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Absfracf-This paper presents a technique for tracking 
road edges in a panoramic image sequence. The major 
contribution is that instead of unwarping the image to find 
parallel lines representing the road edges, we choose to warp 
the parallel groundplane lines into the image plane of the 
equiangular panospheric camera (see *ideo). Updating the 
parameters of the line thus involves searching a very small 
number of pixels in the panoramic image, requiring consid- 
erably less computation than unwarping. Results using real- 
world images, including shadows, intersections and curves, 
are presented. 

I. INTRODUCTION 
We are interested in the control of mobile vehicles in 

semi-structured outdoor environments. In paaicular we are 
interested in navigation using vision as much as possible, 
since in environments such as building construction sites, 
GPS may be unreliable. We also wish to work as much 
as possible with the natural features of the environment, 
rather than instrumenting it with markers or beacons. 

Our approach is to establish a number of fundamental 
behaviours or competencies which are required for useful 
outdoor tasks. Previous work has focused on the problem 
of vision-based homing [I]  which will guide a mobile 
robot to a particular location in a workspace based on 
appearance. This paper is concerned with the problem of 
driving along a roadway, using information only from a 
panospheric camera. 

The novel aspect of the work described in this paper is 
that the panospheric image is not unwarped. Instead we 
derive the equation of a curve in the image plane that 
corresponds to a line in the groundplane. This curve has 
two parameters: the angle of the line with respect to the 
vehicle’s heading direction, and its horizontal offset from 
the line. An iterative method is described to adjust these 
parameters so as to bring the model curve and the observed 
curve into alignment, giving the distance and orientation 
to a line feature which could be used, for example, to 
control a mobile robot. 

The paper is organized as follows. The remainder of this 
section discusses prior work in road segmentation and road 
edge detection. Section Il describes the experimental plat- 
form for this work and our camerdmirror system. Section 
III derives the projection of a groundplane line into the 

Fig. 1. The experimental platform. Note the omnidirectional camera 
mounted over the front wheels and the box at the re- which houses the 
control and computer system. 

image plane, and Section IV describes a gradient based 
method to adjust line parameters to fit an observation. In 
Section V we present results from images obtained during 
experimentation and finally, Section VI concludes. 

A. Prior work 
Road-following using vision is a relatively well devel- 

oped field of research with several examples of vehicles 
capable of traversing thousands of kilometers across the 
roads of Europe[2] and America [3]. Here we briefly 
overview some of the image-processing techniques used 
for road following. For a more complete overview of 
vision in mobile robots refer to [4], and for road following 
in general [ 5 ] .  

Early research focused on gradient edge detection to 
find the road‘s boundaries, for example in [6]. However, 
these techniques are very sensitive tu noise in the image, 
caused by, for example, dirt or shadows on the roadway. 

Dickmanns made the combination of the ‘Gestalt’ idea 
with a 4D-approacb, the core of his expectation driven 
visual servoing approach, and used a geometric model for 
the road’s shape to constrain the search field for the road‘s 
edges [7]. Crisman tested a Gaussian colour model for 
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the road’s appearance, combined with a geometric model 
for roads and intersections [SI, which handles shadows 
very well, and can work on both highways and country 
roads. Other techniques used in this early study include 
the multi-resolution approach, nearest mean clustering and 
a sequential search strategy. 

Broggi combined a world-image plane mapping with 
a template of the road’s shape for the purpose of image 
enhancement, and a directional edge detector with his- 
togramming techniques for the selection of a threshold to 
segment the road’s surface in a colour image 191. Kaske, 
Wolf and Husson combined statistical criteria (like energy, 
contrast, homogeneity and entropy) with a road model 
(a hyperbolic curve in the image plane), a local extrema 
search to constrain the search area, and a chi-square fitting 
of the curve estimation to the observed curve, but admitted 
that the uncorrelated approach between the two road edges 
can lead to stability problems [IO]. 

Many of the systems discussed so far use multiple 
cameras to monitor and react to the vehicle’s surround- 
ings. Omnidirectional vision provides a panospheric view 
of the environment and thus can potentially provide a 
control system with more complete information, albeit 
at a reduced resolution when compared to monocular 
cameras. To date, there are few road (or edge) follow- 
ing systems using panospheric camera’s. Gaspar et al, 
[ l l ]  have experimented on a robot operating in corridor 
environments and demonstrate wall-following behaviours 
based upon an anaIysis of the unwrapped panospheric 
image (in fact they unwrap the image to a birds-eye, plan 
view of the environment). Das et al. [12] use a technique 
similar to Horswil’s range from height in image technique 
[13] to reconstruct the orientation and distance to walls 
in the environment. Chahl and Srinivasan [I41 use the 
ego-motion of the camera to estimate range based on an 
iterative, optic Row method. 

The contribution of our work is to model a line in the 
environment in the image plane, without unwrapping the 
panospheric image. We hope to use this in a road/edge 
following behaviour in our mobile robot. 

11. THE PLATFORM 

The experimental platform is a Toro ride-on mower 
which has been retro-fitted with actuators, a control sys- 
tem, and a computer, enabling control over the vehicle’s 
operations. All control and computing occurs on-board 
and the vehicle is fitted with an array of sensors including 
odometry, differential GPS, a magnetometer, a laser range- 
finder and an omnidirectional camera; see Figure 1 for a 
photograph of the vehicle. 

A. Camera system 

The camera used is from EyeSee 360. The design of 
this mirror is such that each pixel in the image spans an 

equal angle irrespective of its distance from the centre 
of the image - an equiangular minor. The details of its 
design are given in 1151. This mirror is slightly different 
in shape to that of [16], however for the purposes of this 
experiment, the mirror shape given in [16] is used as it 
can be described with a closed form solution rather than 
the numerical form required for the exact shape. For an 
illustration of the geometry of equiangular mirror optics 
refer to Figure 2. 

The equation describing the surface of such mirrors is 

where the parameters are defined with reference to Figure 
2. a is the elevation gain, see (6). 

For our system, the mirror was designed to operate with 
r, = 14cm with an a value of 11 .  However, because our 
mobile robot operates predominately outdoors, we have 
had to reduce the field of view of the mirror and in the 
process moved the camera closer to the &or (reducing 
ro) in order to reduce the effect of camera saturation from 
sunlight. This in effect reduces the angular magnification 
a and can have an effect on the constancy of a at high 
angular elevations [16]. However, a remains constant over 
most of the angular range of the mirror 1161. 

The panospheric camera model has a number of param- 
eters (ro, @, a and h)  that must be identified. To determine 
these parameters, we gathered a series of images of a 
red road cone at specific distances from the camera and 
determined the corresponding radial distance from the 
centre of the image (relying on the flat-earth assumption 

Using the geometry of the system, we created an esti- 
mate of groundplane range given a radial pixel distance. 
This is given by equation 2: 

1131) 

where the parameters are defined with reference to Figure 
2 and l? refers to the range estimate (i.e. d,  +dJ. The 
variable 8 is given: by can be found given knowledge 
of the physical size of the CCD, the outside diameter of 
the mirror, the size of the image (in pixels), and the radial 
pixel distance. For our system this relationship is described 
by: 

e=arctan[t] S X P  
(3) 

where g refers to the radial pixel distance from the centre 
of the image (measured in pixels) and p refers to the pixel 
pitch (pixels are assumed to be square). 
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Fig. 2. 
and perspective camera. 

Geomeuy of image formation, side view, showing the mirror 

TABLE I 
PARAMETER VALUES A S  DETERMINEDUSING F M I N S E A R C H  IN 

MATLAB. 

By matching the range estimate with the actual mea- 
sured range, we were able to determine the camera sys- 
tem parameters ro, $, a: and h. Numerical optimisation 
(Matlab's fminsearch) was used to adjust the imag- 
ing parameters so that image plane radial distance and 
measured groundplane radial distance corresponded. The 
resulting parameters values are shown in Table I. 

111. MAPPING A GROUNDLINE TO THE IMAGE PLANE 

We consider a line in the ground plane expressed in 
parametric form 

y = mt+c (4) 
X = f  ( 5 )  

with coordinates defined as per Figure 3. The angle 
between the line and the vehicle's heading direction is 
p where 

m = tanp 

Fig. 3. Plan view of vehicle and line in the groundplane. 

The planar distance from any point on the line to our 
origin, at the camera, is 

d = m  

where d = d, + d2. However, we make the simplifying 
assumption that d, = 0. 

The elevation angle to the groundline point, from the 
mirror. is 

where h = h, + ro and again we make a simplifying 
assumption that the ray from the camera intersects the 
mirror at a constant height, ie. r = rove.  The bearing 
angle to the point is 

The ray enters the camera at an angle Q from the optical 
axis which is related to the elevation angle by 

E=aQ+@ (6) 

where a is the elevation gain, and with 41 is a mirror 
characteristic. 

The radial distance of the point on the image plane is 

s = f t m e  

where f is the lens focal length, and the image plane 
coordinates are 

where p is the pixel pitch and (uo, vo) is the image 
plane coordinate of the principal point. Combining these 

'In fact it  will vary by the height oi mirror which is only a couple of 
cm and is small compared to the mounting height ai the camera above 
the roadway 

1332 



Fig. 4. Equations of gmundplane lines in the image plane. 

equations we finally obtain the image plane curve as given 
by equations (7) and (8). 

Iv. FITTING THE MODEL TO OBSERVATION 

With respect to the vehicle, we can consider two mad 
edges, each defined in terms of the parameters (m,  c ) .  The 
task is to estimate the values ( f i ,  t) given an observed 
edge, possibly incomplete. An example image, and an 
estimated line are shown in Figure 5. 

We take an initial guess of road edge parameters 
(mo,  co) and adjust them according to the ermr between 
observed and estimated image plane curves. To reduce 
computation we perform a one-dimensional search along 
horizontal lines looking for the road edge. 

The horizontal coordinate of the estimated line is given 
by 

= f ( t , m , c )  

and we can write 

which describes the displacement between prediction and 
measurement in terms of the derivative of the imaging 
function, which we can derive, and the change in road 
edge parameters. In order to uniquely identify (m,  c) we 
need at least two equations but in our approach we use 
a least squares estimate based on the results from many 
search limes. We can write 

which we can solve using a matrix pseudo inverse. 
We compute Au, by the measured displacement be- 

tween prediction and measurement. This displacement 
is calculated by searching outwards along each of the 
horizontal lines for the point with the sharpest dmplrise in 
intensity, multiplied by a value of ‘non-roadness’, which 
is calculated by the pixel’s colour using a colour model of 
the road. Thus, we are looking for edges in intensity that 
according to their colour don’t seem to be part of the road. 
In practice we would expect these displacements to be 
noisy and the least squares estimate will deal adequately 
with this. There are also outlier points due to lighting 

artifacts, most impoaantly shadows. We employ a simple 
filter to eliminate these by rejecting all Aui that lie more 
than 1 So from the mean. More complex robust estimation 
techniques could be applied but this.simple rule has 
been found to work well in practice. We then adjust the 
roadedge parameters 

mk+l = mk+Am 
ck+, = ck+Ac 

V. RESULTS 

Our technique was tested under real-world conditions 
with images from a white concrete road, surrounded 
by grass. The road’s estimated edges were bootstrapped 
assuming the camera is located at the centre of the road, 
looking straight ahead. The estimated edges (shown as 
lines in the figures), along with the detected edge points 
(shown as circles) were overlayed on the test images. One 
intersection and some intense shadows were tested and the 
road‘s edges were successfully extracted. 

In figure 5, we tested our technique for the most simple 
case, a straight road with few artifacts. The camera’s 
position is to the left of the road’s centre, looking to 
the left. After 4 iterations for the left edge and 3 for 
the right one, our technique has converged. In figure 6, 
the vehicle encounters an intersection coming from the 
right-hand side. For the left edge, we see how at the 
section that the road forks, two of the three edge points 
are dropped as outliers, thus not affecting the correct 
detection of the edge. Even more impressively, for the 
right edge, 4 points are dropped as outliers, but it takes 21 
iterations to stabilize the edge’s location. In figure 7 we try 
a road scene with partial shadow coverage. Despite a few 
mis-detections and outliers on both sides , the edges are 
detected with only minimum error. In figure 8, with much 
stronger shadows and some bright m a s  outside the road 
to the right, we see how the right edge stabilizes off the 
real edge after 21 iterations, with several mis-detections 
and outliers. The left edge however is detected correctly 
and can be used for pose estimation. Our most impressive 
result appears in image 9, where almost the entire road 
in our field of view is covered by strong shadows. Both 
edges are extracted accurately after few iterations, despite 
some mis-detections. 

To sum up, we see that our technique stabilized accu- 
rately in almost all of the cases; also, for quite inaccurate 
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bootstrapping, like in image 5, we see that our technique 
converged robustly. Partial failures were due to very 
difficult conditions, particularly in cases with strong, thin 
shadows, leading to mis-detections that affected the edge’s 
convergence. 

However, there are limitations to the detection’s rohust- 
ness. Completely random bootstrapping would not guar- 
antee global convergence; the left edge could he attracted 
to the footpath to the left, if bootstrapped close enough 
to it. This problem is solved if we make the assumption 
that the road is roughly in front of the vehicle, which is 
pointed approximately in the correct direction. Another 
limitation is the road’s curvature. Our vehicle’s maximum 
speed is less than 3 ms-’, thus it’s safe to limit the region 
of interest to 8m ahead. In this short road segment, we 
can ignore the road‘s curvature and assume it’s a straight 
segment. But for mad’s with greater curvature, or if we 
were to increase the roi’s outer radius, curyature would 
have to he taken into account. 

VI. CONCLUSION 

This paper has presented a technique for tracking road 
edges directly in the image plane of an equiangular 
panospheric camera, that is, without requiring the image 
to be unwarped. Instead we derived the equation of a 
curve in the image plane that corresponds to a line in the 
groundplane. This curve has two parameters which are 
the angle of the line with respect to the vehicle’s heading 
direction, and its horizontal offset from the line. An 
iterative method was described to adjust these parameters 
so as to bling the model curve and the observed curve into 
alignment. Results using real-world images were presented 
and show considerable robustness to real-world artifacts 
such as shadow~e&J,+@+yf&&ENTs 
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