

This is the author version published as:

This is the accepted version of this article. To be published as :
This is the author version published as:

Catalogue from Homo Faber 2007

QUT Digital Repository:
http://eprints.qut.edu.au/

De Vries, Christopher M. and Geva, Shlomo and De Vine, Lance (2010)
Clustering with random indexing Ktree and XML structure. In:
Focused Retrieval and Evaluation : Proceedings of 8th International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX
2009, 7‐9 December 2009, Brisbane, Queensland.

Copyright 2010 Springer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10898366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Clustering with Random Indexing K-tree and

XML Structure

Christopher M. De Vries, Shlomo Geva, and Lance De Vine

Faculty of Science and Technology,
Queensland University of Technology, Brisbane, Australia

chris@de-vries.id.au s.geva@qut.edu.au l.devine@qut.edu.au

Abstract. This paper describes the approach taken to the clustering
task at INEX 2009 by a group at the Queensland University of Tech-
nology. The Random Indexing (RI) K-tree has been used with a repre-
sentation that is based on the semantic markup available in the INEX
2009 Wikipedia collection. The RI K-tree is a scalable approach to clus-
tering large document collections. This approach has produced quality
clustering when evaluated using two different methodologies.

Key words: INEX, XML, Mining, Documents, Clustering, Structure,
K-tree, Random Indexing, Random Projection

1 Introduction

The cluster hypothesis suggests that documents that cluster together tend to
have relevance to similar queries. The clustering task at INEX 2009 aims to
evaluate the utility of clustering in collection selection. The goal of clustering
is to minimise the spread of relevant results of ad-hoc queries over a clustering
solution. The purpose of clustering in this context is to determine the distribution
of a collection over multiple machines. We have a dual optimisation problem -
it is desirable to maximise the number of clusters while minimising the spread
of relevant results of ad-hoc queries over the clusters. Search efficiency can be
increased with the distribution of clusters (sub-collections) on more machines.
However, since it is not possible to produce clusters that split the collection
to perfectly satisfy all conceivable ad-hoc queries, a good clustering solution is
expected to optimise the distribution such that for most ad-hoc queries most of
the results can be found in a small set of clusters. The goal of collection selection
is then to rank the clusters (sub-collections) to identify the order in which they
should be searched to satisfy any given query.

We have used K-tree [1, 2] to generate clustering solutions. The scalability of
K-tree in a document clustering setting has been discussed by De Vries and Geva
[3, 4]. The original contribution to K-tree in INEX 2009 is the use of Random
Indexing (RI) to represent the documents. The K-tree algorithm has also been
modified to work with the RI representation. RI facilitates an efficient and eco-
nomical vector space representation. The RI K-tree provides a scalable approach

to clustering large collections at multiple granularities. The latest Wikipedia col-
lection has included semantic markup that is based on the YAGO ontology. This
markup had been used in encoding the documents, and two simple approaches
are described in Section 4.

This paper introduces and defines Random Indexing in Section 2 and ex-
plains its use with K-tree in Section 3. The representation of semantic markup
is discussed in Section 4. The combination of RI K-tree and representation of
semantic markup introduced in earlier sections is applied to the INEX clustering
task in Sections 5, 6 and 7. The paper ends with a conclusion in Section 8

2 Random Indexing

RI [5] is an efficient, scalable and incremental approach to the implementation
of a word space model. Word space models use the distribution of terms in
documents to create high dimensional document vectors. The directions of these
document vectors represent various semantic meanings and contexts.

Latent Semantic Analysis (LSA) [6] is a popular word space model. LSA
creates context vectors from a document term occurrence matrix by perform-
ing Singular Value Decomposition (SVD). Dimensionality reduction is achieved
through projection of the document term occurrence vectors onto the subspace
spanned by the vectors with the largest singular values in the decomposition.
This projection is optimal in the sense that it minimises the sum of squares of
the difference between the original matrix and the projected matrix components.
In contrast, Random Indexing first creates random context vectors of lower di-
mensionality and then combines them to create a term occurrence matrix in the
dimensionally reduced space. Each term in the collection is assigned a random
vector and the document term occurrence vector is then a superposition of all the
term random vectors. There is no matrix decomposition and hence the process
is efficient.

RI is also known as Random Projection and is explained by the Johnson and
Linden-Strauss lemma [7]. It states that if points in a high dimensional space
are projected into a lower dimensional, randomly selected subspace of sufficient
dimensions they will approximately retain the same topology. Any n point set in
Euclidean space can be embedded in O(log n/ǫ2) dimensions without distorting
the pair-wise distances between points by more than 1 ± ǫ, where 0 < ǫ < 1.
Dasgupta and Gupta [8] have provided a proof for the Johnson and Linden-
Strauss lemma, showing that the proposed bounds of the lemma hold.

The RI mapping is performed by producing r dimensional index vectors for
each term in a collection, where r is the desired dimensionality of the reduced
space. We have chosen these vectors to be sparse and ternary. Ternary index
vectors were introduced by Achlioptas [9] as being friendly for database environ-
ments. Bingham and Mannila [10] have found that the sparsity of index vectors
does not effect the distortion of the embedding via experimental analysis. Sparse
index vectors reduce the time to complete RI as only 10 percent of the dimen-
sions are non-zero. However, other choices exist for index vectors such as binary

spatter codes [11] which are randomly selected binary vectors and holographic
reduced representations [12] that are dense randomly selected real valued vec-
tors. When indexing the INEX 2009 collection, the index vectors are multiplied
by the BM25 weight for each term in each document and added to the RI docu-
ment vector. The document vector becomes a superposition of the index vectors
multiplied by the term weights as determined by BM25.

RI can be viewed as a matrix multiplication of a document by term matrix D
and a random projection matrix I resulting in a reduced matrix R. Row vectors
of I contain index vectors of r dimensions for each term in D. Moreover, n is the
number of documents, t is the number of terms and r is the dimensionality of
the reduced spaced. R is the reduced matrix where each row vector represents a
document. Equation 1 defines RI as a matrix multiplication.

Dn×tIt×r = Rn×r (1)

Note that the RI document vectors themselves are not random. They are
composed of a superposition of random term vectors and the superposition result
depends on BM25 term weights and document content.

Another way to view RI is to interpret each index vector as a code. These
codes are nearly orthogonal to all other codes produced, resulting in minimal
interference between terms in the reduced vector space. Orthogonality can be
measured by creating a pair-wise distance matrix between index vectors using
cosine similarity as a distance measure. If two vectors are orthogonal their cosine
similarity will be zero. The closer the vectors are to orthogonal the closer their
cosine similarity will be to zero. Therefore, it is expected that the pair-wise
distance matrix will contain values close to zero in every position except the
main diagonal. Finding truly orthogonal codes is computationally expensive and
therefore avoided. Nearly orthogonal codes are found by drawing values in the
vector from a normal distribution. Figure 1 shows the addition of index vectors
(nearly orthogonal codes) to create a document representation.

Fig. 1. Random Indexing Example

3 Random Indexing K-tree

The K-tree is an online and dynamic clustering algorithm that scales well by
making many local decisions resulting in a hierarchical tree structure. It is a hy-
brid of the B+-tree and k-means algorithms where the B+-tree has been adapted
for multi-dimensional data and the k-means algorithm is used to perform splits
in the tree. It is built in a bottom-up manner as data arrives. De Vries and Geva
[2–4] discuss the algorithm and its application to document clustering, including
the scalability of the algorithm. K-tree was compared to the popular CLUTO
clustering toolkit and found to cluster significantly faster when a large number
of clusters are required [4]. The Random Indexing (RI) K-tree [13] combines
K-tree with RI to improve the quality of results and run-time performance.

The time complexity of K-tree depends on the length of the document vectors.
K-tree insertion incurs two costs, finding the appropriate leaf node for insertion
and k-means invocation during node splits. It is therefore desirable to operate
with a lower dimensional vector representation.

The combination of RI with K-tree is a good fit. Both algorithms operate
in an on-line and incremental mode. This allows it to track the distribution of
data as it arrives and changes over time. K-tree insertions and deletions allow
flexibility when tracking data in volatile and changing collections. Furthermore,
K-tree performs best with dense vectors, such as those produced by RI.

Given the scalable and dynamical properties of the RI K-tree algorithm we
propose it is a good solution for clustering large volatile document collections.
The logarithmic lookup time of K-tree [13] to find the most similar cluster is
also of use in a functioning information retrieval system relying on collection
selection. This allows a query broker to direct queries to the most relevant sub-
collection in sub-linear time with respect to the size of the collection.

4 Document Representation

Document structure has been represented by using a bag of words and a bag
of tags representation derived from the semantic markup in the INEX 2009
collection. Both are vector space representations.

The bag of words is made up of term frequencies contained within any entity
tags in the collection. The term frequencies were weighted with BM25 [14] where
K1 = 2 and b = 0.75. We hypothesise that terms contained within entity tags
are more likely to indicate the topic of a document. Therefore, documents with
the same topic will fall closer together in the vector space representation. This
indirectly exploits the XML structure.

The bag of tags representation is made up in an analogous manner of XML
entity tag frequencies. The tag frequencies were not weighted. Entity tags consist
of concepts such as scientist, location and person. We conjecture that documents
with similar tags will belong to the same topic. Future work may compare tag
frequency based vectors to set based vectors. In set based vectors each tag would
be recorded as existing in a document or not. This way it can be determined if

the use of tag frequencies is worthwhile. If a power law distribution exists in tag
frequencies the Inverse Document Frequency heuristic may also prove useful as
it did with link graphs [3]. The entity tags directly exploit structure by indexing
it.

The bag of words and tags representations were combined. This is done by
adding the two vector space representations together and then normalising the
resulting vector to unit length. As both of the representations are based on RI,
the codes between representations will be nearly orthogonal. However, a larger
number of dimensions may be required to accommodate the extra information.

5 Run-time Performance

The performance of RI K-tree has been measured when operating in main mem-
ory. The concern is with the performance of the clustering algorithm. Efficiency
was not taken into account when indexing or loading the final representation
into memory.

All performance figures are for processing all 2,666,190 XML Wikipedia doc-
uments. The RI operations took a total of 1860 seconds for the entity text repre-
sentation. The randomly selected lower dimensional space had 1000 dimensions.
The run time of the K-tree algorithm varies between 1200 and 1500 seconds de-
pending on the tree order selected between 15 and 50. This includes the process
of re-inserting all vectors to their nearest neighbour leaves upon completion of
the tree building process. This produces clustering at many different granulari-
ties at once. Table 1 lists the different sized clusters found by trees of order 20,
40, 60, 80 and 100, where m is the tree order.

Level m = 20 m = 40 m = 60 m = 80 m = 100

1 12 3 8 3 92
2 111 89 356 129 2011
3 542 1260 5610 3090 53174
4 2161 12865 89612 67794
5 8529 154934
6 37230
7 197299

Table 1. K-tree Clusters

6 Experimental Setup

The Random Indexing (RI) K-tree has been used to cluster all 2,666,190 XML
documents in the INEX 2009 Wikipedia collection. Bag of words and tags repre-
sentations were used to create different clusters. Both representations were also

combined to create a third set of clusters. Clusters were created as close as pos-
sible to the 100, 500, 1000, 5000 and 10000 clusters required for evaluation. The
RI K-tree produces clusters in an unsupervised manner where the exact number
of clusters can not be precisely controlled. It is determined by the tree order
and the randomised seeding process. The algorithm produces clusters of many
sizes in a single pass. The desired clustering granularity is selected by choosing
a particular level in the tree.

Random Indexing (RI) is an efficient dimensionality reduction technique that
projects points in a high dimensional space onto a randomly selected lower di-
mensional space. It is able to preserve the topology of the points. In the context
of document representation, topology preserving dimensionality reduction is pre-
serving document meaning, or at least this is the conjecture which we test here.
The RI projection produces dense document vectors that work well with the
K-tree algorithm.

Cluster quality has been measured with two metrics this year. Purity is a
commonly used metric and it is measured against an external ground truth. In
the case of the INEX 2009 collection, the categories were created by YAWN.
Purity is the fraction of documents with the majority category in a cluster.
Micro purity is the average across all clusters in a solution where each cluster’s
contribution is weighted by the fraction of documents it contains from the whole
collection. Thus, smaller clusters have less influence and larger clusters have
more influence on the average. Normalised Cumulative Cluster Gain (NCCG) is
a new measure based on relevance judgments from search queries in the ad-hoc
track. The ad-hoc track at INEX provides most relevant documents for each
topic based on manual human evaluations. Given the relevant results an oracle
cluster ranking system can be built, where clusters are sorted in descending
order by the number of relevant documents they contain. NCCG measures the
spread of relevant documents over the clusters. A score of one is achieved if all
relevant documents appear in the first cluster and a score of zero is achieved if
relevant documents are evenly spread across all clusters. NCCG rewards placing
all relevant documents together. Therefore, it is testing the clustering hypothesis
that states that relevant documents for a query tend to cluster together.

7 Experimental Results

Table 2 lists micro purity and NCCG scores for all submissions that clustered
the full INEX 2009 collection. The table is split into sections corresponding to
the required cluster sizes specified for the track. The RI K-tree, using the entity
text representation is clearly the best approach when it comes to finding high
purity clusters using an approach that can scale to the full collection at all
cluster sizes. The NCCG metric for collection selection favours the combination
of entity text and tags over either representation. It changes the ordering of
results when compared to the traditional ground truth based approach. The
C3m based approach produced higher quality clusters with respect to the NCCG
metric on two occasions at 100 and 10,000 clusters.

Guyon et. al. [15] argue that the context of clustering needs to be taken into
account during evaluation. The evaluation of this INEX task tests the clustering
hypothesis in the information retrieval specific. Clustering is intended to facili-
tate document distribution and collection selection for ad-hoc retrieval, and it is
tested in that setting. This differs greatly from evaluation where authors assign
categories to documents and the categories are then used as the ground truth for
the evaluation of clustering. Guyon et. al. [15] argue, and we agree, that ground
truth based evaluations are unsound. This is particularly true when it comes to
an information retrieval setting where the number of potential topics (clusters) is
virtually unconstrained. It is a virtually impossible task to compare alternative
clustering possibilities by inspecting large numbers of documents in clusters. In
contrast, the evaluation of topics represented as queries in an ad-hoc retrieval
system achieves high levels of inter-judge agreement. These relevance judgments
have been the backbone of ad-hoc information retrieval system evaluations for
many years. They have also been exposed to criticism and review by many of
the top researchers in the field. By exploiting this high quality, human gener-
ated information, we can have great confidence that we are testing clustering in
the context of its use. The context is specifically clustering of documents in an
information retrieval setting.

Guyon et. al. go as far to say “In our opinion, this approach [ground truth
approach] is dangerous. The underlying assumption is that points with the same
class labels form clusters. This might be the case for some data sets but not
for others.”. If the ground truth reflected the application of clustering in an
information retrieval context, then the scores would agree between purity and
NCCG. However, they do not. Therefore, we argue that the NCCG scores based
on ad-hoc queries are more meaningful in an information retrieval setting.

Relevance of documents to queries can also be derived from click-through
data in an operational search engine. This provides a potential mountain of
relevance judgments.

8 Conclusion

In conclusion the RI K-tree provided a scalable approach to clustering at mul-
tiple granularities in a single pass with quality comparable to other approaches.
The hypothesis that combining entity text and tag based representations will
improve quality held true for the new ad-hoc based evaluation. Furthermore,
the evaluation provided insights into why it is important to take context of use
into account when evaluating clustering.

Method Clusters Micro Purity NCCG

RI K-tree Text 88 0.1744 0.7859
RI K-tree Tags 99 0.1427 0.7851
RI K-tree Text and Tags 105 0.1450 0.8003
C3m Content Only (bildb) 101 0.1566 0.8205

RI K-tree Text 420 0.1918 0.6770
RI K-tree Tags 477 0.1526 0.7546

RI K-tree Text and Tags 509 0.1668 0.7330

RI K-tree Text 1009 0.2140 0.6450
RI K-tree Tags 1026 0.1699 0.7021
RI K-tree Text and Tags 963 0.1690 0.7092

C3m Content Only (bildb) 1001 0.1617 0.6614

RI K-tree Text 2450 0.2136 0.6100
RI K-tree Tags 2407 0.1769 0.6348
RI K-tree Text and Tags 2536 0.1928 0.6575

BM25 BicMsGrowingKMeans (mark) 2263 0.1698 0.6349

RI K-tree Text 4914 0.2384 0.5581
RI K-tree Tags 4993 0.2020 0.5729
RI K-tree Text and Tags 4978 0.2038 0.6003

RI K-tree Text 9725 0.2719 0.4736
RI K-tree Tags 10453 0.2321 0.5274
RI K-tree Text and Tags 9896 0.2509 0.5492
C3m Content Only (bildb) 10001 0.1942 0.6035

BM25 BicMsGrowingKMeans (mark) 12636 0.2416 0.5885

Table 2. Clusters

References

1. : K-tree project page, http://ktree.sourceforge.net. (2009)
2. Geva, S.: K-tree: a height balanced tree structured vector quantizer. Proceedings

of the 2000 IEEE Signal Processing Society Workshop Neural Networks for Signal
Processing X, 2000. 1 (2000) 271–280 vol.1

3. De Vries, C., Geva, S.: Document clustering with k-tree. Advances in Focused
Retrieval: 7th International Workshop of the Initiative for the Evaluation of XML
Retrieval, INEX 2008, Dagstuhl Castle, Germany, December 15-18, 2008. Revised
and Selected Papers (2009) 420–431

4. De Vries, C., Geva, S.: K-tree: large scale document clustering. In: SIGIR ’09:
Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, New York, NY, USA, ACM (2009) 718–719

5. Sahlgren, M.: An introduction to random indexing. In: Methods and Applications
of Semantic Indexing Workshop at the 7th International Conference on Terminol-
ogy and Knowledge Engineering, TKE 2005. (2005)

6. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by
latent semantic analysis. Journal of the American Society for Information Science
41(6) (1990) 391–407

7. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contemporary mathematics 26(189-206) (1984) 1–1

8. Dasgupta, S., Gupta, A.: An elementary proof of the Johnson-Lindenstrauss
lemma. Random Structures & Algorithms 22(1) (2002) 60–65

9. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of Computer and System Sciences 66(4) (2003) 671–687

10. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: appli-
cations to image and text data. In: KDD ’01: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data mining, New
York, NY, USA, ACM (2001) 245–250

11. Kanerva, P.: The spatter code for encoding concepts at many levels. In: ICANN94,
Proceedings of the International Conference on Artificial Neural Networks. (1994)

12. Plate, T.: Distributed representations and nested compositional structure. PhD
thesis (1994)

13. De Vries, C., De Vine, L., Geva, S.: Random indexing k-tree. In: ADCS09: Aus-
tralian Document Computing Symposium 2009, Sydney, Australia. (2009)

14. Robertson, S., Jones, K.: Simple, proven approaches to text retrieval. Update
(1997)

15. Guyon, I., von Luxburg, U., Tubingen, G., Williamson, R., Canberra, A.: Cluster-
ing: Science or Art?

