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Abstract

VMSCRIPT is a scripting language designed to allow
small programs to be compiled for a range of generated tiny
virtual machines, suitable for sensor network devices. The
VMSCRIPT compiler is an optimising compiler designed to
allow quick re-targeting, based on a template, code rewrit-
ing model. A compiler backend can be specified at the same
time as a virtual machine, with the compiler reading the
specification and using it as a code generator.

1. Introduction

Many experimental sensor networks are designed to be
essentially homogeneous, with identical sensor devices con-
necting to perhaps a single gateway. In many cases, each
node of the sensor network runs an identical program. How-
ever, commercially deployed sensor networks can be ex-
pected to be heterogeneous, for reasons of network life, ar-
chitectural issues and changing use of the environment the
network is part of. The broad motivation behind the work
described is to develop a software engineering stack that al-
lows application programmers to develop efficient applica-
tion programs, independent of the precise structure of the
sensor network that will host them.

As part of this aim, a technique of generating families
of virtual machines (VMs), suitable for hosting programs
in a heterogeneous environment has been developed.[5] We
have completed an initial implementation that allows us to
run programs on a Fleck.[6] The target virtual machines
can differ greatly in terms of instruction set, storage man-
agement and other features, ranging from minimal systems
that support a handful of instructions and pieces of data
to garbage-collected heaps. A specific feature of this ap-
proach is that subsets of a specification can be generated,
allowing families of related VMs to be generated. This flex-
ibility allows experimentation (either by a human or a ma-
chine) in finding the right mix of generic and environment-
and platform-specific features for an environment. The ex-
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Figure 1. Overview of VMSCRIPT Tools and
Objects

treme flexibility of the generated virtual machines results in
different orientation to the Maté/Bombilla/TinyScript pro-
gramming model.[3]

This paper presents the next step of this work, a com-
piler for a simple scripting language, VMSCRIPT, that can
be used to generate efficient byte code for the broad class of
virtual machines that can be generated. When specifying a
VM, the designer supplies a description to a generator. An
extension to the description allows the designer to also de-
scribe the instruction sequences that will implement a small
number of basic operations. Ideally, specifying an accept-
ably efficient compiler for a virtual machine should take no
more effort than specifying the virtual machine itself.

Figure 1 shows the various VMSCRIPT-related tools and
objects.

2. The Compiler

An initial version of the VMSCRIPT compiler simply re-
lied on the stack architecture of the generated VMs and
generated code based on a simple parse tree traversal and
templating process. While correct, the generated programs
could hardly be described as efficient and a rewrite was un-
dertaken to allow more sophisticated analysis and code gen-



<template>
<cost domain="size"

priority="1" cost="2"/>
<pattern>

<get source="2" target="?Mul"/>
<op type="multiply"

arg1="?Source:integer"
arg2="?Mul" output="?Target"/>

</pattern>
<transform>

<acquire source="?Source"/>
<opcode code="dup"/>
<opcode code="add"/>
<place output="?Target"/>

</transform>
<template>

Figure 2. Example Code Generation Template

eration. The compiler now uses a number of compilation
techniques, derived from the extensive literature on compil-
ers, such as intermediate representation, abstract interpreta-
tion and single static assignment form to globally analyse
an input program and produce optimal code.[4, 1, 2]

A key feature of the IR chosen for VMSCRIPT is the
need to provide support for easy specification of multiple
targets. To allow this, a relatively small set of intermedi-
ate forms are permitted, something the simplicity of VM-
SCRIPT allows. Despite the generated virtual machines be-
ing stack-based, named temporary variables are used in the
intermediate form, since these are easier to manipulate dur-
ing most operations, with stack mapping occurring at code
generation.[7]

Abstract interpretation is used in a number of optimisa-
tions in the compiler: type inference, stack estimation, con-
stant propagation and dead code removal.

2.1. Code Generation

Peephole optimsation at several levels and code genera-
tion uses a uniform rewriting strategy.[8] The compiler uses
techniques inspired by logic programming.[9] Transforma-
tions are encoded using logical variables. Any input that
unifies with the input pattern is transformed into the cor-
responding output pattern. Sequences of arbitrary interme-
diate representation code are repeatedly replaced by more
basic IR sequences until just ground forms that can be di-
rectly translated into assembly, remain. Figure 2 shows an
example code generation template, in this case one which
generates special case code for multiplication by two. Vir-
tual machine subsets are handled by ignoring templates that
would generate instructions or store references that are not
present in the subset.

The IR uses temporary variables instead of stack posi-
tions for intermediate values. During code generation, the
compiler tracks the stack position of temporary variables,
which can then be used with the special Place and Acquire
IRs to generate stack manipulation sequences.

3. Conclusions and Further Work

The VMSCRIPT compiler is a very flexible compiler for
generated virtual machines. In order to use the compiler
with a virtual machine, approximately 45–60 simple rewrit-
ing templates need to be specified; A typical generated vir-
tual machine will have some 30–40 instructions. The tem-
plates can be incrementally added to, allowing a repository
of optimal sequences to be built up over time.

There are a number of parts of the compiler that can be
made more sophisticated: the handling of ambiguous types,
stack estimation techniques, code generation cost analysis
and constant propagation cost analysis.
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