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Abstract

In public venues, crowd size is a key indicator of crowd
safety and stability. In this paper we propose a crowd count-
ing algorithm that uses tracking and local features to count
the number of people in each group as represented by a fore-
ground blob segment, so that the total crowd estimate is the
sum of the group sizes. Tracking is employed to improve the
robustness of the estimate, by analysing the history of each
group, including splitting and merging events. A simpli-
fied ground truth annotation strategy results in an approach
with minimal setup requirements that is highly accurate.

1. Introduction

In public places, crowd size may be an indicator of
congestion, delay, abnormality or instability. Most crowd
counting algorithms have utilised holistic image features to
estimate crowd size [0, 7, 14]. However, due to the wide
variability in crowd behaviours, distribution, density and
overall size, holistic approaches require a broad set of train-
ing data and relatively complicated counting strategies. In a
facility containing numerous cameras, it is not practical to
hand-annotate hundreds of frames of ground truth for each
viewpoint. Therefore accurate surveillance systems requir-
ing minimal setup are highly desirable.

In this paper we utilise the local features of individu-
als and groups within an image, as proposed by Ryan [18].
While existing techniques have used features such as fore-
ground pixels and edges [ | |, 4], they are analysed at a holis-
tic level. Local features are used here to estimate the num-
ber of people within each group, so that the total crowd es-
timate is the sum of all group sizes. As local features are
used at the blob level, training data must also be annotated
with local information. An improved annotation method
compared to the baseline [18] is proposed, which greatly
reduces the setup requirements.

Tracking of groups is performed enabling the system
to use historic information to improve the group size esti-
mates. Detection of splits and merges provide additional in-
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sight, as the number of pedestrians represented by a merged
blob is expected to be the sum of its constituents, and the
reverse is true for a split.

The proposed system is tested on a 2000 frame database
featuring crowds of size 11-45 people (Figure 1). Results
indicate that the proposed approach can achieve accurate
results with as few as 20 frames of training data.

The remainder of the paper is structured as follows: Sec-
tion 2 provides an overview of existing crowd counting
techniques, Section 3 describes an overview of the proposed
crowd counting system, Section 4 proposes an improved
method for calculating localised ground truth, Section 5 ex-
plains how the tracking algorithm is used to improve crowd
counting estimates, Section 6 presents experimental results
and Section 7 discusses conclusions and directions for fu-
ture work.

2. Existing Work

Crowd size is a holistic description of a scene, and there-
fore existing crowd size monitoring algorithms have typi-
cally utilised holistic image features. Examples of these in-
clude textural information [ 14], Minkowski Fractal Dimen-
sion [13], and Translation Invariant Orthonormal Cheby-
shev Moments [17]. Holistic features such as these are sen-
sitive to external changes (such as lighting conditions), and
it has been shown that for outdoor environments, the natu-
ral fluctuations in lighting between morning and afternoon
reduce system performance [17].

Other crowd counting algorithms have utilised specific
features which are indicative of crowding, such as edge and
foreground pixels. While these features are local to points
of interest in an image, they are considered at a holistic
level. Many techniques such as [7, 16, 11] have used fore-
ground segmentation to determine the crowd count. The
relationship between the total number of foreground pixels
and the number of people in the scene has been shown to
be approximately linear [7]. However, local nonlinearities
arise due to the effects of perspective and occlusion.

Paragios [16] proposed the use a geometric factor to
weight each pixel according to its location on the ground
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(a) Frame 1280.

> 4

(b) Foreground mask.

(c) Region of interest.

Figure 1. A frame from the UCSD pedestrian database [4].

plane, to overcome the problem of perspective. Occlusions
have been addressed using blob size histograms [ 1 1] to bet-
ter capture the range of blob sizes present in an image, and
to enable the classifier to distinguish between groups of peo-
ple and individuals. Chan [4] extract features in a greater
quantity, although this also increases the quantity of train-
ing data required.

Local features are specific to an individual or small
group of people within an image. For example, head detec-
tion has been proposed to estimate crowd sizes [12]. Indi-
vidual pedestrian tracking [15] and blob segmentation [19]
have been employed, however these approaches are best
suited to situations where crowds are small. Celik [3] as-
sumed linearity between blob size and a group’s count, and
Kilambi [10] used an elliptical cylinder to model groups
of pedestrians as they are tracked through a scene. These
assumptions may be restrictive in highly crowded and oc-
cluded environments, such as that depicted in Figure 1.

Ryan [18] utilised local blob features to estimate group
sizes, however this approach requires annotating ground
truth on the blob level after foreground segmentation has
been performed. This process would be tedious when nu-
merous blobs appear in an image, or when blobs are frag-
mented due to segmentation error (Figure 2) requiring frac-
tional ground truth assignments.

Local features have been employed to other crowd re-
lated problems though, such as tracking [2] and analysis of
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(a) Person is fragmented into two blobs (left).

(b) Person is fragmented into two parts (top,
centre), one of which is merged with a nearby
blob.

Figure 2. Typical errors in foreground extraction of low quality
images.

Feature Description

Area The weighted pixel count for the blob, B:
Bgize = Z(i,j)eB W(Z,j)

Perimeter | The weighted pixel count for the blob’s
perimeter, P:
Psize - Z(@j)ep W(Za])

Perimeter- | A measure of shape complexity [4], corre-

Area sponding to crowding:

Ratio R= Psize/Bsize

Edges The weighted pixel count for the set of
Canny edges within the blob, E:
Egize = Z(i,j)eE W(lv])

Edge Canny edge angles are quantised into 6

Angle histogram bins in the range 0°-180° [11].

Histogram | Each pixel’s contribution to a histogram
bin is /W (i, j).

Table 1. Features extracted from each blob [18].

crowd stability [ |]. However neither of these algorithms are
concerned with the overall size of the crowd.

3. System Description

In this paper we propose a number of extensions to the
work of Ryan [18]. This section describes the baseline al-
gorithm (Section 3.1) and a summary of our contributions
(Section 3.2).



3.1. Baseline Algorithm

Ryan [18] proposes a crowd counting algorithm that ex-
tracts local features from each blob in an image, obtained
using a foreground segmentation algorithm [8]. The fea-
tures extracted from each blob are listed in Table 1. A den-
sity map is calculated as in [4], weighting each pixel (i, )
by W (i, 7) to compensate for perspective.

The group size estimate E,, for the nth blob is calculated
from its extracted feature set { f;} using a least-squares lin-
ear model (asin [11]):

En :wOJFZwifi (D

The total crowd estimate is the sum of the individual
group sizes, £ =) E,.

The linear model of (1) can be replaced by any regression
model or classifier. Because classification is performed on
the local level, ground truth is also annotated on the local
level. This is necessary to train the system. It requires man-
ual identification of the number of pedestrians in each blob,
using a training data set.

3.2. Summary of Contributions

The main contributions of this paper are: (1) A simpli-
fied approach to ground truth annotation in which pedes-
trian counts are automatically assigned to blobs, greatly re-
ducing system setup time (Section 4); (2) The tracking of
individual blobs through splits and merges to improve the
estimated count for each blob by using historic information,
resulting in improved accuracy (Section 5).

4. Improved Ground Truth Annotation

The approach of Ryan [18] requires localised ground
truth annotation of blobs. Due to imperfect foreground seg-
mentation, some blobs are prone to errors such as splitting,
fading and noise. This makes annotation difficult and te-
dious when attempting to allocate fractional counts (as de-
picted in Figure 2).

An attempt to allocate fractional values in proportion to
blob sizes is described in [ 1 8], however this is still a tedious
manual process with room for ambiguity, subjectivity and
inconsistency. Further, the annotation is performed after the
segmentation stage; if this segmentation algorithm is modi-
fied at a later date, the former annotations may no longer be
applicable. Thus the manual annotations would need to be
performed again with the new segmentation results in order
to re-train the system.

It is desirable for the ground truth to be annotated inde-
pendently of the processing stage. This is done in a more
conventional manner, by simply identifying the (x,y) co-
ordinates of each person in the scene. The localised blob
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Click once on each person, | | [ LUnda ] [ oK ]

Clear

Figure 3. GUI used for the proposed ground truth annotation
method. The user clicks on each person; bounding boxes are ap-
proximated using a simple calibration technique.

Notation | Description

M Mask of scene (region of interest/ROI).

F Foreground pixels detected using an adap-
tive background model [8].

B Foreground pixels within the ROI mask,
i.e. B= M N F. Consists of blobs { B, }.

B, Blob n within B, where B = | J,, B,,.

R; Rectangular bounding box of person i.

(This may be inside the ROI, partially in-
side at the edge, or outside.)

R; N B,, | The foreground pixels inside R; belonging
to blob B,,, of which there are |R; N B,|.
R;,NB The foreground pixels inside R;, of which

there are |[R; N B| =) |R; N B,
Table 2. Various regions in an image. Regions are treated as sets
of pixels, and set notation is used.

annotation can then be performed automatically in an unsu-
pervised and consistent manner.

During the proposed ground truth process, the approxi-
mate centre of each person in the scene is annotated. The
size of a person is modeled as a rectangle whose width and
height vary linearly according to their y coordinate in the
image plane (as in [4]). This is used to approximate each
person’s bounding box. An example of the annotation pro-
cess can be seen in Figure 3. An established tool such as
ViPER [9] is also suitable for this purpose.

The localised blob annotation is then performed auto-
matically by considering the overlap between foreground
blobs and the pedestrian bounding boxes. In the case of
large groups, multiple bounding boxes will overlap the
same blob. On the other hand, when blob fragmentation
occurs, multiple blobs will overlap a single bounding box.

Using set notation, we define a number of regions as sets
of pixels in Table 2. From this we calculate the following
values:



e ();: the ‘quantity’ of person ¢ within the scene’s ROI:

M N Ry

i 2

Q R (2
e (;,: the ‘contribution’ of person 7 to blob n:

Cin = — X i 3

Ty (3)

e T),: the total number of people represented by blob
n. This is given by the sum of ‘contributions’ from

pedestrians:

Thus {7} are the target counts for the blobs in the
scene. These annotations will be similar to the hand-
annotated blobs of [18], however they are computed auto-
matically from the (z,y) coordinates. This simplifies the
annotation process (as the user merely need to click on each
person in a GUI); and seperates the annotation stage from
the segmentation stage.

As our measure of holistic ground truth, we calculate the
total quantity of pedestrians in the scene:

Q=Z@

This may be temporarily fractional as pedestrians enter
or exit the scene’s boundary. This reduces the ambiguity
inherent in classifying a pedestrian as either ‘in’ or ‘out’ of
a region, when in reality the transition is gradual.

“)

®)

5. Improved Counting Using Tracking

Crowd counting algorithms have typically treated each
frame of video as independent of one another, estimating the
crowd size based on the features extracted from that frame.
Although a temporal smoothing may be applied to the holis-
tic count to reduce outliers, in this work we propose the use
of blob-level tracking to improve each group’s estimate.

Blobs are tracked as they move through a scene by de-
tecting direct correspondences, splits and merges. This is
formulated as an optimisation problem by Masoud [15],
however in this section we describe a set of heuristics based
on blob overlap criteria. As we are not concerned with
ensuring consistent labeling of objects throughout the se-
quence, as is required in object tracking, a heuristic based
approach that can model the merges and splits of blobs is
adequate.

5.1. Direct Match

The first step in comparing consecutive frames is to de-
tect direct matches between overlapping blobs. Given two
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regions A, B, let O(A, B) denote the fraction of region A
that overlaps B:

_JAnB|
Al

Let B, ,,, denote the mth blob in frame ¢. Between frame
t and ¢ + 1, blobs are compared in order to attempt the
matching of blob B, ,, to blob By ,. This is done by cal-
culating two fractional overlaps: forward overlap F;(m,n)
and reverse overlap R;(m,n).

O(4, B) (6)

Fy(m,n) = O(Bt,m,BH-l,n)
Ry (m7 ’I’L) = O(Bt—i-l,na Bt,nb)

@)
)]

To match blobs By ,,, and B, ,, it is necessary to ensure
sufficient overlap:

Fy(m,n) > Thin )

Rt(m; Tl) > Tin (10)

And to distinguish a match from split or merge events,
this overlap should be mostly exclusive to By ,,, and B4 1 .
Therefore the following requirements are also enforced:

Fy(i,n) < Tonaw Vi#m (11)
Ri(i,n) < Thaw Vi #m (12)
Fy(m,j) < Tonax  Vi#n (13)
Ri(m,j) < Traz Vi #n (14)

Any blob pair (m,n) which satisfies conditions 9-14 is
deemed a match. The threshold values 7,;, and Ti,0x
serve only to filter out erroneous matches, and their values
are not particularly important. The values 7, = 0.5 and
Timaz = 0.2 were selected for our experiments.

5.2. Merging and Splitting

After direct matches have been determined, the matched
blobs are removed from consideration.

The second step in our approach detects merges and
splits by combining remaining blobs into pairs and attempt-
ing to match them collectively to a single blob in the other
frame.

5.2.1 Merging

To match blobs B, and B, , to the merged blob By ,,

we combine them to form the joined region:

Jt,p,qg = BtpUBig (15)

and attempt to match it to B; 1 ,- using the matching pro-
cedure described in Section 5.1.
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Figure 4. Visualisation of blob tracking results. Groups of constant
size are circled.

5.2.2 Splitting

To match blob B; , to the split blobs B; 1 4, and B ,, we
combine them to form the joined region:

Jit1,9,0 = Big1,¢ U Biga,r (16)

and attempt to match it to By ;, using the matching pro-
cedure described in Section 5.1.

5.3. Improved Counting

This section describes the procedure used to improve the
counting estimate by taking advantage of the tracking re-
sults. The splitting and merging of blobs may be visualised
using a graph structure such as Figure 4.

In this approach we assume that directly-matched blobs
represent a constant number of people, while a merged blob
represents the sum of its constituent blobs’ group sizes.

The exceptions to this rule are blobs entering or exiting
while touching the scene’s perimeter; these blobs are clas-
sified independently using the baseline method described in
Section 3.1. The subsequent discussion concerns blobs fully
contained within the region of interest.

Let B;, denote blob n in frame ¢, and E,, the esti-
mated group size using the baseline method. We seek to
calculate an improved estimate, EAM, by incorporating the
tracking results. The following three counting strategies are
proposed.

5.3.1 Adaptive Updating

An adaptive learning rate is used to prevent rapid fluctua-
tions due to outliers in a group’s estimate over time. The
estimate is calculated as follows:
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No match When the blob B; ,, cannot be matched to any
blob in the previous frame, the direct estimate F, ,, is used:

Et,7L = Et,n (17)

Direct Match When the blob B, ,, is matched to B;_1 ,,,
we update the estimate with a learning rate «:

Ein=0aEi,+(1—a)F_1m (18)

Merging When the blob B, ,, is the result of merging
B¢_1,p and B;_1 4, we update:

Bin=0aB,+(1—a)(Errp+Eirg) (19

Splitting When the blobs B; ,,, and B; ,, are the result of
splitting B;_1 ,, we calculate the initial estimates:

Et m -
Ly = =——"—""FE; 20
£, Fom + Fon t—1,p (20)

Et n -
Iy = : Ei_ 21
t, Et7m+Etn t—1,p ( )

and then update them as follows:

Eim = aFm+ (1= )i m (22)
EAtJL = aEt,n + (1 — a)It,n (23)

5.3.2 Mean Value

In this strategy, each blob B, ,, retains a historical list of
estimates. The improved estimate, £ ,,, is taken to be the
mean value of this history. The list is calculated as follows:

No match When the blob B; ,, cannot be matched to any
blob in the previous frame, the historical list for blob B, ,,
contains only the current estimate, Ey ,,.

Direct Match When the blob B, ,, is matched to B;_1 ,,
it adopts the same historical list and appends to it the current
estimate, K} .

Merging When two blobs merge, each contains a histori-
cal list of estimates. A new list is formed by summing their
corresponding elements. The new list’s length is the shorter
of the two being merged. The merged blob adopts this list
and appends to it the current estimate, Ey ,,.

Splitting When the blobs B; ,,, and B; ,, are the result of
a split, we calculate the initial estimates I; ,, and I; , as
defined in equations 20 and 21. These are adopted as the
first elements in the historical list for By ,, and By, re-
spectively. The current estimates, E, ,, and F; ,,, are then
appended to their respective lists.



5.3.3 Median Value

In this strategy, each blob B, , retains a historical list of
estimates, as described in Section 5.3.2. The improved esti-
mate, F; ,,, is taken to be the median value of this history.

6. Experimental Results

Testing was performed on frames 1-2000 of the UCSD
pedestrian database from Chan [4]. This footage contains
pedestrian traffic moving in two directions, with crowds of
size 11-45 people. The video has been downsampled to
238x 158 pixels and 10 fps, grayscale. An example frame
is shown in Figure 1.

Training was performed on twenty frames selected over
a six minute window (frames 2200, 2400, ..., 6000) using
the ground truth annotation process described in Section
4. In order to compare the proposed algorithm against the
baseline, the blobs in these frames were also manually an-
notated using the system of Ryan [18]. These annotations
were somewhat subjective, particularly in the case of par-
tial blob fading, fragmentation, and pedestrians entering or
exiting the scene’s perimeter.

Three measures were used to assess system performance:
mean absolute error, mean square error (MSE), and mean
difference (bias) between the system’s estimate and the
holistic ground truth. Counting results are presented in Ta-
ble 3.

The system described as “Proposed, no tracking” em-
ploys the simplified ground truth annotation method of Sec-
tion 4, but not the tracking scheme of Section 5. This system
achieves a high level of accuracy, demonstrating the validity
of the proposed annotation strategy.

The tracking scheme of Section 5 further improves the
estimate. It can be observed from Table 3 that accuracy im-
proves with decreasing learning rate «, as this corresponds
to an increasingly stronger smoothing effect on a group’s
estimate over time. Our experiments indicate that the me-
dian value strategy of Section 5.3.3 is most accurate, with
a mean square error of 2.36 (against the baseline MSE of
2.75). This configuration is best suited to reject outlier esti-
mates, as is evident in the ‘Bias’ column of Table 3.

We also present the results for this database reported by
Chan [4] in Table 4. Chan counts the number of pedestri-
ans moving in each direction using a mixture of dynamic
textures segmentation algorithm [5], so the results cannot
be directly compared. Nevertheless Chan reports a mean
square error of 1.291 for pedestrians moving toward the
camera, and 4.181 for crowds moving away from the cam-
era.

An advantage of Chan’s technique is that it can count
crowds moving in either direction, due to the bidirec-
tional segmentation algorithm. However, this approach can
only segment moving pedestrians, and not those who have
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Direction | Error MSE
Away 1.621 4.181
Towards 0.869 1.291

Table 4. Results presented in Chan [4]. The training frames were
600-1399, and the testing frames were 1-599 and 1400-2000.

stopped in the middle of the scene. Many surveillance
settings involve stationary subjects, and this can even be
caused by excessive congestion, which is what we seek to
detect.

We also note that Chan utilised 600 frames of training
data which were annotated with the number of pedestrians
moving in each direction. This would be a burdensome task
to perform for multiple viewpoints in a large facility where
crowd counting was required. The results presented here
were obtained using 20 frames of training data, which is a
more practical setup requirement, and does not compromise
accuracy.

7. Conclusions

In this paper we have proposed the use of group-level
tracking and local features for crowd counting. Results pre-
sented in Section 6 indicate that counting strategies which
are robust against outliers, such as the median value (Sec-
tion 5.3.3), are most accurate.

An improved annotation strategy simplifies the training
process, so that the proposed system can operate on a min-
imal training set of 20 frames. This is a highly practi-
cal setup requirement when configuring a large number of
crowd counting systems in a multi-camera environment.

The system is limited by the simple model of Equation
1. This can be replaced with a more accurate classifier or
regression model without altering the surrounding frame-
work.

Future work will investigate these techniques for count-
ing crowds in multi-camera environments, and detecting lo-
cal abnormalities in crowd density across a scene.
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