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Abstract. Computer profiling is the automated forensic examination of a computer system in order to 
provide a human investigator with a characterisation of the activities that have taken place on that system.  
As part of this process, the logical components of the computer system – components such as users, files 
and applications - are enumerated and the relationships between them discovered and reported. This 
information is enriched with traces of historical activity drawn from system logs and from evidence of 
events found in the computer file system.  A potential problem with the use of such information is that 
some of it may be inconsistent and contradictory thus compromising its value. This work examines the 
impact of temporal inconsistency in such information and discusses two types of temporal inconsistency 
that may arise – inconsistency arising out of the normal errant behaviour of a computer system, and 
inconsistency arising out of deliberate tampering by a suspect – and techniques for dealing with 
inconsistencies of the latter kind. We examine the impact of deliberate tampering through experiments 
conducted with prototype computer profiling software. Based on the results of these experiments, we 
discuss techniques which can be employed in computer profiling to deal with such temporal 
inconsistencies.  
 
Keywords: Computer profiling, digital forensics, digital evidence, event correlation, precondition event, 
happened-before. 

1 Introduction 
As the volume of digital evidence which must be examined in a computer forensic investigation increases, 
so too does the investment of a human forensic examiner’s time and energy into that investigation. 
Marrington et al [1, 2] introduced an automated process (computer profiling) to conduct a forensic 
reconstruction of a computer system. The output of this process, the computer profile, allows a human 
examiner to make an informed decision regarding the likely value of the computer system to an 
investigation before undertaking a detailed manual forensic examination. In this paper, we consider the 
issue of temporal inconsistencies in digital evidence, and their impact on the computer profiling process 
and its output. By temporal inconsistency, we mean an incongruity in the digital evidence pertaining to 
the sequence of events in the history of the computer system, which could lead to the history being 
inaccurately reconstructed. 

The most common inconsistency in digital evidence is naturally occurring, that is to say, inconsistency 
which is not the result of deliberate tampering. This includes data pertaining to an event or file which 
simply is not recorded, or may have been over-written during the normal operation of the computer 
system. It also includes “naturally” erroneous or inaccurate data, perhaps due to a hardware characteristic, 
software misconfiguration or bug. Such natural inconsistencies pose difficulties for investigators, even if 
they are not the result of deliberate action taken by a suspect. 

Timestamps generated by computer clocks are an example of data of such unreliable accuracy. Where 
multiple clocks pertaining to a case generate timestamps, the normal behaviour of computer hardware 
clocks (that is to say clock skew and drift) will cause inconsistency between the different time sources. 
Schatz et al discuss an approach for dealing with such inconsistencies. Their approach baselines the 
behaviour of inconsistent computer clocks via correlation with records from devices with more 
authoritative timestamps [3]. In single-computer investigations, such as the automated profiling of a 
single computer, clock drift and skew can still lead to inconsistent timestamps in the evidence. Despite the 
fact that there is only one clock providing the timestamps in a single-computer system investigation, 
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severe cases of clock drift and skew can cause the timelines that are constructed to be misleading. In 
extreme cases – if there is a clock reset at reboot or some other mishap and time “goes backwards” – then 
events may appear out of the sequence in which they actually occurred. 

In addition to inconsistency, incompleteness in digital evidence also poses a challenge. Automated 
processes such as computer profiling must be able to “fill-in” missing information which is necessary for 
the understanding of the data which does exist. As an example of incompleteness in digital evidence 
commonly caused by the normal operation of the computer system, consider a computer system which 
only records user login/logoff information going back six months. In a computer profile of such a 
computer system, a file created eight months ago will appear to have been created outside of a user 
session. To a human investigator this is easily explained, but in an automated time-lining process, the 
creation of the file may appear to be anomalous. This incompleteness is not suspicious as it is the result of 
normal operation of the computer system, not a deliberate attempt to obscure evidence. 

The deliberate modification of computer records to obscure records of suspicious activity creates a 
second, and generally more concerning, inconsistency in digital evidence. For example, a user who 
downloads illegal material may attempt to obscure that fact by deleting web browser history and caches, 
and event log records showing their login, opening the browser application, and logoff. If, in a subsequent 
forensic investigation, the illegal material is discovered, but the user was successful in his/her destruction 
of log data, then the illegal material will appear to have been downloaded outside of a user session. For an 
automated time lining process, deliberate alteration of evidence can appear very similar to the innocuous 
example above. 

The rest of this paper is organised as follows. Section 2 summarizes computer profiling. Section 3 
examines approaches for the detection of inconsistency in timelines, dealing both with inconsistencies in 
event timestamps and events omitted from the system’s record. Section 4 describes our experiments for 
testing the approaches discussed in Section 3. Section 5 describes the results of those experiments and 
evaluates the detection techniques. Section 6 is a detailed discussion of future work in the area of 
detecting inconsistency in computer profiling, and Section 7 is our conclusion. 

2 Computer Profiling 
The volume and heterogeneity of digital evidence which might be found on a computer system poses 
interrelated challenges to digital investigations which Carrier refers to as the Quantity Problem and 
Complexity Problem respectively [4]. These problems mean that it is desirable for forensic investigators 
to be able to narrow the scope of an investigation so that manual investigative effort can be applied in the 
most efficient and effective manner. An automated computer forensics process, designed to be run prior 
to a detailed manual investigation, can address the Quantity Problem by characterising the computer 
system’s usage and discovering relationships between files, users and applications of interest. It can 
address the Complexity Problem by providing a description of the computer system at a level of 
abstraction appropriate to a digital investigation. By this is meant describing the computer system in 
terms useful for an investigator as opposed to in terms of systems architecture and the minutiae of various 
file formats. Marrington et al [1, 2] described a process to undertake such an automated examination, for 
which the term computer profiling was proposed. Computer profiling is not the only approach to 
addressing the Quantity and Complexity Problems. Alink et al describe the XIRAF framework, which 
separates data extraction from analysis, employing a common XML-based output format for evidence 
extraction tools to facilitate a human analysis of data from different extraction tools [5]. Beebe and Clark 
surveyed various data mining techniques to deal with very large forensic datasets [6]. We believe that, in 
practice, a combination of techniques will be required to address the Quantity and Complexity Problems. 
Additionally, it is important to note that the purpose of computer profiling is not to produce an analysis to 
be relied upon in a court or to make any other such final decision, but to produce an analysis which can 
guide a more detailed manual computer forensic investigation and indeed the decision to embark upon it 
in the first place. 
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In this work we briefly describe a formal representation of the computer profiling model described by 
Marrington et al [1, 2]. This model of a computer system consists of objects representing the various 
entities which form part of the computer system’s operation. These entities include users, data files, 
system software, hardware devices, and applications. The objects discovered on the computer system 
under examination (together comprising the set O) are classified according to their type. In Marrington et 
al’s model, there are four broad types of objects (Application, Principal, Content and System) with 
increasingly specific subtypes. We represent each of these categories as sets. The set of Application 
objects, A, consists of all the application software on the computer system. The set of Principal objects, P, 
consists of all the computer system’s users and groups, and all of the people and organisations otherwise 
discovered in the examination of the computer system. Of these objects, some Principal objects are 
described as canonical if they represent definite entities on the computer system which are actors in their 
own right, such as users and groups. Principal objects may be described as non-canonical if they represent 
people or groups of people who may not be actors on the system, but may be for instance people 
mentioned in documents. The set of Content objects, C, consists of all the documents, images and other 
data files on the computer system. The set of System objects, S, consists of all the configuration 
information, system software and hardware devices on the computer system. A, S, C, and P are all subsets 
of O. 

The objects contained in the set O may be related to each other, representing some relationship between 
the respective entities they represent. In addition to the discovery of the computer system’s objects, the 
profiling process discovers relationships between those objects. We use logical predicates to express 
relationships. Let x and y be objects discovered on the computer system which share a relation R to one 
another according to some predicate “related(x,y)” which is true when x and y are related. The set R 
consists of all pairs of objects who are related according to the “related” predicate. This is the most 
generic type of relationship, which is convenient for automated reasoning but of little direct use to an 
investigator. Marrington et al’s model also describes relationships of specific types using more specific 
predicates than “related(x,y)”, but the formal representation of these are not given here for the sake of 
brevity. All relationships have sets defined along similar lines to R: 

R = x !O, y !O( ) related x, y( ){ }.  
All of the sets of different types of relationships, defined like R, together form the collection AR in a 

computer profile. 

Finally, the computer profile includes the set of all times in the history of the computer system, T, and 
the set of all events, EVT, which have taken place in the history of the computer system. Let t be a time in 
T, x be the object which instigated the event, y be the object which was the target of the event, ε describe 
the action of the event, and α describe the result of the event (either successful, unsuccessful, or 
unknown). An event evt in the set EVT consists of the quintuple: 

evt = t, x !O, y !O,",#( ).  
In our formal representation of the model, the finite set EVT consists of two enumerable subsets, and 

one subset which cannot be enumerated. The first subset consists of events which are recorded in the 
computer system’s logs. The second consists of events which are not recorded in logs, but which can be 
inferred on the basis of other digital evidence on the system (such as relationships between different 
objects). These are the recorded events1 (EVTR) and the inferred events (EVTI) respectively. These two 
sets do not exhaustively describe the complete history of the computer system. There may be other events 
which took place which were unrecorded and left no artefact from which they could be inferred. These 
events are obviously unknown, and comprise the final subset of EVT. 

                                                        
1 Marrington et al used the term “discovered events” instead of “recorded events” [1]. We prefer the latter term as it more 
accurately describes the nature of such events. 
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The computer profile of a given computer system combines the set of all the discovered objects O, the 
collection of the different sets of relationships between objects AR, the set of all the times in the computer 
system’s history T, and the set of all events, discovered and inferred, EVT. The sets R and EVTI, are 
created by automated reasoning based on the digital evidence, as opposed to identifying all the entities 
which can be found in the digital evidence, as is the case with O. The sets AR and EVTI are particularly 
vulnerable to inconsistency or incompleteness in the data obtained from the target computer’s file system. 
Contradictory, inaccurate or missing information can lead to a relationship not being discovered or an 
incomplete timeline of a user’s activity. EVTR is a direct representation of the contents of the computer 
system’s logs, and consequently, will incorporate any inaccurate event records in the system logs. Further, 
if an event is not logged, and cannot be inferred, it will not be an element of either EVTR or EVTI. Such an 
event will therefore be an unknown event, and the more unknown events in the history of the computer 
system, the less complete the timeline of the target computer’s activity will be. This paper provides a 
means for the automated detection of inaccuracy or incompleteness leading to chronological 
inconsistency in timelines of computer activity.  

3 Detecting Inconsistency in Timelines 
Marrington et al discussed a timestamp-based technique for building a timeline about a given object in the 
profile of the computer system [1]. A timeline is a sequence over the set EVT ordered by the timestamp t 
of each event where the subject or target of the event was the object being time-lined o. Such a timeline is 
constructed by querying a database of all the recorded events and all the inferred events in the computer 
system’s history with the object being time-lined as either the subject or target of the event, and then 
ordering the results by the event timestamp. This approach is not resilient to inaccuracies in timestamps, 
which may cause events to appear out of sequence. Missing events, whether removed manually or simply 
never recorded, lead to timelines which may present events out of the context in which they actually 
occurred. Consequently, this approach to constructing timelines of computer activity must be 
supplemented with techniques to detect and deal with inconsistency and incompleteness. We note that as 
a general principle, the failure to detect an inconsistency in a timeline is a greater problem for the 
purposes of computer profiling than falsely identifying an event as inconsistent. This is simply because 
false positives can be manually investigated and dismissed, whereas false negatives will never receive 
further attention. Nevertheless, it is obviously desirable to minimise the rate of false positives in all 
detection techniques. 

An obvious limitation of any time-lining activity based on timestamps provided by a computer’s 
system clock is the inaccuracy inherent in such clocks. This inaccuracy in computer-generated timestamps 
is “natural”, that is to say, it is the result of the normal operation of the computer system. The solution for 
addressing this issue suggested most frequently in the literature is to note the system clock time of a 
computer under investigation at the time of its examination and to determine the discrepancy between that 
time and the time of a reference clock [7, 8]. However, this solution does not address the issue of clock 
skew varying over time prior to the examination of the computer system, and it is this variance which 
may lead to inaccuracies in timelines. Willassen proposes an algebra for the formal expression of 
falsifiable hypotheses about the discrepancy between a computer’s clock and physical time [9]. The term 
proposed for such a hypothesis is a clock hypothesis. In practice, it would be necessary to form a clock 
hypothesis for every moment in time throughout the history of the computer system. The techniques 
described in this paper are intended to detect internal inconsistency in timelines, which can assist an 
investigator to form clock hypotheses. 

3.1 Detecting Out-of-Sequence Events 
It is self-evident that there are some events which can only take place after some other another event. This 
sort of relation is described by Lamport as the happened-before relation [10]. In [11], Gladyshev and 
Patel discuss the application of the happened-before relation to a forensic context. An example of such a 
relation (represented by ! ) between two events would be that a user x must log into the computer 
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system before the user x can execute the application y. Applied to computer profiling, the real time, if not 
the timestamp, of the execution event must be after the real time of the login event. Let x !P , y !A  and 
tn !T " tm !T : 

tn , x, system, login,success( )! tm , x, y, execute,success( )" tm > tn . 

After the construction of a timeline (which is a sequence over the set EVT) in the computer profiling 
process, an evaluation can be applied to all events ordered by their timestamp. If an event evtA has a 
happened-before relation to evtB, but the timestamp (tB) of evtB suggests that evtB occurred before evtA 
then we can say that tA and tB are inconsistent. In order to detect this inconsistency, a rules base must be 
created which describes the happened-before relations for the various types of events. When the timeline 
is evaluated against the rules base, the inconsistent events can be identified and assertions about their 
timestamps can be made. Consider two rules: 

evtA ! evtB
evtB ! evtC

 

Where x is a User object, a is an Application object, and system is a System object representing the 
target computer system itself, and: 

evtA = tA !T , x, system, login,success( )
evtB = tB !T , x,a, execute," ! success, fail,unknown{ }( )
evtC = tC !T , x, system, logout,success( ).

 

Note that the happened-before relation is transitive [10, 11]: 

evtA ! evtB( )" evtB ! evtC( )# evtA ! evtC .  

For the purposes of this example, let the time-lining function H(x) produce a timeline corresponding to 
a single user session of the user x. The first rule states that a user x must be logged in before executing 
any application. The second, that user x cannot have logged out before performing that execution. If the 
execution event evtB occurs, the login event evtA must happen-before it, and evtB must happen-before the 
logout event evtC. Therefore the physical time tC at which the event evtC must have occurred must be after 
the physical time tB at which the event evtB must have occurred, which must in turn be after the physical 
time tA at which the event evtA must have occurred. This is stated: 

H x( ) ! evtA ,evtB ,evtC{ }" tC > tB > tA( ).  
If, given the two rules evtA ! evtB  and evtB ! evtC , it is not the case that tC > tB > tA , then the 

timestamps tA, tB, and tC do not reflect the physical times at which the events must have occurred. The 
timestamps are therefore inaccurate, as they suggest an internally inconsistent chronology. From this 
example, the utility of the happened-before relation as a basis for proposing rules for the detection of 
inconsistent events is apparent. A hypothesised chronology of a computer system can be evaluated for 
internal inconsistencies by testing the hypothesised sequence of events against a set of happened-before 
rules. 

3.2 Detecting Missing Events 
There are some happened-before relations where the first event is a precondition for the second. In such 
relations, the presence of the second event necessarily implies the presence of the first. In the example in 
Section 3.1, the login event evtA must occur before the application execution event evtB, such that if evtB 
occurred, then evtA should also have occurred. This does not hold true for all happened-before relations, 
however. This can be seen in the same example, where although the execution event evtB must happen-
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before the logout event evtC in order for evtB to happen at all, the occurrence of the logout event evtC does 
not imply that evtB also happened. This is because evtB is not a precondition for evtC. Where such a 
precondition does exist, it is expressed with the predicate “precondition”, as shown below. A second 
predicate, “happened”, is employed to assert that some event occurred. 

evtA ! evtB( )" happened evtB( )# happened evtA( )( )
$precondition evtA ,evtB( ).

 

In [9], Willassen extends the use of the happened-before relation of Lamport [10], Fidge [12], and 
Gladyshev and Patel [11] to imply causality. Willassen’s version of the happened-before relation is 
therefore equivalent to the “precondition” predicate. For the purposes of the research described in this 
chapter, it is preferable to maintain the happened-before relation as described by Lamport [10], Fidge 
[12], Gladyshev and Patel [11], and to employ the “precondition” predicate to imply a causal relationship. 
The happened-before relation allows for the detection of events which are listed in the timeline out of the 
sequence in which they must have occurred, whereas the “precondition” predicate allows for the detection 
of missing events.  

If the event evtA which “happened” does not exist in either the set of recorded events EVTR or the 
existing set of inferred events EVTI, then it is a missing event. It is a missing event because it was 
removed from or never recorded in the computer system’s logs, and it was not previously inferred on the 
basis of relationships and object fields. These events could also be called inferred events, but it is 
convenient to preserve a distinction between events detected using this approach and other inferred 
events. 

The rules base in the example in Section 3.1 can be expanded to include all pairs of events for which 
the “precondition” predicate is true. If an event evtX has a precondition event specified by a rule, then the 
presence of the precondition event can be inferred, even if it is absent from EVTR and EVTI. Precondition 
events which are absent from EVTR and EVTI can be added to the set of missing events, which we call 
EVTM.  

The new rules base, expanded from that in Section 3.1, is: 

evtA ! evtB
evtB ! evtC
precondition evtA ,evtB( )

 

The login event evtA, the application execution event evtB, and the logout event evtC have the same 
definitions as in the previous example. The new rule states that if the event evtB occurred in the timeline 
of the User object x, then the event evtA must also have occurred. This is expressed: 

evtB !H x( )( )" happened evtA( )
#evtA !EVT

# evtA $ EVTR% EVTI( )( )" evtA !EVTM .

 

Detecting missing events is important, as such an event may have been deliberately deleted from 
system logs, which may in itself be suspicious. Detecting that an event is missing allows for the 
construction of a more complete timeline, helping the investigator gain a more complete understanding of 
the computer system. By automatically indicating that a particular point in the timeline an event was 
either not recorded or its record was deleted, such software could provide a lead for subsequent manual 
investigation, which may determine why the record is missing. If the event record was deliberately 
deleted, this may indicate that the user was attempting to conceal suspicious activity. 
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There are, of course, many instances where an event may be missing as a result of non-suspicious 
computer activity. In computer profiling, events are inferred to describe an action by or on an object with 
associated temporal data. These inferred events are combined with events recorded in system logs in order 
to provide as complete a timeline as possible. In our experiments on computers running Microsoft 
Windows, our computer profiling tool inferred many events which occurred prior to the enabling of many 
logging options in the Windows event logs. There were therefore very few recorded events from that 
early time period in the computer’s history, and thus these inferred events were out-of-context. Such 
inferred events may appear to have occurred outside of user sessions, or in an otherwise inconsistent 
fashion, however, the absence of complete information must obviously be considered in the investigator’s 
assessment as to whether or not the event is suspicious. This scenario is an example of how the normal 
configuration of the computer system may make an event seem inconsistent. 

4 Detection Experiments 
This section describes experiments in which the approach to detecting temporal inconsistency in user 
sessions described in Section 3 was tested. We examine timelines as developed by our prototype software 
in the following experiments:  

• The unmodified timeline of a user session during which the user creates a document, and does not 
attempt to obscure his/her actions. 

• The unmodified timeline of a user session during which the user creates a document with 
deliberately misleading authorship information. 

• Modified timelines of the above two user sessions where the system logs have been tampered 
with. 

4.1 Prototype Software 
We developed prototype computer profiling software in order to conduct experiments relating to temporal 
inconsistency in computer profiles,. The prototype software examines the target computer system’s file 
system (which is mounted read-only) and enumerates the applications, files, and users of the target 
computer system. The prototype represents these as objects. It should be noted, however, that the 
prototype software does not discover all of the system objects on the target computer system. The set S 
consists of a single element, one System object to represent any logical entity on the target which should 
be represented by a system object. The software discovers relationships between the objects on the target 
system. The Windows Event Logs are parsed, and the events described in those logs are stored as the set 
of recorded events (EVTR) in the database table Recorded Events. Finally, the set of objects O and 
relationships AR are examined and a set of events are inferred from the temporal data associated with 
each object and relationship. These events are the inferred events (EVTI), and are saved in a separate table 
in the database called Inferred Events. After conducting this automated process, the software prototype 
provides a basic interface for the purpose of querying the objects, relationships and events, and a 
specialised interface for the purpose of detecting temporal inconsistency in a given timeline, shown in 
Figure A. 

The detection techniques described in Section 3 match the events in a timeline against the events in 
each rule being tested (as listed in Section 4.2). Programmatically, every rule is implemented by a Java 
object, and every event is implemented by a Java object. Rule objects have two event objects as fields, 
one called evtA and another called evtB. The objects evtA and evtB are archetype events, against which 
real events are compared. A real event is compared against the archetypes on the basis of the fields of 
each. The fields of the archetype events can have a specific value, or be null. If the archetype has a 
specific value for a particular field, then any real event which matches the archetype must have the same 
value. If the archetype has a null value for a particular field, it can match any value for the real event’s 
corresponding field. The rule object can also be set to match subject and target fields, that is to say, to 
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require that both matching events have the same subject or target field. The rule can also specify that that 
the subject field of one event is the target of the other event, or vice versa. This allows for the definition 
of generic rules. Consider the following example rule, which expresses the concept that a user object 
(u !PIU ) must log into the computer system ( s !S ) before modifying any file: 

 precondition ti !T ,u, s, logon,success( ), tk !T ,u,c !C,modified,success( )( ).  
In the object which represented this rule, evtA would represent the “logon” event, and evtB would 

represent the “modified” event. A Boolean field of the rule object would be set to true to indicate that the 
subject of each event had to be the same object, u. Given this, the values of the fields of the objects evtA 
and evtB would be as follows: 

 evtA = null,null, s, logon,success( )
evtB = null,null,null,modified,success( ).

 

A limitation of the prototype’s implementation of the detection techniques described in Section 3 is that 
it doesn’t have a concept of a user session. A logon or logoff event is treated the same as any other event. 
Consequently, in the experiments described in Section 5, the timelines examined by the prototype 
software correspond to user sessions. In order to check timelines of a computer system’s complete 
history, the prototype software would need to have a concept of user session built into it.  

 
Figure A  - Our prototype's inconsistency checking interface. 

4.2 Rules base for experiments 
The software prototype incorporates a small set of rules to check for temporal inconsistency. It provides 
an interface which allows the user to specify a timeline to be checked for inconsistency. It then checks 
that timeline against the rules base. The rules built into the prototype software for the purposes of these 
experiments are as follows: 
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preconditional userlogin,userlogout( )
preconditional userlogin, filecreated( )
preconditional userlogin, filemodified( )
preconditional userlogin, fileaccessed( )

 

filecreated! userlogout
filemodified! userlogout
fileaccessed! userlogout

 

Where x is a Principal object representing the user, y is a Content object representing a file, system is 
the System object which represents the computer system, tA through tE are times in the history of the 
computer, and: 

userlogin = tA , x, system, logon,success( )
userlogout = tB , x, system, logoff,success( )
filecreated = tC , x, y, created,success( )

filemodified = tD , x, y,modified,success( )
fileaccessed = tE , x, y,opened,success( ).

 

The data structures in our implementation which represented each of the archetype events in the rules 
base had null values in place of the fields x, y and tA through tE. As discussed in Section 4.1, null values 
are wild card values in our prototype software. Each rule had a Boolean field set to true, which specified 
that the subject of every event, x, had to be the same. 

4.3 Data 
In order to obtain data for these experiments, we employed a suspect test computer running Windows XP. 
All system logging options were turned on in order to give us as complete a set of Windows Event Logs 
as possible. We logged onto the computer twice for the purpose of generating two different user sessions: 
the first, an “innocent” user session, and the second, a user session in which a document was created with 
misleading authorship information. The details of these two sessions are described below. 

We also wanted to explore the detection of meddling with Windows Event Logs. For this purpose, we 
copied the case file and database about the test computer system generated by our computer profiling 
software, and then manually modified the database table containing the discovered events. As these 
discovered events are derived from the Windows Event Logs, the removal or modification of recorded 
events in the set EVTR effectively simulates the removal or modification of event records in the Windows 
Event Logs. We removed the log-on/log-off events from the first user session, and modified the 
timestamps of these events on the second user session so that they would be presented out of their real 
sequence if ordered by timestamp. The modified timelines are described below. 

5 Evaluation of Detection Technique 
This section describes each of the timelines examined in these experiments, and presents the results of the 
prototype software’s analysis of inconsistency. There are four timelines (two unmodified, and two 
modified) which correspond directly to user sessions. Each of the timelines is a combination of the 
inferred events and the recorded events in the history of the computer system between two boundary 
events, ordered by timestamp. In regards to the inferred events, it should be noted that where possible, 
when a non-canonical Principal object is the subject of an event, the prototype software attempts to find a 
canonical Principal object which may represent the same person. The prototype software posits an 
“isuser” relationship between non-canonical Principal objects and canonical Principal objects with the 
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same “name” field. In the case of the timelines presented in this section, the prototype software made the 
assumption that the non-canonical Principal object of type Individual with the name “baddie” represented 
the same person as the canonical Principal object of type User with the name “baddie”. This assumption 
was made on the basis of the similarity of the names of the two objects. 

5.1 Timeline A: Normal user session 
Timeline A was a normal user session during which a Microsoft Word document was created. The user 
“baddie” logged into the computer system at 6:47pm on 9 October 2008, and created the file 
“invoice.doc” at 6:51pm. The user then browsed the Internet for a few minutes and logged off at 6:59pm. 
Nothing suspicious happened in the user session. The timeline consisted of all of the events which took 
place during the user session, both recorded and inferred. Our software inserted these events into its event 
database during its automated examination of the target system. 

Most events in timeline A were discovered events (i.e. discovered in the Windows Event Logs), 
however, the events with “CREATED”, “MODIFIED” or “OPENED” as their actions were inferred 
events (i.e. inferred on the basis of an object, its relationships, or other information about the object). It is 
worth noting that for every inferred event describing an action by “baddie” on the object “WORDDOC 
invoice.doc19509473”, there was a corresponding action on the object “WORDDOC 
Normal.dot3981922”. This was the first time the user “baddie” had created a Word document, and 
consequently the normal template file was created for that user account. 

An inconsistency check of timeline A against the rules provided in Section 4.2 demonstrated no 
inconsistencies. If the non-canonical Principal object “INDIVIDUAL baddie17975110” had not been 
linked to the canonical Principal object “USER baddie27660658” and the latter substituted for the former 
during the “infer events” stage of the prototype software’s process, then the events around the authorship 
of “WORDDOC invoice.doc19509473” would have been highlighted as suspicious. As it was, the results 
of the analysis of timeline A were as expected. 

5.2 Timeline B: Deliberate misattribution of authorship 
Timeline B was a user session during which the user created a Microsoft Word document with misleading 
authorship information, in an effort to shift responsibility for that document to an innocent third party. 
The user “crook” logged into the computer system at 7:04pm on 9 October 2008, and at 8:15pm a Word 
document was created with “baddie” as the listed author. The user “crook” then logged off. 

Timeline B was analysed for inconsistency with our prototype software. Table 1 shows the inconsistent 
events detected in this timeline along with the rule from our rules base which were broken by each event. 
These events all related to the authorship of the Word document “WORDDOC letter from baddie to 
nefarious.doc14850080”. The “baddie” user was not logged in at the time the Word document was 
created, and yet the author field listed “baddie” as the document’s author. Therefore, “baddie” could not 
have been the author of “WORDDOC letter from baddie to nefarious.doc14850080”. 

Time Subject Target Action Rule  
9/10/08 20:13:00 USER baddie27660658 WORDDOC letter from baddie to nefarious.doc14850080 CREATED precondition(userlogin,filecreated) 
9/10/08 20:13:00 USER baddie27660658 WORDDOC Normal.dot20348456 CREATED precondition(userlogin,filecreated) 
9/10/08 20:15:21 USER baddie27660658 WORDDOC letter from baddie to nefarious.doc14850080 MODIFIED precondition(userlogin,filemodified) 
9/10/08 20:15:21 USER baddie27660658 WORDDOC letter from baddie to nefarious.doc14850080 OPENED precondition(userlogin,fileaccessed) 
9/10/08 20:15:23 USER baddie27660658 WORDDOC letter from baddie to nefarious.doc14850080 CREATED precondition(userlogin,filecreated) 
9/10/08 20:15:23 USER baddie27660658 WORDDOC Normal.dot20348456 CREATED precondition(userlogin,filecreated) 
9/10/08 20:15:23 USER baddie27660658 WORDDOC Normal.dot20348456 MODIFIED precondition(userlogin,filemodified) 
9/10/08 20:15:23 USER baddie27660658 WORDDOC Normal.dot20348456 OPENED precondition(userlogin,fileaccessed) 

Table 1 - The inconsistent events detected in timeline B and the rules they violated. 

It can be seen in Table 1 that there are two sets of “CREATED” events for both the suspect Word 
document and its template. This is because there are two sources of information which lead the prototype 
software to inferring such an event. The earlier timestamp is obtained from the Word document’s 
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metadata, and is the time at which the document was first created in Microsoft Word. The later timestamp 
is obtained from the target computer’s file system, and is the time at which the document was first saved 
as a file on the disk. Both sets of “CREATED” events derive their subject field from the same source, the 
Word document’s author field. 

Finally on the matter of timeline B, we note that it would have been possible to detect an inconsistency 
in the authorship attribution of the Word document “WORDDOC letter from baddie to 
nefarious.doc14850080” on the basis of the document’s associated template. As noted in the discussion of 
timeline A, every user has their own instance of a Word template, which is created the first time they 
create a Word document according to that template. The relationship between the Word document 
“WORDDOC letter from baddie to nefarious.doc14850080” and its template “WORDDOC 
Normal.dot20348456” would suggest that the latter was the “baddie” user’s normal template. That would 
be inconsistent with the relationship between “baddie” and the template created during timeline A, 
“WORDDOC Normal.dot3981922”. The potential for using relationships between objects to detect 
inconsistency is discussed in Section 6.1. 

5.3 Timeline C: User session with logon/logoff events deleted 
Timeline C was derived from timeline A. The recorded and inferred events table in the prototype 
software’s events database were copied and manually modified. The resulting timeline, timeline C, was 
identical to timeline A without the logon/logoff events. The removal of these two discovered events left 
user activity outside of a logon/logoff-bound user session. 

Time Subject Target Action Rule 
9/10/2008  18:50:46  USER baddie27660658 WORDDOC invoice.doc19509473 MODIFIED precondition(userlogin,filemodified) 
9/10/2008  18:50:46  USER baddie27660658 WORDDOC invoice.doc19509473 OPENED precondition(userlogin,fileaccessed) 
9/10/2008  18:51:49  USER baddie27660658 WORDDOC Normal.dot3981922 CREATED precondition(userlogin,filecreated) 
9/10/2008  18:51:49  USER baddie27660658 WORDDOC Normal.dot3981922 MODIFIED precondition(userlogin,filemodified) 
9/10/2008  18:51:49  USER baddie27660658 WORDDOC Normal.dot3981922 OPENED precondition(userlogin,fileaccessed) 
9/10/2008  18:51:49 USER baddie27660658 WORDDOC invoice.doc19509473 CREATED precondition(userlogin,filecreated) 

Table 2 - Inconsistent events detected in timeline C, as a result of the login precondition not being 
met. 

The prototype software’s temporal inconsistency check listed all of the inferred events with “USER 
baddie27660658” as the subject as inconsistent. These events were all listed as inconsistent on the basis 
of violating precondition rules with a user login event as the precondition. The inconsistent events from 
timeline C are listed in Table 2. These results were as expected. This demonstrates that removing user 
session information from the Windows Event Log will draw attention to the inferred events which took 
place during the session. 

5.4 Timeline D: User session with modified timestamps 
Timeline D was derived from timeline A, with the timestamp of the user’s logoff event deliberately 
modified so as to appear to have taken place prior to the creation of the “WORDDOC 
invoice.doc19509473” document. The timestamp of “USER baddie27660658”’s logoff was changed from 
18:59:37pm to 18:51:23pm. 

The prototype software’s inconsistency check of timeline D listed “USER baddie27660658”’s logoff 
event as inconsistent, as shown in Table 3. The event was listed as breaking three rules, all of which 
ultimately assert that if a file is modified, accessed or created, it must be modified, accessed or created 
prior to the user logging out of the computer system. 

Time Subject Action Rules  
9/10/2008  18:51:23  USER baddie27660658 LOGOFF filecreated! userlogout, filemodified! userlogout, fileaccessed! userlogout  

Table 3 - The inconsistent event in timeline D, which was detected on the basis of breaking three 
rules. The target of the event is the system. 
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The results of the analysis of timeline D were just as expected. The detection of this event demonstrates 
the suitability of this approach to detecting events whose timestamps are modified. 

5.5 Discussion of Results 
The results of the experiments demonstrate that automatically detecting temporal inconsistency in 
computer profiles constructed from realistic data is possible. These experiments applied a simple rules set 
to a real computer system’s profile, and the results demonstrate that inconsistency can be detected in 
several basic scenarios. The happened-before relation and the precondition predicate can be used together 
to construct effective rules to draw an investigator’s attention to suspicious events. Timeline B 
demonstrated that such rules can be applied to detect an event (in this case, the creation of a document) 
initiated by a different user than first suggested by the file system. Timeline C showed that the deletion of 
system log entries pertaining to important events can be detected. If the deleted events are preconditions 
for other events, which are recorded or inferred, then they can be detected. Timeline D demonstrated that, 
by applying a rational set of rules in an automated analysis of a timeline, events can be detected which 
should have occurred in another sequence than their timestamps suggest.  

The experiment’s use of data from a real computer system demonstrated that this approach to detecting 
temporal inconsistency is robust enough to be employed in real cases. The noise in realistic event data is a 
lesser problem to an automated process such as computer profiling than it is to a human investigator. By 
distilling event records down to the most important fields which are common to most events, computer 
profiling reduces the complexity and heterogeneity of the various types of events. This makes the testing 
of a set of simple logical predicates (such as the rules base employed in the experiments, described in 
Section 4.2) against a timeline of recorded and inferred events relatively straightforward. The results of 
these experiments demonstrate that this method of testing for inconsistency in timelines is effective in 
practical computer systems. 

6 Future Work 
There are two areas for future work in the handling of inconsistency in automated computer profiling 
which are immediately apparent. The first is another means of detecting inconsistency in computer 
profiles, based on inconsistency in relationships between objects rather than inconsistency in the 
chronology suggested by timestamps. In addition to detecting contradictory relationships, such an 
approach could supplement the techniques described in Section 3 in the detection of inconsistency in 
timelines. The second obvious avenue for future work is the development of a method for the construction 
of corrected timelines, incorporating missing events detected by the technique in Section 3.2, correctly 
chronologically ordered. We have begun work in each of these areas. 

6.1 Relationships-based Approach 
During the discussion of the experiment results for timeline B, an alternative approach to detecting the 
timeline’s inconsistencies was noted. The section noted that the inconsistency between the 
WordDocument object’s apparent authorship and the user session in progress at the time could have been 
detected on a relationship basis. The WordDocument object’s relationship to the document’s template 
object contradicted the WordDocument object’s relationship to the document’s apparent author “baddie”, 
as a result of the template object’s relationship with the user “crook”. On the one hand, the template was 
created for the user “crook” the first time “crook” logged into the computer system as the user’s personal 
document template. The document in question was created from that template. On the other hand, the 
document’s authorship information indicates that the user “baddie” created the document. The 
composition of the relationship between the document and the template and the relationship between the 
template and “crook” could be regarded as being inconsistent with the relationship between the document 
and “baddie”. If a rules base about the credibility of relationships was created, it might be used to give 
one relationship greater bearing than the other.  
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Reasoning based on relationships can supplement the techniques to dealing with inconsistencies we 
have described. Reasoning based on the relationships between objects could be used, in certain 
circumstances, to correct events which are detected as being inaccurate. An example of this sort of 
reasoning is shown below. An event evtx is detected as inconsistent on the basis that its precondition (that 
the user who was the subject of evtx is logged in) is not met. The relationship from which evtx was inferred 
is thus discredited, and an alternative basis is used to propose a different subject for evtx. After evtx is 
revised, it would be reassessed against the rule, and the process completed if it was still found to be 
inconsistent. 

The rule: 

precondition userlogin, filecreated( )  

Is broken by the event: 

evtx = tx , john,document, created,success( )  

Which was inferred from the relationship: 

author john,document( ).  
These relationships were also discovered: 

 

template template,document( )
owner jane,template( )
! jane owner! template( )document

 

On this basis, evtx could be corrected: 

 

¬author john,document( )
! jane owner! template( )document
" evtx = tx , jane,document, created,success( ).

 

Relationship-based reasoning as a basis for both detecting and handling inconsistency in computer 
profiles is a topic for further research. If it can provide a reliable process for automatically correcting 
inconsistent events, then the approach discussed in Section 6.2 below for creating consistent timelines 
becomes viable. A practical implementation of a combination of these approaches could prove very useful 
in providing investigators with thorough and accurate forensic reconstructions of computer systems. 

6.2 Constructing Consistent Timelines 
A consistent timeline in the context of computer profiling is defined as a sequence of events ordered by 
the time at which they occurred, with no significant missing events. The physical time at which an event 
occurred may or may not correspond to the computer-generated timestamp of an event, which may be 
missing or inaccurate. A consistent timeline must include events which are missing from the sets EVTR 
and EVTI, but which are detected using the techniques described in Section 3.2. EVTM is the set of all of 
the missing events detected on the basis of a precondition rule. This section discusses the basis of a 
technique for constructing such a timeline. 

There are some events, especially members of EVTM (discovered by the approach in Section 3.2), for 
which there is no timestamp. There are other events for which there is a timestamp, but whose timestamp 
is provably incorrect (as determined by the process described in Section 3.1). Gladyshev and Patel 
describe the process of determining the time at which a given event takes place by bounding the event’s 
time [11]. The upper and lower bounds for the time of an event can be determined if the event must have 
occurred between two other events. The range between these bounds (the time interval Δt) is the range of 
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possible times at which the event must have occurred. This range can be further narrowed if it is known 
that there is a minimal delay d which applies to a particular happened-before relation [11].  

Given the problems associated with attempting to use time intervals, we propose then,  instead of 
timestamps, to use Lamport logical clocks [10] to provide the basis of ordering the consistent timeline. 
The timestamp (or time interval in the case of events with indeterminate time) of an event will be used as 
a variable in the clock, but it will be the clock and not the timestamp which will be used as the basis for 
ordering events. 

The clock C is defined to be a function which assigns a number to every event in the consistent 
timeline. The number produced by C has no bearing on physical time, but each event still has a timestamp 
t or a time interval Δt which can be used to determine the approximate physical time of the event. The 
number produced by C must be lower for events which occurred earlier in the history of the computer 
system than the number produced for events which occurred later. This will permit events to be sorted by 
the number produced by the clock C on an ascending order basis. Where the numbers produced by the 
clock C are the same for two or more events, these events will be ordered in the constructed consistent 
timeline on an arbitrary basis. 

Given a complete set of rules to detect inconsistent and missing events, the number of unknown events 
in the computer system’s history can be minimised. Each of the known events in the history of the 
computer system will have an associated timestamp, or, in the case of events with no timestamps or with 
provably incorrect timestamps, the narrowest possible time interval during which the event could have 
occurred. The clock function C will combine the timestamp or time interval for each known event with 
the rules relating that event to the other knowable events, and produce a number (a Lamport logical clock 
value) according to which the event may be sorted into the consistent timeline. Once completed, the 
consistent timeline will represent the best sequential ordering of the known events. 

7 Conclusion 
Inconsistencies in a computer profile can compromise the value of the computer profile as an 
investigative tool. If an automated forensics process accepts the original digital evidence from the target 
computer system uncritically, it may produce a history of the computer system which is unusable as a 
result of inaccuracy. Perhaps worse, it may itself fall victim to an adversary’s deliberate modification of 
system logs and other temporal data, and create a misleading history of the adversary’s own devising. 

We have proposed techniques for detecting inconsistent and missing events in the history of the 
computer system. Our experiments with this software demonstrate that the techniques we have proposed 
can be used successfully to detect temporal inconsistencies in a computer profile. The automatic detection 
of inconsistencies which might indicate deliberate tampering could assist a human investigator in a 
subsequent manual examination of the system. 

Additionally, we have begun work on methods to create consistent timelines and to detect 
inconsistency in a computer profile’s relationships. This work should provide automated computer 
profiling with a means to handle, as well as detect, chronological errors in timelines. Work into 
inconsistency in relationships should also provide a means for correcting the subject and target fields of 
events. 
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