
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

Oqielat, Moa'Ath, Turner, Ian, Belward, John, & McCue, Scott W. (2011) 
Modelling water droplet movement on a leaf surface. Mathematics and Computers 
in Simulation, 81(8), pp. 1553-1571. 

 
          © Copyright 2011 Elsevier 



Modelling Water Droplet Movement on a Leaf Surface

MOA’ATH N. OQIELAT∗,a, IAN W. TURNERa, JOHN A. BELWARDa,
SCOTT W. MCCUEa

aMathematical Sciences, Queensland University of Technology,

GPO Box 2434, Brisbane, Queensland 4001,

Australia.

Abstract

Modelling droplet movement on leaf surfaces is an important component in
understanding how water, pesticide or nutrient is absorbed through the leaf
surface. A simple mathematical model is proposed in this paper for gener-
ating a realistic, or natural looking trajectory of a water droplet traversing
a virtual leaf surface. The virtual surface is comprised of a triangular mesh
structure over which a hybrid Clough-Tocher seamed element interpolant is
constructed from real-life scattered data captured by a laser scanner. The
motion of the droplet is assumed to be affected by gravitational, frictional
and surface resistance forces and the innovation of our approach is the use of
thin-film theory to develop a stopping criterion for the droplet as it moves on
the surface. The droplet model is verified and calibrated using experimental
measurement; the results are promising and appear to capture reality quite
well.

Key words: Mathematical modelling, Surface fitting, thin-film
approximation, Clough-Tocher method, radial basis function method.

1. Introduction

An important research component of agrichemical spray retention by
plants is to model and simulate droplet movement on the surface of a leaf.
To this end, we present a simple mathematical model for this process, report
on experimental results generated with a particular type of leaf (Frangipani
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leaf), and compare the results from each of the two studies. A crucial as-
pect of our approach is to construct the surface of the leaf using a recently
developed surface fitting method [28, 29] based on a combination of the
Clough-Tocher method with radial basis functions.

When a single water droplet impacts on a solid surface, it may bounce
off or perhaps spread out along that surface, depending on the nature and
inclination of the surface, the speed and size of the drop, and the properties
of the liquid, including the viscosity and surface tension. However, in real-
ity there are more options for the fate of the droplet, and indeed Rioboo et
al. [41] report that their experiments suggest the outcomes include deposi-
tion, prompt splash, corona splash, receding break-up, partial rebound, and
complete rebound. These are also described qualitatively in the review article
by Yarin [42]. Further, spreading drops may be characterised by instabilities
leading to viscous fingering, as studied by Kim et al. [39] and Thoroddsen and
Sakakibara [40], for example. An important point is that the detailed fluid
mechanics of each of these outcomes is quite sophisticated, and requires high
level mathematical modelling, including asymptotic and stability analysis
and careful computational simulations, as well as an expensive experimental
setup.

At present none of these ideas has been included in mathematical models
for droplet impaction and/or spreading on leaf surfaces. While these issues
may be addressed in further research, the purpose of the present study is
to develop a simplified model based in part on previous studies on droplet
movement, in order to provide, for the first time, a realistic simulation of
droplet movement on leaf surfaces. The gravity-driven model is effectively
one-dimensional, with droplet movement described as a polygonal path of
curved arcs. A novel feature of this approach is that a thin-film model is used
to develop a stopping criterion for the droplet. Experimental verification of
the droplet model shows that it captures reality quite well and produces
realistic droplet motion on the leaf surface. Most importantly, it is observed
that the simulated droplet motion follows the contours of the surface and
stops moving at times consistent with experimental observation (see figure
9, for example).

While this research makes its contribution through simulation and visual-
isation of the realistic movement of a water droplet flowing on a leaf surface,
we do not address certain, possibly important, phenomena such as the effect
that the microscopic detail of each different variety of leaf surface has on the
droplet motion. Further, we do not attempt to describe the time-dependent
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shape of each droplet via the Navier-Stokes equations, and as such we do not
model the actual droplet motion in any realistic way from a fluid mechanics
perspective. We remark, however, that our simplified model is able to pro-
duce quite realistic droplet motion and is the most inclusive of any that have
appeared to date.

In order to simulate water droplet movement on the leaf surface, the
“virtual” surface itself needs to be constructed using surface fitting methods.
Loch [22] uses two such approaches based on the finite element method to
model the leaf surface. In earlier work [28, 29] we introduced a new surface
fitting method based on hybrid strategies that combine the Clough-Tocher
method [20, 4] with radial basis functions [13, 33] for this purpose. This
method is based on a large number of three-dimensional data points cap-
tured from an actual leaf surface using a laser scanner. To apply the hybrid
method to the leaf data sets, preprocessing steps are required, which in-
clude the determination of a reference plane for the data and the subsequent
triangulation for the leaf surface mesh [28, 29]. In this paper, the hybrid
method is used to construct the surface of a Frangipani leaf for the purpose
of simulating water droplet movement on that surface.

The outline of the paper is as follows. In §2 a relevant literature review of
droplet simulation is presented. A brief description of the leaf surface model
is explained in §3. In §4 an overview of the droplet model is presented. Two
forces are assumed to affect the droplet movement on the leaf surface namely
an internal force, which consists of a friction and resistance component be-
tween the surface and the droplet, and an external force due to gravity. The
surface is divided into a mesh of triangles [28, 29] and the motion of the
droplet is computed over each triangle. The inclusion of a thin-film concept
enables the motion of the droplet to be stopped at a point where the height of
the thin-film along the polygonal path is less than some specified tolerance.
As a result, we observe using our model that if the leaf surface is horizon-
tal, or close to horizontal, the droplet moves along the leaf vein; on other
occasions the droplet moves and then falls from the surface. The model also
shows that the droplet stops moving on the surface or it leaves the surface
depending on the model parameters. In §5, an experimental verification of
the water droplet model for a Frangipani leaf is presented. Finally, the work
is concluded in §6, where future work and other applications of our research
are discussed.
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2. Relevant Literature and Experiments

Several researchers have studied the animation of water droplets since
the 1980’s [8, 9, 11, 30]. However, only a limited number of methods, during
the 1990’s, address the natural phenomenon of water droplets flowing on
surfaces where, typically, meta-balls in a gravitational field were used [35]
to model static droplet shapes on flat surfaces. Tong et al. [34] modelled
water flows using meta-balls by proposing a volume-preserving approach.
Lanfen [21] presented a physical model for two, or more, large water droplets
morphing on a plane. Kaneda et al. [16] proposed a method for generating
an animation of water droplets and streams on a glass plate (divided into a
small mesh composed of quadrilateral elements), such as a windowpane or
windshield. This model takes into account the dominant parameters of the
dynamical system, which include gravity, interfacial tensions and the collision
of droplets. To every lattice point on the glass plate, an affinity for water
(0 ≤ ci,j ≤ 1) is assigned in advance. A sphere was used to model the droplet
on a plate.

The method in [16] is not able to simulate flow of a droplet on a curved
surface. Kaneda et al. [18] proposed an extended method for generating a
realistic animation of water droplets as well as their streams on curved sur-
faces. The motion of water droplets on the surface depends on the external
forces due to gravity and wind and an internal force due to resistance. The
droplet flows on the surface and some amount of water remains behind be-
cause of the wetting, and later the water flow merges with the remaining
water. Therefore a solution to the wetting phenomenon and the problem
with two droplets merging is also addressed. Kaneda et al. [17] proposed a
method for generating realistic animations of water droplets that meander
down a transparent surface based on the work presented in [16, 18]. This
work is useful for applications such as drive simulators and animation of wa-
ter droplets on a windshield. The main difference between this work and
previous work is the modelling of obstacles that move against water droplets
on a surface, for example a windshield wiper. The droplet is represented by a
single particle system and modelled as a sphere. The contact angle between
the droplet and the surface is also taken into account.

Jonsson [15] proposed a physically plausible model using normals of the
bump map surface in the computation of water droplet flow based on the
model presented in [16]. Solid spheres are used to model the droplets, where
each droplet is a particle system. Jonsson assumed that the external force
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that affects the water droplet flow is due to gravity, while the internal force
is due to the resistance. The direction of the internal force is opposite the
direction of movement and is computed by applying the Gram Schmidt or-
thogonalization algorithm [26] to orthogonalise the external force against the
unit length normal vector, which is retrieved at every point from the bump
map.

Fournier et al. [10] presented a model oriented towards an efficient and
visually-satisfying simulation of a droplet moving down a surface. The ef-
ficiency arises from the separation between the shape and the motion of
the droplet. The aim was to simulate the shape and motion of large liquid
droplets travelling down a surface when it is affected by surface roughness,
adhesion, gravity and friction forces. The surface is defined by a mesh of
triangles. A “neighbourhood” graph is built at the beginning of the simula-
tion so that each triangle is linked to adjacent triangles. The neighbourhood
graph is used to identify to which triangle the droplet moves and during
the simulation it is known exactly in which triangle a droplet is located. A
droplet might traverse several triangles between two time steps. The motion
is computed over each individual triangle to ensure the droplet is properly
affected by the deviations on the surface it has traversed. The gravity and
friction forces are assumed to be constant over a triangle for simplicity, and
the friction force is modelled as a linear viscous force with a constant nega-
tive factor due to surface roughness. The shape of a droplet is characterized
by a small set of properties, for example, volume conservation and surface
tension. A droplet will fall from the surface if the component of the droplet
acceleration force that is normal to the surface is larger than the adhesion
force of the droplet. The motion of the droplet is generated by a particle
system, with the droplet represented by a single particle [31].

Computational fluid dynamics has been successfully applied to simulate
realistic animation of fluids. Chen [3] presented a disturbance model to
simulate water flow using the Navier-Stokes equations. Foster [9, 8] and
Enright [5] used this approach to develop liquid surfaces and to simulate
complex liquid motion. Losasson [23] simulated water on a refined grid, such
as an octree structure instead of a regular grid to capture more surface details
using the Navier-Stokes equations. In the model presented in this paper we
chose not to use this approach to calculate the motion of the droplet because
of the computation expense of this method, which would require solution on
each element in the leaf surface mesh.
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3. Leaf surface model

As mentioned above, before any simulation of the water droplet movement
on a leaf surface can be simulated, it is necessary to construct a “virtual”
leaf surface. In previous work by the authors [28, 29] we have introduced a
new surface fitting interpolation method that combines the Clough-Tocher
method with radial basis functions for this purpose. A set of representative
data points sampled from a Frangipani leaf using a laser scanner was used
to reconstruct the surface of the leaf. The surface fitting method was then
applied to the laser scanned leaf data points to reconstruct the surface. How-
ever, in order to apply this method to the leaf data a preprocessing phase
was required, which includes the determination of a new reference plane for
the data and the subsequent triangulation for the leaf surface mesh.

3.1. Leaf reference plane

The laser scanner returns the coordinates of points on the leaf surface.
These coordinates may not necessarily coincide with the xy-plane in the data
point coordinate system. To overcome this problem, we used a reference plane
that is a least squares fit to these data points and then the coordinate system
was rotated so that the reference plane becomes the xy-plane. These rota-
tions can be achieved by at first rotating the normal vector of the reference
plane about the y-axis into the yz-plane and then rotating about the x-axis
into the xz-plane [28, 29].

3.2. Triangulation of the leaf surface

Our surface fitting method is an interpolation based finite element method
and consequently, a triangulation of the leaf surface needs to be constructed.
The leaf data points that represent the surface are numerous. As a con-
sequence, a subset of the data set is selected to reduce the computational
expense for surface fitting, which is then used to generate the triangulation.
This triangulation is generated using the EasyMesh mesh generator, which
is software written in the C language by Bojan [25]. EasyMesh generates
two-dimensional Delaunay triangulations in general domains. For more de-
tails see Oqielat et al. [28, 29]. An example of a triangulated leaf surface is
shown in figure 10(c,d).
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4. Droplet model

The fundamental unit of the model is a triangular element. We now
address the issues of forces on the droplet, a mathematical description of the
thin film and the kinematics of the motion. The triangulation offers many
advantages; for example, the motion and the position of the droplet over
each individual triangle are easy to compute, and the determination of the
location of the droplet on the surface at any time instant is straightforward.
Such simulations of droplet movement could be computationally demanding
if thousands of triangles have to be considered, so a coarser mesh based on
a smaller subset of data points is used that is representative of the major
surface features (see figure 10 (c-f)).

4.1. External and internal forces

We consider in our model that the external force fext that affects the
droplet movement is due to gravity Fg, which does not change over a triangle.
The gravitational force is resolved (projected) in the direction of movement
(see figure 1) as

dp = Fg − (Fg · N)N, (1)

where N is the unit normal vector and {N, dp/‖dp‖} is an orthonormal set
of vectors. The unit normal vector of the surface is found by letting S =

dp

N

fext

Figure 1: The direction of movement dp with normal N and gravity fext.

(x, y, f(x, y))T be the surface of interest, with tangent vectors Sx = (1, 0, fx)
T

and Sy = (0, 1, fy)
T . The normal of the surface is then given by n = Sx×Sy =

−fxi − fyj + k, and the unit normal vector N = n/‖n‖ is

N =
(−fx,−fy, 1)√

f 2
x + f 2

y + 1
. (2)
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The internal force f int consists of a resistance force Fr and a friction, or drag
force, Ff . We have adopted the same notation of vectors used by Kaneda
et al. [18], Fournier et al. [10] and Jonsson [15] along with the new vectors
denoting the gravitational force Fg, the triangle edge ℓ = (ℓx, ℓy, ℓz)

T , and
the droplet position p = (px, py, pz)

T . The resistance force originates from
the interfacial tension that exists between the water droplets and the leaf
surface [18, 15], and its direction is opposite to the direction of movement
(dp). This force is modelled using the degree of affinity as

Fr = −αdp,

where 0 ≤ α ≤ 1 is the affinity, which is set experimentally in advance and
assumed to be constant over each triangle. The degree of affinity depends
on the interfacial tension as it expresses the status of the surface, such as
impurities and small scratches [18]. The friction force Ff is modelled as
a linear retarding force with a constant negative factor kf due to surface
roughness [10]:

Ff (t) = −kfv(t),

where kf is the friction coefficient and v(t) is the droplet velocity at time t.
The motion of the water droplet on the surface depends on the external force

fext. When this force exceeds a static critical force (internal force f int), the
water droplet starts to meander down the surface.

4.2. Thin-film flow down a slope

Although there is a large literature on modelling the spreading of droplets
on surfaces, a literature search of papers that describe the simulation of
droplet motion on leaf surfaces has found an absence of thin-film theo-
retic models to approximate when to stop the droplet motion. The one-
dimensional flow of a thin-film of viscous fluid down a slope of angle α
to the horizontal is governed by the following partial differential equation
[19, 24, 27]:

∂h

∂t
+

(g sin α

ν

)
h2∂h

∂x
=

∂

∂x

{1

3
h3

(g cos α

ν

∂h

∂x
−

σ

ν

∂3h

∂x3

)}
, (3)

where z = h(x, t) describes the film height, the x-axis points down the slope,
and t is time (see figure 2). The physical parameters that describe the fluid
are the kinematic viscosity ν and the surface tension σ. The constant g is the
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x

g

z

xN (t)

h(x, t)

α

Figure 2: Thin-film flow down a slope.

acceleration due to gravity. Equation (3) is derived under the assumption
that the film is ‘thin’ (a representative height of the fluid h is much less than
a typical length L in the x-direction) and the flow is slow (the Reynolds
number Re = vL/ν ≪ 1, where v is the velocity scale v = gh2/ν). Unless
the surface of the leaf is horizontal (or nearly horizontal), then away from
the front of the film (the nose) equation (3) can be approximated by

∂h

∂t
+

(g sin α

ν

)
h2∂h

∂x
= 0. (4)

By applying the method of characteristics, the general solution of (4) is found
to be

h = f
(
x −

g sin α

ν
h2t

)
, (5)

where h(x, 0) = f(x) is a function describing the initial profile of the film [1].
Thus, we have a travelling wave type solution with wave speed gh2 sin α/ν.

For an initial droplet profile with compact support as shown in figure 2,
we can denote the nose of the film by xN (t), so that at any time t the film is
in contact with the substrate in the region 0 < x < xN (t). The x-axis points
down the line of steepest descent, which is assumed to be slowly varying
per unit distance. As time evolves the profile near the nose of the droplet
will steepen, so that surface tension becomes important [14]. However, at
intermediate to long times, the height of the main part of the droplet is
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small, and in fact, h → 0 as t → ∞. Thus, from (5), we have that [14]

h ∼
( ν

g sin α

)x
1

2

t
1

2

, (6)

for large times (away from the nose), regardless of the initial profile f(x).
By coupling conservation of mass with (6) we can derive the location of the
droplet front [14] as

xN (t) =
(9Ag sin α

4ν

) 1

3

t
1

3 , (7)

where A is the surface area of the thin-film given by

A =

∫ xN (t)

0

h(x, t)dx,

and sin α is computed as

sin α =
Fg · dp

‖Fg‖‖dp‖
,

where dp is the direction of movement given by (1).
As mentioned before, the leaf surface is represented by a mesh of triangles

across which the droplet moves. To implement the thin-film concept in our
model, we compute the height of the thin-film given in equation (6) over
the known (computed) droplet path on each triangle to determine the height
of the thin-film along its polygonal path. If this height is less than a set
tolerance ǫ the droplet movement is stopped, otherwise it will continue to
move to the triangle edge. More details on this algorithm are given in the
next section.

4.3. Motion of a droplet over the leaf surface

We first develop a single droplet model. It offers many advantages in
terms of flexibility and generality; for instance, it will make the droplet move-
ment straightforward to control and it will be easy to add more droplets to
the animation at a later stage.

Newton’s second law F = ma is used to determine the features of the
motion, so that the droplet is specified according to position p, acceleration
a, velocity v and mass m. The forces acting on the droplet movement (given
in section 4.1) are then taken into consideration to derive the model:

m
dv

dt
= mdp − kfv(t) − αdp, (8)
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where αdp is the resistance force and kfv(t) is the frictional force due to
air. One way to estimate the parameter kf is to use Stokes’s law for a
resistance for a sphere moving through air of radius r = 0.001(m), which
has the same volume as the droplet used in our simulations, to give kfv ∼
O(10−8)(kg.m/s2). The mass m of the droplet is assumed to be constant.

In our model, the droplet moves down the virtual leaf surface defined as
a mesh of triangles, which offers the benefit in that the equation of motion
is simplified for an individual triangle.
At the beginning of the simulation, a droplet rolls on the virtual leaf struc-
ture. We specify the initial time t0, the initial velocity v0, initial position p0,
the transit time of the droplet, which is accumulated as the droplet moves
from one triangle to another and the time frame (total specified transit time).
We determine the initial triangle from which the droplet commences to move
using the Matlab command tsearch. Next, we determine the direction of
movement using equation (1) and then allow the droplet to move to the next
triangle. The time taken for the droplet to move to the next element is
calculated and the accumulated transit time is stored.

Suppose that the droplet enters the kth triangle at time t = tk (see figure
3). The velocity and the position of the droplet are then computed respec-
tively using equations (9) and (10). Denote the droplet transit time for the
kth triangle as tf . The time interval [tk, tk + tf ] is discretised into Nt divi-
sions using ∆t = tf/Nt for the purposes of calculating the thin-film height
and visualising the droplet motion. As the droplet traces a path across the
triangle it can be located on the leaf surface at the time instant td = tk + i∆t,
i = 1, · · · , Nt using p(td). Next, the location of the droplet front xN (td) is

t = tk

p0(tk), v0(tk)

t = tk + tf

p(tk + tf ), v(tk + tf )
dk

p

Nk

kth triangle

Figure 3: The droplet movement within the kth triangle.
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computed using equation (7). The height of the thin-film h is evaluated by
substituting xN (td) into equation (6). Finally, the droplet is moved to the
next triangle provided the accumulated transit time is less than the time
frame and the height of the thin-film is above a specified tolerance, here
taken as h > ǫ = 10−5m.
The motion of the droplet is computed over each triangle and the equation
for velocity and position of the water droplet at any time t are derived from
equation (8) as follows:

v(t) = −
m

kf

dk
p +

(m

kf

dk
p + v0(tk)

)
exp(tkf/m), (9)

p(t) = p0(tk) −
(m

kf

dk
p

)
t +

m

kf

(m

kf

dk
p + v0(tk)

){
exp(tkf/m) − 1

}
, (10)

where v0(tk), p0(tk) and dk
p are respectively the initial velocity, the initial

position and the direction of movement of the droplet at the time tk when it
enters the kth triangle, see figure 3, and we have defined dk

p = (1 − α/m)dk
p.

When the droplet enters the kth triangle at time tk, we directly computed the
transit time tf , the exit time td = tk + tf and the exit position p(td) as well
as the velocity v(td) at this time, the transit time tf is found by intersecting
the droplet path using equation (10) with each triangle edge using a Newton
algorithm. We now explain this strategy in the following paragraphs.

Each triangle edge has three components (ℓx, ℓy, ℓz)
T that are given in

standard parametric form by:

ℓx(τ) = aix + τ(ajx − aix),

ℓy(τ) = aiy + τ(ajy − aiy),

ℓz(τ) = aiz + τ(ajz − aiz),

where the parameter 0 ≤ τ ≤ 1, (aix, aiy, aiz)
T and (ajx, ajy, ajz)

T represent
the coordinates of the two vertices for the triangle edge. The position vector
p given by equation (10) also has three components:

px(t) = p0x(tk) −
(m

kf

dk
px

)
t +

m

kf

(m

kf

dk
px + vx(tk)

){
exp(tkf/m) − 1

}
,

py(t) = p0y(tk) −
(m

kf

dk
py

)
t +

m

kf

(m

kf

dk
py + vy(tk)

){
exp(tkf/m) − 1

}
,

pz(t) = p0z(tk) −
(m

kf

dk
pz

)
t +

m

kf

(m

kf

dk
pz + vz(tk)

){
exp(tkf/m) − 1

}
,
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where (p0x(tk), p0y(tk), p0z(tk))
T , (vx(tk), vy(tk), vz(tk))

T and
(
dk

px, d
k
py, d

k
pz

)T

are, respectively, the initial position, initial velocity and direction of droplet
movement for the kth triangle. We now determine the intersection point (if
it exists) between p(t) and each of the triangle edge vectors using Newton’s
method. Define the three coordinate functions:

f1(t, τ) = px(t) − ℓx(τ) = 0,

f2(t, τ) = py(t) − ℓy(τ) = 0,

f3(t, τ) = pz(t) − ℓz(τ) = 0,

as functions of the independent variables t and τ . Together, we then have a
system of three nonlinear equations that must be solved for t and τ . Here
the Newton method has been applied to the reduced system F (t, τ) = 0
where F = (f1, f2)

T ; f3 is used to validate the solution. At each iteration, tn

and τn are updated according to Newton’s method as tn+1 = tn + δt, τn+1 =
τn+δτ , where (δt, δτ)T = −J−1

F (tn, τn)F (tn, τn), and JF (t, τ) is the Jacobian
matrix of F . The iterations are terminated once ‖F n+1‖2 ≤ τr‖F

0‖2 + τa.
For all of the droplet simulations performed here we have used the initial
approximations t = 0.1 and τ = 0.5; the relative tolerance was chosen as
τr = 10−8 and the absolute tolerance was τa = 10−7. These parameters
provided convergence within eight iterations in most cases. We systematically
solve this nonlinear system for each triangle edge until the intersection point
is found. This intersection point must satisfy the physical requirement that
t > 0 and 0 ≤ τ ≤ 1. If this does not occur, or Newton’s method fails to
converge, we proceed to the next edge and repeat the iterative process. Note
that, the point with the minimum time t among all of the intersection points
is chosen as tf .

Once the intersection point is located via the converged solution (tf , τf )
T ,

the droplet path using equation (10) can be traced across the kth triangle by
gradually incrementing tk until td is reached. In order to proceed to the next
triangle we move slightly past the intersection point by allowing tk to be
incremented to just beyond td. Then, the Matlab command tsearch was
used to identify the new triangle into which the droplet moves. If no such
triangle can be located, the droplet is deemed to have left the leaf surface.

As mentioned before, the droplet has an initial velocity v0(tk) from equa-
tion (9) when it moves along the leaf surface from one triangle to another. To
ensure the droplet is adhered to the surface we project this velocity onto the
surface in the direction of movement using ṽ0 = (v0 · dp)dp = v0 − (v0 ·N)N ,
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where N is the unit normal vector given in equation (2). Moreover, this
initial speed is updated when the droplet arrives at the next element.

The procedure for simulating the droplet flow on the surface is sum-
marised in the following algorithm:

Algorithm 1. Simulating the Flow of Droplet on a Leaf Surface

INPUT: Mesh of triangles (virtual leaf surface), initial position p0, initial
velocity v0, initial time t0, degree of affinity α, friction coefficient kf and
gravity force Fg = −(0, 0, 9.8)T .

Step 1. Place the droplet at some specified point on the leaf surface.

Step 2. Initialize the transit time of the droplet, which is accumulated as the droplet
moves from one triangle to another.

Step 3. Determine the triangle in which the droplet is placed using the Matlab command
tsearch.

Step 4. Determine the direction of movement dk
p using equation (1) for the kth triangle.

Step 5. Compute the velocity equation (9) of the droplet and then the displacement equa-
tion (10) of the droplet at the time tk.

Step 6. Calculate the transit time tf required for the droplet to move to the next triangle
by intersecting the displacement equation with each side of the triangle edges
using Newton’s method.

Step 7. Discretise the time interval [tk, tk + tf ] using ∆t = tf/Nt; td = tk + i∆t, i =
1, · · · , Nt

Step 8. Find the location of the droplet front xN (td) in the kth triangle using equation
(7).

Step 9. Evaluate the height of the thin-film h by substituting xN (td) in equation (6).

Step 10. Move the droplet to the next triangle, provided the transit time is less than the
time frame and the height of the thin-film h > ǫ.

Step 11. Update the accumulative time, calculate the initial velocity and the new position
of the droplet at t = tk + tf using steps 6 and 7.

Step 12. Locate the triangle to which the droplet now moves.

Step 13. Repeat steps 4 through 12 for the duration of the animation or until the droplet
falls from the leaf surface.

5. Experimental procedure

To illustrate the power of this simple droplet modelling approach, and also
to validate the model, a series of water droplet experiments were performed
on a freshly cut Frangipani leaf. Initially, six artificial dots were marked
on the leaf surface (see figure 4(c)) so that they were clearly visible on all
captured images. These six points were used as reference points for the
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droplet movement on the leaf surface. The sonic digitizer device shown in
figure 4(d) was used to measure the locations of these six points along with
the series of leaf boundary points including the end points of the vein depicted
in figure 5(a,b). The sonic digitiser used here was a model GP 12-XL, which is
nowadays known as Freepoint 3D [22]. This device was manufactured by the
Science Accessories Division of the GTCO Corporation (GTCO Calcomp);
for further details see [22]. This device captures the x-, y- and z-coordinates
of each data point relative to a defined frame of reference in a data file
stored on the acquisition computer. Four additional data points on the string
attached to the clamp holding the leaf were also recorded. These points were
used to determine the direction of gravity with respect to the reference plane
of the leaf surface, because the string is assumed to be aligned with the
direction of the z-axis (refer figures 4(a) and 5(a)). A syringe was used to
measure the droplet mass and two different masses of 0.1 and 0.2 grams were
used in our experiment. A video camera recorded the path that the droplet
traversed on the leaf surface and the transit time of the droplet also was
recorded.

Two different leaf orientations were chosen to simulate the droplet move-
ment shown in figures 4(a,b) and 5(a,b). The second orientation was chosen
at a steeper angle than the first. The droplet of mass 0.2 grams was used
for the first orientation while the droplet of mass 0.1 grams was used for the
second orientation. In fact, the experiment showed that the droplet of mass
of 0.1 grams moves very slowly, and in some instances does not move on the
leaf surface for the first orientation because the leaf was positioned very close
to horizontal. The same sized droplet does, however, move on the surface of
the second orientation. The purpose of choosing two different orientations
was to test if the droplet path would change if the orientation was altered.

The laser scanner was used to capture the leaf surface points shown in
figure 5(c) for the reconstruction of the virtual leaf surface. It was then nec-
essary to transform this more detailed leaf data point set with the points
recorded by the sonic digitizer shown in figure 5(a,b). This transformation
process required that the laser scanner data points shown in figure 5(c) be
rotated to bring them in line with the leaf position that we have in the ex-
periment (again refer to figure 5(a,b)). We now outline the steps carried out
to achieve this transformation, where we now refer to the set of data points
that were captured using the sonic digitizer as data set 1 and the set of data
points that were captured using the laser scanner as data set 2.
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(a) (b)

(c) (d)

Figure 4: (a) exhibits the first orientation of the leaf, (b) shows the second orientation of
the leaf, (c) shows the six dots captured using the sonic digitizer and (d) depicts the sonic
digitizer device.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) shows the boundary points of the leaf, the string points and the six dots for
the first orientation; (b) shows the the second orientation of the data; (c) shows the leaf
surface points that were captured using the scanner; (d) depicts the leaf surface points
after rotation to the reference plane and its normal; (e) exhibits the sonic digitizer leaf
boundary points after rotation to the reference plane and its normal; (f) shows both data
sets in the same reference plane.
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Transformation Process

1. Determine the reference plane for each data set using the strategy out-
lined in §3.1 (see figures 5(d,e)). Rotate the axes such that the z-axis
is perpendicular to the reference plane as outlined in §3.1 for both data
sets (see figure 5(f)).

2. Find the minimum z for each data set and subtract it from the z values
such that each set has zero as the minimum point, shown in figure 6(a).

3. The end points of both data sets (the leaf tail) represented by the circle
points shown in figure 6(a) were used to bring both data sets together.
If (xp, yp)

T is the coordinate of one end of the vein of the leaf, change
the origin such that (0, 0)T becomes the end point of the leaf vein.

4. Project both sets of points onto the xy-plane as shown in figure 6(c).
Measure the angle between the veins and then rotate the axis so that
the veins coincide.

5. Scale the x, y and z coordinates such that the two images coincide as
exhibited in figure 6(d).

These transformations are all reversible; they may be applied to the coordi-
nates of the vertical string so that the direction of the gravitational field can
be expressed in either set of reference plane coordinates.

After the final representation of the leaf data set has been produced, we
started simulating the droplet movement on the virtual leaf surfaces. All of
our simulations were performed in Matlab version 7.4 on a 3 GHz pentium
4 processor. The triangulations shown in figures 10(c) and (d) have been
used for these simulations. Our model, as we can see from figures 7-9(b,d,f),
captured the motion of the droplet on the surface quite well when compared
to the motions that were produced in the experiments shown in figures 7-
9(a,c,e). We remark that although the viewing angle is slightly different
between the experimental and simulation results, this is the best viewpoint
chosen from the perspective of the data visualization software. Overall it
appears that the simulation results exhibit close to linear behaviour for the
flow paths, except near the leaf vein. In the experiments, however, it can
be seen that the droplet paths were slightly curved. Figure 7 shows the
experimental results compared with the droplet simulations for the first leaf
orientation. Observe in figure 7 (a-b) that when the droplet was initially
positioned on the lower side of the leaf that the droplet moved parallel to the
leaf vein because the external force due to gravity dominated the internal
forces on the droplet. However, in 7 (c-d) when the droplet is positioned on
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) and (b) show the transformation of both data sets into the xy−plane; (c)
is the projection of both data sets into the xy−plane; (d) is the rotation of the data
to become coincident; (e) depicts the inverse rotation of both data sets into the original
position that we have in the experiment, where data set 1 is represented by circles while
data set 2 is represented by dots; (f) exhibits the final rotation of the first orientation data
set and the string.

19



the high side of the leaf it moves across the surface until reaching the leaf
vein, at which stage it continued to move along the vein due to its surface
characteristics being conducive to flow. The behaviour of the droplet in
figure 7(e-f) is similar to that shown in figure 7(a-b), however in this case
the droplet was close to the leaf edge and, as expected, eventually fell from
the surface.

The situation is somewhat different for the second orientation exhibited
in figure 8, which is positioned much steeper than the first orientation. In
particular, we focus on the behaviour of the droplet depicted in figures 8(a-b)
and 8(c-d). When the droplet is placed near the upper edge of the leaf, refer
to figure 8(a-b) we can see that the velocity of the droplet is large enough
to enable it to pass over the vein and continue across the surface until it
reaches the lower edge of the leaf, at which time it falls from the surface.
However, in figure 8(c-d) the droplet velocity is not large enough to enable
it to immediately pass over the vein. Instead, it meanders along the vein
before the gravitational force pulls it to leave the vein and continue moving
towards the lower edge of the leaf.

One notes from figure 7(c) that when the leaf orientation is close to hori-
zontal that the droplet, after reaching the leaf vein, continues to move along
the vein. A plausible explanation for this is that the leaf vein has properties
different to the leaf surface properties and this has an impact on the droplet
velocity. In order to capture this movement along the leaf vein, we have
modified the velocity in our model when the droplet reaches this vein to be
a linear combination of the droplet velocity v0 when it reached the vein, to-
gether with an imposed velocity vn resolved along the vein as (see vein and
path shown in figure 7(d))

vvein = αv0 + βvn, (11)

where 0 < α < 1 and β = 1/‖v0‖. Another approach to capture the move-
ment along the vein is achieved by decreasing the surface tension and the
resistance of the droplet along this vein.

The procedure we used for simulating the droplet flow along the leaf vein
is summarised in the following algorithm:

Algorithm 2. Simulating the flow of a droplet along the leaf vein

Step 1. Find the data points along the vein that coincide with the triangle vertices.

Step 2. Find the triangle that the droplet will move into.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a,c,e) show the droplet movement across the leaf surface from three different
starting positions for the first orientation. (b,d,f) exhibit the corresponding droplet move-
ment generated by the model for the three different starting locations shown in (a,c,e).
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(a) (b)

(c) (d)

(e) (f)

Figure 8: (a,c,e) show the droplet movement across the leaf surface from three different
starting positions for the second orientation. (b,d,f) exhibit the corresponding droplet
movement generated by the model for the three different starting locations shown in (a,c,e).
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(a) (b)

(c) (d)

(e) (f)

Figure 9: The figures show a comparison of the thin-film model results against the exper-
imental data.
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Step 3. Determine if this triangle has any points in common with the vein points.

Step 4. If it has common points, update the velocity to be a linear combination of the
droplet velocity when it reaches the vein together with some imposed velocity vn

resolved as shown in equation (11). Otherwise, do not modify the velocity and
continue.

The result of applying this algorithm to both leaf orientations can be seen in
figures 7(d) and 8(d). One observes from these figures that the droplet mo-
tion is more realistic once it reaches and continues along the vein. Without
applying this algorithm, the droplet would cross the vein and continue mov-
ing until it reaches the leaf boundary, which represents unrealistic droplet
motion.

As mentioned above, the droplet starts to move down the inclined leaf
surface, and eventually stops at some stage. Figures 9(b,d,f) show compar-
isons of the droplet movement of our model against the experiments shown
in figures 9(a,c,e). By controlling the height of the thin-film in our model we
obtained similar movements to the those depicted in the experiments.

To test if the droplet movement is affected by the triangulation of the
leaf surface, we have refined the triangulation in both orientations by divid-
ing each triangle into three subtriangles that have their common vertex the
centroid of the divided triangle as shown in the figures 10(e,f). Figure 11
shows two paths of the same droplet plotted on the refined triangulation.
One path is computed on the unrefined triangulation, given in figures 10
(c,d), while the other path is computed on the refined triangulation, given in
figures 10 (e,f). It can be observed from this figure that the droplet paths us-
ing the unrefined and refined triangulations are indistinguishable and clearly
the droplet motion appears unaffected by the mesh refinement, offering very
little change in the direction of movement. We conclude that the motion of
the droplet on this particular leaf appears unaffected by refining the triangu-
lation and therefore the coarser resolution can be used to produce acceptable
results. This is an important finding because using a refined grid is more
computationally demanding.

As mentioned in §4.1, the droplet model contains some parameters such
as friction and the resistance coefficient that can be used for calibration. By
changing these parameters we can control the droplet movement, or simulate
the motion of a pesticide droplet, or nutrient droplet. These movements can
be controlled also by changing the height of the thin-film discussed in §4.2.
These ideas will be pursued in future research.

24



(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) and (b) exhibit the six dots on the final transformed first and second
orientation data sets; (c) and (e) represent the triangulation and the refined triangulation
respectively of the first orientation data set; (d) and (f) represent the triangulation and
the refined triangulation respectively of the second orientation data set.
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(a) (b)

(c) (d)

Figure 11: Each of these figures show two paths of the same droplet on the refined trian-
gulation. One represents the path on the unrefined triangulation, given in figures 10 (c,d),
while the other represents the path on the refined triangulation, given in figures 10 (e,f).
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6. Conclusions and future research

The work presented in this paper describes a model for a water droplet
moving down a leaf surface. The flexibility of the model offers the user an
understanding of how a droplet moves on a leaf surface and how small changes
in the dominating factors produce different droplet motions. A new idea
based on using thin-film theory has been used to develop a stopping criterion
for the droplet as it moves on the surface. Overall the model produces a good
representation of the droplet behaviour.

The research described here provides a basis on which future studies can
be built. For example, the model may be extended to generate not only real-
istic movements of a droplet on the leaf surface, but it can also be extended
to produce a more physically correct simulation by involving more of the
dominating factors and forces that affect the droplet movement. The differ-
ences in the nature of leaf surfaces can be included in the model by studying
the behaviour of the droplet movement on different leaf surfaces. It can be
also extended to study the paths of many droplets of not only water, but
also droplets of pesticide moving and colliding on the surface. Knowledge
of this path is important for many applications, such as the simulation of a
pesticide application to plant surfaces [12, 32]. In the future the model may
be used to determine the effectiveness of a treatment, and then to develop
certain pesticides that have the ability to protect leaves for longer periods
of time. Similar models may treat moisture precipitation and energy uptake
through photosynthesis enabled by ray tracing techniques.

Future work will also see the development of more realistic mathematical
models for the spreading and sliding of liquid drops on inclined leaf surfaces.

Wetting effects, merging, spraying and adhesion of the droplets has not
been implemented in this model. We can include these phenomena by in-
cluding some of the dominating parameters. Spraying and adhesion could be
also included based on the work presented in [6, 7, 36].
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Figure Captions

• figure 1: The direction of movement dp with normal N and gravity

fext.

• figure 2: Thin-film flow down a slope.

• figure 3: The droplet movement within the kth triangle.

• figure 4: (a) exhibits the first orientation of the leaf, (b) shows the
second orientation of the leaf, (c) shows the six dots captured using the
sonic digitizer and (d) depicts the sonic digitizer device.

• figure 5: (a) shows the boundary points of the leaf, the string points
and the six dots for the first orientation; (b) shows the the second
orientation of the data; (c) shows the leaf surface points that were
captured using the scanner; (d) depicts the leaf surface points after
rotation to the reference plane and its normal; (e) exhibits the sonic
digitizer points after rotation to the reference plane and its normal; (f)
shows both data sets in the same reference plane.

• figure 6: (a) and (b) show the transformation of both data sets into the
xy−plane; (c) is the projection of both data sets into the xy−plane; (d)
is the rotation of the data to become coincident; (e) depicts the inverse
rotation of both data sets into the original position that we have in
the experiment, where data set 1 is represented by circles while data
set 2 is represented by dots; (f) exhibits the final rotation of the first
orientation data set and the string.

• figure 7: (a) and (b) exhibit the six dots on the final transformed first
and second orientation data sets; (c) and (e) represent the triangulation
and the refined triangulation respectively of the first orientation data
set; (d) and (f) represent the triangulation and the refined triangulation
respectively of the second orientation data set.

• figure 8: (a,c,e) show the droplet movement across the leaf surface from
three different starting positions for the second orientation. (b,d,f)
exhibit the corresponding droplet movement generated by the model
for the three different starting locations shown in (a,c,e).
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• figure 9: (a,c,e) show the droplet movements across the leaf surface
from three different starting positions for the second orientation. (b,d,f)
exhibit the corresponding droplet movements generated by the model
for the three different starting location shown in (a,c,e).

• figure 10: The figures show a comparison of the thin-film model results
against the experimental data.

• figure 11: Each of these figures show two paths of the same droplet
on the refined triangulation. One represents the path on the unre-
fined triangulation while the other represents the path on the refined
triangulation.
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