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Abstract

The detection of voice activity is a challenging problem, espe-
cially when the level of acoustic noise is high. Most current
approaches only utilise the audio signal, making them suscep-
tible to acoustic noise. An obvious approach to overcome this
is to use the visual modality. The current state-of-the-art visual
feature extraction technique is one that uses a cascade of vi-
sual features (i.e. 2D-DCT, feature mean normalisation, inter-
step LDA). In this paper, we investigate the effectiveness of this
technique for the task of visual voice activity detection (VAD),
and analyse each stage of the cascade and quantify the relative
improvement in performance gained by each successive stage.
The experiments were conducted on the CUAVE database and
our results highlight that the dynamics of the visual modality
can be used to good effect to improve visual voice activity de-
tection performance.

Index Terms: visual speech, voice activity detection, CUAVE
database, static features, dynamic features

1. Introduction

An interesting problem in the speech processing field is the de-
termination of speech and non-speech segments, as it is use-
ful in many applications (e.g. real-time speech transmission
on the Internet [1] and mobile communication services [2]). A
significant amount of research has been conducted in the field
of VAD in the presence of acoustic noise over the past decade
[3, 4, 5, 6], however, the robustness and effectiveness depends
on the acoustic environment and very poor when the level of
background noise increases.

Using the visual modality is a potential method of improv-
ing the robustness of VAD in noisy environments. Recently,
there have been a few attempts to incorporate the visual move-
ments in VAD. In 2004, Liu et. al [7] used template match-
ing to extract the region-of-interest (ROI) and applied PCA on
the ROI to extract features, which were then used for VAD. In
2006, Sodoyer et. al [8] used lip width and height as features to
perform VAD. More recently, Libal et al. [9] developed a real-
time system to recognise visual speech activity on low cost em-
bedded platforms. This system uses a camera mounted on the
rearview mirror to monitor the driver. It detect face boundaries
and facial features, and finally use lip motion clues to recognize
VAD.

As described above, these above methods only use primi-
tive visual features' and do not utilise both the static and dy-
namic speech information encoded within the region around

1t must be noted that in the case of Libal et al. [9], that this was due
to real-time constraints

Figure 1: Examples of the CUAVE individual sequences

a speaker’s mouth. A technique which incorporates this in-
formation is based on a cascade of appearance based fea-
tures, first devised by Potamianos et. al [10]. This tech-
nique has been established as the state-of-the-art for visual fea-
ture extraction for audio-visual automatic speech recognition
(AVASR) [11, 12, 13]. In literature, there has been no detailed
study reporting the effect that the static and dynamics portions
of visual speech has on VAD.

In this paper, we analyse the effect that different types of
features (both static and dynamic) have on the performance of
visual VAD. The experiments are carried out on the CUAVE
database and each stage of the cascading appearance based fea-
tures are analysed. The rest of the paper is organized as follows:
Section 2 describes the experimental data (CUAVE database).
Section 3 describes the visual front-end, while Section 4 de-
scribes the cascading appearance based features. Section 5 out-
lines the visual VAD system. Experiments are described in Sec-
tion 6, which is followed up with some concluding remarks.

2. CUAVE database

The CUAVE database [14] is a publicly available audio-visual
database which contains speakers talking in frontal and non-
frontal poses. The main motivation behind the creation of the
CUAVE database was to create a flexible, realistic and easily
distributable database that allows for representative and fairly
comprehensive testing.

The CUAVE database consists of two sections, the first con-
taining individual speakers, and the second containing groups
of two (or more) speakers. Both sections were designed to rep-
resent realistic capture conditions for visual speech, including
speaker movement and pose variation. The CUAVE database
consists of 36 speakers (19 male and 17 female speakers). The
database is a speaker independent corpus of over 7000 utter-
ances and all the recorded speech is in English. Some examples
of the visual frames from the individual section of the CUAVE
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Figure 3: Examples of tracked 40x40 ROl

database are shown in Figure 1. For the purposes of this work,
only the sections while the speaker remained stationary were
used in order to simplify the task of the visual front end.

3. The Visual front-end

Before any visual features can be extracted, a visual front-end
has to be developed which is able to track and locate the region
of interest (ROI) from the speaker’s face. This was done using
the Viola-Jones algorithm [15]. An overview of the visual front-
end system which was used to extract the mouth ROI for the
frontal pose is presented in Figure 2.

Given a video of a speaker, the face is located using a
16 16 face classifier. Once the face was located, the eyes were
located in the upper half of the face region. Next, the lower half
of the face was used to locate the mouth region. The result-
ing mouth region was then used as the search region to locate
the right and left mouth corners. After these were located, the
extracted mouth ROI was then rotated so that these two points
were aligned horizontally. Finally, the mouth ROI was down-
sampled to 40 x40 to keep the dimensionality low. The tracked
ROI was smoothed using a mean filter. This process was per-
formed on every incoming video frame. All the classifiers were
developed using the OpenCV [16] libraries.

Overall, the performance of the visual front-end system was
quite good. There was only a few number of poorly or mis-
tracked ROIs, which could be attributed to random head move-
ment. Figure 3 presents some of the examples of mouth ROIs.

4. Cascading appearance-based visual
features

Cascading appearance based features, first devised by Potami-
anos et. al [10]. This technique has been established as the state-
of-the-art for visual feature extraction for AVASR [11, 12, 13].
Figure 4 shows a block diagram of the cascading appearance-
based visual feature extraction system. Essentially, it is broken
into two sections: 1) static feature extraction and 2) dynamic
feature extraction. The following subsections describe these in
detail.

4.1. Static feature extraction system

Following the ROI extraction from the visual front-end sys-
tem, a image mean normalization step was performed to remove
any irrelevant information, such as illumination or speaker vari-
ances. The mean image was calculated from the given en-
tire utterance and subtracted from the every incoming frame in
the utterance. Then a two-dimensional separable, discrete co-
sine transform (DCT) is applied to the mean-removed image as
shown in Figure 4. Finally, the top 30 higher energy compo-
nents were selected to capture the static information.

4.2. Dynamic feature extraction system

Visual speech is best discriminated by the movement of the
visual articulators [10]. The best features for representing vi-
sual speech are generally considered across a small window of
around 5 to 7 frames, rather than within just one frame. One
technique that can extract such information is through the use
of linear discriminant analysis (LDA) to extract the relevant dy-
namic speech features from the ROI.

In order to incorporate the dynamic speech information, the
static features around the current frame are concatenated into
a single feature vector. We used seven of these neighboring
static feature vectors over +3 consecutive frames, and were
projected via an inter-frame linear discriminant analysis (LDA)
step to yield a 50-dimensional “dynamic” visual feature vec-
tor, extracted at the video frame rate of 30 Hz. The classes
used for the LDA matrix calculation were hidden Markov model
states, based on a forced alignment of known-good, whole-word
acoustic models with the aligned acoustic CUAVE speech.
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Figure 5: An overview of the speech detection framework

5. Gaussian mixture model (GMM) based
VAD

5.1. VAD framework

An overview of the operation of the main components of speech
detection framework is outline in Figure 5. We describe each of
these modules in the following subsections.

5.1.1. GMM speech detectors

An 8-mixture GMM-based speech detection module was used
to calculate the speech likelihood of each individual feature-
frame obtained from the feature extraction outlined in Section
4. Each speech likelihood score was calculated as the differ-
ence between a speech and a non-speech GMM for the particu-
lar set of features under observation. A separate GMM training
module was used to estimate the parameters of the speech and
non-speech GMMs on separate training data.

5.1.2. Score smoother

The speech likelihood scores obtained for each frame were
smoothed using a one-second median filter to attenuate the ef-
fect of short-term variation. Removing the short-term variation
in the GMM-based speech likelihoods was found to provide bet-
ter performance; hence providing the ability to handle the effect
of long vowels.

5.1.3. Speech segmenter

The smoothed speech likelihood scores were then segmented
into speech and non-speech decisions according to a simple

Table 1: Speaker list

[ Group | Speakers ‘
s01, s02, s03, s05, s06, s08, s09, s10
Training | sl1,s12,s13, s14, s15, s16, s18, s19
s20, s21, s22, 523, s24, s25, s26
Testing | s27, 528, 29, s30, s31, s32, s34, s36

threshold segmenter. Frames above the threshold were desig-
nated speech, and those below, non-speech. Similarly to the
GMM parameter estimation, the segmentation threshold was
trained on separate training data.

5.2. Evaluation protocol

The VAD experiments were conducted using the stationary,
frontal-view portion of the CUAVE database. Only the isolated
digits section, covering 5 repeats of 10 English digits (‘zero’
- ‘nine’). For the purposes of our VAD experiments, the en-
tire 10-digit sequences were considered to be speech, while the
silences between the 10-digit sequences were designated non-
speech. From the CUAVE database 31 subjects (5 subjects were
discarded due to the poor tracking) were selected for the exper-
iments and they were categorised as 23 subjects for training of
the GMM models and for the tuning of the segmentation thresh-
olds based on the minimising the half total error rate (HTER)
and 8 subjects for testing. The training and testing speakers are
listed in Table 1.

In order to evaluate the performance of the VAD system, the
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output speech segmentation was compared with the reference
segmentation derived from CUAVE word-level transcriptions.
The differences between these two segmentations are reported
using the false alarm rate (FAR) (i.e. How often non-speech
frame is detected as a speech frame), miss rate (MR) (i.e. How
often a real speech frame is miss) and the HTER. HTER define
as the mean of the MR and FAR. The metrics are calculated as
follows in this framework. Each of the metrics are calculated
over a wide variety of speech sequences.

MR = Loy 100% 1)
Tsys
T

FAR = * 100% )
T7‘ef

In equation (1), Ty, represents the duration of speech in
false-alarm and T, represents the duration of speech in the
system. In equation (2), T}, define as the duration of speech
misses and 7’y represents the duration of the reference event
transcriptions.

6. Results
6.1. Static feature results

Initially, the VAD experiments were run using only the static
features. These experiments are shown as the thick dashed line
in Figure 6, showing the trade-off between the MR and the FAR
at each possible segmentation threshold. The chosen operating
point, based on minimising the HTER, on the curve is also in-
dicated.

Using the static-only features, the FAR was 55.20% and the
MR was 41.40% which resulted in a HTER of 48.30%. The
overall results were very poor. The main reason for this is that
there is little distinction in visual information represented by the
static lip features between the speech and non-speech events.

6.2. Dynamic feature results

The next experiments were conducted to obtain the dynamic
cascading appearance based visual features. These experiments

Table 2: Comparison of static and dynamic results

Performance | Static Dynamic
metrics results (%) | results (%)
FAR 55.20 31.70

MR 41.40 25.30
HTER 48.30 28.50

are shown as the solid line in Figure 6, with the chosen op-
erating point, based on minimising HTER, also indicated. As
can be seen the inclusion of dynamic features shows great im-
provement in performance. Minimum HTER was 28.50% with
31.70% FAR and 25.30% MR. This is 19.80% of improvement
in HTER compared with only static features. Table 2 shows the
comparison of static and the dynamic feature results.

As an example, the results of an individual testing speaker
obtained from the visual VAD system is shown in Figure 7 for
both (a) static and (b) dynamic visual feature extraction. The
clear improvement of the dynamic visual features can be seen
here, showing the importance of capturing the lip movements
for visual VAD.

7. Conclusion and future work

This paper presents a visual VAD system that uses the cascading
appearance based features developed by Potamianos et. al [10].
The results show that using the dynamic features clearly im-
proves performance, rather than just utilising static information.
The paper also described an efficient visual front-end system to
extract the ROI and a speech activity detection framework. This
research clearly showed the importance of the lip movements
of the visual articulators not only for the speech recognition but
also for the visual VAD.

Our current research is focus on VAD using different
dataset which has significant amount of “visual silence” in
frontal view and profile view as well as visual VAD experiments
in a “real-world” environment.

8. Acknowledgment

‘We would like to thank Clemson University for freely supplying
us CUAVE database [14] for our research. This work was sup-
ported through the Cooperative Research Centre for Advanced
Automotive Technology (AutoCRC).

9. References

[1] A. Sangwan, M. Chiranth, H. Jamadagni, R. Sah, R. Prasad, and
V. Gaurav, “VAD techniques for real-time speech transmission on
the internet,” IEEE International Conference on High-Speed Net-
works and Multimedia Communications, pp. 46-50, 2002.

[2] D. Freeman, G. Cosier, C. Southcott, and 1. Boyd, “The voice ac-
tivity detector for the PAN-european digital cellular mobile tele-
phone service,” International Conference on Acoustics, Speech
and Signal Processing, vol. 1, pp. 369-372.

[3] J. Sohn, N. Kim, and W. Sung, “A statistical model based voice
activity detection,” IEEE Signal Processing Letters, vol. 16, pp.
1-3, 1999.

[4] Y. Cho and A. Kondoz, “Analysis and improvement of a statisti-
cal model-based voice activity detector,” IEEE Signal Processing
Letters, vol. 8, pp. 276-278, 2001.

[51 S. Gazor and W. Zhang, “A soft voice activity detector based on



10 15 20 25 30 35 40 45

Score Ground-Truth

0 5
o T
[}
k=S
o]
oy Tl -
£
wn L
0 5 10 15 20 25 30 35 40 45
=
[
[0]
[0}
Q)
n I I I I I I I
0 5 10 15 20 25 30 35 40 45

[6

=

[7]

[8

=

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(a) With static features

Figure 7: Results of VAD on a sample testing speaker with (a) static and (b) dynamic visual feature extraction

a Laplacian-Gaussian model,” IEEE Transaction on Speech and
Audio Processing, vol. 11, pp. 498-505, 2003.

L. Armani, M. Matassoni, M. Omologo, and P. Svaizer, “Use of a
CSP-based voice activity detector for distant-talking ASR,” Pro-
ceedings of the EUROSPEECH 2003, Geneva, 2003.

P. Liu and Z. Wang, “Voice activity detection using visual in-
formation,” Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1, pp. 609-612,
2004.

D. Sodoyer, B. Rivet, L. Girin, J. Schwartz, and C. Jutten, “An
analysis of visual speech information applied to voice activity
detection,” Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1, 2006.

V. Libal, J. Connell, G. Potamianos, and E. Marcheret, “An em-
bedded system for invehicle visual speech activity detection,” in
Proceedings of the International Workshop on Multimedia and
Signal Processing, Chania, Greece, 2007, pp. 255-258.

G. Potamianos, A. Verma, C. Neti, and S. Iyengar, G. Basu,
“A cascade image transform for speaker independent automatic
speechreading,” IEEE International Conference on Multimedia
and Expo 2000, ICME 2000., vol. 2, pp. 1097-1100, 2000.

G. Potamianos, C. Neti, J. Luettin, and I. Matthews, “Audio-visual
automatic speech recognition: An overview,” in Issues in Visual
and Audio-Visual Speech Processing, MIT Press, 2004.

G. Potamianos and C. Neti, “Audio-visual speech recognition in
challenging environments,” Proceedings of the European Confer-
ence on Speech Communication and Technology, pp. 1293-1296,
Geneva, Swizterland, 2003.

P. Lucey and G. Potamianos, “Lipreading using profile versus
frontal views,” in Proc. Int. Works. Multimedia Signal Process.
(MMSP), pp. 24-28, 2006.

E. Patterson, S. Gurbuz, Z. Tufekci, and J. Gowdy, “CUAVE: A
new audio-visual database for multimodal human-computer in-
terface research,” Proceedings of the International Conference
on Acoustics, Speech and Signal Processing, Orlando, FL,USA
,2002.

P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001, vol. 1, pp. 511-518, 2001.

Open Source Computer Vision Library, Std. [Online]. Available:
http://www.intel.com/research/mrl /research/opencv

Ground-Truth

Score

20 25 30 35
(b) With dynamic features



