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Abstract 

Objective: The aim of this study was to evaluate the healing of class III furcation 

defects following transplantation of autogenous periosteal cells combined with 

β-tricalcium phosphate (β-TCP). Methods: Periosteal cells obtained from Beagle 

dogs’ periosteum explant cultures, were inoculated onto the surface of β-TCP. Class 

III furcation defects were created in the mandibular premolars. Three experimental 

groups were used to test the defects’ healing: Group A, β-TCP seeded with periosteal 

cells were transplanted into the defects; Group B, β-TCP alone was used for defect 

filling; and Group C, the defect was without filling materials. Twelve weeks post 

surgery, the tissue samples were collected for histology,, immunohistology and X-ray 

examination. Result: It was found that both the length of newly formed periodontal 

ligament and the area of newly formed alveolar bone in Group A, were significantly 

increased compared with both Group B and C. Furthermore, the proportion of newly 

formed periodontal ligament and newly formed alveolar bone in the defects, were 

much higher in both controls than tested. The quantity of cementum and its 

percentage in the defects (group A) were also significantly higher than those of group 

C. Conclusion: These results indicate that autogenous periosteal cells combined with 

β-TCP application can improve periodontal tissue regeneration in class III furcation 

defects. 
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Introduction 

Periodontitis is considered as subgingival inflammation caused by bacterial infection 

Shimizu et al. (2009). It affects the periodontal supporting tissues including 

periodontal ligament, cementum, and alveolar bone. Periodontitis affects the junction 

of multi-rooted tooth, initially with tissue destructions then gradually with further 

bone loss and eventually furcation involvement will be occurred. Aukhil (1991) 

pointed out that periodontal regeneration aims at restitution of supporting periodontal 

tissues loss due to periodontal diseases . However, furcation involvement is difficult 

to treat properly by conventional periodontal therapy or surgery. Jepsen et al. (2002) 

and Needleman et al. (2002) found that guided tissue regeneration (GTR) could 

promote periodontal regeneration and new attachment formation, especially in class II 

furcation defects and bone base pockets . But its therapeutic effect on class III 

furcation defects was limited. Pontoriero et al. (1992) reported that GTR was capable 

of closing class III furcation defects successfully in a dog model. However, the 

regeneration of class III furcation defects was always incomplete. It is suggested that 

this treatment is not effective for large class III furcation defects. De Bari C and his 

partners (2006) found that periosteal cells were clonogenic, displayed long telomeres 

and expressed markers of MSCs, regardless of donor age. Under specific conditions, 

both parental and single-cell-derived clonal cell populations could be differentiated to 

chondrocyte, osteoblast, adipocyte, and skeletal myocyte lineages in vitro and in vivo. 

Groeneveld et al. (1994) have also approved that periosteum cells could form 
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cartilage or bone in vivo. When periosteal was cultured in direct contact with bovine 

dentin slices in the presence of 10 mmol l-1β-glycerophosphate, a fibrillar acellular 

cementum could be formed in these slices after two weeks. Steiner et al. (2007) 

indicated that periosteum was able to form alveolar bone, cementum and periodontal 

ligament when it was transplanted into periodontal defects. Mizuno et al. (2006) 

repaired Class III furcation defects in Beagle dogs by grafting autologous periosteal 

cells which was cultured from membrane derived from periosteum. They found that 

these membranoid promoted regeneration of periodontal tissue, and was able to form 

bone and worked as a barrier membrane in the regeneration of periodontal tissue. In 

the study conducted by Matsumoto et al. (2008), where β-TCP was used as scaffold 

material, they have proven that these membranoid are biodegradable and 

osteoconductive. To investigate the potential application of periosteal cells in 

periodontal regeneration, Beagle dogs were served as models for class III furcation 

defects in this study. Autogenous periosteal cells were harvested from the same dog, 

and then combined with β-TCP for the transplantation into class III furcation defects 

of the same Beagle dog. After 12 weeks, periodontal tissue regeneration was assessed 

by histology and histomorphometry. 

 

MATERIALS AND METHODS 

 

Preparation of periosteum cells and β-TCP composite  

Four healthy Beagle dogs (Sichuan Academy of Medical Sciences Sichuan People's 
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Hospital Experimental Animal Research Institute) weighted between 9.5 and 10.5 kg 

were used for this study.  Small pieces of periosteum around 5 mm × 4 mm in size, 

were harvested from the mandible of each dog during the time of establishing the 

furcation defects (detailed in the surgical procedure). These periosteal explants were 

then cut into smaller pieces of about 1 mm2, and placed into the bottom of 6-well 

plates which were  pre-wetted with Dulbecco′modified Eagle medium (DMEM, 

Gibco, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, USA), and 

penicillin-streptomycin (100 IU ml-1). The samples were then covered with 25 mm × 

20 mm cover glass. The periosteal was cultured in a humidified atmosphere of 5% 

CO2 at 37°C. The medium was changed every 3 days until the outgrown cells were 

subconfluent, after that non-adherent cells were washed off with PBS and the 

adherent cells detached with trypsin-EDTA (Gibco, USA) and sub-cultured in a 

10-cm dish. 

β-tricalcium phosphate (β-TCP) (Shanghai Bio-lu Biomaterials Company Limited, 

China) was used as scaffold material in this study. β-TCP is composed of CaO and 

P2O5 at the ratio of 1.5 for Ca/P, similar to the inorganic composition of bone. The 

β-TCP used in this study was granular porous ceramic and their diameters were less 

than 1mm. Prior to in vivo transplantation, the β-TCP was sterilized with ethylene 

oxide gas, soaked in DMEM in 6-well plates (0.6g per well, overspread in the well 

with 1mm in thickness) for 24 hours to facilitate cell-scaffold incubation.  The third 

passaged periosteal cells were incubated with β-TCP at 5×106 cells ml-1 in 6-well 

plates  in 1ml culture media per well. The cell and β-TCP complex was cultured in 
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DMEM, supplemented with 10% FBS, and cultured at 37 °C with 5% CO2 for 48 

hours. 

Surgical procedure  

Six weeks prior to the cell transplantation, class III furcation defects were created 

surgically at the second, third and fourth mandibular premolars of Beagle dogs by 

using slow-rotation diamond burs. The alveolar bone from each premolar (2P2, 3P3, 4P4) 

was removed, creating a “horizontal” pattern of bone loss. According to the protocols 

by Yan et al. (2003) and Fernandes et al. (2005), the furcation defects were 

approximately 3 mm wide and 4 mm high and were filled with gutta-percha to 

promote inflammative reaction. Granulation tissue was removed and the root surface 

was thoroughly debrided by curets. Notches were placed on either side of the root at 

the top of the bone defects. Defects were then covered with e-polytetrafluoroethylene 

(e-PTFE) membrane completely. The e-PTFE membranes were fixed with surgical gel 

(Suncon, China). Mucoperiosteal flaps were subsequently repositioned and sutured. 

All dogs were fed on soft food to prevent traumas of mastication to the surgical areas. 

Six weeks later, the animal model of class III furcation defects were confirmed 

(Fig.1). 

All teeth were randomly divided into three groups. Each furcally involved premolar 

was then assigned to one of three treatment groups: Group A (e-PTFE plus β-TCP and 

periosteal cells), Group B (e-PTFE plus β-TCP), Group C (e-PTFE). Mucoperiosteal 

flaps were raised and sutured with coronally reposition flap. No oral hygiene was 

instituted during the treatment. Six weeks later, the e-PTFE membranes were removed 
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and assessed by scanning electron microscope with JEOL JSM-6330F field emission 

(Philips XL30, NLD). 

Histological processing  

The animals were euthanized twelve weeks after surgery. The jaw of each animal was 

removed and specimens containing the experimental areas were harvested and placed 

in 20% buffered formalin. The radiolucency and density of the experimental defects 

in alveolar bone were assessed by X-rays. Specimens were then decalcified with 10% 

ethylenediaminetetra acetic acid (EDTA Gibco USA) for 2 months and then 

dehydrated in ethanol, embedded in paraffin, and serially sectioned (to 4 μm thickness) 

in the mesio-distal direction. Five sections collected from the central area of each 

furcation were selected from for further analyses. All sections were stained with 

hematoxylin-eosin and Mallory trichrome dye. The histological specimens were 

analyzed by a light microscope fitted with a digital camera. The linear distance and 

area, were measured by an analytic software (Olysia Bioreport3.2; Olympus, Japan). 

The measurements include: (1) TDL (total defect length): the distance between the 

notches on the mesial and distal roots. (2) NC (new cementum formation): the 

distance of root surface which was covered by newly formed cementum on the mesial 

and distal roots. (3) NP (new periodontal formation): the distance of root surface that 

periodontal ligament fibers had penetrated in between the notches between the mesial 

and distal roots. (4) TDA (total defect area): total defect area between the notches on 

the mesial and distal roots. (5) NBA (new bone area): the area filled with mineralized 

tissue. (6) STA (soft tissue area): the area filled with connective tissue and/or 
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epithelial tissue. (7) NFA (non-filled area): the area filled with nothing or occupied by 

dental plaque in the furcation defects. All distances were measured in millimeters 

(mm), and areas were measured in square millimeter (mm2). (Fig. 2). 

Statistical Analysis 

Data obtained from linear measurements, area measurements and the percentage of 

regenerated tissue in the original defects, were expressed as means and standard 

deviation. One-way analysis of variance (ANOVA) was used for statistical evaluation. 

Student-Newman-Keuls (SNK) test was used to compare differences between groups. 

P-values less than 0.05 were considered statistically significant. These analyses were 

performed using Statistical Package for Social Science 10.5 for windows (SPSS 10.5, 

USA). 

 

RESULTS 

 

1. Clinical observations  

Visual inspection: Upon visual inspection, parts of the barrier membranes appeared to 

separate from tooth cervix in all experimental animals, the coronal areas were not 

covered completely with gingiva while the unexposed membranes adhered tightly to 

tooth cervix. Closer observation of the gingiva adjacent to the membrane revealed that 

the gingiva attached and grew well into the central portion of the membranes. Once 

the e-PTFE membranes were removed, it became apparent that newly formed 

granulation tissues was detected in the defects. SEM inspection: At the coronal 
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portion of the tested site, evidence of orderly arranged collagen bundles, and bacterial 

colonies were found on the membranes (Fig. 3A). In the middle portion of the defects, 

it was obvious that a large quantity of fibre bundles adhered on the surface of the 

membranes in conjunction with well distributed and scattering erythrocytes were 

observed (Fig. 3B). In the lowest portion of the defect, the microfibrils on the 

membrane appeared to join to each other and there were clear evidence of porous 

structures between the microfibrils, as well as a few inflammatory cells.(Fig. 3C). 

2. Efficacy of treatment  

All animals survived from surgery without any adverse events. However, furcal 

perforation happened to a few teeth during preparation of defect model as well as 

during treatment (one in Group A and one in Group C). Furcation over preparation 

occurred in a number of teeth (one in Group A, two in Group B, and one in Group C). 

The furcation defects, which were over prepared and fail to meet the inclusion criteria 

in this study, were excluded. For all teeth included in this study, their furcation defect 

appeared to heal reasonably well with healthy gingival attachment. However, in a 

number of teeth, a small amount of calculus and plaque were detected in conjunction 

with minimal gingival recession (< 2mm). 

3. Radiographical analyses  

Dental radiographs were employed to assess mandibular bone defects 12 weeks after 

implantation. These radiographs showed evidences of bone regeneration as well as 

resorption. Areas of radiolucencies were clearly visible at bone-defect sites in Group 

B and C. In group A, the largest amount of bone regeneration was detected by x-rays 
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at the bone-defect sites (Fig. 4). 

4. Histological analyses  

Histological observation of the defect sites showed that the epithelium was found to 

surround all regenerating tissue, and the newly formed connective tissue was detected 

in the root furcation. Greater amount of newly-formed alveolar bone were observed in 

Group A than those in both Group B and C. Group C exhibited moderate or severe 

soft tissue inflammation. The newly formed cementum containing cementoblasts, 

distributed non-uniformly in all groups. These, in turn, helped uneven and collagen 

fibers insert into the newly formed cementum. In addition, immature newly formed 

bone including osteoblasts was observed in all three groups. The newly formed 

reverse lines showed that there were obvious boundaries between the newly formed 

bone and the existing bone (Fig. 5). 

5. Results of linear measurements  

The one-way analysis of variance and multiple comparison test indicated that the TDL 

among these three groups had no significant difference (P>0.05). The length of NC 

and NP had no significant difference between Group A and B, neither between Group 

B and C (P>0.05). But the length of NC and NP in Group A were significantly higher 

than Group C (P<0.05) (Table 1). 

6. Results of area measurements  

The analysis of variance and multiple comparison test showed that there was no 

significant difference for the TDA among these groups (P>0.05). The NBA in Group 

A was significantly higher than that of Group B and C (P<0.05), the NFA in Group B 
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was significantly lower than that of Group C (P<0.05) (Table 2). 

7. The percentage of regenerated tissue in the original defect  

The percentages of the length or area of all newly formed tissues in the original defect 

were calculated. The analysis of variance and multiple comparison test showed that 

NP% and NBA% in Group A were significantly higher than that in Group B and C, 

respectively (P <0.05); NC% in Group A was significantly higher than that of Group 

C; STA% in Group A was lower than that of Group B and C (P <0.05); NFA% in 

Group A was significantly lower than that of Group C (P<0.05). NBA% in Group B 

was significantly higher than that of Group C (P <0.05), but STA% and NFA% in 

Group B were significantly lower than that of Group C, respectively (P <0.05) (Table 

3). 

 

DISCUSSION 

 

Hutmacher and Sittinger (2003) pointed out that periosteal cells could differentiate to 

bone when implanted in vivo, and had the potential for tissue engineering in bone 

reconstruction. Furthermore, De Bari C et al. (2006) demonstrated that, periosteal 

cells could also differentiate into chondrocyte, adipocyte、skeletal muscle cells and 

seem to be a favorable kind of cells for periodontal tissue engineering. In this study, 

the periosteal cell-induced periodontal regeneration were evaluated for the feasibility 

of autologous periosteal cells transplantation, in repairing class III furcation defects. 

In all six experimental teeth of each treatment, it was noted that no significant 
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difference was found in average defect length and area of furcation defects in each 

group (P>0.05). Lindhe et al. (1995) demonstrated that the periodontal defects were 

difficult to repair completely if they were larger than 4 mm. In this study, the heights 

of defects were more than 4mm, and the average area in the three groups was 10.62 

mm2. Pontoriero et al. (1992) pointed out that, in the “horizontal” defects only the 

bone wall in the bottom supported cells to induce periodontal regeneration. Hovey et 

al. (2006) demonstrated that plaque was detrimental to traditional surgery and 

periodontal regeneration. In this study certain amount of plaque accumulation in the 

surgical sites was found due to the difficulties to keep oral hygiene for the animals, 

which may be responsible for the interruption of periodontal tissue regeneration and 

induce incomplete periodontal defect healing. 

Regazzini et al. (2004) pointed out that, in GTR, the barrier membrane preserves a 

space for coronal migration of periodontal ligament cells and endosteal cells from the 

defect base. Tamai et al. (2007) reported that the β-TCP was widely used as a filling 

material in bone and cartilage repair. In this study, β-TCP with certain plasticity could 

prevent subsidence of e-PTFE membrane when it was combined with blood and 

culture medium, which preserves a space for proliferation of cells. However, β-TCP 

was displaced in some teeth in this study and the sealability of e-PTFE membrane was 

compromised, which allowed epithelial cells and connective tissue to grow into the 

defects. In each group it was found that epithelial cells and connective tissue were 

detectable in all the defects.  

In the newly regenerated periodontal tissues, there were evidences of newly formed 
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alveolar bones, cementum and periodontal membrane. This indicated that the most 

likely pathway for periodontal recovering was to regenerate the functioning 

periodontium. Our results showed that the regeneration effect of periosteal cells in 

combination with β-TCP was better than the application of β-TCP alone. Compared 

with the defect without β-TCP filling, periodontal regeneration was detectable in 

β-TCP treatment group. This implies the ability to repair class III furcation defects by 

simple e-PTFE membrane is limited. The implantation of β-TCP served as space 

maker for the proliferation and differentiation of precursor cells. Furthermore, the 

osteoconductive nature of β-TCP facilitates bony tissue and blood vessels to grow into 

the implanted material efficiently. This subsequently promoted bone regeneration as 

well as restored functions of the defected teeth. Declercq et al. (2005) have shown that 

periosteum cells could differentiate into bone and play an important role in bone 

regeneration and the healing of bony defect or fracture. The same authors also 

indicated that periosteal cells express markers of mesenchymal stem cells and under 

specific conditions, they can differentiate to the chondrocyte, osteoblast, adipocyte, 

and skeletal myocyte lineages in vitro and in vivo. De Bari C et al. (2006) and Steiner 

et al. (2007) have demonstrated that the periosteum cells can take part in the 

regeneration of cementum, periodontal ligament and alveolar bone. Mizuno et al. 

(2006) indicated that when the membranoid substance combined periostium block and 

periosteal cells, then transplanted into class III furcation defects, could accelerate the 

regeneration of periodontal tissue. When combined with GTR membrane, Steiner et al. 

(2007) found that periosteum transplanted to furcation defects could help the 
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regeneration of alveolar bone, cementum and periodontal ligament. Similar results 

were reported in the application of the periodontal ligament fibroblasts and BMSCs 

by Yan et al. (2005); Hovey et al. (2006); Gay et al. (2007) and Li et al. (2008). 

Although the multiple differentiation potential of periosteum cells has been shown, no 

study has confirmed that periosteum cells can differentiate to cementoblasts. The 

newly formed periodontal ligament and cementum, might be differentiated from 

transplanted periosteal cells or derived from intrinsic periodontal ligament fibroblasts 

in the defects. Clearly, this study has demonstrated that the implantation of periosteum 

cells into the defects can significantly increase the quantity and biological activity of 

the tissue healing process in the type III furcation model. 

CONCLUSION 

Periosteal cells transplanted into the class III furcation defects in dog model showed 

an accelerated regeneration process of periodontal tissues. However, due to the 

challenge of cell delivery in the contaminated oral environment, ideal regeneration 

techniques need to be further developed and transplanted cell differentiation in 

periodontal defects also requires further investigation.. 
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