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Abstract. Miller’s algorithm for computing pairings involves perform-
ing multiplications between elements that belong to different finite
fields. Namely, elements in the full extension field Fpk are multiplied
by elements contained in proper subfields Fpk/d , and by elements in the
base field Fp. We show that significant speedups in pairing computations
can be achieved by delaying these “mismatched” multiplications for an
optimal number of iterations. Importantly, we show that our technique
can be easily integrated into traditional pairing algorithms; implementers
can exploit the computational savings herein by applying only minor
changes to existing pairing code.
Keywords: Pairings, Miller’s algorithm, finite field arithmetic, Tate
pairing, ate pairing.

1 Introduction

For the past decade, the public-key cryptographic community has witnessed an
avalanche of novel and exciting protocols based on bilinear pairings; the major
trigger being the discovery of identity-based encryption by Boneh and Franklin
[8]. The algorithm for computing these pairings, initially proposed by Miller
in the mid 1980’s [27], was originally too slow for pairing-based protocols to
be practically competitive with their RSA and Diffie-Hellman type rivals, and
much research has since been invested towards speeding up Miller’s algorithm.
Consequently, Miller’s algorithm has come a long way from its original form, to
the point where many possible enhancements have now been fully optimized [2,
3, 29, 4, 31, 19].

The progress in the field of pairing improvements has seemingly steadied to
a pace where a real world programmer could rest assured that their currently
optimized (or close to optimized) implementation will most likely remain within
arms length of the state-of-the-art implementation, for at least a couple of

* The first author acknowledges funding from the Queensland Government Smart
State PhD Scholarship. This work has been supported in part by the Australian
Research Council through Discovery Project DP0666065.



years. Nevertheless, so long as optimizations continue to be introduced [5, 12,
10], old pairing code could potentially become outdated quite quickly. The
importance of code reusability and integrability might be the difference between
an implementer continuing to modify and update their existing code in light of
the latest breakthroughs, or shying away from such improvements because of the
difficulty in integrating them.

It was shown very recently [10] that it is possible to avoid much of the
costly, full extension field arithmetic encountered in pairing computations over
large prime fields by replacing a multiplication in the full extension field
with more minor multiplications in its proper subfields, decreasing the overall
complexity of Miller’s algorithm by over 30% in some cases. In these instances, an
implementation not encompassing these techniques would perform substantially
slower compared to one that does. However, a programmer wishing to implement
the methods of avoiding extension field arithmetic in [10] would be facing the
task of re-writing most (if not all) of their pairing code from scratch, having to
employ new and potentially cumbersome explicit formulas.

In this paper we provide an alternative to the technique in [10] that offers
much higher integrability into traditional pairing algorithms and existing pairing
code. The idea used herein is the same as that used by Granger, Page and Stam
[18, §6], who employ loop unrolling to combine two Miller iterations at a time,
achieving fewer overall field operations in the case of characteristic three pairing
implementations. In this paper we apply this same loop unrolling technique to
pairings computed over large prime fields, by analyzing the cost of combining
n Miller iterations at a time, and choosing the optimal value of n for various
embedding degrees. Unlike the method in [10], our method requires no new
explicit formulas for elliptic curve point operations and Miller line computations.
Our aim is to inject a new and conceptually simple subroutine into Miller’s
algorithm that optimizes the field arithmetic occuring between elements of finite
fields with different extension degree, with a parallel goal of minimizing the
change imposed on existing pairing code.

The rest of this paper is organized as follows. In Section 2 we set notations
and give a background on the computation of pairings. In Section 3 we discuss
the proposed technique, before analyzing its computational complexity in Section
4. We provide necessary implementation details in Section 5, before providing
parameters to optimize its implementation in Section 6, where we also draw
comparisons against the traditional version of Miller’s algorithm. In Appendix
A, we provide MAGMA code that can be used as a basis to build implementations
of our technique in other languages.

2 Preliminaries

Implementing pairings in cryptography most commonly requires the definition of
two linearly independent groups, G1 and G2, of large prime order r, contained
on an elliptic curve E which is defined over a finite field Fq of large prime
characteristic p. Herein, we choose to deal with the most common case of



prime fields, so that in fact we have q = p. Let πp be the p-power Frobenius
endomorphism on E. In general, the most popular choices for G1 and G2

are the two eigenspaces of πp, restricted to the r-torsion E[r] of E, so that
G1 = E[r] ∩ ker(πp − [1]) and G2 = E[r] ∩ ker(πp − [p]). Let k be the smallest
integer such that r | pk−1; a direct consequence of this is that the field Fpk is the
smallest extension of Fp that contains all of the points in E[r], so that Fpk houses
both G1 and G2 in their entirity. We refer to k the embedding degree, because
computing the pairing of any two linearly independent points in E[r] results in
an element of an order-r subgroup of the finite field Fpk , i.e. the pairing embeds
the points of E[r] into the k-degree extension of Fp. We use GT to denote this
order-r subgroup of Fpk , since this is the target group of the pairing map. For
k > 1, the points in G1 are completely defined over the base field Fp, whilst the
points in G2 are defined over the larger field Fpk .

We assume that our pairing is defined by the Tate methodology rather than
the Weil methodology (see [19]), since the Weil pairing has been phased out in
practice due to its inefficient computation. The Tate methodology computes a
bilinear pairing, e, of two linearly independent points R,S ∈ E[r], as

e(R,S) = fm,R(S)(p
k−1)/r, (1)

where fm,R is a function with divisor div(fm,R) = m(R)− ([m]R)− (m− 1)(O),
with O being the neutral element on E. We refer to the function fm,R as the
Miller function, since it is computed using Miller’s algorithm. This algorithm
uses relations between divisors of functions to build fm,R in log2(m) iterations
in a double-and-add like fashion, as summarized in Algorithm 1.

Pairings that fit into the Tate methodology can be naturally divided into
two categories: Miller-lite pairings which take R ∈ G1 and S ∈ G2 and Miller-
full pairings which take R ∈ G2 and S ∈ G1. That is, elite : G1 × G2 7→ GT ,
whilst efull : G2×G1 7→ GT . The Tate pairing and the twisted ate pairing [20] are
examples of Miller-lite pairing, whilst the ate pairing [20] and its derivatives (the
atei pairing [26], the R-ate pairing [24], etc) sit under the umbrella of Miller-full
pairings. Efficient pairing implementations make use of the twisted curve E′ to
define a group G′2 ∈ E′ that is isomorphic to G2 ∈ E, but whose elements are
contained in a much smaller subfield Fpe ⊂ Fpk , where e = k/d and d is the
degree of the twist. We let ψ : E′ → E denote the twisting isomorphism from E′

to E, so that ψ(G2) = G1. The bulk of the operations encountered in an iteration
of Miller’s algorithm are computed using the coordinates of R or its image R′

under ψ−1, so that Miller-lite pairings benefit from the majority of operations
being performed over G1, which is defined over the base field Fp. Alternatively,
Miller-full pairings spend the majority of computations operating on coordinates
that are defined over the larger extension field Fpe . Such computations are more
costly over extension fields, however Miller-full pairings are usually more efficient
than Miller-lite pairings in practice [20, 12], because they enjoy a much smaller
loop parameter m, meaning that Miller’s algorithm requires significantly less
iterations.



Algorithm 1 Miller’s double-and-add Algorithm
Input: R, S, m = (ml−1...m1,m0)2.
Output: fm,R(S)← f .

1: T ← R, f ← 1.
2: for i = l − 2 to 0 do
3: T ← [2]T .
4: Compute a function g, which has divisor div(g) = 2(T )− (2T )− (O).
5: Compute g = g(S) (evaluate g at the coordinates of S).
6: f ← f2 · g.
7: if mi 6= 0 then
8: T ← T +R.
9: Compute a function g, which has divisor div(g) = (T ) + (R)− (T +R)−

(O).
10: Compute g = g(S) (evaluate g at the coordinates of S).
11: f ← f · g.
12: end if
13: end for
14: return f .

Any extension fields of Fp that are required in the pairing computation
are best constructed using towers of field extensions. The general method to
construct towers of extension fields in pairing-based cryptography is originally
due to Koblitz and Menezes [23], who introduced the notion of pairing-friendly
fields, where the embedding degree is chosen to be of the form k = 2i3j , and the
characteristic of the field Fp is chosen to be p ≡ 1 mod 12. These conditions allow
us to easily build a tower of extensions up to Fpk using a sequence of z = i+ j
cubic and quadratic sub-extensions, where the defining polynomial for each of
the di,j-degree sub-extensions are actually binomial of the form xdi,j − α. Such
quadratic and cubic binomials facilitate fast arithmetic over extension fields.
Very recently, Benger and Scott [5] broadened the definition of pairing-friendly
fields to present the more general notion of towering-friendly fields, which are
fields of the form Fqm (q not necessarily prime itself) for which all prime divisors
of m also divide q − 1, showing that efficient tower constructions can also be
achieved without satisfying the more restrictive condition of p ≡ 1 mod 12 for
characteristic p fields.

For elliptic curves, there are only four twist degrees possible: d = 2 quadratic
twists, d = 3 cubic twists, d = 4 quartic twists and d = 6 sextic twists. In both
Miller-lite and Miller-full pairings, it is advantageous to choose the Weierstrass
curve model (of the form y2 = x3 + ax + b) which supports the maximal twist
degree d, such that d | k. Cubic and sextic twists are only possible when a = 0,
quartic twists when b = 0, and quadratic twists impose no condition on the curve
constants, although it is usually advantageous to set either a or b to be zero for
computational efficiency anyway [1, 12].

For quadratic and cubic twists, Fpk is the direct (quadratic or cubic) sub-
extension of the field Fpe . For quartic and sextic extensions, however, we must



first extend Fpe to an intermediate field Fph , where Fpe ⊂ Fph ⊂ Fpk , and the field
extensions are formed by taking Fph = Fpe(α) and Fpk = Fph(β). We denote the
degree of the extensions as δα = [Fph : Fpe ] = h/e and δβ = [Fpk : Fph ] = k/h,
in agreement with [Fpk : Fpe ] = δαδβ = k/e = d. For all twists, we have that
an element of the full extension field, say the Miller function f ∈ Fpk , takes the
form

f =
δβ−1∑
j=0

( δα−1∑
i=0

fj,i · αi
)
· βj , (2)

where each of the fj,i are contained in Fpe . For quadratic twists we must take
(δα, δβ) = (2, 1) and for cubic twists we must take (δα, δβ) = (3, 1). For both
quartic and sextic twists, Benger and Scott [5] suggest that the most efficient
tower is constructed with δα = 2, so that quartic twists should take (δα, δβ) =
(2, 2), and sextic twists should take (δα, δβ) = (2, 3). The nature of the tower for
the fields that lie between Fp and Fpe do not play a role in this work, so we pay
no attention to these details, but point the interested reader to [5].

The general twist of a short Weierstrass curve is written as E′(Fpe) : y2 =
x3 + az4x + bz6, where the isomorphism ψ : E′ → E is defined as ψ(x′, y′) =
(z2x′, z3y′). For quartic twists when b = 0, we choose z4 ∈ Fpe such that z2 ∈
Fpk/2 6∈ Fpe and z ∈ Fpk 6∈ Fpk/2 , so that we can set α = z2 and β = z3,
resulting in a twisting isomorphism ψ(x′, y′) = (αx′, βy′) that allows twisted
coordinates to be easily integrated with general field elements taking the form
of f in (2). Similarly, for sextic twists when a = 0, we choose z6 ∈ Fpe such that
z3 ∈ Fpk/3 6∈ Fpe and z2 ∈ Fpk/2 6∈ Fpe , so that we can set α = z3 and β = z2,
and the twisting isomorphism conveniently becomes ψ(x′, y′) = (βx′, αy′).

We follow the general trend of reporting results for even k [3, 23, 5], since such
embedding degrees support the denominator elimination optimization [2]. Thus,
any k we consider which is divisible by 3 will also be divisible by 6 and admit
a sextic twist, so that we do not need to consider cubic twists. Computationally
speaking, the treatment of cubic twists is quite different to the other even degree
twists and tends to be awkward anyway [12], so curves with odd embedding
degree divisible by 3 are generally not chosen in practice, although Lin et al. [25]
show that choosing k = 9 can be competitive at some security levels.

Remark 1 (A notation for counting costs). This paper is largely concerned
with the computational cost of field operations, so we employ a notation that
allows us to easily narrate such costs alongside the associated algebra. We
use cost

[
L ← J

]
to denote the computational cost of computing the set

L = {L1, ..., Li} from the already computed (or available) set J = {J1, ..., Jj}.
If the best way to compute the set L from the set J is to compute the
intermediate set K = {K1, ...,Kj}, then we can clearly split the cost, so that
cost

[
L← J

]
= cost

[
L← K

]
+cost

[
K ← J

]
, under the assumption that there

does not exist a cheaper way to compute L from J which does not require the
computation of K. When referring to the cost of computing the set L without
assuming any prior computations, we simply use cost

[
L
]
.



Remark 2 (The squaring vs. multiplication ratio). Our cost analyses are
primarily concerned with field multiplications and field squarings and we choose
not pay any attention to the much cheaper cost of field additions, although the
algorithms presented herein aim to minimize all field operations. We use mi and
si to represent the respective costs of a multiplication and a squaring in the field
Fpi . Since the ratio of the complexity of a field squaring to a field multiplication
is specific to the implementation, we leave the discussion general until Section
6 by using the parameter Ω, which denotes the s : m ratio. That is, s = Ωm,
where 0 << Ω ≤ 1. For example, Bernstein [6] achieves Ω = 0.68 and Hisil
[21] reports Ω = 0.72, while the EFD [7] presents results based on the more
commonly accepted Ω = 0.8 and Ω = 1 values.

Remark 3 (Non-specific field definitions). In the pairing e(R,S), the respective
fields that R and S belong to are different depending on whether the pairing is a
Miller-lite or Miller-full pairing. In a Miller-lite pairing computed as e(R,ψ(S′)),
we take R ∈ Fp and S′ ∈ Fpe , whilst a Miller-full pairing computed as
e(ψ−1(R), ψ−1(S)) (see [12]) has R′ ∈ Fpe and S ∈ Fp. Ignoring the twisting
elements α and β, then the first and second arguments in a Miller-lite pairing
are from Fp and Fpe respectively, whilst the same arguments in a Miller-full
pairing are from Fpe and Fp respectively. In sections 3 and 4, we cover both
cases simultaneously by saying that the first argument R belongs to Fpu and the
second argument S belongs to Fpv , where it is understood that (u, v) = (1, e) for
Miller-lite pairings and (u, v) = (e, 1) for Miller-full pairings. Most importantly,
in either case we have that multiplying an element of Fpu by an element of Fpv
costs em1 (cf. [12]).

Remark 4 (Ignoring additions). As is the common trend in papers discussing
optimal pairing implementations, we assume that the loop parameter m has low
Hamming weight so that additions are sparse in Miller’s algorithm. Thus, when
discussing any consecutive iterations of the Miller loop, we assume that no such
iterations involve additions.

3 Delaying Mismatched Multiplications

We begin this section by illustrating the potential advantage of delaying
“mismatched” multiplications, through the use of a toy example. Suppose we
have a basic algorithm that involves n iterations, where the i-th iteration simply
involves computing an element ai, and updating the master function Ai as
Ai ← ai · Ai−1, where the master function was initialized as A0. The output of
the algorithm would be An = (((...((A0 · a1) · a2)...))), which could alternatively
be written, or indeed computed as An = A0 · (

∏n
i=1 ai), where the product of

the ai’s is computed prior to multiplication with A0. If both A0 and the ai’s are
general elements of the same field, say Fpc , then both methods of computation
would require n multiplications in Fpc , as

cost
[
An ← {a1, ..., an, A0}

]
=

n∑
i=1

cost
[
Ai ← {Ai−1, ai}

]
=

n∑
i=1

1mc = nmc,



or

cost
[
An ← {a1, ...,an, A0}

]
= cost

[
An ← {

n∏
i=1

ai, A0}
]
+

cost
[ n∏
i=1

ai ← {a1, ..., an}
]

= 1mc + (n− 1)mc = nmc.

However, suppose again that the ai values are general elements of the field Fpc ,
but instead suppose that A0 is a general element of the degree-w extension field
Fpcw , of Fpc . For ease of exposition, we assume for now that w is prime so that
a general element of Fpcw can be expressed as a (w− 1)-degree polynomial with
coefficients in Fpc . In this case, multiplying each of the ai values by A0 would
typically involve multiplying each of the w coefficients of A0 by ai, costing wmc

each time. Clearly, it would be advantageous to form the product
∏n
i=1 ai prior

to a multiplication by A0, as we show by using the same comparison as before,
where

cost
[
An ← {a1, ..., an, A0}

]
=

n∑
i=1

cost
[
Ai ← {Ai−1, ai}

]
=

n∑
i=1

wmc = wnmc,

whilst

cost
[
An ← {a1, ..., an, A0}

]
= cost

[
An ← {

n∏
i=1

ai, A0}
]
+

cost
[ n∏
i=1

ai ← {a1, ..., an}
]

= wmc + (n− 1)mc = (w + n− 1)mc.

Forming the product of the ai elements from the smaller field prior to the
multiplication by A0 gives a count of (w + n − 1)mc, as opposed to the wnmc

that it costs to multiply ai by A0 in each iteration. When n > 1 and w > 1,
it is always the case that wn > (w + n − 1), so that forming the product of
n > 1 elements in the smaller field and delaying any multiplications by the
element in the larger field is always advantageous. The central theme of this
paper is applying this idea towards pairing computations, however the story
in Miller’s algorithm is more complicated than the example above. Firstly, the
“mismatched” multiplications above were easy to spot, since we were multiplying
general elements from different fields. However, there are other more subtle
examples of mismatched multiplications, which we formalize in the following
definitions.

Definition 1 (General vs. special field elements). Let ω ∈ Fpc , where
Fpc is constructed as a tower of extensions as Fp ⊂ Fpc1 ⊂ Fpc1c2 ⊂ ... ⊂
Fpc1c2...ct = Fpc , i.e. ci is the degree of the i-th extension in the tower up to
Fpc . Let Cj =

∏j
i=1 ci so that we can write the tower as Fp ⊂ FpC1 ⊂ FpC2 ⊂

... ⊂ FpCt = Fpc . Let #ω(FpCj ) be the number of non-zero coefficients in the



polynomial representation of ω over the subfield FpCj . If #ω(FpCj ) < c/Cj for
any j where 1 ≤ j ≤ t, then we call ω a special element of Fpc , otherwise we call
ω a general element of Fpc .

Definition 2 (Mismatched multiplications). Let ω ∈ Fpc and ω̂ ∈ Fpĉ . We
call the multiplication between ω and ω̂ mismatched if one of the following two
conditions hold:

(i) c 6= ĉ.

(ii) c = ĉ, but at least one of ω and ω̂ are special.

We refer to a mismatched multiplication as a type (i) or type (ii) mismatch,
depending on which of the above conditions it breaches.

Equipped with the above definitions, we now focus on searching for mismatched
multiplications in Miller’s algorithm, with the aim of investigating the possibility
and potential advantage of optimizing the delay or the avoidance of such
multiplications. We start by taking a close look at the doubling stage of
Miller’s algorithm which is the combination of steps 3, 4, 5 and 6 of Algorithm
1. Steps 3 and 4 involve doubling the point T (i.e. computing [2]T from
T ), and computing the coefficients of the associated function g with divisor
div(g) = 2(T )−(2T )−(O). These computations only depend on the coordinates
of the point T = (Tx, Ty) ∈ Fpu , and since Tx and Ty are assumed to be
general elements of Fpu , we can safely assume that, in general, none of the field
multiplications in steps 3 and 4 are mismatched. Many authors have achieved
speed ups in pairing computations by focussing on reducing the combined cost of
these two steps [9, 13, 22, 1, 11, 12], where the cost of encapsulated point doubling
(step 3) and line computation (step 4) is generally presented together, in terms of
the combined number of field multiplications (m) and squarings (s) encountered,
as

cost
[
{g, [2]T} ← T

]
= mmu + ssu = (m+Ωs)mu. (3)

For curves with even embedding degrees, the denominator elimination
optimization greatly simplifies the form of the line function g, so that g = g(x, y)
always (cf. [12]) takes the form

g(x, y) = gx · x+ gy · y + g0, (4)

where gx, gy, g0 ∈ Fpu . Step 5 of Algorithm 1 involves evaluating g at the
coordinates of S = (Sx, Sy), i.e. multiplying gx by Sx and gy by Sy. From Section
2, we know that (unless e = 1) R and S are contained in different fields, so that
the evaluation of g at S incurs two type (i) mismatched multiplications. Following
this, step 6 of Algorithm 1 involves squaring the Miller function f ∈ Fpk ,
and multiplying this result by g(S) ∈ Fpk . Although the point S belongs to
the field Fpk , each of its coordinates are actually either very special elements
of Fpk , or lie in proper subfields of Fpk . For example, in Section 2 we saw



that an implementation employing a quartic twist has (Sx, Sy) = (αŜx, βŜy),
where Ŝx, Ŝy ∈ Fpv , or similarly an implementation using a sextic twist has
(Sx, Sy) = (βŜx, αŜy) with Ŝx, Ŝy ∈ Fpv . In both cases, it is clear by Definition
1 that g(S) is a special element of Fpk , so that the multiplication of the Miller
function f by g(S) is, by Definition 2, a type (ii) mismatched multiplication.

We concretize the above discussion with an example, where we assume a
sextic twist has been used, so that lines 5 and 6 of Algorithm 1 require that we
compute a multiplication between

f = (f2,1 · α+ f2,0) · β2 + (f1,1 · α+ f1,0) · β + (f0,1 · α+ f0,0) ∈ Fpk

and

g(Sx, Sy) = (gxŜx) · β + (gyŜy) · α+ g0 ∈ Fpk ,

where the fi,j ’s and both gxŜx and gyŜy are contained in Fpe (see Remark 3),
and g0 is contained in Fp for Miller-lite implementations or Fpe in Miller full
implementations. Since gx, gy ∈ Fpu and Ŝx, Ŝy ∈ Fpv , the products formed to
create g(Sx, Sy) are type (i) mismatches, whilst the multiplication between f
and g(S) is a type (ii) mismatch.

There are two natural questions that now arise: are these mismatches a
problem? and, if so, what can we do about them? We can immediately answer
the first question by referring back to the toy example at the beginning of this
section, where we saw that delaying the multiplications between elements of
different sized fields can be very advantageous, particularly if the difference in
the extension degrees is large.

We start the answer to the second question by noting the main complication,
in terms of mismatched multiplications, that we encounter in an iteration of
Miller’s algorithm; that being the simultaneous presence of both type (i) and type
(ii) mismatches. Specifically, each iteration of Miller’s algorithm involves two
type (i) mismatches buried inside a larger type (ii) mismatch. An ideal solution
might involve minimizing both mismatches simultaneously, but unfortunately
we will soon see that this is not possible; namely, that the type (i) mismatches
are somewhat unavoidable in Miller’s algorithm. However, the solution we adopt
follows quite naturally if we start by trying to avoid the type (i) mismatches, as
follows. In a particular iteration of Miller’s algorithm, it seems that the only way
we can avoid the type (i) mismatched multiplications is to delay them until the
following iteration: let g and g̃ represent two consecutive g’s in two iterations
of Miller’s algorithm, and suppose we temporarily delay evaluating g as S until
the following iteration when g̃ is computed. Instead of evaluating both functions
separately at S, we form the product two indeterminate functions, g(x, y) and
g̃(x, y), modulo the curve equation, and call it G(x, y). In fact, g would have
been multiplied by f and squared in the previous iteration, so that G(x, y) is



actually computed as

G(x, y) = g(x, y)2 · g̃(x, y) = (gx · x+ gy · y + g0)2 · (g̃x · x+ g̃y · y + g̃0)

=
4∑
i=0

Gxi · xi +
[ 3∑
i=0

Gxiy · xi
]
· y, (5)

where we reduce any higher powers of y via the curve equation. We could then
evaluateG(x, y) at S and multiplyG(S) by the Miller function f , so that delaying
the evaluation of g at S and the multiplication of f by g(S) avoided both types
of mismatched multiplications for one iteration. However, at this next iteration,
we now have many more type (i) multiplications to deal with. Namely, what
would have been 4 type (i) mismatches in total (2 for the evaluation of g at S
and likewise for the evaluation of ĝ at S), has now become 8 type (i) mismatches
(multiplying Gxiy by xiy and Gxi by xi above). At a first glance then, this idea
seems somewhat counterproductive. However, let us assume for now that we are
employing a sextic twist so that (δα, δβ) = (2, 3) and observe the new function
G evaluated at S = (Ŝxβ, Ŝyα), as

G(x, y) =
4∑
i=0

Gxi · Six · βi +
[ 3∑
i=0

Gxiy · Six · βi
]
· α =

δβ∑
j=0

( δα∑
i=0

Ĝj,i · αi
)
· βj ,

(6)

where each of the Ĝj,i are easily derived combinations of the Gxiy and Gxi
terms in (5). Importantly, we now have that G(x, y) has become a general
element of Fpk , so that performing the multiplication between f and G will fully
exploit a routine written to perform optimized multiplication over Fpk . More
importantly, we have only had to perform one full extension field multiplication
in two Miller iterations. In short, we delayed the multiplication between f and
g until g was built up into G (a product of g’s), a general element of Fpk , and
in doing so we saved a mismatched multiplication in Fpk . The price we pay for
this saving is the increased number of type (i) mismatched multiplications that
are required to evaluate G at S, as well as an increased number of standard Fpu
multiplications that are required to form the coefficients of G from g and ĝ. Our
goal becomes clear then; we wish to explore whether it is advantageous to spend
extra computations in order to achieve the savings offered by avoiding type (ii)
mismatches altogether.

In the following sections, we explore these trade-offs in detail. Specifically,
we consider delaying the multiplication between the g’s and the Miller function
f for an arbitrary number (N) of iterations, a process we refer to as N -delay.
We track the computational cost of N -delay and determine the optimum values
of N for implementations over a variety of embedding degrees. Before moving to
the next section, we make the following remarks.

Remark 5. Since we are forced to accept the presence of type (i) mismatches in
pairings, one possible solution to the problem described above would be to write



a specialized multiplication routine for the type (ii) mismatched multiplication
between the general element f and special element g, of Fpk . However, replacing
the full Fpk multiplication routine (that takes two general field elements as
inputs) with such a specialized routine means that, to some extent, we are
sacrificing the tricks that speed up general multiplications, such as the Karatsuba
and Toom-Cook methods. Such optimizations are the reason we build extension
fields up as towers of degree 2 and 3 sub-extensions, so we argue that avoiding
these optimizations is potentially counterproductive, instead favoring the N -
delay techniques herein.

Remark 6. The discussion in this section (and in the next) essentially describes
the technique of loop unrolling, which was first introduced into pairing
computations by Granger et al. [18], who merged iterations to exploit the sparsity
of g. Speedups were achieved in [18] by combining two consecutive iterations into
one merged iteration, in implementations over fields of characteristic three. This
technique was later used by Shirase et al. [30] in pairing implementations over
binary fields. To the best of the authors knowledge, this paper is the first to
describe a general algorithm for loop unrolling which merges any number of
iterations over large prime fields.

4 The Cost of N -delay

We let N -delay refer to the process of delaying the multiplication of the Miller
function f by consecutive function updates g, N times in a row. We make
note that N = 0 corresponds to the standard Miller routine which delays zero
multiplications between f and g, whilst N = 1 corresponds to the Miller routine
which delays one multiplication (combines two iterations), and so on, so that
in general N can be thought of as the number of times a multiplication by f
is delayed, whilst N + 1 is the number of iterations that are combined. The
aim of this section is to obtain an expression for the computational cost of N -
delay, in terms of N , so that we can determine the optimal N value for specific
implementations. To do this, we determine the cost of delaying a single, but
general iteration. That is, we write a general expression for the product of the n
different powers of g’s accumulated after n iterations, and use this to determine
the cost of updating this to the n + 1-th product. We then sum this cost from
n = 0 to n = N − 1 to obtain the entire cost of performing N -delay.

We let Gn(x, y) be the cumulative product of the first n indeterminate g(x, y)
functions, reduced modulo the curve equation, as

Gn(x, y) =
An∑
i=0

ai · xi · y +
Bn∑
i=0

bi · xi = Gna(x) · y +Gnb(x), (7)

where Gna(x) =
∑An
i=0 ai · xi and Gnb(x) =

∑Bn
i=0 bi · xi. Similarly, we define the

n-th Miller function update from (4) as

gn(x, y) = gnx · x+ gny · y + gn0 = gna · y + gnb(x), (8)



where gna = gny and gnb(x) = gnx · x + gn0 . The (n + 1)-th consecutive Miller
iteration would multiply the square of Gn(x, y) by the (n+ 1)-th Miller function
update, gn+1(x, y), as

Gn+1(x, y) =G2
n(x, y) · gn+1(x, y) =

(
Gna(x) · y +Gnb(x)

)2 · gn+1(x, y)

=
(
Gna(x)2C(x) + 2Gna(x)Gnb(x) · y +Gnb(x)2

)
· gn+1(x, y)

=
(
gn+1ah1(x) + gn+1b(x)h2(x)

)
· y +

(
gn+1b(x)h1(x) + gn+1ah3(x)

)
=
A(n+1)∑
i=0

âi · xi · y +
B(n+1)∑
i=0

b̂i · xi = Gn+1a(x) · y +Gn+1b(x), (9)

where h1(x) = Gna(x)2C(x) + Gnb(x)2 , h2(x) = 2Gna(x)Gnb(x), h3(x) =
2Gna(x)Gnb(x)C(x), and y2 was replaced with C(x) = x3 + ax + b. Paying
close attention to (9) allows us to determine the cost of obtaining Gn+1 from
Gn. We make the following observations.

– Observation 1. To determine the values of An+1 and Bn+1, (9) reveals that

An+1 = Max{deg(gn+1a) + deg(h1),deg(gn+1b) + deg(h2)}
= Max{2An + 3, 2Bn, An +Bn + 1},

and similarly

Bn+1 = Max{deg(gn+1b) + deg(h1),deg(gn+1a) + deg(h3)}
= Max{2An + 4, 2Bn + 1, An +Bn + 3}.

Since (A0, B0) = (0, 1), we always have that (An+1, Bn+1) = (2An+3, 2An+
4), from which it follows that

(An, Bn) = (3(2n − 1), 3(2n − 1) + 1). (10)

– Observation 2. The three necessary terms G2
na = (

∑An
i=0 ai · xi)2, G2

nb
=

(
∑Bn
i=0 bi ·xi)2 and 2GnaGnb = 2(

∑An
i=0 ai ·xi)(

∑Bn
i=0 bi ·xi) can be computed

using only field squarings as follows. Each of the a2
i terms in G2

na can be
computed first and used to compute (via a squaring) the remaining terms
of the form 2aiaj in G2

na , where i 6= j. In total, there are
∑An
i=0

∑i
j=0 =

(An + 1)(An + 2)/2 different aiaj combinations contributing to G2
na , so that

cost
[
G2
na ← Gna

]
= [(An + 1)(An + 2)/2]su. Identically, we have that

cost
[
G2
nb
← Gnb

]
= [(Bn + 1)(Bn + 2)/2]su. Lastly, each of the terms of

the form 2aibj in 2GnaGnb can be computed at the cost of a squaring using
the previously computed a2

i and b2j values. There are (An + 1)(Bn + 1) such
terms contributing to 2GnaGnb , so that cost

[
2GnaGnb ← {G2

na , G
2
nb
}
]

=



(An + 1)(Bn + 1)su. Importantly, we use (10) to give

cost
[
{G2

na , 2GnaGnb , G
2
nb
} ← {Gna , Gnb}

]
= cost

[
G2
na ← Gna

]
+cost

[
G2
nb
← Gnb

]
+ cost

[
2GnaGnb ← {G2

na , G
2
nb
}
]

=
[
(An + 1)(An + 2)/2 + (An + 1)(Bn + 1) + (Bn + 1)(Bn + 2)/2

]
su

= [3(3 · 2n − 1)(2n+1 − 1)Ω]mu. (11)

– Observation 3. Aside from additions, computing the three polynomials h1,
h2 and h3 from G2

na , 2GnaGnb , and G2
nb

requires multiplications by C only.
Since we are ignoring additions and assuming that multiplications by curve
constants are negligible, we assume that there is no extra cost associated in
these computations. That is,

cost
[
{h1, h2, h3} ← {G2

na , 2GnaGnb , G
2
nb
}
]

= 0. (12)

– Observation 4. The cost of multiplying G2
n by gn+1 is determined by

the cost of the required multiplications of the gna and gnb values, and
the polynomials h1, h2 and h3. Since gna = gny ∈ Fpu , multiplying a d-
degree polynomial by gna requires d + 1 multiplications in Fpu , and since
gnb = gnx · x + gn0 has gnx , gn0 ∈ Fpu , multiplying a d-degree polynomial
by gnb requires 2(d+ 1) Fpu-multiplications. There are four of these types of
multiplications required in (9).

(i) : cost
[
gn+1a · h1 ← {gn+1a , h1}

]
= (deg(h1) + 1)mu

(ii) : cost
[
gn+1b · h2 ← {gn+1b , h2}

]
= 2(deg(h2) + 1)mu

(iii) : cost
[
gn+1b · h1 ← {gn+1b , h1}

]
= 2(deg(h1) + 1)mu

(iv) : cost
[
gn+1a · h3 ← {gn+1a , h3}

]
= (deg(h2) + 1)mu

In the case of (iv), since h3 = h2 ·C, we save 3 multiplications by multiplying
gn+1a and h2 prior to multiplying by C. Thus, the total cost of obtaining
Gn+1 given G2

n and gn+1 is the combined costs of (i), (ii), (iii) and (iv) above,
which is

cost
[
Gn+1 ← {G2

n, gn+1}
]

= (3 · deg(h1) + 2 · deg(h2) + deg(h3) + 6)mu

= (3(2An + 3) + 3(An +Bn) + 3)mu

= (9An+3Bn + 15)mu = (36(2n − 1) + 18)mu, (13)

The cost of computing Gn+1 from Gn. We now collect all of the costs
calculated in (3), (11), (12) and (13) to determine the cost of computing Gn+1

from Gn, as

cost
[
Gn+1 ← Gn

]
= cost

[
Gn+1 ← {G2

n, gn+1}
]

+ cost
[
gn+1

]
+ cost

[
G2
n ← Gn

]
= cost

[
Gn+1 ← {G2

n, gn+1}
]

+ cost
[
gn+1

]
+ cost

[
{h1, h2, h3} ← {Gna , Gnb}

]
= cost

[
Gn+1 ← {G2

n, gn+1}
]

+ cost
[
gn+1

]
+ cost

[
{h1, h2, h3}

← {G2
na , 2GnaGnb , G

2
nb
}
]

+ cost
[
{G2

na , 2GnaGnb , G
2
nb
} ← {Gna , Gnb}

]
=
[
(36(2n − 1) + 18) + (m+Ωs) + 3(3 · 2n − 1)(2n+1 − 1)Ω

]
mu, (14)



The total cost of N-delay. Display (14) allows us to determine the number
of Fpu multiplications required to compute GN (x, y) from scratch, as follows.

cost
[
GN (x, y)

]
= cost

[
G0

]
+
N−1∑
n=0

cost
[
Gn+1 ← Gn

]
= (m+ sΩ)mu +

N−1∑
n=0

(36(2n − 1) + 21) + (m+Ωs) + (18(2n − 1) + 6)Ωmu

= [(N + 1)(m+ sΩ) + 3N(Ω − 6) + 3(2N − 1)((2N+1 − 3)Ω + 12)]mu. (15)

We note that the above cost also incorporates the cost of transforming the point
T into [2N+1]T , as these costs are accounted for in the multiples of (m+ sΩ)mu

(see (3)). The other computations we need to consider in an iteration involving
N -delay are those that occur when evaluatingGN (x, y) at the point S = (Sx, Sy).
Setting n = N into (7) reveals that N -delay will require the precomputation of
the set {Six, i = 1...BN}, and the set {Six · Sy, i = 0...AN}, each of which
will be multiplied by an element in Fpu . From Remark 3, we have that such a
multiplication costs em1, and since there are AN + BN + 1 such elements, we
have that

cost
[
GN (S)← GN (x, y)

]
= [AN +BN + 1]em1 = [6(2N − 1) + 2]em1. (16)

We combine (15) and (16) to obtain the total cost of N -delay as

cost
[
GN (S)

]
= cost

[
GN (S)← GN (x, y)

]
+ cost

[
GN (x, y)

]
=
[
6(2N − 1) + 2

]
em1 +

[
(N + 1)(m+ sΩ) + 3N(Ω − 6)

+ 3(2N − 1)((2N+1 − 3)Ω + 12)
]
mu + (1 + (N + 1)Ω)mk, (17)

where the (1 + (N + 1)Ω)mk accounts for the (N + 1) squarings of the Miller
function f , as well as the full field multiplication of f with GN (S) that occurs
after N -delay.

5 Implementing N -delay

The advantage of employing N -delay over the technique in [10] is the ease
at which a standard implementation of Miller’s algorithm can be updated
to incorporate N -delay. The routines for the point doublings/additions and
encapsulated line computations that are used in the standard version of Miller’s
algorithm are the same routines used in N -delay, so that this (existing) code is
not altered when employing N -delay. We refer to these two standard subroutines
as MillerDBL, which performs steps 3 and 4 in Algorithm 1, and MillerADD,
which performs steps 8 and 9 in Algorithm 1, both of which are the same
subroutines we call in Algorithm 2.

Since N -delay performs N + 1 squarings in the same iteration, we follow the
algorithm description in [10] and write the loop parameter in base 2N+1. Our



goal is to incorporate N -delay by injecting a new subroutine into Algorithm
1, and slightly tweaking the original Miller code to account for this alteration.
After calling MillerDBL, we call the new subroutine GetNewabArrays, which
transforms Gn into Gn+1, based on equation (9) and the four observations that
followed.

Algorithm 2 Miller N -delay
Input: R, S, N , m = (mlN−1...m1,m0)2N+1 , f[w]R for each unique non-zero w ∈
{mlN−1, ...,m1,m0}.

Output: fm,R(S)← f .

1: T ← R, f ← 1.
2: if mlN−1 6= 1 then
3: [gx, gy, g0, T ] = MillerADD(T, [mi]R).
4: f ← f · f[mi]R(S).
5: end if
6: for i = lN − 2 to 0 do
7: Compute [gx, gy, g0, T ] = MillerDBL(T ).
8: a(1)← gy, b(1)← g0, b(2)← gx.
9: An ← 0, Bn ← 1.

10: for i = 0 to N − 1 by 1 do
11: Compute [gx, gy, g0, T ] = MillerDBL(T ).
12: Compute a, b, An, Bn = GetNewabArrays(a, b, An, Bn, gx, gy, g0).
13: end for
14: Evaluate G = (a, b) at S.

15: f ← f2N+1
·G.

16: if mi 6= 0 then
17: Compute [gx, gy, g0, T ] = MillerADD(T, [mi]R).
18: f ← f · f[mi]R · (gx · Sx + gy · Sy + g0)
19: end if
20: end for
21: return f .

Since non-zero mi that appear in m = (ml−1...m1,m0)2N+1 can now take
values up to 2N+1 − 1, Algorithm 2 must account for the additions of [mi]R to
the point T . We follow the technique in [10] and adjust the step accordingly, by
including the precomputed function f[mi]R, with divisor div(f[mi]R) = mi(R)−
([mi]R)− (mi − 1)(O), into the addition product on line 18 of Algorithm 2.

6 Optimal N -delay

This section makes use of (17) to determine the value of N which gives the
lowest operation count for all even embedding degrees less than k = 50. To
obtain the m and s values described in (3) that are required in (17), we couple
the recommendations for optimal curve construction in [16] with the fastest



applicable explicit formulas for D = 1, 3 curves that admit high-degree twists in
[12]. For curves admitting only quadratic twists, we opt for the CM discriminant
D that facilitates the best ρ-value for the particular embedding degree (see [16]).
If these curves do not have D = 1 or D = 3, we use the best operation count
for general curves reported in [1] and [22]. For example, the maximal twist for
k = 10 is a quadratic twist, and since such twists are admitted on any curve,
we opt for Freeman’s curves [15] with optimum ρ = 1, rather than the D = 1
or D = 3 curves that achieve ρ = 1.5. We report the optimal N values for both
Ω = 0.8 and Ω = 1, although we make note that lesser values of Ω, such as those
stated in Remark 2, would be more likely to favor higher values of N , since lower
values of Ω give a greater weight to multiplications in the operation count, and
Fpk -multiplications are what N -delay avoids. Since the operation count given by
(17) is the total count (in terms of Fp-multiplications) for the equivalent of N+1
double-and-add iterations, the counts presented in Table 1 are given as counts
equivalent to one iteration of 0-delay (the standard Miller routine in Algorithm
1), and these counts are obtained by dividing the cost in (17) by N + 1. We are
reporting results for even embedding degrees that are not necessarily 3-smooth.
Thus we must extend the standard method of reporting multiplications in fields
of extension degree k = 2i3j as mk = 3i5j [23, 20, 12], this complexity being
a result of coupling Karatsuba multiplication with Toom-Cook multiplication,
the former allowing us to write m2c = 3mc, whilst the latter allows us to
write m3c = 5mc. Montgomery [28] extended Karatsuba-like multiplication
methods to polynomials (or extension degrees) of degrees 5, 6 and 7, achieving
m5c = 13mc, m6c = 17mc and m7c = 22mc respectively. We note that the
degree 6 result is of no use here, since it is more advantageous to build a six
degree extension as a combination of quadratic and cubic extensions. For higher
prime extension degrees, we use the more general result given by Weimerskirch
and Paar [32], who generalize the Karatsuba algorithm to arbitrary w-degree
extensions to give mwc = [w(w+ 1)/2]mc. The complexity of multiplications in
the field of extension degree k = 2e23e35e57e7 ·

∏
p
epi
i are reported in terms of

Fp-multiplications as

mk =
[
3e25e313e522e7 ·

t∏
i=1

(pi(pi + 1)/2)ei
]
m1, (18)

where the pi are the primes greater than 7 in the prime factorization of k. We
use (18) to give a fair and relative comparison across all embedding degrees, not
to overlook the substantial speed ups recently achieved by El Mrabet and Negre
for particular extension degrees [14].

For Miller-full pairings, N = 0 was optimal across all embedding degrees,
so we do not report the results here (the standard N = 0 operation counts in
the Miller-full setting for 3-smooth embedding degrees can be found in [12]).
Table 1 shows that Miller-lite pairings on curves with even embedding degrees
greater than k = 10 will always benefit from N -delay. Although N > 2 is never
optimal, it is still interesting to see that N = 2 is optimal in many instances.
Consider equation (6) which showed that, even after one delayed iterate, the



Ω = 1 (s = m) Ω = 0.8 (s = 0.8 m)

k D m, s Fpu ⊆ Fpe ⊂ Fpk N = 0 Optimal N N = 0 Optimal N
count count count

2 3 2, 7 Fp = Fp ⊂ Fp2 17 − 15 −
4 1 2, 8 Fp = Fp ⊂ Fp4 30 − 26.6 −
6 3 2, 7 Fp = Fp ⊂ Fp6 41 − 36.6 −
8 1 2, 8 Fp ⊂ Fp2 ⊂ Fp8 68 − 61 −
10 some 1, 11 Fp ⊂ Fp5 ⊂ Fp10 100 − 90 −
12 3 2, 7 Fp ⊂ Fp2 ⊂ Fp12 103 1 96.5 92.6 1 85.5
14 3 2, 7 Fp ⊂ Fp7 ⊂ Fp14 155 1 148 140.4 1 132.8
16 1 2, 8 Fp ⊂ Fp4 ⊂ Fp16 180 1 159.5 162.2 1 141.1
18 3 2, 7 Fp ⊂ Fp3 ⊂ Fp18 165 1 145.5 148.6 1 128.5
20 1 2, 8 Fp ⊂ Fp10 ⊂ Fp20 254 1 217.5 229 1 191.9

22 1 2, 8 Fp ⊂ Fp11 ⊂ Fp22 428 1 363 386.8 1 321.2
24 3 2, 7 Fp ⊂ Fp4 ⊂ Fp24 287 1 239.5 258.6 1 210.5
26 3 2, 7 Fp ⊂ Fp13 ⊂ Fp26 581 1 482.5 525 1 425.9
28 1 2, 8 Fp ⊂ Fp7 ⊂ Fp28 420 1 347 378.8 1 305.2
30 3 2, 7 Fp ⊂ Fp10 ⊂ Fp30 409 1 333.5 368.6 1 292.5

32 1 2, 8 Fp ⊂ Fp8 ⊂ Fp32 512 1 418.5 461.8 1 367.7
34 3 2, 7 Fp ⊂ Fp17 ⊂ Fp34 961 2 775.3 867.8 2 678.7
36 3 2, 7 Fp ⊂ Fp6 ⊂ Fp36 471 1 382.5 424.6 1 335.5
38 3 2, 7 Fp ⊂ Fp19 ⊂ Fp38 1187 2 936.7 1071.6 2 817.9
40 1 2, 8 Fp ⊂ Fp10 ⊂ Fp40 732 2 585.6 660.2 2 510.5

42 3 2, 7 Fp ⊂ Fp7 ⊂ Fp42 683 2 536.7 615.6 2 465.9
44 1 2, 8 Fp ⊂ Fp11 ⊂ Fp44 1220 2 916.3 1099.6 2 792.5
46 1 2, 8 Fp ⊂ Fp23 ⊂ Fp46 1712 2 1308.3 1544.8 2 1137.7
48 3 2, 7 Fp ⊂ Fp8 ⊂ Fp48 835 2 643.3 752.6 2 557.5
50 3 2, 7 Fp ⊂ Fp25 ⊂ Fp50 1073 1 881.5 970.2 1 778.1

Table 1. Optimal N values for Miller-lite pairings on different embedding degrees
k ≤ 50.

product of g’s becomes a general field element, i.e. #G1(Fpe) = k/e (refer to
Definition 1). Any further delay that occurs after the initial delay will actually
involve squaring both f and G1 (or Gn for n > 1) separately, which are both
general elements of Fpk , prior to multiplying them. One might intuitively guess
that multiplying f and G1 prior to performing the squaring might be preferred,
but clearly this is not the case for embedding degrees where N = 2 is optimal.
In the case of quadratic twists, this preferred delay is even more surprising since
the function updates g are already general elements of Fpk . In agreement with
[10], it becomes clear that for Miller-lite pairings where the difference between
the fields Fpu = Fp and Fpk is larger than in Miller-full pairings where Fpu = Fpe ,
it can be very advantageous to spend many extra computations in Fp in order
to delay one single (and most costly) Fpk -multiplication between f and G.
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A Magma Code

We provide a MAGMA implementation of N -delay (Algorithm 2) for illustrative
purposes. The code below is heavily condensed (with limited commenting)



due to space considerations. The function MillerNDelay can be called with
inputs R, S, as described in Section 2, the loop parameter m, the two curve
constants a and b on y2 = x3 + ax + b, the parameter N (for N -delay), and
the field K = Fpk that contains the coordinates of R and S. MillerNDelay
calls the function GetNewabArrays, that transforms the terms Gna and Gnb
into Gn+1a and Gn+1b , in accordance with the algebra in equation (9) and
the four observations that follow. Although the function GetNewabArrays is
optimized for general N , a real-world implementation would most likely be N -
specific, and hence much more simple, depending on the N suggested in Table
1. The function EvaluateLineProduct is called in the Miller loop to perform
the function evaluation of G at S (see line 14 of Algorithm 2). Lastly, the
Miller function calls two functions MillerDBL and MillerADD, which are not
provided since optimized versions are specific to the curve equation. We assume
MillerDBL takes the coordinates of T and the curve constants as inputs, and
returns the coefficients (gx, gy, g0) of the Miller doubling line function g. We
assume MillerADD takes the coordinates of T and R, and returns the coefficients
(gx, gy, g0) of the Miller addition line function g.

function EvaluateLineProduct(aArray, bArray, An, Bn, Sx, Sy) // Computes G(S)
SxVec:=[Sx^i: i in [1..Bn]]; SxSyVec:=[Sx^i*Sy: i in [0..An]];
G:=0; G+:=bArray[1]; for i:=0 to An do G+:=aArray[i+1]*SxSyVec[i+1]; end for;
for i:=1 to Bn do G+:=bArray[i+1]*SxVec[i]; end for; return G; end function;

function GetNewabArrays(aArray, bArray, An, Bn, gx, gy, g0, A, B) // Initialize Arrays
aSquaresArray:=[0: i in [0..An]]; bSquaresArray:=[0: i in [0..Bn]]; aaProductsArray:=[0: i in
[0..2*An]];
bbProductsArray:=[0: i in [0..2*Bn]]; abProductsArray:=[0: i in [0..(An+Bn)]]; h1Array:=[0: i
in [0..2*An+3]];
h2Array:= [0: i in [0..2*An+1]]; h3Array:=[0: i in [0..2*An+4]]; //Fill in aa, bb, and ab
products
for i:=0 to An by 1 do aSquaresArray[i+1]:=aArray[i+1]^2; end for;
for i:=0 to Bn by 1 do bSquaresArray[i+1]:=bArray[i+1]^2; end for;
for i:=0 to An by 1 do aaProductsArray[2*i+1]+:=aSquaresArray[i+1]; end for;
for i:=0 to Bn by 1 do bbProductsArray[2*i+1]+:=bSquaresArray[i+1]; end for;
for i:=1 to An by 1 do for j:=0 to (i-1) by 1 do

aaProductsArray[i+j+1] +:=
(aArray[i+1]+aArray[j+1])^2-aSquaresArray[i+1]-aSquaresArray[j+1];
end for; end for;
for i:=1 to Bn by 1 do for j:=0 to (i-1) by 1 do

bbProductsArray[i+j+1] +:=
(bArray[i+1]+bArray[j+1])^2-bSquaresArray[i+1]-bSquaresArray[j+1];
end for; end for;
for i:=0 to An by 1 do for j:=0 to Bn by 1 do

abProductsArray[i+j+1] +:=
(aArray[i+1]+bArray[j+1])^2-aSquaresArray[i+1]-bSquaresArray[j+1];
end for; end for; // Create h arrays
for i:=0 to (2*An) by 1 do h1Array[i+1]+:= B * aaProductsArray[i+1];
h1Array[i+2]+:= A * aaProductsArray[i+1]; h1Array[i+4]+:= aaProductsArray[i+1]; end
for;
for i:=0 to (2*Bn) by 1 do h1Array[i+1]+:= bbProductsArray[i+1]; end for;
for i:=0 to (An+Bn) by 1 do

h2Array[i+1]+:=abProductsArray[i+1]; h3Array[i+1]+:= B*abProductsArray[i+1];
h3Array[i+2]+:= A*abProductsArray[i+1]; h3Array[i+4]+:= abProductsArray[i+1]; end

for;
aArray:=[0: i in [0..2*An+3]]; bArray:=[0: i in [0..2*An+4]]; // Create and fill output
arrays
for i:=0 to (2*An+3) by 1 do aArray[i+1]+:=gy*h1Array[i+1]; end for;
for i:=0 to (An+Bn) by 1 do aArray[i+1]+:=g0*h2Array[i+1]; aArray[i+2]+:=gx*h2Array[i+1]; end for;
for i:=0 to (2*An+3) by 1 do bArray[i+1]+:=g0*h1Array[i+1]; bArray[i+2]+:=gx*h1Array[i+1]; end
for;
for i:=0 to (An+Bn+3) by 1 do bArray[i+1]+:=gy*h3Array[i+1]; end for;
An:= 2*An+3; Bn:= An+1; return aArray, bArray, An, Bn; end function;



function MillerNDelay(R,S,m, a, b,N, K)
Rx:=R[1]; Ry:=R[2]; Rz:=R[3]; Sx:=S[1]; Sy:=S[2]; RMultiplesMatrix:=[[Rx, Ry, Rz]]; // Precompute
R multiples
for i:=2 to (2^(N+1)-1) by 1 do iR:=i*R; RMultiplesMatrix:= Append(RMultiplesMatrix,[iR[1],iR[2],iR[3]]);
end for; // Precompute fR functions
fRAddVec:=[K!1]; addProduct:=fRAddVec[1]; gx, gy, g0, ptx, pty, ptz := MillerDBL(Rx, Ry, Rz,a,
b); addProduct*:= gx*Sx + gy*Sy + g0; fRAddVec:=Append(fRAddVec, addProduct);
for i:=3 to (2^(N+1)-1) by 1 do

ptx, pty, ptz, fAddValue := MillerADD(ptx, pty, ptz, Rx, Ry, Rz, Sx, Sy); addProduct*:=fAddValue;
fRAddVec:=Append(fRAddVec, addProduct); end for;

f:=1; B:= IntegerToSequence(m, 2^(N+1)); if B[#B] ne 1 then Rx,Ry,Rz,F:=
MillerADD(Rx,Ry,Rz,RMultiplesMatrix[B[#B]][1],RMultiplesMatrix[B[#B]][2],RMultiplesMatrix[B[#B]][3],Sx,Sy);

F:=F*fRAddVec[B[#B]]; f:=f*F; end if;
Tx:=Rx; Ty:=Ry; Tz:=Rz;
for i:=#B-1 to 1 by -1 do // START MILLER LOOP

gx, gy, g0,Tx,Ty,Tz := MillerDBL(Tx, Ty, Tz, a, b); aArray:=[gy]; bArray:=[g0, gx]; An:=0;
Bn:=1;

for i:=0 to (N-1) by 1 do gx, gy, g0,Tx,Ty,Tz:=MillerDBL(Tx,Ty,Tz,a, b);
aArray, bArray, An, Bn:= GetNewabArrays(aArray, bArray, An, Bn, gx, gy, g0, a, b); end

for;
G:=EvaluateLineProduct(aArray, bArray, An, Bn, Sx, Sy);
for i:=0 to N by 1 do f:=f^2; end for;
f:=f*G; if B[i] ne 0 then Tx, Ty, Tz, F:=

MillerADD(Tx,Ty,Tz,RMultiplesMatrix[B[i]][1],RMultiplesMatrix[B[i]][2],RMultiplesMatrix[B[i]][3],Sx,Sy);
F:=F*fRAddVec[B[i]]; f:=f*F; end if;

end for; return f; end function;


