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Abstract 
 

This paper presents research that is being 
conducted by the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) with the 
aim of investigating the use of wireless sensor 
networks for automated livestock monitoring and 
control.  It is difficult to achieve practical and reliable 
cattle monitoring with current conventional 
technologies due to challenges such as large grazing 
areas of cattle, long time periods of data sampling, and 
constantly varying physical environments. Wireless 
sensor networks bring a new level of possibilities into 
this area with the potential for greatly increased 
spatial and temporal resolution of measurement data. 
CSIRO has created a wireless sensor platform for 
animal behaviour monitoring where we are able to 
observe and collect information of animals without 
significantly interfering with them. Based on such 
monitoring information, we can identify each animal’s 
behaviour and activities successfully. 
 
1. Introduction 
 

Pasture-based livestock production accounts for 
72% of the value of the total livestock production in 
Australia, but is exposed to global trends including 
climate change, the ageing workforce, the rising cost of 
fuel and increasing environmental regulation affecting 
“permission to farm”. These have the potential to 
increase the cost of livestock production considerably, 
and even make many current  systems unviable.  

This paper presents the research that is being 
conducted by the CSIRO1 with the aim of investigating 
the use of wireless sensor networks for automated 
animal monitoring and control. Potential applications 
for control are the need to keep livestock in certain 
areas or the ability to herd livestock moving along a 
path. In order to achieve this however, the very 

                                                        
1 Commonwealth Scientific and Industrial Research Organisation 

fundamental question needs to be answered as to 
whether livestock is in fact controllable. Previous 
experiments by Vaughan et.al. [1] show that a duck can 
be controlled by an external agent such as a robot. 
Tiedemann et. al. [2] shows that cows are at least 
partly controllable by using the combination of audio 
warning signals and electrical stimulus on the animal 
ears.  

The work in [2] also shows it is not an easy task to 
control cows. One reason is that people do not fully 
understand livestock’s normal behaviour and the way 
in which different livestock can respond quite 
differently to the same input stimuli. As a result there 
is currently no “good model” to describe this varying 
behaviour.  

During the first experimental trial in [2] they report 
that “animals were receiving the audio electrical 
stimulus but did not know how to react to it. Some 
animals went in circles while the stimulus was applied. 
Others ran straight forward with their heads shaking.” 
Research by Nolte et. al. [3] is on training deer to avoid 
places using similar control signals of electric shock 
and noise. They reported that deer learned to avoid 
areas associated with shock after certain training, but 
such effects did not persist long after shock devices 
were deactivated.   

Research results [4~6] clearly show that we need a 
much better understanding of animal behaviour before 
we can correctly control their activities. It is difficult to 
achieve practical and reliable cattle monitoring with 
current conventional technologies due to challenges 
such as large grazing areas of cattle, long time periods 
of data sampling, and constantly varying physical 
environments. Wireless sensor networks bring a new 
level of possibilities into this area with the potential for 
greatly increased spatial and temporal resolution of 
measurement data.  CSIRO has created a wireless 
sensor platform for animal behaviour monitoring 
where we are able to observe and collect information 
of animals without significantly interfering with them 
[7]. The sensors on the animal can collect information 
such as each individual’s location, moving speed, 

6071-4244-0419-3/06/$20.00 ©2006 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10898498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


temperature, 3-axis acceleration values, and 3-axis 
magnetic field strength. Based on such monitoring 
information, we can then learn each animal’s 
behaviour and activities. Such activity classification 
can run on each sensor locally. We just need to 
transmit animal states over the radio if it is needed.  

The next section describes animal behaviour 
understanding by analysing the datasets collected by 
the wireless sensor networks. We briefly discuss the 
hardware and the collected datasets, and then describe 
the animal behaviour analysis in detail. In Section III, 
we discuss the experimental results based on the 
observation datasets. We conclude with a summary of 
the results and discussion of future work in Section IV. 
 
2. Datasets analysis based on wireless 
sensor networks monitoring system 
 
2.1 Data collection 

 
Livestock monitoring needs to be able to cope with 

animals’ mobility and movement. As a result, 
communication links need to be able to deal with this 
mobility and be able to cover long distances between 
nodes. CSIRO ICT Centre’s Autonomous Systems 
Laboratory has developed a wireless sensor network 
test bed for environmental and animal behaviour 
monitoring at an experimental farm covering three 
paddocks (see Figure 2). In the test bed, fixed 
environmental nodes are solar powered, and together 
with the mobile animal nodes, form a prototype for 
work on the “smart farm” of the future. The nodes used 
in these experiments are CSIRO developed Fleck2 
(120mm × 60mm) [7] devices (see Figure 1), with 
different sensor   configurations, all running TinyOS 
and using Deluge for code download. The Fleck2 was 
specifically designed for applications in animal 
tracking and control. It is a compact and low-cost 
wireless sensor hardware device with a diverse number 
of sensors including GPS, 3-axis acceleration, 3-axis 
magnetic field strength and temperature, as well as the 
ability to store considerable amounts of data.  

The sensor networks can collect a large amount of 
sensoring data, including: 

1) GPS information: Fleck2 ID, time, longitude, 
latitude. 

2) Accelerometer and magnetometer information: 
Fleck2 ID, gps time, mx, my, mz (three 
magnetometer measurement), ax, ay, az (three 
accelerometer measurement).  

3) Navigation solution information: Fleck2 ID, 
GPS time, XECEF, YECEF, ZECEF, Vx, Vy, Vz. This 
dataset records the signal from GPS that uses 

Earth Centred, Earth Fixed Cartesian 
coordinates to define three dimensional 
positions. Its z-axis is pointing to the mean 
rotational axis of the Earth coincide; the x-axis 
is pointing to the mean Greenwich meridian, 
while the y-axis is directed to complete a right-
handed system. 

 

 
 

Fig. 1. The Fleck2 (120mm × 60mm). It has on-
board a temperature sensor, 3 accelerometers, 
3 magnetometers, and a GPS receiver. 
 

 

 
 

Fig. 2. Three paddocks as experimental 
testbed - 2a, 2b, 3a. Each paddock’s size is 
around 100 meter by 600 meter. In each 
paddock, there were 15�cows + 15�calves (only 
five~six cows have the collar on). Small dots 
are trees. Two  rectangles are water. 

 
Our datasets came from six cows whose data were 

recorded during a four day period in May 2006. Each 
animal wore a smart collar consisting of a Fleck2, 
batteries and GPS and RF antennas. The collar goes 
around the animal’s neck as in Figure 3. The Fleck2 is 
located at the bottom of the cow’s neck, hence the 
acceleration and magnetic field along x, y, and z-axis 
are fixed along the direction drawn in Figure 3.  
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Fig. 3. The coordinate system corresponds to 
collars on animal. The board is located at the 
bottom of the cow’s neck. x-axis - toward tail 
of cow; y-axis - toward right; z-axis - toward 
ground. 
 

The raw GPS data can be stored, at the expense of 
memory, and be post-processed to yield very accurate 
position information. This provides rich information 
about the position of the animal and its activity. The 
current technology for achieving this is to observe the 
animals from a high tower using video or note taking, 
or to use GPS data loggers. The Fleck2s can transmit 
data in real-time over the animal-borne adhoc network 
as well as buffering significant amounts of data on-
board. As mentioned in Introduction, the main aim of 
the research reported in this paper is to understand and 
classify individual animal activity states. To ensure the 
reliability, the data was stored in on-board flash 
memory and downloaded at the end of the experiment.  
Meanwhile, summary information is relayed out over 
the multi-hop network for online monitoring. 

2.2 Data analysis for animal behaviour 
understanding 

 
Animal’s states can be classified into sub-classes 

according to different standards and purposes. To 
address the need by animal scientists within CSIRO, 
the state classes we are using are shown in Figure 4. In 
a hierarchical classification structure such as this, we 
start classification from the highest layer activities, that 
is, to identify between stationary and travelling states. 
The goal of future work is to classify the various 
activities in the whole structure. 

 
Cattle

Behaviour

TravellingStationary

StandingSitting WalkingRunning

Sleeping Grazing Drinking RuminatingRuminating Grazing

 
Fig. 4. One way to classify animal’s activities. 
We start from identifying stationary activity 
from travelling activity.  

 

 
Fig. 5. Three angle definition: roll angle, Pitch 
angle and heading angle. 

 
2.2.1 Dynamic body status of animals With all the 
datasets from Fleck2, we can record and analyse 
animal activities. The accelerometer and magnetometer 
signals allow us to determine the attitude of the Fleck2 
on the animal from which we can determine the 
dynamic body status of the animals through three 
angles along the animal’s head-neck region. These 
three angles, roll angle φ , pitch angle θ , and heading 
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angle ψ , are defined as shown in Figure 5. From these 
angles, we can learn whether the animal’s head is up or 
down, or which way the animal is oriented with respect 
to magnetic north.  

As shown in Figure 3, the orientation of the 
accelerometer and magnetometer axes are: x-axis 
towards back, y-axis out the side and the z-axis 
downward. The angles can be calculated accordingly 
as [8]: 

1) Roll angle: );arctan(
z

y

a
a

=φ  

2) Pitch angle: );arcsin( xa−=θ  
3) To calculate the heading angle, the magnetometer 

measurement needs to be used. Firstly, the 
observed magnetic field needs to be rotated from 
the Fleck2 frame to the Earth frame. That is,  
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where EBx, EBy, and EBz are the rotated magnetic 
measurement. The heading angle is then defined as: 

)arctan(
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E
E

−=ψ . Note that overall magnetometer 

scale factor is not important because only a quotient is 
required. 
 
2.2.2 Fleck2 frame rotation Ideally, the collar should 
be put on the cow’s neck to have the Fleck2 
parallelised to ground. That is, one axis downward 
(e.g. x-axis) and the other two parallelised to ground 
surface (e.g. y-axis and z-axis). This is the assumption 
when we calculate roll angle, pitch angle and heading 
angle in above section. However we can see from Fig. 
3 that the Fleck2 is not in this ideal orientation in the 
realistic situation. Hence we applied a transformation 
to rotate the frame back to the ideal orientation. For 
such rotation, we use the average of the accelerometer 
measurements, [ zyx aaa ,, ], as an estimation of 
current realistic accelerometer orientations. To 
calculate the rotation angles, we assume the rotation 
took place from the ideal directions, with 
accelerometer value [1 0 0], to current directions, with 
accelerometer value [ zyx aaa ,, ]. After we determine 
the rotation angles, an inverse rotation can then be 
applied to rotate the current frame to the ideal frame 
(see Fig.6).  

 

 
Fig. 6. The 3-axis frame rotation to correct the 
measurement of accelerometer and 
magnetometer. 
 

The rotation is done in two steps as in Fig. 6.  
• First rotation around axis Y:  
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where θ  is the angle rotated along y-axis, and φ  the 
angle rotated along x-axis. By solving the above 
equations, we can determine the values θ  and φ . The 

rotated acceleration values [ ]′′′
zyx aaa  can then 

be calculated as: 
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2.2.3 Speed and Heading Angles using ECEF 
Signals Coordinates representing positions on the earth 
can be given in two formats, Spherical or Cartesian. 
The GPS receiver in Fleck2 outputs the cows’ position 
as spherical coordinates [ϕ , λ , h]. They are three 
dimensional components of latitude (ϕ ), longitude 
( λ ) and height above ellipsoid (h). With two of the 
components being non-linear with angular units, 
computations are more complex for coordinate 
geometry problems. Alternatively, Cartesian 
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Z’ 

Z 
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Z’ 
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Y’ 

(a) rotation around axis Y (b) rotation around axis X 

θ φ  
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coordinates are entirely linear and provide for a much 
simpler mathematical platform. The origin and 
orientation of the Cartesian coordinate frame are 
dependent on the user’s application and many well 
defined systems already exist. For global applications 
the system known as Earth Centred - Earth Fixed 
(ECEF) is preferred. As mentioned in Section II-A, the 
GPS receiver on Fleck2 also outputs the ECEF signal, 
which includes the cow’s location and moving speed 
along three axes in the ECEF XYZ reference frame. To 
convert these values to a local tangent plane (LTP), the 
velocity vector must be rotated using the following 
direction cosine matrix (North, East, Down) and 
solving for each component results in the following 
matrix transformation [9]: 
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. The moving speed and heading direction can be 
derived from the velocity information using the 
following relationship:  

22
eastnorthECEF VVv += ,                       (2)                     

and  

)arctan(
north

east
ECEF V

V=θ .                         (3) 

We can also use ECEFv  and ECEFθ  to judge animal’s 
activities. 

 
3. Experimental results and analysis 
 

In this section, we discuss the experimental results 
based on the observation datasets from the sensor 
networks. The dataset analysis allows us to gain a 
broad understanding of what is possible with current 
wireless sensor network technology.  

The dataset came from six cows with Fleck2 collars 
that run during a four-day period from 3-7 May 2006. 
The GPS data was recorded at 4 Hz. The accelerometer 
and magnetometer data were recorded at 10 Hz. The 
data were collected when the animals were moving 
freely within a paddock within about 100m x 600m.  
GPS location error is less than 10 meters. 

While the sensor network is collecting data, ground 
truth observations were also performed during 8am to 
11 am on the 4th May 2006. The observation included 
two parts:  

• Human observation records of animal 
activities in tables, classifying animal 
behaviour as defined in Fig. 4.  

• 15 video streams recording animals’ 
movement. From these video streams, one 

can recognise each cow’s activities.  
We will analyse the animal behaviour based on 

above information in the following parts. 
3.1 Speed and heading angle calculation using 
ECEF measurement 

 
Let us firstly calculate the animal’s moving trace, 

speed and heading angles using ECEF signals. For 
instance, cow #1004 is analysed in this case. Fig. 7 
shows the moving trajectory of it over the whole 4-day 
period. 

 
Fig. 7. The moving trajectory of cow #1004 
over the whole 4-day period. 
. 

To view more clearly what is happening, we chose a 
half-hour period for cow #1004: 9:45am to 10:25am on 
4th May 2006. The video streams and human 
observation record show that the cow’s activities 
during this period are:  

• 9:40am~9:58am: standing with grazing; 
• 9:59am~10:08am: walking along the 

fence; 
• 10:09am~10:34am: standing with grazing. 

The moving speed and heading direction are 
calculated using equations (2) and (3). Fig. 8 shows the 
animal moving speed and the location along locale east 
and north versus time. By combining these three 
figures, one can see that the cow moved at very low 
speed most of the time. During about 9:59am to 
10:08am, the cow moved towards a southeast direction 
at a quick speed (over 2 meter per minute). Fig. 9 
shows the heading angle over the same period. A 
constant heading angle about -920 can be clearly seen 
over the quick moving period (9:59am to 10:08am). 
Over the “standing with grazing” period, the heading 
angles range between -1800 to 1800 as the animal 
moves its head in random directions.  

Although we only show a short period of calculation 
results for one cow, the overall moving speed and 
heading direction results of all cows show a similar 
relationship. This experiment proves that we can use 
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the ECEF measurement to classify animal’s activity 
between standing and moving. One of our initial goals 
is thus achieved as expected.  

 
Fig. 8. Cow #1004 moving activities over 
9:45am to 10:25am on 4th May 2006. Cow 
moved quickly during 9:59am ~ 10:08am. (a) 
Moving speed versus time. (b) Cow’s location: 
east versus time. (c) Cow’s location: north 
versus time.  

 
Fig. 9. The heading angle of cow #1004 using 
ECEF measurement. It keeps constant while 
the cow is walking along the same direction.  

 
3.2 Angle calculation using accelerometer and 
magnetometer measurement 

By using ECEF measurements, we can already 
classify the top level activities in Fig. 4. In order to 
understand the animal behaviour and multi-classify the 
animal activities in more detail (lower level in Fig. 4), 
it is clear the ECEF measurement does not provide 
enough information. Hence we need to look at the 
accelerometer and magnetometer measurements in the 
datasets as well.  

In the following information analysis, the original 
acceleration values (in g) were filtered by a low pass 
filter to obtain DC components (and hence remove AC 
component). The reason we do so is that we believe the 

DC component corresponds to the rotation of 
accelerometer within the gravitational field. Animal 
movement, on the other hand, can be expected to 
correspond to the AC response. Because the maximum 
frequency of accelerometer is 10 Hz, the cut off 
frequency for the LP filter is set to be 1 Hz. To 
calculate the heading angles, the magnetometer 
measurements were also filtered by the same filter with 
the same cut off frequency. For this experiment, we 
chose two short periods for data analysis. These two 
periods both have good corresponding video streams 
that can be used for ground truth comparison. 

3.2.1 Cow #1018: grooming and grazing while 
standing The first period dataset covers cow #1018 
during 8:30am to 8:45am on 4th May 2006. The video 
streams and human observation records show that the 
cow’s overall activity during this period is standing, 
with detailed activities as:  

• 8:30am~8:35am: still standing; 
• 8:35am~8:36am: standing with grooming; 
• 8:37am~8:38am: standing; 
• 8:39am~8:44am: standing / small distance 

walking with grazing. 
Figs. 10-14 give a lot of details of the cow’s 

movement. Firstly, Fig. 10 gives the moving trajectory 
showing cow #1018 stays very stable with near zero 
moving speed. Then in Fig. 11, we can clearly identify 
the cow’s grooming during 8:35am using the AC 
components of accelerometer, which has bigger 
variance comparing to the still standing activity before 
8:35am. It is highlighted by circles. We can also see 
that the variance increased again at 8:39am when the 
cow started grazing. It is highlighted by rectangles. On 
the other hand, the DC components of accelerometer, 
shown in Fig. 12, are neat signals response to the 
rotation of accelerometer. To calculate three angles, the 
Fleck2 frame is rotated using the methodology in 
Section II.   

 
Fig. 10. Cow #1018 moving activities over 
8:30am to 8:45am on 4th May 2006. Cow stands 
for most of the time. (a) Moving speed versus 
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time. (b) Cow’s location: east versus time. (c) 
Cow’s location: north versus time.  

 
Fig. 11. Cow #1018 moving activities over 
8:30am to 8:45am on 4th May 2006. The AC 
components of 3-axis accelerometer 
measurement with the cut-off frequency as 
1Hz. Circles cover the grooming activity 
period. Rectangles cover the grazing activity 
period.  
 

 
Fig. 12. Cow #1018 moving activities over 
8:30am to 8:45am on 4th May 2006. The DC 
components with the cut-off frequency as 1Hz.  

Fig. 13 gives the three angles that we are aiming for. 
Both the roll angle and pitch angle are small values 
which show that the animal cannot move with a large 
range in these two directions. For the grazing period 
(rectangular area), three angles vary quickly within 
small value ranges. For other activity periods, for 
instance, during 8:36am~8:39am, the angles keep very 
constant with only a  small number of changes. One 
problem that we noticed is that the heading angle does 
not look realistic in that the changing range only covers 
[-200, 200]. This could be because of the error during 
the rotation of observed magnetic field from the Fleck2 
frame to the Earth frame in equation (1). We also 

calculate the gradient of heading angles, from which 
we can see the grooming and grazing behaviour 
periods can be identified clearly from standing 
behaviour period.  
 

 
Fig. 13. Cow #1018 moving activities over 
8:30am to 8:45am on 4th May 2006. Three 
angles calculated using DC components after 
the axes rotation. Rectangles cover the 
grazing activity period.  
 

 
Fig. 14. Gradient of heading angles. Circles 
cover the grooming activity period. 
Rectangles cover the grazing activity period. 

3.2.2 Cow #1008: sitting to standing The second 
period dataset is learnt because it covers cow #1008 
activities changing from sitting to standing within two-
three minutes. It is during 8:39am to 8:42am on 4th 
May 2006. The video streams and human observation 
records show that the cow was sitting for a while, then 
stood up at around 8:41am, and remained standing. If 
we start the analysis by looking at the ECEF signal, 
there is hardly any information included (see Fig. 15).  

However when we look at the DC components of 
the accelerometer measurement, several sharp changes 
occur around 8:40am. The gradient of three angles also 
shows such activity clearly changing (see Figs. 16-17).  
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Fig. 15. Cow #1008 moving activities over 
8:35am to 8:45am on 4th May 2006. Cow stays 
still. No information can be easily achieved 
using ECEF measurement.   
 

 
Fig. 16. Cow #1008 moving activities over 
8:35am to 8:45am on 4th May 2006. The DC 
components record implies some activity 
changes.  
 

 
Fig. 17. Cow #1008 moving activities over 
8:35am to 8:45am on 4th May 2006. The 
gradient of three angles shows that the cow 
changed its activity around 8:40am.  
 

4. Conclusion 
 

In this paper, we present current research on 
livestock behaviour understanding using a wireless 
sensor network monitoring system. The future goal of 
this research is to successfully control livestock 
movement and activities. One way to do so is to 
execute stimulus manually or with pre-set variable 
values, testing them with real animals, then use the test 
results to adjust the variables again. As each animal is 
different, such process is very slow and inefficient. A 
better way is to have a self-adaptive system running on 
each animal. The system can then adjust the variables 
according to observed data automatically in real time. 
Such control methodology can be built based on a 
wireless sensor network, where each node (sensor) can 
have a self-adaptive control strategy onboard based on 
the understanding of animal’s behaviour. This design 
strategy can also cope with individual animal 
differences better than compared with the fixed 
stimulus across all animals. 
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