse and 
performes memory management for the program.*/ 

int main(int argc, char* argv[]){ 
int untiln, n, lastPerm; 
int * pi; 
int i, temp; 
int probCount; 
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188 Appendix E. Probability of Deadlock and Derangement 

} 

float prob; 

if(argc < 2) { 

} 

printf("Usage: progname <upperlimit> \n"); 
printf ("Number must be less than 13 \n") ; 
printf("OR: progname <upperlimit> <lowerlimit> \n"); 
exit(O); 

untiln = atoi(argv[l]); 

if ( argc > 2 ) { 
/*User has given lower limit*/ 
n = atoi(argv[2]); 

}else{/*Use the default lower limit*/ 
n = 3; 

} 

/*Some cosmetics */ 
printf ( "n \ t Probability\n"); 

printf ( "-") ; for(i =0; i <80;i++) 
printf ( "\n"); 

/*Now lets start the workhorse: Do permutations 
from n to untiln */ 

for(;n <= untiln; n++){ /*Count prob for 3 to untiln */ 

prob = 0.0; /*dl probability is zero to start with*/ 

pi= (int *) malloc(n * sizeof(int)); 

if (pi == NULL) { 

} 

printf ("Unable to allocate memory. Damn! \n") ; 
exit(O); 

/*Initialise the pi array with 0, l, 2, 3, ... ,n */ 
for(i = 0; i < n; i++) p1[i] = i; 

/*Starting! This is not the last permutation.*/ 
lastPerm = 0; 

/*Do until the last permutation.*/ 
do{ 

lastPerm = getNextHighPerm(pi, n-1); 
if((noFixedPoint(pi, n-1)) == 1){ 

} 

!*pi contains a permutation without any fixed points.*/ 
probCount = getDLProb(pi, n); 
prob += 1.0/probCount; 

}while(lastPerm == 0); 
printf("%d \t\t %f \n",n, prob); 

/*Time to get rid of unwanted memory.*/ 
free (pi) ; 

}/*Done until the number untiln.*/ 
return 0; 
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