

This is the author version published as:

This is the accepted version of this article. To be published as :
This is the author version published as:

Catalogue from Homo Faber 2007

QUT Digital Repository:
http://eprints.qut.edu.au/

Tang, Maolin and Ai, Lifeng (2010) A hybrid genetic algorithm for
the optimal constrained web service selection problem in web
service composition. In: Proceeding of the 2010 World Congress on
Computational Intelligence, 18‐23 July 2010, Centre de Convencions
Internacional de Barcelona, Barcelona.

Copyright 2010 IEEE

A Hybrid Genetic Algorithm for the Optimal Constrained Web
Service Selection Problem in Web Service Composition

Maolin Tang, Senior Member, IEEE and Lifeng Ai

Abstract— Web service composition is an important problem
in web service based systems. It is about how to build a new
value-added web service using existing web services. A web
service may have many implementations, all of which have the
same functionality, but may have different QoS values. Thus,
a significant research problem in web service composition is
how to select a web service implementation for each of the web
services such that the composite web service gives the best over-
all performance. This is so-called optimal web service selection
problem. There may be mutual constraints between some web
service implementations. Sometimes when an implementation
is selected for one web service, a particular implementation for
another web service must be selected. This is so called depen-
dency constraint. Sometimes when an implementation for one
web service is selected, a set of implementations for another web
service must be excluded in the web service composition. This
is so called conflict constraint. Thus, the optimal web service
selection is a typical constrained combinatorial optimization
problem from the computational point of view. This paper
proposes a new hybrid genetic algorithm for the optimal web
service selection problem. The hybrid genetic algorithm has
been implemented and evaluated. The evaluation results have
shown that the hybrid genetic algorithm outperforms other two
existing genetic algorithms when the number of web services
and the number of constraints are large.

I. INTRODUCTION

Web service technology is based on open XML standards
(i.e. SOAP, WSDL, and UDDI) and has features such as in-
teroperability, decoupling and just-in-time integration, which
make it possible to build new value-added web services
using existing web services. This is so called Web service
composition. For example, a travel booking web service
can be built by aggregating a flight booking web service,
a car rental web service, a travel insurance web service,
an accommodation booking web service, a payment web
service, and an itinerary planning Web service.

A web service may have multiple implementations offered
by different providers. The implementations have the same
functionality, but may have different Quality of Service
(QoS) values. For example, they may have different response
time, price, reputation, availability and so on. Thus, a signifi-
cant research problem in the web service composition is how
to select an implementation for each of the web services in
the composite web service. Generally, an implementation of a
web service may not dominate all the other implementations

Maolin Tang is with the Faculty of Science and Technology, Queensland
University of Technology, Gardens Point Campus, 2 George Street, Brisbane,
Australia (phone: +61 7 31385225; email: m.tang@qut.edu.au).

Lifeng Ai is with the Faculty of Science and Technology, Queensland
University of Technology, Gardens Point Campus, 2 George Street, Brisbane,
Australia (phone: +61 7 31387753; email: l.ai@qut.edu.au).

of the same web service for all the QoS criteria. An imple-
mentation may be better than some other implementations
in terms of some QoS criteria, but may not be as good as
them in terms of other QoS criteria. Thus, when selecting an
implementation for a web service, it is difficult or impossible
to get some good QoS values without compromising the
others. Therefore, the objective of the web service selection
problem is to select an implementation for each of the web
services in the composite web services such that the overall
QoS is maximal. This web service selection problem is also
called QoS-aware web service composition.

In the web service selection there might be some web
service implementations that are dependent on each other.
When selecting an implementation for one web service, we
must select a particular implementation for another web
service in the composite web service. For example, when
building a travel booking web service, if we select a partic-
ular travel insurance web service that only accepts payments
made by Master cards, then we must select a payment web
service that accepts Master cards. This kind of constraints is
called dependency constraint. In addition, in the web service
selection there might be some web service implementations
that conflict with each other. When selecting an implemen-
tation for one web service, we must not select a particular
implementation for another web service in the composite
web service. For example, when building a travel booking
web service, if we select a particular flight booking web
service implementation that does not accept deposits made
by Master cards, then we must not select an implementation
for the payment web service that supports Master cards. This
type of constraints is called conflict constraint. In the web
service selection, both dependency constraints and conflict
constraints must be considered.

Although various optimal web service selection problems
have been intensively studied and different approaches have
been proposed in the past few years [1], [2], [3], [4], [5], [6],
[6], [7], [8], [9], [10], [11], the study on the optimal web ser-
vice selection problem with constraints remains open. From
the computational point of view, the web service selection
problem is a typical constrained combinatorial optimization
problem. Thus, genetic algorithms might be efficient and
effective for solving the problem. In our preliminary research
on the problem, we have proposed two genetic algorithms
for the problem, using different techniques to handle the
constraints. In this paper we present a new genetic algorithm
for the constrained web service selection problem, aiming
to further improve the quality of solutions. Different from
the existing genetic algorithms, this new genetic algorithm

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 268

is a hybrid one. It utilizes a local optimizer to improve the
individuals in the population of the genetic algorithm. This
new genetic algorithm algorithm has been implemented and
evaluated by comparing it with the two existing genetic al-
gorithms. Evaluation results have shown that the new hybrid
genetic algorithm did produce better solutions than the two
existing genetic algorithms although its computation time is
slight longer than that of the other two genetic algorithms.

The remainder of the paper is organized as follows. First
of all, we formulate the research problem in Section II. Then,
we review related work in Section III. After that, we present
our new hybrid genetic algorithm and evaluation results in
Section IV and Section V, respectively. Finally, we conclude
this this research in Section VI.

II. PROBLEM FORMULATION

When building a new composite web service, the follow-
ing process is usually is followed. First of all, we design
a workflow for the composite web service. Fig. 1 is an
example of workflow, which consists of 10 web services
W 1, W 2, · · · , W 10. Then, we get the information about all
available implementations for each of the web services in the
workflow. This can be done by using a web service discovery
tool or a web service broker. The information includes their
URLs, the inter-dependencies and mutual conflicts between
the web service implementations, as well as their QoS values
of interest. Finally, we use a web service composition tool
to select the optimal combination of web service implemen-
tations accommodating the constraints, which is the problem
to be addressed in this paper.

{OR}

W̄3W̄1 W̄2

W̄10

W̄4

W̄7

W̄5

W̄6

W̄9

W̄8

Fig. 1. An instance of workflow for web service composition

In this problem formulation, we follow the terminologies
used by the web service community. In the rest of paper,
when we say abstract web service, we refer to a web service
in a workflow and when say say concrete web service,
we mean the implementation of an abstract web service.
In addition, in the problem formulation, we only consider
five most popular QoS attributes. However, the problem
formulation and the hybrid genetic algorithm can be easily
extended to include any new QoS attributes or to exclude
any of the five QoS attributes.

Given
• a workflow of a composite web service, which

contains a set of abstract web services W =

{W 1, W 2, · · · , Wn}, where n is the total number of
abstract web services in the workflow;

• all the available concrete web services for each of the
abstract web services
W = {(w11, w12, · · · , w1k1), (w21, w22, · · · , w2k2), · · · ,
(wn1, wn2, · · · , wnkn

)}, where wij represents the jth

concrete web service of abstract web service Wi and ki

is the total number of concrete web services of abstract
web service W i;

• QoS values for response time, price, reputation, reli-
ability and availability for each of the concrete web
services wij , v1

ij , v2
ij , v3

ij , v4
ij and v5

ij , respectively,
where 1 ≤ i ≤ n and 1 ≤ j ≤ ki;

• weights for QoS criteria, c1, c2, c3, c4, and c5 for
response time, price, reputation, reliability and avail-
ability, respectively, where c1 + c2 + c3 + c4 + c5 = 1;

• a set of conflicts between the concrete web services
C = {(wi1j1 , wi2j2)| if the jth

1 concrete web service
is selected for abstract web service xi1 , then abstract
web service wi2 must not select the jth

2 concrete web
service}, where 1 ≤ i1, i2 ≤ n, 1 ≤ j1 ≤ ki1 and
1 ≤ i2 ≤ ki2 ;

• a set of dependencies between the concrete web
services D = {(wi1j1 , wi2j2)| if the jth

1 concrete web
service is selected for abstract web service xi1 , then
abstract web service wi2 must select the jth

2 concrete
web service}, where 1 ≤ i1, i2 ≤ n, 1 ≤ j1 ≤ ki1 and
1 ≤ i2 ≤ ki2 ;

Find
a selection plan X = (x1, x2, · · · , xn), where xi is

a concrete web service of abstract web service W i and
1 ≤ i ≤ n, such that

F (X) =
∑2

k=1(
vmax

k −vk(X)
vmax

k −vkmin ∗ ck) +
∑5

k=3(
vk(X)−vmin

k

vmax
k −vmin

k

∗
ck) is maximal, where vk is the aggregated QoS value
for criteria k, and vmax

k and vmin
k represent the possible

maximal and minimal aggregated QoS values of criterion k,
respectively, where 1 ≤ k ≤ 5 (the aggregated QoS values
calculation follows the methods presented in [2])

Subject to
all the constraints in C and D are satisfied.

III. RELATED WORK

In our previous research on the web service selection
problem, we have proposed two genetic algorithms [9], [10].
The major difference between the two genetic algorithms
is that they adopt different strategies to handle infeasible
individuals. In both of the genetic algorithms, each individual
in the population represents a selection plan. Since there may
be dependency constraints and conflict constraints between
the selected concrete web services, new web service selection
plans (individuals) generated by the initial population proce-
dure, the crossover and the mutation operators may not be

269

feasible. Thus, the genetic algorithm must use some strategies
to deal with the infeasible individual problems.

The strategy adopted by the genetic algorithm in [9] is
that no infeasible individuals (web service selection plans)
are allowed in the population. Since it cannot be guaranteed
that the initial population generator, the crossover operator
and the mutation operator can always produce feasible indi-
viduals, a repairing technique is used to fix up all violations
of dependency constraints and conflict constraints in an
infeasible individual. The basic idea behind the repairing
technique is iteratively identifying a pair of genes (abstract
web services) at which selected concrete web services are
not compatible and then trying to resolve the problem by
selecting an alternative concrete web service for one or both
abstract web services such that the selected two concrete web
services for the two abstract web service are compatible. If
an infeasible individual cannot be repaired, it is excluded
from the population.

In contrast, the genetic algorithm proposed in [10] allows
infeasible individuals in the population. The philosophy
behind it is that an infeasible individual may have some genes
or schemata that are essential to build the optimal web service
selection plan and therefore it cannot afford to lose them.
However, infeasible individuals are considered to be less fit
than any feasible individuals and therefore they should have
less chance to be selected for reproduction than any feasible
individuals. In order to guarantee that, a penalty is introduced
in the fitness function. It can be guaranteed by the fitness
function definition that the fitness of a feasible individual is
greater than that of any infeasible individuals, and that for a
pair of feasible individuals the fitness value of the individual
that gives better overall performance is greater than that
of the individual that has worse overall performance, and
that for a pair of infeasible individuals the fitness value
of the individual that has less number of violations of the
constraints is greater than that of the individual that has
more number of violations of the constraints if their overall
performances are the same.

In this paper we propose a new genetic algorithm for
the web service selection problem. Different from the two
existing algorithms, this genetic algorithm is a hybrid one
as it utilizes a local optimizer to improve the fitness value
of those individuals in the population. The hybrid genetic
algorithm is explained in detail in the following section.

IV. A HYBRID GENETIC ALGORITHM

This section elaborates our hybrid genetic algorithm. This
hybrid genetic algorithm uses a local optimizer to improve
the individuals in the population and utilizes a knowledge-
based crossover operator.

A. Genetic Encoding

An individual in the population of our hybrid genetic
algorithm represents a web service selection plan and it is
encoded in an array of n integers x1x2 · · ·xn, where n is
the total number of abstract web services in the workflow of
the composite web service. In the genetic encoding scheme,

each gene represents an abstract web service in the composite
web service and a value of the gene represents a concrete
web services of the abstract web service. Fig. 2 illustrates
the encoding scheme.

W̄1 W̄2 W̄n

…

…

Fig. 2. Genetic encoding scheme

B. Fitness function

As discussed above, some individuals generated by the
crossover and mutation operators may be infeasible. Thus,
the GA must address this issue.

Infeasible individuals may have some schemata that are
essential to build the optimal solution. If the infeasible indi-
viduals are excluded, the GA may not produce an optimal or
near-optimal solution. Thus, the strategy adopted by our GA
is to allow infeasible individuals in the population, but gives
a penalty to their fitness values. The following two general
guidelines are used when defining the fitness function: firstly,
it should be guaranteed that an infeasible individual has
less fitness value than any feasible individual. Secondly, an
infeasible individual that violates more constraints should
be more harshly penalized than an infeasible individual that
violates less constraints. Equation 1 gives the definition of
the fitness function.

Fitness(X) =
{

0.5 + 0.5 ∗ F (X), if V (X) = 0;
0.5 ∗ F (X)− V (X)

Vmax
, otherwise.

(1)
where F (X) is the objective function defined in the

problem formulation, V (X) stands for the total number of
constraint violations in X , and Vmax is the maximal number
of possible constraint violations. Thus, when V (X) equals
to zero, it implies X is a feasible individual; otherwise, X
is an infeasible individual.

According to Equation 1, if an individual X is feasible,
then its fitness value is given by the expression 0.5 + 0.5 ∗
F (X). If an individual X is infeasible, then its fitness value
is calculated by the expression 0.5∗F (X)− V (X)

Vmax
, in which

the component V (X)
Vmax

is the penalty given to the infeasible
individual X . Thus, the more constraints that an infeasible
individual violates, the more penalty it receives.

It can be seen from Equation 1 that the value of the
expression 0.5 + 0.5 ∗ F (X) is between 0.5 and 1.0 (the
value of the objective function F (X) is between 0 and 1)
and the value of the expression 0.5∗F (X)− V (X)

Vmax
is less than

0.5. Thus, it can be guaranteed that an infeasible individual
has less fitness value than any feasible individual.

C. Genetic operators

Different from the crossover operator used in the penalty-
based genetic algorithm and the repairing-based genetic

270

algorithm, the crossover operator used in the hybrid genetic
algorithm is a knowledge-based one. The knowledge-based
crossover operator takes two parents, p1 and p2, and produces
two children c1 and c2.

When producing c1, firstly the crossover operator identifies
all the concrete web service selections in p1 that do not
violate any constraints, and then copies these concrete web
service selections to c1. The rest concrete web service selec-
tions in c1 are copied from p2. Fig. 3 illustrates the ideas. In
the figure, we assumed that every highlighted concrete web
service selection does not conflict with any other concrete
web service selection p1. Thus, those selections are copied
to c1. Now, c1 has the concrete web service selection for
abstract web services W 1, W 2, W 3 and W 5. For the rest
abstract web services W 4, W 6, their concrete web service
selections are copied from the corresponding concrete web
service selections in p2.

1 5

W̄1 W̄2 W̄3

26 98

W̄4 W̄5 W̄6

P1 2 4

W̄1 W̄2 W̄3

65 31

W̄4 W̄5 W̄6

P2

1 5 66 91C1

W̄1 W̄2 W̄3 W̄4 W̄5 W̄6

Fig. 3. Knowledge-based crossover operator

Similarly, when producing c2, firstly the crossover operator
finds all the concrete web service selections in p2 that do
not violate any constraints, and copies them to c2. The rest
concrete web service selections in c2 are copied from p1.

The mutation operator is the same as the mutation op-
erator used in the penalty-based genetic algorithm and the
repairing-based genetic algorithm. It randomly selects a
concrete web service selection for an abstract web service
and replaces the concrete web service selection with an
alternative concrete web service of the abstract web service.
Fig. 4 illustrates the mutation operator.

1 5

W̄1 W̄2 W̄3

26 98

W̄4 W̄5 W̄6

1 5

W̄1 W̄2 W̄3

23 98

W̄4 W̄5 W̄6

Fig. 4. Mutation operator

D. Local Optimizer

Given an individual (solution), which may or may not be
feasible, the local optimizer is to optimize the individuals in
the population. The local optimizer is used at the beginning
of the genetic algorithm to improve the individuals in the
initial population, which are randomly generated, and at the
end of each generation to improve the individuals in the
population.

The local optimizer improves the fitness value of an
individual by increasing its overall QoS value and reducing
the number of constraint violations, if any, simultaneously.
This is done by systematically checking all the concrete
web service selections one by one to see if there exists an
alternative concrete web service that gives the individual a
better fitness value. If the fitness value is improved, then the
current web service selection is replaced with the alternative
concrete web service. According to the definition of the
fitness function, when the fitness value of an individual
increases either the overall QoS value increases, or the
number of constraint violations, if any, decreases, or both.
Thus, the local optimizer contributes to both maximizing the
overall QoS value and minimizing the number of constraint
violations of an individual.

An abstract web service may have many implementations
(concrete web services). Thus, if we check all the alternatives
of a concrete web service selection, it would be a time
consuming work as each time we check an alternative, we
need to re-calculate the new fitness value of the individual,
which is computationally expensive as the fitness function
calculation involves a calculation of the response time,
which is transformed into the problem of computing the
critical path of the workflow. Thus, in order to reduce the
computation time, the following strategies are adopted. If
the current concrete web service selection does not violate
any constraint, then we check the alternatives one by one
by in the decreasing order of their weighted QoS value.
Once a better alternative concrete web service is found, we
replace the current concrete web service selection with the
alternative immediately and then move onto the next concrete
web service selection. However, if the current concrete web
service selection violates any constraints, we check through
all the alternatives and pick up the alternative that gives
the best fitness value. By doing this, we can strengthen the
constraint violation repairing ability of the local optimizer.
This has been proven by experiments.

In order to improve the computation time of the local
optimizer, instead of sorting all the concrete web services
for each of the abstract web services every time we use the
local optimizer, we sort them only once at the beginning of
the genetic algorithm (before the local optimizer is invoked).
Algorithm 1 is the algorithm description for the local opti-
mizer.

E. Algorithm Description

Having defined our fitness function, genetic operators,
initial population generation and local optimizer, our hybrid

271

Algorithm 1 Local optimizer
randomly generate a sequence of abstract web services,
W x1W x2 · · ·W xn

;
for x = x1 to xn do

if the concrete web service selection at position x does
not violates any constraints then

while each concrete web service w of W x do
calculate the fitness value of the new web service
selection plan;
if the new fitness value is grater than the best fitness
value then

update the web service selection plan;
end if

end while
replace the concrete web service selection with the
best alternative;

else
while each concrete web service w of W x do

calculate the fitness value of the new web service
selection plan;
if the new fitness value is grater than the old fitness
value then

replace the web service selection with the alter-
native and exit;

end if
end while

end if
end for
output X .

genetic algorithm for the web service selection problem is
now presented as Algorithm 2.

V. EVALUATION

In order to test the performance of our hybrid genetic
algorithm, we implemented it in Microsoft Visual C# 2005.
The penalty-based genetic algorithm and the repairing-based
genetic algorithm were also implemented in the same pro-
gramming language previously. The computation time and
optimality of the new genetic algorithm were tested in
comparison with the penalty-based genetic algorithm and the
repairing-based genetic algorithm.

The parameter settings for the three genetic algorithms
are shown in Table I. The termination condition of the three
genetic algorithms was ‘no improvement on the best solution
in 15 consecutive generations’. All the experiments were
conducted in a desktop computer with a 2.33 GHz Intel Core
2 Duo CPU and a 1.95 GB RAM.

The computation time and optimality of the genetic al-
gorithms depend on the size and the complexity of the
web service selection problem. The size of the problem
is dependent on two parameters, the number of abstract
web services in the workflow and the number of concrete
web services for each of the abstract web services. The
complexity of the problem largely depends on the number of

Algorithm 2 A hybrid genetic algorithm for the web service
selection problem

randomly create an initial population of PopSize individ-
uals, Population;
for each individual in Population do

optimize it using the local optimizer and then calculate
its fitness value using the fitness function

end for
find the best individual best in the initial population and
store its fitness value into best fitness;
while termination condition is not true do

for ∀x∈ Population do
calculate its fitness value, F (x);
if the fitness value is greater than best fitness then

best = x;
best fitness = F (x);

end if
end for
select individuals from Population using the roulette
selection strategy and pair them up;
for each pair of the selected parents do

probabilistically use the crossover operator to produce
two children, child1 and child2;
probabilistically use the mutation operator to mutate
child1 and child2;
replace the parents with the children;

end for
end while
output best.

TABLE I
GA PARAMETERS SETTING

Parameters PGA RGA HGA

Population size 100 100 30

Crossover rate 0.90 0.90 0.90

Mutation rate 0.15 0.15 0.15

dependencies and conflict constraints in the problem. Thus,
we generated three sets of test problems.

The first set of test problems included 10 test problems
with different number of abstract web services. The number
of abstract web services ranged from 10 to 100 with an incre-
ment of 10. This was done by concatenating a certain number
of the composite web service workflow shown in Fig. 1. For
example, when generating a composite web service workflow
with 30 abstract web services, we concatenated three copies
of the workflow shown in the figure. The number of concrete
web services for each of the abstract web services was fixed
to 30. The number of constraints was fixed to 60. This set
of test problems was used to test how the computation time
and optimality of the genetic algorithms would change with
the number of abstract web services.

The second set of test problems also included 10 test
problems. The number of concrete web services for each

272

of the abstract web services ranged from 10 to 100 with
increment of 10. The number of abstract web services was
fixed to 10 and the total number of constraints was fixed to
60. This set of test problems was designed to test how the
computation time and optimality of the genetic algorithms
would change with the number of concrete web services.

The third set of test problems consisted of 10 test prob-
lems with different numbers of constraints. The number of
constraints in the test problems ranged from 50 to 500 with
increment of 50. The number of abstract web services was
fixed to 10, and the number of concrete web services for
each of the abstract web services was fixed to 10. Since the
number of abstract web services and the number of concrete
web services were all fixed, the number of constraints
reflected the constraints density. This set of test problems
was used to test how the computation time and optimality of
the genetic algorithms would change with the complexity of
the problem.

In all the generated test problems, the execution path was
randomly selected and the number of iterations of the loops
was a randomly generated value between 0 and 6. The QoS
values for concrete web services were randomly generated
as well. The ranges of the values for response time, price,
reputation, availability and reliability were [1, 10], [1, 10],
[1, 5], [0.9, 1], and [0.9, 1], respectively, and the weighting
given to the QoS criteria were fixed to 0.4, 0.3, 0.1, 0.1, and
0.1, respectively.

Firstly, we used the three genetic algorithms to solve each
of the test problems in the first test set. Considering the
stochastic nature of the genetic algorithms, we repeated each
of the experiments 30 times and then calculated the average
fitness value and average computation time for each of the
experiments for each of the genetic algorithms. Table II
shows the average fitness values obtained by the three genetic
algorithms for the 10 test problems in the first test set
and Fig. 5 displays how the average computation times of
the three genetic algorithms changed when the number of
abstract web services changed from 10 to 100. In the figures
and tables in this paper, PGA, RGA and HGA stand for the
penalty-based genetic algorithm, the repairing-based genetic
algorithm and the hybrid genetic algorithm, respectively.

It can be seen from the table that the hybrid genetic
algorithm found the best fitness value for six of the 10
test problems, the penalty-based genetic algorithm and the
repairing-based genetic algorithm found two each. Overall,
the hybrid genetic algorithm can find better quality of solu-
tions than the other two genetic algorithms. It can be seen
from the figure that the computation time of the three genetic
algorithms were not correlated with the number of abstract
web services. In addition, the hybrid genetic algorithm was
the slowest one of the three genetic algorithms. However, the
longest time it took to solve the test problem was less than
40 seconds, which is acceptable as the optimal web service
selection is done at design time rather than at runtime.

Then, we used the three genetic algorithms to solve each
of the test problems in the second test set. We repeated each

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Number of Abstrct Web Services

C
om

pu
ta

tio
n

T
im

e
(s

)

PGA
RGA
HGA

Fig. 5. The effect of the number of abstract web services on the computation
time

of the experiments 30 times and then calculated the average
fitness value and average computation time for each of the
experiments for each of the genetic algorithms. Table III
shows the average fitness values obtained by the three genetic
algorithms for the 10 test problems in the second test set
and Fig. 6 displays how the average computation times of
the three genetic algorithms changed when the number of
concrete web services changed from 10 to 100.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Number of Concrete Web Services per Abstract Web Service

C
om

pu
ta

tio
n

T
im

e
(s

)

PGA
RGA
HGA

Fig. 6. The effect of the number of concrete web services per abstract web
service on the computation time

It can be seen from the table that the hybrid genetic
algorithm outperformed the other two genetic algorithms as
it found the best fitness value for all the 10 test problems. It
can be seen from the figure that the computation time of the
three genetic algorithms increased linearly with the number
of concrete web services per abstract web service. The hybrid
genetic algorithm took longer time than the other two genetic
algorithms for all of the test problems in the second test set.
However, the longest one was only less than 2 seconds, which
still is quick enough.

Finally, we used the three genetic algorithms to solve the
test problems in the third test set one by one. We repeated
each of the experiments 30 times and then calculated the
average fitness value and average computation time for each
of the experiments for each of the genetic algorithms. Ta-

273

TABLE II
COMPARISON RESULTS OF PGA, RGA AND HGA FOR TEST PROBLEMS WITH DIFFERENT NUMBERS OF ABSTRACT WEB SERVICES

Problem Abstract Services #
PGA RGA HGA

Avg. Fitness Dev. (%) Avg. Fitness Dev. (%) Avg. Fitness Dev. (%)
1 10 0.88703 0.07 0.88722 0.07 0.89033 0
2 20 0.86601 0.21 0.86726 0.13 0.86769 0.03
3 30 0.85499 0.22 0.85506 0.19 0.85694 0.03
4 40 0.85978 0.16 0.85967 0.17 0.86154 0.06
5 50 0.85580 0.18 0.85660 0.13 0.85643 0.10
6 60 0.85257 0.14 0.85327 0.12 0.85274 0.11
7 70 0.86456 0.17 0.86512 0.16 0.86647 0.06
8 80 0.85821 0.15 0.85816 0.17 0.85785 0.11
9 90 0.85844 0.19 0.85953 0.19 0.86336 0.05

10 100 0.85137 0.14 0.85299 0.13 0.85652 0.08

TABLE III
COMPARISON RESULTS OF PGA, RGA AND HGA FOR TEST PROBLEMS WITH DIFFERENT NUMBER OF CONCRETE WEB SERVICES FOR EACH

ABSTRACT WEB SERVICE

Problem Concrete Services #
PGA RGA HGA

Avg. Fitness Dev. (%) Avg. Fitness Dev. (%) Avg. Fitness Dev. (%)
1 10 0.84133 0.39 0.84013 0.14 0.84747 0
2 20 0.87848 0.02 0.87856 0.01 0.87859 0
3 30 0.88633 0.08 0.88657 0.03 0.89116 0.20
4 40 0.87409 0.24 0.87471 0.21 0.88117 0
5 50 0.89136 0.39 0.89266 0.17 0.89361 0
6 60 0.90001 0.26 0.90025 0.17 0.90131 0.04
7 70 0.90818 0.18 0.90829 0.20 0.90950 0.02
8 80 0.90812 0.29 0.90811 0.30 0.91196 0.01
9 90 0.91296 0.37 0.91552 0.35 0.91916 0

10 100 0.90521 0.29 0.90472 0.35 0.90981 0.08

ble IV shows the average fitness values obtained by the three
genetic algorithms for the 10 test problems in the second test
set and Fig. 7 displays how the average computation times
of the three genetic algorithms changed when the number of
constraints changed from 50 to 500.

50 100 150 200 250 300 350 400 450 500
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Number of Constraint Pairs

C
om

pu
ta

tio
n

T
im

e
(s

)

PGA
RGA
HGA

Fig. 7. The affect of constraint density on the computation time

It can be seen from the table that in overall the hybrid
genetic algorithm outperformed the other two genetic algo-
rithms as it found the best fitness value for seven of the 10
test problems. It can be seen from the figure that basically the
computation time of the three genetic algorithms increased
linearly with the number of constraints. The hybrid genetic
algorithm took longer time than the other two genetic al-
gorithms for all of the test problems in the third test set.
However, the longest one was only less than 22 seconds,
which still is quick enough.

Based on the above experimental results for the three sets
of test problems, the following conclusions can be drawn:
• The hybrid genetic algorithm is as scalable as the

other two genetic algorithms. Its computation time does
not change significant when the number of abstract
web services increases, and increases linearly when the
number of concrete web services increases or when the
number of constraints increases.

• The hybrid GA is also effective as the other two genetic
algorithms. In overall, the hybrid genetic algorithm
can find slightly better solutions than the other genetic
algorithms.

274

TABLE IV
COMPARISON RESULTS OF PGA, RGA AND HGA FOR TEST PROBLEMS WITH DIFFERENT CONSTRAINT DENSITIES

Problem Constraint Pairs #
PGA RGA HGA

Avg. Fitness Dev. (%) Avg. Fitness Dev. (%) Avg. Fitness Dev. (%)
1 50 0.82891 0.14 0.82879 0.11 0.83122 0.07
2 100 0.82891 0.18 0.82843 0.08 0.82972 0.06
3 150 0.81241 0.39 0.81447 0.15 0.81671 0.04
4 200 0.80968 0.40 0.81337 0.06 0.81469 0.01
5 250 0.80215 0.44 0.80764 0.13 0.80844 0
6 300 0.73099 17.26 0.80484 0.08 0.80615 0.04
7 350 0.82891 19.19 0.79819 0.33 0.80005 0.02
8 400 0.36894 0.70 0.77433 0.30 0.76342 8.99
9 450 0.27321 0.59 0.30328 14.48 0.27315 0

10 500 0.25425 0.61 0.28810 14.28 0.26436 0.01

• The hybrid genetic algorithm is more stable than the
other two genetic algorithms. This can be reflected in
the derivations shown in the tables.

• The hybrid genetic algorithm is more suitable for those
web service problems with a large number of abstract
web services and a large number of constraints.

VI. CONCLUSION

This paper has proposed a new genetic algorithm for
the optimal web service selection problem. Different from
the other two genetic algorithms proposed previously, this
new genetic algorithm is a hybrid one, utilizing a local
optimizer to improve the fitness value of the individuals in
the population at end of each generation, including the initial
population. The local optimizer can improve the overall QoS
value of, and reduce or eliminate the constraint violations in,
a composite web service plan.

This paper has also shown our systematic evaluation
results on the new genetic algorithm in comparison with
the other two genetic algorithms. The evaluation results have
shown that the new hybrid genetic algorithm can provide bet-
ter quality of solutions than the other two genetic algorithms
for almost all the test problems.

A deficiency of the new hybrid genetic algorithm is that its
computation time is slightly longer than that of the other two
genetic algorithms. This results from larger number of fitness
evaluations used by the local optimizer. Thus, its computation
time could be reduced by strategically applying the local
optimizer to improve selective individuals rather than all the
individuals in the population. This is an issue that we will
investigate in the future.

In addition, the evaluation has shown that the performance
of the new genetic algorithm may not be as stable as that of
the repairing-based genetic algorithm when the constraints
density is very high. Thus, a potential to further improve
the performance of new genetic algorithm is to embed the
repairing mechanism in the local optimizer.

ACKNOWLEDGEMENT

The authors wish to thank Nan Tian for his help with
the hybrid genetic algorithm implementation and the exper-
iments.

This research was carried out as part of the activities of,
and funded by, the Smart Services Cooperative Research
Center (CRC) through the Australian Government’s CRC
Programme (Department of Innovation, Industry, Science and
Research).

REFERENCES

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint driven
web service composition in METEOR-S,” in Proc. 2004 IEEE Inter-
national Conference on Services Computing, Sept. 2004, pp. 23–30.

[2] M. Jaeger, G. Rojec-Goldmann, and G. Muhl, “QoS aggregation
for web service composition using workflow patterns,” in Proc. the
8th IEEE International Conforence on Enterprise Distributed Object
Computing Conference, Sept. 2004, pp. 149–159.

[3] E. Maximilien and M. Singh, “A framework and ontology for dynamic
Web services selection,” IEEE Internet Computing, vol. 8, no. 5, pp.
84–93, Sept.-Oct. 2004.

[4] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and J. Lee, “On accom-
modating inter service dependencies in web process flow composition,”
in Proc. AAAI Spring Symposium on SWS, 2004, pp. 37–43.

[5] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middleware for web services composition,”
IEEE Transactions on Software Engineering, vol. 30, no. 5, pp. 311–
327, May 2004.

[6] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach
for QoS-aware service composition based on genetic algorithms,” in
Proc. the 2005 conference on Genetic and evolutionary computation.
New York, NY, USA: ACM, 2005, pp. 1069–1075.

[7] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Transactions on Software Engineering, vol. 33, no. 6,
pp. 369–384, June 2007.

[8] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web services
selection with end-to-end qos constraints,” ACM Trans. on Web, vol. 1,
no. 1, p. 6, 2007.

[9] L. Ai and M. Tang, “QoS-based web service composition accommo-
dating inter-service dependencies using minimal-conflict hill-climbing
repair genetic algorithm,” in Proc. IEEE Fourth International Confer-
ence on e-Science, Dec. 2008, pp. 119–126.

[10] ——, “A penalty-based genetic algorithm for QoS-aware web service
composition with inter-service dependencies and conflicts,” in Proc.
International Conference onComputational Intelligence for Modelling,
Control and Automation,, Dec. 2008, pp. 738–743.

[11] M. Aiello, E. el Khoury, A. Lazovik, and P. Ratelband, “Optimal QoS-
aware web service composition,” in IEEE International Conference on
E-Commerce Technology, 2009, pp. 491–494.

275

