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Abstract

One of the main aims in artificial intelligent system
is to develop robust and efficient optimisation methods
for Multi-Objective (MO) and Multidisciplinary
Design (MDO) design problems. The paper
investigates two different optimisation techniques for
multi-objective design optimisation problems. The first
optimisation method is a Non-Dominated Sorting
Genetic Algorithm 1l (NSGA-II). The second method
combines the concepts of Nash-equilibrium and Pareto
optimality ~ with ~ Multi-Objective ~ Evolutionary
Algorithms (MOEAs) which is denoted as Hybrid-
Game. Numerical results from the two approaches are
compared in terms of the quality of model and
computational expense. The benefit of using the
distributed hybrid game methodology for multi-
objective design problems is demonstrated.

1. Introduction

One of the main purposes of Multi-Objective (MO)
or Multidisciplinary Design Optimisation (MDO)
using Evolutionary Algorithms (EA) is to develop
effective and efficient optimisation techniques in terms
of computational cost and solution quality [1-4]. This
paper investigates two different game strategies for
multi-objective design optimisation; the first method is
one well known MOEA; the Non-Dominated Sorting
Genetic  Algorithm NSGA-Il [4]. The second
optimisation method called Hybrid-Game can be
coupled to any MOEAS; in this case NSGA-II is
coupled. The method hybridises the concept of Nash
equilibrium [5, 6] and Pareto optimality [4, 7]. The
Hybrid-Game method consists of several Nash-Players
and one Pareto-Player. Nash-Players optimise local

criteria using their own strategy to accelerate the
searching speed for global designs which are seeded to
the Pareto-Player. The evolutionary optimisation
methods NSGA-1I and NSGA-II with Hybrid-Game
are applied to mathematical multi-objective design
problem. Results from both optimisation techniques
are compared in terms of design quality and
computation expense. The rest of paper is organised as
follows; Section 2 presents the methodology, Section 3
considers benchmark multi-objective mathematical test
problems. Conclusions and forthcoming work are
described in Section 4.

2. Methodology

In this section, two evolutionary optimisation
methods NSGA-I1I and NSGA-II with Hybrid-Game
are presented. The first method NSGA-II is a modified
version of a well known non-domination based genetic
algorithms, and NSGA to have a better sorting
algorithm, incorporates elitism. NSGA-II uses Pareto
tournament to produce Pareto non-dominated solutions.
In the second method NSGA-II is hybridised by
applying the concept of Nash-equilibrium coupled to
Pareto optimality.

2.1. NSGA-11
NSGA-Il uses a binary tournament selection,
Simulated Binary Crossover (SBX) [8] and polynomial
mutation [9]. As a reference, Figure 1 describes the
algorithm for NSGA-1I which has seven main steps;

Stepl: Define population size, the number of
generations as stopping criteria, dimension of
decision variables with its design bounds, and
objective/fitness functions.

Step2: Initialise random population



Step3: Sort non-dominated solutions from initial
random population with individual rank and
crowding distance corresponding to fitness
values or position in front.

while Stopping Criteria (generation number)

Step4: Do tournament selection based on individual
rank and crowding distance.

Step5: Do genetic operation which consists of
crossover and mutation to generate an
offspring population.

Step6: Sort non-dominated solutions from combined
population (Parent population + offspring
population).

Step7: Replace the best solutions based on its rank
and crowing distance to parent population.

endwhile

In Step3, each individual in population will be
assigned with a non-domination rank as well as its
crowding distance. The tournament selection (Step4)
will be based on the non-domination rank of the
individual. If individuals have the same non-
domination rank then individual with large crowding
distance will be selected.
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Figure 1. Algorithm for NSGA-II.

2.2. Hybrid-Game applied to NSGA-I1I

Traditionally, Pareto and Nash games are

considered independently when solving a MO problem.

In this work, the Hybrid Nash —Pareto approach is
considered and detailed in Reference [10]. The Hybrid-

Game consists of several Nash-Players corresponding
to each objective of problem. Each Nash-Player has its
own optimization criteria and uses its own strategy. A
Nash-equilibrium is obtained when each Nash-Player
cannot improve its objective. The reason for this
hybrid game implementation of Nash-game coupled to
Pareto optimality is to accelerate the search for one of
the global solution. The elite design from each Nash-
Player will be seeded to a Pareto-Player at every
generation and hence it can simultaneously produce
Nash-equilibrium and Pareto non-dominated solutions.
The algorithm of NSGA-II with hybrid game is shown
in Figure 2. The eight main steps are;

Stepl: Define population size, the number of
generations as stopping criteria, dimension of
decision variables with its design bounds, and
objective/fitness functions for Nash Players and
Pareto-Player.

Step2: Initialise three random populations one for
Pareto-Player, one for Nash-Playerl and one
for Nash-Player2.

Step2-1: Transfer elite design variable which
corresponds to Nash-Player2 objective from the
Pareto-Player to the Nash-Playerl

Step2-2: Transfer elite design variable from the Nash-
Playerl to the Nash-Player2

Step3: Sort non-dominated solutions from initial
random population with individual rank and
crowding distance corresponding to fitness
values or position in front.

while Stopping Criteria (generation number)

Step4: Do tournament selection based on individual

rank and crowding distance.

Step5: Perform genetic operations in each
population which consists of crossover and
mutation to generate an offspring population.

Step5-1: Seed the elite design from Nash-Playerl

and Nash-Player2 to the chromosome of
Pareto-Player as a first offspring of each
generation.

Step5-2: Send and use elite design on each Nash-

Player to the other Nash-Player.

Step6: Sort non-dominated solutions from combined
population (Parent population + offspring
population) on the Pareto-Player.

Step7: Take the best non-dominated solutions (from
Step 6) based on their rank and crowing
distance and replace to new Parent
population on the Pareto-Player.

Step8: Update the elite design obtained by Nash-
Playerl and Nash-Player2

endwhile



For example, if a problem considers two objectives
( f,=xy, f,=xy®) to minimize f, and f, where
design variables are x and y. A Hybrid-Game will
consist of one Pareto Player and two Nash Players. The
Pareto-Player will use x and y as design variables to
minimize both f; and f, while Nash Playerl will only
use x to minimize f; and having design variable Ve
fixed by Nash-Player2. Nash-Player2 will only use y to
minimize f, using Xejite fixed by Nash-Player1.

In Step2, the Pareto-player initialises a random
population for f; and f,, and sends the best elite design
variable (Yeie) that minimizes f, to the Nash-Playerl.
Nash-Playerl initializes a random population using
this Yeiie and sends the elite design value (Xei) that
minimizes f; to Nash-Player2. Nash-Player2 initializes
its random population using this Xei,e Value from Nash-
Playerl.

In Step5-1, the Pareto-Player uses elite design
variables (Xeiite, Yelie) @and evaluate if only if the first
offspring of each generation is considered. In addition,
this elite design will be replaced if it is not dominated
by any candidates/individuals in Pareto-Player. Nash-
Players 1 and 2 will use their elite design at each
generation (Step5-2).

The difference between NSGA-II with Hybrid-Game
applied to NSGA-I1I is that NSGA-II uses only one-
type of population to generate Pareto optimal front
while Hybrid-Game on NSGA-II considers three-types
of populations (Pareto-Player, Nash-Playerl, Nash-
Player2). The Hybrid-Game can employ more than two
players if there are more than two objective functions
or if the problem considers complex multi-objective
design problem as described in Reference [13].
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Figure 2. Hybrid-Game on NSGA-II.

3. Multi-Objective ~ Mathematical

Design Optimisation

This section compares the true Pareto convergences
obtained by NSGA-II and Hybrid-Game on NSGA-II.
Both NSGA-IIl and Hybrid-Game use same
optimization parameters; population size = 100,
maximum number of generations = [50:500], crossover
rate = 0.9 and mutation probability = 1/n where n is the
number of decision variables. Six multi-objective
mathematical test cases are conducted including non-
convex, non-uniformly distributed non-convex,
discontinuous, a non-linear goal programming of
mechanical design, ZDT4, ZDT6.

3.1. Non-Convex MO Design
This problem which is described in Reference [7]

considers minimization of equations (1) and (2).
Random solutions (100,000) are shown in Figure 3.
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Figure 3. Random solutions (100,000 points).

Figure 4 compares the convergence obtained by
NSGA-II and Hybrid-Game coupled to NSGA-II. The
optimization is stopped after 50 generations with a
population size of 100. It can be seen that the NSGA-II
will require more function evaluations (marked with
red circle) while the Hybrid-Game has capture the true
Pareto front.
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Figure 4. Pareto front obtained by NSGA-I11 (red
dots) and Hybrid-Game (blue dots) after 50
generations.

3.2. Non-Uniformly Distributed Non-
Convex Design

This problem defined in Reference [7] considers a
non-uniformly distributed non-convex problem. It is an
extended version of a non-linear problem where the
objective is to minimise equations (3) and (4). Random
solutions are shown in Figure 5.
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Figure 6 compares the convergence obtained by
NSGA-II and Hybrid-Game coupled to NSGA-II. The
optimization is stopped after 50 generations with a
population size of 100. It can be seen that the NSGA-II
requires more function evaluations (marked with red
circle) while the Hybrid-Game has already capture the
true Pareto front.
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Figure 5. Random solutions (100, 000 points).
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Figure 6. Pareto front obtained by NSGA-II (red
dots) and Hybrid-Game (blue dots) after 50
generations.



3.3. Discontinuous MO (TNK) Design

The problem TNK proposed in Reference [11]
considers minimisation of equations (5). Random
solutions are shown in Figure 7.

fl(x:l):X]. and fz(xz):XZ ®)
Subject to

Co(X, %) ==X = X; +1+ 0.1cos{16arctanﬁj <0

X2
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where 0 <Xy, Xo < 7

Figure 8 compares the convergence obtained by
NSGA-II and Hybrid-Game coupled to NSGA-II. The
optimization is stopped after 100 generations with a
population size of 100. It can be seen that the NSGA-II
need more function evaluations to find Pareto members
in the Section-A while the Hybrid-Game converged to
the true Pareto front.
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Figure 7. Random solutions (100,000 points).
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Figure 8. Pareto front obtained by NSGA-II (red
dots) and Hybrid-Game (blue dots) after 100
generations.

3.4.ZDT6
This problem is designed by Zitzler, Deb and Thiele
(ZDT) [12] is formulated by using Eq. (6)- (8).

ZDTé:
f,(x ) =1—exp(-4x )sin®(67x,) (6)
g(xz):1+9([im2 xiJ/(m—l)) (7
fz(fug):l_(fl/g)z ®)

where m =10, x; € [0,1].

Figures 9- 11 compare the ZDT6 convergences at 100,
300 and 500 generations obtained by NSGA-II and
Hybrid-Game on NSGA-Il. The optimization is
stopped after 500 generations with a population size of
100.
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Figure 9. Pareto front obtained by NSGA-II (red
dots) and Hybrid-Game (blue dots) after 100G.
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Figure 10. Pareto front obtained by NSGA-I1 (red
dots) and Hybrid-Game (blue dots) after 300G.
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Figure 11. Pareto front obtained by NSGA-II (red
dots) and Hybrid-Game (blue dots) after 500G.

As shown in Figure 11, the NSGA-II needs to run
more function evaluations to find true Pareto front for
ZDT6 while the Hybrid-Game coupled to NSGA-II
successfully captures the true Pareto front.

4. Conclusions

The optimisation techniques NSGA-II and NSGA-
Il with Hybrid-Game are implemented and their
numerical results are compared in terms of
performance efficiency and solution quality. Results
from practical test cases show the broad applicability
of Hybrid-Game and represent the benefit of using the
combination of Nash and Pareto-game strategies.
These methods provide alternative choices to design
engineer for multi-objective design optimisation
problems including linear or non-linear. Ongoing work
focuses on coupling the Hybrid-Game technique to a
robust design technique Hierarchical Asynchronous
Parallel Multi-Objective Evolutionary  Algorithm
(HAPMOEA) for time consuming robust multi-

objective/multidisciplinary design optimisation
problems.
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