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ABSTRACT 

Successful wound repair and normal turnover of the extracellular matrix relies on a balance 

between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs).  When over-

expression of MMPs and abnormally high levels of activation or low expression of TIMPs are 

encountered, excessive degradation of connective tissue and the formation of chronic ulcers 

can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors.  We have designed 

a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity 

peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in 

standard solutions.  The inhibitor was also tethered to a polyethylene glycol hydrogel using a 

facile reaction between the linker unit on the inhibitor and the hydrogel precursors.  After 

tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which 

was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered 

inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered 

inhibitors were tested against chronic wound fluid we observed significant inhibition in 

proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within 

chronic wounds. 
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INTRODUCTION 

Matrix metalloproteinases (MMPs) are a family of zinc ion-containing proteolytic enzymes.  

During wound repair they play an important role in extracellular matrix (ECM) degradation, 

growth factor activation and immune system regulation.1-6 The 20-plus known MMPs share a 

common domain structure, and are expressed as zymogens, each with an inhibitory pro-domain 

which must be enzymatically cleaved for activation.1 In addition to tight control over MMP 

activation, the duration and location of MMP activity is controlled by the presence of the four 

members of the tissue inhibitor of metalloproteinases (TIMP) family.2  The ability of TIMPs to 

inhibit the MMPs is largely due to the interaction of a wedge-shaped ridge on the N-domain 

which binds within the active-site cleft of the target MMP.7 

During wound repair, proper balance between MMPs and TIMPs is crucial for the normal 

turnover of the ECM.8 However, the over-expression of several MMPs including MMP-1, 2, 3, 8, 

9 and -10, combined with abnormally high levels of activation or low expression of TIMPs, may 

contribute to excessive degradation of connective tissue and the formation of chronic ulcers.8,9.  

In particular, we have previously shown that MMP-9 activity is abnormally high in chronic wound 

fluid (CWF), and correlates with the clinical severity of the wound as measured by PUSH 

(Pressure Ulcer Scale of Healing) scores.9 

For the treatment of chronic wounds, it has been suggested that the addition of MMP 

inhibitors prior to topical treatment of the wound with growth factors would reduce the rate of 

proteolytic degradation of these factors, and reduce the dose required to promote healing.10-13  

We believe, however, that caution is needed when applying synthetic inhibitors to the wound as 

MMP activity in the wound bed is important to normal tissue remodelling.  One strategy to 

address this problem is to covalently link the inhibitor to a polymer substrate, restricting the 

inhibition to the wound surface and the exudate.  As well as preventing excessive breakdown of 

ECM at the wound bed surface, this may prevent the breakdown of protein-based treatments 
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applied to the wound such as the vitronectin:IGF-I:IGFBP complexes pioneered by our 

laboratory.14 Furthermore, tethering of the inhibitor prevents it from leaching into the blood 

circulation, significantly reducing the risk of systemic effects. 

A wide range of MMP inhibitors have been studied for treatment of MMP-related 

diseases, such as cancer, and have shown great success in pre-clinical trials using animal 

models at the early stages of cancer progression.15 Four major types of MMP inhibitors for 

cancer treatment that have been clinically evaluated are hydroxamates, carboxylates, thiols and 

the tetracycline analogues (doxycyclines).16  These compounds typically inactivate MMPs by 

chelating or coordinating to the zinc ion in the active site cleft. Despite the promise in pre-clinical 

trials, translation of MMP inhibitors to the clinic has been hampered by their link to 

musculoskeletal syndrome, although the mechanism of the link has not been elucidated.17 

Again, local application of a tethered inhibitor is an appealing strategy to mitigate problems such 

as musculoskeletal syndrome. 

Immobilization of the potent broad-spectrum hydroxamic acid-containing MMP inhibitor, 

Batimastat, has been previously carried out on a resin then used to concentrate MMPs for 

cancer diagnostics.18  This was accomplished by derivatization at the thioproline sulphur group, 

allowing coupling to an epoxide-functionalised Sepharose resin. A less specific approach using 

hydroxamic acid functionality to inhibit MMPs has recently been reported by Skarja et al.19  They 

synthesized beads of poly(methylmethacrylate-co-methacrylic acid) and introduced hydroxamic 

acid groups via reaction of the acid groups and demonstrated inhibition of MMP-2, 3, 8 and -13 

in stock solutions as well as MMP-8 in CWF. The disadvantages of these two above 

approaches are that Batimastat is limited to a small subset of inhibitors, while the hydroxamate-

functionalized beads act as non-specific chelators. 

There are a number of peptidomimetic inhibitors containing hydroxamate groups which 

share one of two common backbone structures, mimicking the N-terminal (so-called “left hand 

side” (LHS)) or, more commonly, the C-terminal (“right hand side” (RHS)) portion of MMP 
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substrates,20 with the hydroxamate group at the C- or N-terminus.  With this in mind, we 

hypothesized that the structural arrangement of the backbone of these inhibitors would mimic 

that of native substrates, and that therefore extensions to this backbone should cause minimal 

disruption to the MMP-binding activity of an inhibitor of this class. 

In this study we designed a LHS inhibitor based on the structure of a previously reported 

inhibitor by the addition of a 6-aminohexanoic acid linker attached to its N-terminus, and tested 

its MMP inhibitory activity.  Furthermore, we incorporated this inhibitor into a poly(ethylene 

glycol) (PEG) hydrogel, and tested its inhibitory effect in active MMP solutions and in a CWF 

sample with a high PUSH score. 

MATERIALS AND METHODS 

Materials 

The aminohexanoic acid terminated pseudopeptide β-thioproline-L-β-

homophenylalanine-L-lysine(4-(4-ethylephenyl)benzoyl)-NHOH (MW 759 Da) was synthesized 

by Mimotopes Pty Ltd (Melbourne, Australia) and supplied at a purity of 95% by HPLC. 

Polyethylene glycol (PEG)-dithiol (MW 3.4kDa) was from NOF Corporation (Japan) while PEG-

octaacrylate (MW 40kDa) was obtained by functionalization of 8-arm PEG-OH (NOF 

Corporation, Japan) according to published methodology.21 The degree of acrylation was 

approximately 93% as determined by NMR spectroscopy. ω-acryloyl α-NHS Ester PEG MW 

3.5kDa was purchased from Jenkem Technology USA Inc.  Analytical grade anhydrous dimethyl 

sulfoxide (DMSO, 99.5+%), 4-aminophenylmercuric acetate (APMA),  zinc chloride (ZnCl2), Brij® 

35, and sodium bicarbonate (NaHCO3) were purchased from Sigma-Aldrich.  

Tris(hydroxymethyl) aminomethane (Tris base) was purchased from Roche Diagnostics.  

Sodium chloride, calcium chloride, pro-enzyme MMP-9 (0.10 mg/mL), -2 (0.373 mg/mL), -1 

(0.08 mg/mL) and active form MMP-3 (0.1 mg/mL), as well as MMP fluorogenic substrate III 

(DABCYL-GABA-Pro-Gln-Gly-Leu-Glu(EDANS)-Ala-Lys-NH2), were purchased from Merck.  
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Coomassie PlusTM protein assay reagent and bovine serum albumin (BSA, 2.0 mg/mL) were 

purchased from Thermo Scientific. Both black and clear 96 well plates were purchased from 

Nunc. Purified and deionised water with a resistivity of 18.2 MΩ·cm at 25 °C was used 

throughout this work. A FLUOstar OPTIMA fluorimeter (BMG Labtech GmbH) was used to read 

the black plates for the MMP fluorescent assay, while a BIO-RAD Benchmark PlusTM microplate 

spectrophotometer was used to read the clear plates for the Coomassie PlusTM assay.  

Pro-enzyme activation 

To activate the pro-enzyme, freshly prepared APMA (100 mM in DMSO) was added to 

MMP-9, -2, and -1 (concentrations as supplied) to give a final APMA concentration of 1 mM, 

followed by incubation at 37 °C for 3 h.  The activated MMPs were then stored in 10 µL aliquots 

at -80 °C. 

MMP Fluorescent Assay 

Details of the MMP fluorescent assay using MMP fluorogenic substrate III have been 

described in detail elsewhere.22  Briefly, buffer A (50 mM Tris (pH 7.6), 150 mM NaCl, 5 mM 

CaCl2, 1 µM ZnCl2, 0.01% Brij 35) was used as a dilution buffer for active MMPs and controls.  

The MMP substrate III was added to a series of active MMPs diluted in buffer A in the presence 

of 0.1% BSA in a black 96 well plate at 37 °C.  The reaction signal was then collected 

dynamically using a fluorimeter by monitoring fluorescence (λex=340 nm, λem=485 nm) at two-

minute time intervals.   

PEG-inhibitor Conjugation 

The inhibitor was dissolved in 50 µL DMSO to a concentration of 1 mg/mL, then 100 µL 

of NaHCO3 solution (50 mM; adjusted to pH 8.3 with 1M HCl) was added to the inhibitor 

solution.  A 3x molar excess of acrylate-PEG-NHS (100 µL of a 7.3 mg/mL in NaHCO3  solution) 

was added and the mixture was stirred in the dark for two hours.  A control solution was 
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prepared using the same methodology with no inhibitor added such that the NHS would 

hydrolyse to yield acrylate-PEG-COOH. 

Hydrogel preparation 

Stock solutions of the PEG precursors were prepared by dissolving 162 mg of PEG-

dithiol and 401 mg of PEG-octaacrylate in 1.2 and 2.92 mL, respectively, of 50 mM aqueous 

NaHCO3 buffer adjusted to pH 7.4 with 1M HCl. These stocks were enough to make 96 

hydrogel samples and were made up immediately prior to preparing the hydrogels to reduce 

homopolymer gelation. Stocks of the acrylate-PEG-inhibitor were prepared using a series of 10x 

dilutions in the acrylate-PEG-COOH blank solution to give solutions ranging from 0 to 10 mM of 

inhibitor.  Hydrogels with approximately 10% dry weight were prepared from three stock 

solutions using near stoichiometric amounts of thiol and acrylate groups by adding: 30 µL PEG-

octaacrylate, 10 µL PEG-dithiol, and 30 µL acrylate-PEG-inhibitor / acrylate-PEG-COOH blank 

in 2 mL Eppendorf tubes.  The ratio of linear PEG to PEG-octaacrylate was 1:3.5.  The PEG-

dithiol solution was added last and the solutions were immediately agitated using a vortex mixer 

for 10 s before tapping gently to shift the liquid to the bottom of the tube which acted as the 

mould.  Hydrogels were prepared at room temperature in triplicate for each peptide 

concentration and typically formed within two minutes, although a further 2 h was allowed for 

complete curing.  Before incubating the hydrogels in active MMP solutions or diluted wound fluid 

they were washed in 50 mL buffer A on a rotary mixer for 72 h with the washing buffer changed 

every 24 h.   

Hydrogel incubation 

Washed hydrogels were placed in 2 mL Eppendorf tubes and incubated with 500 µL of 

prepared active MMP-9, -3, -2 or -1 solutions (0.1 µg/mL), or in diluted wound fluid for 3 h at 

room temperature on a table shaker.  The incubation solutions were then collected and were 
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added to a black 96 well plate in the presence of 0.1% BSA for assaying the active MMP 

content. All experiments were done in triplicate. 

Wound fluid 

Chronic wound fluid samples were obtained from consenting patients of both 

Queensland University of Technology and St Luke’s nursing services (Brisbane, Australia).   All 

participating patients had chronic venous leg ulcers. Clinical information of the obtained 

samples is listed in Table 1.  As previously described, a standard wound fluid collection 

technique was performed at the clinical site.23 Briefly, ulcers were washed with sterile water 

prior to collecting wound fluid followed by the application of an occlusive dressing over the 

wound.  Exudate accumulated under the dressing after 30 min to 1 h was recovered by washing 

with 1 mL of saline.  The wound fluid samples were centrifuged and the supernatant was 

filtered. In this study, the protein content for all wound fluid samples was analysed using a 

Coomassie PlusTM assay.  Samples were stored at -80 °C prior to use. 

  Computational docking 

Computational docking of the inhibitor structure was carried out using FlexX version 

3.1.4 (BioSolveIT GmbH, Augustin, Germany), which incorporates the methods of modelling 

metal coordination chemistry developed by Seebeck et al.24  The target for docking was the 

NMR-determined structure of MMP-2 from an MMP-2-inhibitor complex (PDB ID 1HOV).25  The 

search space was confined to the active site cleft and P1’ pocket, and constraints were placed 

on the docking as follows: the P1’ pocket was defined as a hydrophobic/aromatic binding site, 

the active site Zn2+ was defined as a metal coordination site, and relevant atoms in the 

backbone of the β-strand at the base of the cleft were defined as hydrogen bond 

donors/acceptors.  The reported structure is the lowest energy structure which satisfied these 

constraints. 
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RESULTS  

The design of a “tetherable” MMP inhibitor 

An MMP inhibitor was designed based on the LHS hydroxamic acid-containing 

pseudopeptide inhibitor first synthesised by Brown et al.26 (Figure 1, structure [1]) which has 

reported IC50 values of 40, 0.4 and 8 nM for MMP-1, -2 and -3, respectively (Table  2).  To 

enable facile conjugation, the pseudopeptide was synthesized with the benzyl ether adjacent to 

the thiazolidine substituted with an aminohexanoic acid group, thereby incorporating a spacer 

and primary amine (Figure 1, structure [2]).  By maintaining the structure neighbouring the 

hydroxamic acid group responsible for binding to the catalytic Zn2+ of the MMPs, it was 

anticipated that the inhibition capacity would not be substantially altered.  This hypothesis was 

supported by computational docking of the modified inhibitor to MMP-2 (Figure 2), which 

indicated that the newly-introduced aminohexanoic acid residue would reside well away from 

the active cleft, with the N-terminal amine freely accessible.  

The inhibitory effect on active MMPs in solution 

To test the above hypothesis, the designed inhibitor (Figure 1, structure [2]) was 

incubated at concentrations of 0.01 – 10000 nM in 0.1 μg/mL solutions of MMP-1, -2, -3 and -9 

to test for inhibition using a fluorogenic substrate (DABCYL-GABA-Pro-Gln-Gly-Leu-

Glu(EDANS)-Ala-Lys-NH2).  When active MMPs cleave the Gly-Leu bond the EDANS and 

DABCYL fluorophore/quencher combination are liberated enabling quantification of the MMPs 

present via fluorescence spectroscopy.22  The activity–concentration curves are shown in Figure 

3 and the IC50 values in Table 2.  Results indicate that inhibitor [2] strongly inhibited MMP-1, -2, 

-3 and -9 at nanomolar concentrations.  While the IC50 for MMP-2 was comparable (within 

experimental error) to literature values for the original inhibitor [1], it was significantly lower by 
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ca. 35- and 3-fold for MMP-1 and -3, respectively, indicating that the addition of the spacer 

group in [2] has increased the broad-spectrum potency of this inhibitor. 

The tethered inhibitor removes MMPs from solution 

PEG hydrogels incorporating inhibitor [2] were prepared by coupling the inhibitor to 

acrylate-PEG-NHS followed by mixing of PEG-octaacrylate, PEG-dithiol and acrylate-PEG-

inhibitor. The thiols and acrylates react via Michael-type addition to form a crosslinked network 

(Figure 4).21  The loading of the inhibitor was varied by using a range of acrylate-PEG-COOH 

and acrylate-PEG-inhibitor feed ratios. The capacity of inhibitor [2] tethered in PEG hydrogels to 

remove MMPs from solution was measured by incubating the hydrogels (ca. 200 μL fully 

swollen) with MMP standard solutions (500 μL, 0.1 μg/mL) for 3 h followed by measurement of 

MMP activity in the supernatant (Figure 5).  Tethering of inhibitor [2] to the hydrogels led to an 

apparent 100 to >1000 fold drop in activity compared with the free inhibitor [2], with the IC50 

values shifting to the hundreds of nM to low μM range (Table 3). 

Protein content and active MMPs in chronic wound fluid samples  

To test the inhibitor against would fluid samples we obtained samples from patients with 

chronic venous ulcers.  The size of the ulcers, PUSH scores and protein concentration are 

summarised in Table 1. 

The amount of proteolyic activity in the CWF samples was also measured by firstly 

diluting the as-received CWF samples 10 fold in buffer, then incubating these solutions with the 

fluorogenic substrate and measuring the subsequent change in fluorescence. The reason for 

the 10 fold dilution was to obtain sufficient volume for the assay. The results of the fluorogenic 

assay are presented in Figure 6. 
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The tethered inhibitor reduces the proteolytic activity in chronic wound fluid  

PEG hydrogels (ca. 200 μL fully swollen) incorporating inhibitor [2] over a range of 

concentrations were incubated with a 10-fold dilution of the most active CWF sample, # 584 

(volume 500 uL, 3 h incubation), followed by measurement of the residual proteolytic activity in 

the supernatant using the fluorogenic substrate assay (Figure 7).  The PEG hydrogels with the 

tethered inhibitor showed some reduction in the proteolytic activity, but not to the same degree 

as observed with the free inhibitor or the tethered inhibitor in MMP standard solutions.  At the 

highest concentration of inhibitor (10000 nM) we did observe approximately 50% reduction in 

the proteolytic activity (Figure 7). 

 

DISCUSSION 

Inhibitory effect comparison  

While it is difficult to compare results of Brown et al.26 for their inhibitor without the 

spacer (inhibitor [1]) with our inhibitor [2] due to variables such as purity, MMP source and 

assay conditions, in both cases the lowest IC50 value was observed when the inhibitors were 

incubated with MMP-2 (Figure 3, Table 2). Somewhat unexpectedly, replacement of the benzyl 

group from inhibitor [1] with the less bulky and more flexible aminohexanoic acid residue in 

inhibitor [2] resulted in an inhibitor with significantly higher broad-spectrum potency.  This may 

be an advantage in the proposed application: while MMP-9 activity appears to be a major 

predictor of chronic wound severity,9 non-negligible concentrations of a range of other MMPs 

have been previously noted in chronic wound fluids.27 

Synthesis of Hydrogels with Inhibitor 

One aim of this work was to immobilise an MMP inhibitor into a hydrogel while retaining 

the ability to inhibit a range of MMPs.  PEG was chosen as a substrate hydrogel for its ease of 
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functionalization, excellent biocompatibility and intrinsic low protein adsorption properties.  To 

prepare PEG hydrogels incorporating inhibitor [2] we reacted the N-terminal amine with 

acrylate-PEG-NHS, thereby conjugating a PEG spacer and acrylate group to the inhibitor 

(Figure 4a). Hydrogel formation was accomplished through a Michael-type conjugate addition 

between acrylate-PEG-[2], PEG-dithiol and PEG-octaaacrylate (Figure 4b).21 

An advantage of the conjugate addition reaction between the thiol and acrylate in this 

case is that the mechanism does not involve radical polymerization.  This is important due to the 

presence of the hydroxamic acid on the pseudopeptide inhibitor which can act as a radical trap 

analogous to the classical nitroxide traps.28,29  For this reason, UV-initiated copolymerization of 

acrylate-PEG-[2] with vinyl monomers did not lead to network formation (results not shown).  

Another advantage of this approach is that by-products such as NHS liberated during the 

PEGylation of the inhibitor do not need to be removed prior to network formation, thereby 

allowing the PEGylation and hydrogel formation to proceed as a one-pot reaction. 

The hydrogels were washed extensively prior to incubation with MMP solutions using the 

same buffer composition as for the incubation step to remove any unreacted free inhibitor and 

any PEGylated but non-crosslinked inhibitor. The washing solutions were also assayed for MMP 

activity and we observed that in some cases, especially for the hydrogels with high 

concentration of inhibitor loading, the first washing solutions were able to inhibit MMP activity 

suggesting the presence of leached inhibitor (not shown). However, after extensive washing the 

wash buffer no longer contained any detectable inhibitor, implying that the observed inhibitory 

activity of the hydrogels could be attributed to immobilization of the MMPs by the hydrogel-

tethered inhibitor, rather than the release of inhibitor into the MMP solution.  It is known that the 

hydrogels formed from addition of PEG-dithiol to acrylates are hydrolytically unstable and have 

a half-life of about 11 days at pH 7.4 and 37°C in buffered saline.21 The timeframe of the MMP 

incubation step was 3 h – far less than the washing time in which it was established that no 

inhibitor was being released. 
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Ultimately, if these hydrogels are to be used on wounds it is desirable to have a 

hydrolytically stable network to prevent the inhibitor being cleaved and released. To achieve this 

other crosslinking chemistry could be employed such as the hydrolytically stable thiol/vinyl 

sulfone Michael-type addition30 in place of the thiol/acrylate combination used here.  

 

The effect of tethered inhibitor [2] in MMP solutions 

The IC50 values for the hydrogel-tethered inhibitors were several orders of magnitude 

higher than for the free inhibitor (Table 3). As discussed above, the efficiency of the 

immobilization of the inhibitor into the hydrogels was not 100% as evidenced by the activity 

found in the early washing solutions.  In preparing the solutions for network formation the molar 

ratio of thiol to total acrylate groups used was close to 1:1, while the molar ratio of linear 

acrylate-PEG-inhibitor/COOH to PEG-octaacrylate was kept at 1:3.5 so that on average one in 

28 acrylate groups would be linked to a linear acrylate-PEG.  The low ratio of linear PEG to 

PEG-dithiol means that the probability of the acrylate-PEG-inhibitor reacting on either side of a 

PEG-dithiol is small. If the linear polymer containing two inhibitor molecules were to form it 

would have a molecular weight of 10.5 kDa, would not be incorporated into the network and 

would be removed during washing. Likewise, during the conjugation step with acrylate-PEG-

NHS, a threefold excess of the PEG was used to maximise the reaction between the amine and 

NHS. Nevertheless, the actual concentration of inhibitor in the hydrogels could not be measured 

due to the nano-molar sensitivity required so we could not confirm how much inhibitor was 

present in the hydrogels tested. 

Diffusion of the MMPs into the hydrogels to the inhibitor sites will also play a critical role 

in the inhibitory capacity. The diffusion of proteins within hydrogels has been studied 

extensively, mainly as a means for drug delivery, and can offer some insight into the diffusion of 
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MMPs into the MMP inhibitor hydrogels.31 The PEG hydrogels used here can be described as 

non-porous but highly swollen gels whereby the diffusion will be mainly controlled by the 

movement of the proteinases through the spaces between the macromolecular chains, but may 

also be influenced by complicating factors such as solute aggregation and gel-solute 

interactions. The mesh size of PEG hydrogels synthesized from multi-arm precursors similar to 

those used here range from 26.5 Å21 to 250 Å32 depending on the number or arms, molecular 

weight and dry weight used during preparation. The mesh size is, however, only an estimate 

because of complicating factors such as unreacted chain ends, physical entanglements and 

intramolecular crosslinking reactions. 

The hydrodynamic volume of MMP-2 (72 kDa) has been estimated at 27.5 Å based on 

its crystal structure.33 MMP-1 (46 kDa) and MMP-3 (22 kDa) will be smaller, while MMP-9 (92 

kDa) will be larger. Accurate volumes are difficult to derive considering the mix of species: some 

will have the propeptide cleaved while others will the propeptide folded from the active cleft, 

however, it appears that the pores may be of insufficient size to allow MMP diffusion into the 

hydrogels. 

The diffusion of albumin in PEG hydrogels has been previously studied and can also act 

as a guide to the expected transport behaviour of MMPs in the hydrogels used here (albumin 

has a molecular weight of 67 kDa and hydrodynamic volume of 35.6 Å). For example, Elbert et 

al. showed that solid albumin was released from multi-arm PEG hydrogels initially by slow 

dissolution of the protein followed by hindered diffusion leading to release in the range of 10 

days.21 Conversely, Lutolf et al.34 and Rizzi et al.35 found that when MMP-1 was added to PEG 

hydrogels with MMP-cleavable crosslinks the gels exhibited bulk degradation suggesting rapid 

diffusion of the MMP into the network. It is therefore unclear if in our case the hydrogels are 

partially impermeable to the MMPs or not.   If the diffusion is slow it would mean that during the 

incubation time of 3 hr only a fraction of the bound inhibitor can interact with the MMPs, i.e. it is 

a surface effect.  This theory is the subject of further investigation. 
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Active MMPs in wound fluid samples 

Chronic wound fluid, containing a complex mixture of proteins, peptides and metabolites, 

is an important modulator of the wound environment.23 It is clear that the proteolytic activity 

varies greatly from patient to patient, however, there is a correlation between the severity of the 

wounds (based on PUSH scores) and the proteolytic activity (Figure 6).  Table 1 and Figure 6 

show that the three samples with the most potent MMP activity, 311, 276 and 584, all have 

PUSH scores 13 or above and interestingly, all have high levels of protein content (or protein 

fragments). Samples 157, 267 and 273, on the other hand, have lower PUSH scores and 

concomitant lower proteolytic activity.  The observed correlation between PUSH scores and 

proteolytic activity is in agreement with previous reports.9  

One difficulty encountered when using the fluorescent assay with the wound fluid 

samples was that a ten-fold dilution was required in order to generate the volume necessary to 

conduct the assay. This dilution, together with the relatively low proteolytic activity in the CWF 

samples (compared to the MMP standard solutions), generated a fluorescent signal at the lower 

limit of detection, hence the large error bars in Figure 6. 

Tethered inhibitor 2 on active MMPs in the wound fluid 

Figure 7 shows the percentage of proteolytic activity remaining in chronic wound fluid 

sample 584 after incubation with PEG hydrogels loaded with 0.1 and 10000nM tethered 

inhibitor.  At the highest concentration tested approximately 50% inhibition occurs.  As is evident 

in Figure 7, large error bars are associated with the data. This may be due to the intrinsic 

technical difficulties in using the fluorescent assay for the detection of proteolytic activity in the 

wound samples mentioned above, or other contributing factors including the possibility of 

protein agglomeration or precipitation in the highly proteinaceous CWF samples.  We also 

observed unexplained bleaching of the fluorescence in the CWF samples suggesting a different 

fluorophore may be needed to accurately assay these samples. 
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CONCLUSIONS 

In this study we demonstrate the modification of a high-affinity hydroxamic acid-based 

LHS inhibitor by the addition of a 6-aminohexanoic acid linker attached to its N-terminus, while 

maintaining MMP inhibitory activity towards MMP-1, -2, -3 and -9. We further incorporated the 

inhibitor into poly(ethylene glycol) hydrogels and demonstrated that these hydrogels reduced 

MMP-1, -2, -3 and -9 activity in test solutions to undetectable levels at inhibitor concentrations in 

the nanomolar to low micromolar range.  Finally we demonstrated that proteolytic activity in a 

CWF sample as measured using a fluorogenic assay can be decreased by the hydrogel to 

approximately half. 

This approach offers the opportunity to inhibit excess MMPs in CWF while the MMPs 

within the wound bed required for healing-associated functions remain active.  This is likely to 

be especially relevant in therapies involving the topical application of growth factors as it may 

prevent the breakdown of the therapy in the wound.  Moreover, conceptually since the inhibitor 

can be chemically tethered, it is not able to leach out into the blood circulation, therefore, safe 

and locally-effective MMP inhibition is expected.  We hypothesize that inhibition of MMPs, 

including MMP-9, in CWF before the application of active factors to the wound may neutralise 

the aggressive proteolytic wound environment and may modulate the ulcer towards a healing 

state.   

This study indicates that the utility/flexibility of this approach can be used with other 

peptide inhibitors. 
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Figure captions 

 

Figure 1 – Structures of pseudopeptidic MMP inhibitors [1] from Brown et al,26  and [2] the 

inhibitor modified with a aminohexanoic acid spacer group. 

 

Figure 2.  Predicted structure of the complex between [2] and MMP-2:  Left: inhibitor 2 (sticks, 

coloured according to CPK standard) was docked to MMP-2 (ribbon and solvent-accessible 

surface) using BioSolveIt FlexX.  The active site zinc ion and N-terminal nitrogen are shown as 

spheres and marked by an arrowhead and arrow respectively.  The bulky, hydrophobic 

(ethylphenylbenzoyl)lysine side chain occupies the P1’ site hydrophobic tunnel, contributing the 

bulk of the stabilizing interactions.  As expected given the peptidomimetic structure of this 

inhibitor, the amine group (analogous to the N-terminal end of an MMP substrate) is very 

accessible (blue sphere indicated by arrow). 

 

Figure 3.  The inhibitory effect of inhibitor [2] on active MMPs in solution. 

 

Figure 4.  Synthesis of polyethylene glycol hydrogels tethered with inhibitor [2]. (a) Inhibitor [2] 

is PEGylated at the amine using acrylate-PEG-NHS as a means to add a PEG spacer and 

acrylate group.  (b)  The PEGylated inhibitor was mixed with PEG-octaacrylate and crosslinked 

with PEG-dithiol. 
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Figure 5.  The inhibitory effect of tethered inhibitor [2] in PEG hydrogels on active MMPs in 

solution. 

 

Figure 6.  Proteolytic activity of chronic wound fluid (WF) samples as expressed as fluorescence 

following incubation with the fluorogenic substrate. PUSH scores are labelled above each 

respective bar. 

 

Figure 7.  The inhibitory effect of tethered inhibitor [2] in PEG hydrogels on chronic wound fluid 

sample # 584 at 0.1 nM and 10000 nM loading. 

 

 

 

Table Captions 

 

Table 1.  Clinical information and protein content of obtained chronic wound fluid samples. 

Table 2. A comparison of IC50 value (unit in nM) of inhibitors [1]26 and [2] in free form. 

Table 3. A comparison of IC50 value (unit in nM) of the inhibitor [2] incorporated into PEG 

hydrogels. 
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TABLES 
 
 
 
Table 1 
 
Sample 
Code 

Ulcer 
Size, cm2 

Pressure 
Ulcer Healing 
Scale (PUSH) 

score

Protein 
content 
(mg/mL) 

157 6.8 12 0.35
267 6.5 10 0.15
273 5.5 12 0.25
276 5.5 13 1.18
311 8.3 13 1.35
584 47.4 15 1.85

 

 

Table 2 
 

 Inhibitor [1] Inhibitor [2] in Free 
Form*

MMP-1 40 1.13 ± 0.61
MMP-2 0.4 0.532 ± 0.014
MMP-3 8 2.55 ± 0.30
MMP-9 - 0.382 ± 0.054

*(Error represents 95% confidence intervals) 

 

 
Table 3 
 

 Inhibitor [2] in PEG 
Hydrogel* 

 
MMP-1 134 ± 100 
MMP-2 180 ± 98 
MMP-3 >1000 
MMP-9 392 ± 162 

*(Error represents 95% confidence intervals) 
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