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Abstract— This paper presents a technique for tracking
road edges in a panoramic image sequence. The major
contribution is that instead of unwarping the image to find
parallel lines representing the road edges, we choose to warp
the parallel groundplane lines into the image plane of the
equiangular panospheric camera (see video). Updating the
parameters of the line thus invelves searching a very small
number of pixels in the panoramic image, requiring consid-
erably less computation than unwarping. Results using real-
world images, including shadows, intersections and curves,
are presented.

I. INTRODUCTION

We are interested in the control of mobile vehicles in
semi-structured outdoor environments. In particular we are
interested in navigation using vision as much as possible,
since in environments such as building construction sites,
GPS may be unreliable. We also wish to work as much
as possible with the natural features of the environment,
rather than instrumenting it with markers or beacons.

Our approach is to establish a number of fundamental
behaviours or competencies which are required for useful
outdoor tasks. Previous work has focused on the problem
of vision-based homing [1] which will guide a mobile
robot to a particular location in a workspace based on
appearance. This paper is concerned with the problem of
driving along a roadway, using information only from a
panospheric camera.

The novel aspect of the work described in this paper is
that the panospheric image is not unwarped. Instead we
derive the equation of a curve in the image plane that
corresponds to a line in the groundplane, This curve has
two parameters: the angle of the line with respect to the
vehicle’s heading direction, and its horizontal offset from
the line. An iterative method is described to adjust these
parameters so as to bring the model curve and the observed
curve into alignment, giving the distance and orientation
o a line feature which could be used, for example, to
control a mobile robot,

The paper is organized as follows. The remainder of this
section discusses prior work in road segmentation and road
edge detection. Section II describes the experimental plat-
form for this work and our camera/mirror system. Section
TII derives the projection of a groundplane line into the
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Fig. 1. The experimemtal platform. Note the omnidirectional camera
mounted over the front wheels and the box at the rear which houses the
control and computer system.,

image plane, and Section 1V describes a gradient based
method to adjust line parameters to fit an observation. In
Section V we present results from images obtained during
experimentation and finally, Section VI concludes.

A. Prior work

Road-following using vision is a relatively well devel-
oped field of research with several examples of vehicles
capable of traversing thousands of kilometers across the
roads of Europe[2} and America [3]. Here we briefly
overview some of the image-processing techniques used
for road following. For a more complete overview of
vision in mobile robots refer to [4], and for road following
in general [5).

Early research focused on gradient edge detection to
find the road’s boundaries, for example in [6). However,

‘these techniques are very sensitive to noise in the image,
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caused by, for example, dirt or shadows on the roadway.

Dickmanns made the combination of the ‘Gestalt’ idea
with a 4D-approach, the core of his expectation driven
visual servoing approach, and used a geometric model for
the road’s shape to constrain the search field for the road’s
edges [7]. Crisman tested a Gaussian colour model for



the road’s appearance, combined with a geometric model
for roads and intersections [R], which handles shadows
very well, and can work on both highways and country
roads. Other techniques used in this early study include
the multi-resolution approach, nearest mean clustering and
a sequential search strategy.

Broggi combined a world-image plane mapping with
a template of the road’s shape for the purpose of image
enhancement, and a directional edge detector with his-
togramming techniques for the selection of a threshold to
segment the road’s surface in a colour image [9]. Kaske,
Wolf and Husson combined statistical criteria (like energy,
contrast, homogeneity and entropy)} with a road model
(a hyperbolic curve in the image plane), a local extrema
scarch to constrain the search area, and a chi-square fitting
of the curve estimation to the observed curve, but admitted
that the uncorrelated approach between the two road edges
can lead to stability problems [10].

Many of the systems discussed so far use multiple
cameras 10 monitor and react to the vehicle’s surround-
ings. Omnidirectional vision provides a panospheric view
of the environment and thus can potentially provide a
contro} system with more complete information, aibeit

at a reduced resolution when compared to monocular -

cameras. To date, there are few road (or edge) follow-
ing systems using panospheric camera’s. Gaspar et al,
-[11] have experimented on a robot operating in corridor
environments and demonstrate wall-following behaviours
based upon an analysis of the unwrapped panospheric
image (in fact they unwrap the image to a birds-eye, plan
view of the environment). Das et al. [12] use a technique
similar to Horswil’s range from height in image technique
[13] to reconstruct the orientation and distance to walls
in the environment. Chahl and Srinivasan [14] use the
ego-motion of the camera to estimate range based on an
iterative, optic flow method.

The contribution of our work is to model a line in the
environment in the image plane, without unwrapping the
panospheric image. We hope to use this in a roadfedge
following behaviour in our mobile robot.

II. THE PLATFORM

The experimental platform is a Toro ride-on mower
which has been retro-fitted with actuators, a control sys-
tem, and a computer, enabling control over the vehicle’s
operations. All control and computing occurs on-board
and the vehicle is fitted with an array of sensors including
odometry, differential GPS, a magnetometer, a laser range-
finder and an omnidirectional camera; see Figure 1 for a
photograph of the vehicle.

A. Camera system

The camera used is from EyeSee 360. The design of
this mirror is such that each pixel in the image spans an
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equal angle irrespective of its distance from the centre
of the image — an equiangular mirror. The details of its
design are given in [15]. This mirror is slightly different
in shape to that of [16], however for the purposes of this
experiment, the mirror shape given in [16] is used as it
can be described with a closed form solution rather than
the numerical form required for the exact shape. For an
illustration of the geometry of equiangular mirror optics
refer to Figure 2.

The equation describing the surface of such mirrors is

[16}: La
(L) — cos [&iﬁl o
o 2
where the parameters are defined with reference to Figure
2. o is the elevation gain, see (6).

For our system, the mirror was designed to operate with
ro = l4cm with an o value of 11. However, because our
mobile robot operates predominately outdoors, we have
had to reduce the field of view of the mirror and in the
process moved the camera closer to the mirror (reducing
o} in order to reduce the effect of camera saturation from
sunlight. This in effect reduces the angular magnification
¢ and can have an effect on the constancy of a at high
angular elevations [16]. However, o remains constant over
most of the angular range of the mirror [16],

The panospheric camera model has a number of param-
eters (ry, ¢, @ and /) that must be identified. To determine
these parameters, we gathered a series of images of a
red road cone at specific distances from the camera and
determined the comresponding radial distance from the
centre of the image (relying on the flat-earth assumption
(13D

Using the geometry of the system, we created an esti-
mate of groundplane range given a radial pixel distance.
This is given by equation 2:

72 [cos (2052)] 7 ing

+ [h +r, [cos (ﬂlj—“l)] _]%} tan(a6 + ¢)
)]

where the parameters are defined with reference to Figure
2 and R refers to the range estimate (i.e. d; +d,). The
variable @ is given: by can be found given knowledge
of the physical size of the CCD, the outside diameter of
the mirror, the size of the image (in pixels), and the radial
pixel distance. For our system this relationship is described
by:

R =

6 = arctan [w] 3)
f

where g refers to the radial pixel distance from the centre

of the image (measured in pixels) and p refers to the pixel

pitch (pixels are assumed to be square).
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Fig. 2. Geometry of image formation, side view, showing the mirror
and perspective camera.

Parameter Value

o 0.0395m

h 1.19m

o 2.74

¢ 0.0992rad
TABLE]

PARAMETER VALUES AS DETERMINED USING FMINSEARCH IN

MATLAR.

By maiching the range estimate with the actual mea-
sured range, we were able o determine the camera sys-
temn parameters ry, ¢, & and s Numerical optimisation
{Matlab’s fminsearch) was used to adjust the imag-
ing parameters so that image plane radial distance and
measured groundplane radial distance corresponded. The
resulting parameters values are shown in Table 1.

II1. MAPPING A GROUNDLINE TO THE IMAGE PLANE

We consider a line in the ground plane expressed in
parametric form

m+c )

(5

y
x

with coordinates defined as per Figure 3. The angle
between the line and the vehicle’s heading direction is
p where

m=tanp
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vehicle

Fig. 3. Plan view of vehicle and line in the groundplane.

The planar distance from any point on the line to our
origin, at the camera, is

d=+2+y?

where d = d, +d,. However, we make the simplifying
assumption that d, = 0.

The elevation angle to the groundline point, from the
mirror, is
1@

h
where h = h. +r, and again we make a simplifying
assumption that the ray from the camera intersects the
mirror at a constant height, ie. r = r, V0. !. The bearing
angle to the point is

£=tan_

b

ﬁ:tan_l

The ray enters the camera at an angle @ from the optical
axis which is related to the elevation angle by

(6

where o is the elevation gain, and with ¢ is a mirror
characteristic.
The radial distance of the point on the image plane is

e=af+¢

g= ftan@

where f is the lens

focal length, and the image plane
coordinates are . :

sin

u = gl ﬁ+u0
cos

v = i——ﬁ+v0
P

where p is the pixel pitch and {u,,v,) is the image
plane coordinate of the principal point. Combining these
11n fact it will vary by the height of mirror which is only a couple of

cm and is small compared to the mounting height of the camera above
the roadway ‘
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Fig. 4. Equations of groundplane lines in the image plane.

equations we finally obtain the image plane curve as given
by equations (7) and (8).

1V. FITTING THE MODEL TO OBSERVATION

With respect to the vehicle, we can consider two road
edges, each defined in terms of the parameters (m, ¢). The
task is to estimate the values (r7, é) given an observed
edge, possibly incomplete. An example image, and an
estimated line are shown in Figure 3.

We take an initial guess of road edge parameters
(myg, cg) and adjust them according to the error between
observed and estimated image plane curves. To reduce
computation we perform a one-dimensional search along
horizontal tines looking for the road edge.

The horizontal coordinate of the estimated line is given

by
u= f(r,mc)
and we can write
du du
Au,= —| Am+ — A
4 dm|; * de; ¢

which describes the displacement between prediction and
measurement in terms of the derivative of the imaging
function, which we can derive, and the change in road
edge parameters. In order to uniquely identify (m, ¢) we
need at least two equations but in our approach we use
a least squares estimate based on the results from many
search lines. We can write

du du
Auy amll @1
Au S du dit
2 | dmlz del2 Am
: - : : Ac
du du
Buy %lN El)v

which we can solve using a matrix pseudo inverse.

We compute Au, by the measured displacement be-
tween prediction and measurement. This displacement
is calculated by searching outwards along each of the
horizontal lines for the point with the sharpest drop/rise in
intensity, multiplied by a value of ‘non-roadness’, which
is calculated by the pixel’s colour using a colour model of
the road. Thus, we are looking for edges in intensity that
according to their colour don’t seem to be part of the road.
In practice we would expect these displacements to be
noisy and the least squares estimate will deal adequately
with this. There are also outlier points due to lighting
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artifacts, most importantly shadows. We employ a simple
filter to eliminate these by rejecting all Au; that lie more
than 1.5¢ from the mean. More complex robust estimation
techniques could be applied but this simple rule has
been found to work well in practice. We then adjust the
roadedge parameters

me m, +Am
Gy = G + Ac
V. RESULTS

Our technique was tested under real-world conditions
with images from a white concrete road, surrounded
by grass. The road’s estimated edges were bootstrapped
assuming the camera is located at the centre of the road,
looking straight ahead, The estimated edges (shown as
lines in the figures), along with the detected edge points
{shown as circles} were overlayed on the test images. One
intersection and some intense shadows were tested and the
road’s edges were successfully extracted.

In figure 5, we tested our technique for the most simple
case, a straight road with few artifacts. The camera’s
position is to the left of the road’s centre, looking to
the left. After 4 iterations for the left edge and 3 for
the right one, our technique has converged. In figure 6,
the vehicle encounters an intersection coming from the
right-hand side. For the left edge, we see how at the
section that the road forks, two of the three edge points
are dropped as outliers, thus not affecting the correct
detection of the edge. Even more impressively, for the
right edge, 4 points are dropped as outliers, but it takes 21
iterations to stabilize the edge’s location. In figure 7 we try
a road scene with partial shadow coverage. Despite a few
mis-detections and outliers on both sides , the edges are
detected with only minimum error. In figure 8, with much
stronger shadows and some bright areas outside the road
to the right, we see how the right edge stabilizes off the
real edge after 21 iterations, with several mis-detections
and outliers. The left edge however is detected correctly
and can be used for pose estimation. OQur most impressive
result appears in image 9, where almost the entire road
in our field of view is covered by strong shadows. Both
edges are extracted accurately after few iterations, despite
some mis-detections. ‘

To sum up, we see that our technique stabilized accu-
rately in almost all of the cases; also, for quite inaccurate



bootstrapping, like in image 5, we see that our technique
converged robustly. Partial failures were due to very
difficult conditions, particularly in cases with strong, thin
shadows, leading to mis-detections that affected the edge’s
COnVCI‘gCBCC. .

However, there are limitations to the detection’s robust-
ness. Completely random bootstrapping would not guar-
antee global convergence; the left edge could be attracted
to the footpath to the left, if bootstrapped close enough
to it. This problem is solved if we make the assumption
that the road is roughly in front of the vehicle, which is
pointed approximately in the correct direction. Another
limitation is the road’s curvature. Our vehicle’s maximum
speed is less than 3ms™!, thus it’s safe to limit the region
of interest to 8m ahead. In this short road segment, we
can ignore the road’s curvature and assume it’s a straight
segment. But for road’s with greater curvature, or if we
were to increase the roi’s outer radius, curvature would
have to be taken into account. :

V1. CONCLUSION

This paper has presented a technique for tracking road
edges directly in the image plane of an equiangular
panospheric camera, that is, without requiring the image
to be unwarped. Instead we derived the equation of a
curve in the image plane that corresponds to a line in the
groundplane. This curve has two parameters which are
the angle of the line with respect to the vehicle’s heading
direction, and its horizontal offset from the kne. An
iterative method was described to adjust these parameters
so as to bring the model curve and the observed curve into
alignment. Resuits using real-world images were presented
and show considerable robustness to real-world artifacts
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