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Abstract 

 
One of the main aims in artificial intelligent system 

is to develop robust and efficient optimisation methods 
for Multi-Objective (MO) and Multidisciplinary 
Design (MDO) design problems. The paper 
investigates two different optimisation techniques for 
multi-objective design optimisation problems. The first 
optimisation method is a Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II). The second method 
combines the concepts of Nash-equilibrium and Pareto 
optimality with Multi-Objective Evolutionary 
Algorithms (MOEAs) which is denoted as Hybrid-
Game. Numerical results from the two approaches are 
compared in terms of the quality of model and 
computational expense. The benefit of using the 
distributed hybrid game methodology for multi-
objective design problems is demonstrated.  
 
 1. Introduction 
 

One of the main purposes of Multi-Objective (MO) 
or Multidisciplinary Design Optimisation (MDO) 
using Evolutionary Algorithms (EA) is to develop 
effective and efficient optimisation techniques in terms 
of computational cost and solution quality [1-4]. This 
paper investigates two different game strategies for 
multi-objective design optimisation; the first method is 
one well known MOEA; the Non-Dominated Sorting 
Genetic Algorithm NSGA-II [4]. The second 
optimisation method called Hybrid-Game can be 
coupled to any MOEAs; in this case NSGA-II is 
coupled. The method hybridises the concept of Nash 
equilibrium [5, 6] and Pareto optimality [4, 7]. The 
Hybrid-Game method consists of several Nash-Players 
and one Pareto-Player. Nash-Players optimise local 

criteria using their own strategy to accelerate the 
searching speed for global designs which are seeded to 
the Pareto-Player. The evolutionary optimisation 
methods NSGA-II and NSGA-II with Hybrid-Game 
are applied to mathematical multi-objective design 
problem. Results from both optimisation techniques 
are compared in terms of design quality and 
computation expense. The rest of paper is organised as 
follows; Section 2 presents the methodology, Section 3 
considers benchmark multi-objective mathematical test 
problems. Conclusions and forthcoming work are 
described in Section 4. 
 
 2. Methodology 
 

In this section, two evolutionary optimisation 
methods NSGA-II and NSGA-II with Hybrid-Game 
are presented. The first method NSGA-II is a modified 
version of a well known non-domination based genetic 
algorithms, and NSGA to have a better sorting 
algorithm, incorporates elitism. NSGA-II uses Pareto 
tournament to produce Pareto non-dominated solutions. 
In the second method NSGA-II is hybridised by 
applying the concept of Nash-equilibrium coupled to 
Pareto optimality. 

  
 2.1. NSGA-II 

NSGA-II uses a binary tournament selection, 
Simulated Binary Crossover (SBX) [8] and polynomial 
mutation [9]. As a reference, Figure 1 describes the 
algorithm for NSGA-II which has seven main steps; 

 
Step1: Define population size, the number of 

generations as stopping criteria, dimension of 
decision variables with its design bounds, and 
objective/fitness functions. 

Step2: Initialise random population 



Step3: Sort non-dominated solutions from initial 
random population with individual rank and 
crowding distance corresponding to fitness 
values or position in front. 

while Stopping Criteria (generation number) 
Step4: Do tournament selection based on individual 

rank and crowding distance. 
Step5: Do genetic operation which consists of 

crossover and mutation to generate an 
offspring population. 

Step6: Sort non-dominated solutions from combined 
population (Parent population + offspring 
population). 

Step7: Replace the best solutions based on its rank 
and crowing distance to parent population. 

endwhile 
 
In Step3, each individual in population will be 
assigned with a non-domination rank as well as its 
crowding distance. The tournament selection (Step4) 
will be based on the non-domination rank of the 
individual. If individuals have the same non-
domination rank then individual with large crowding 
distance will be selected. 
 

 
Figure 1. Algorithm for NSGA-II. 

 
 2.2. Hybrid-Game applied to NSGA-II 
 

Traditionally, Pareto and Nash games are 
considered independently when solving a MO problem. 
In this work, the Hybrid Nash –Pareto approach is 
considered and detailed in Reference [10]. The Hybrid-

Game consists of several Nash-Players corresponding 
to each objective of problem. Each Nash-Player has its 
own optimization criteria and uses its own strategy. A 
Nash-equilibrium is obtained when each Nash-Player 
cannot improve its objective. The reason for this 
hybrid game implementation of Nash-game coupled to 
Pareto optimality is to accelerate the search for one of 
the global solution. The elite design from each Nash-
Player will be seeded to a Pareto-Player at every 
generation and hence it can simultaneously produce 
Nash-equilibrium and Pareto non-dominated solutions. 
The algorithm of NSGA-II with hybrid game is shown 
in Figure 2. The eight main steps are;  
 
Step1: Define population size, the number of 

generations as stopping criteria, dimension of 
decision variables with its design bounds, and 
objective/fitness functions for Nash Players and 
Pareto-Player. 

Step2: Initialise three random populations one for 
Pareto-Player, one for Nash-Player1 and one 
for Nash-Player2. 

Step2-1: Transfer elite design variable which 
corresponds to Nash-Player2 objective from the 
Pareto-Player to the Nash-Player1 

Step2-2: Transfer elite design variable from the Nash-
Player1 to the Nash-Player2 

Step3: Sort non-dominated solutions from initial 
random population with individual rank and 
crowding distance corresponding to fitness 
values or position in front. 

while Stopping Criteria (generation number) 
Step4: Do tournament selection based on individual 

rank and crowding distance. 
Step5: Perform genetic operations in each 

population which consists of crossover and 
mutation to generate an offspring population. 

Step5-1: Seed the elite design from Nash-Player1 
and Nash-Player2 to the chromosome of 
Pareto-Player as a first offspring of each 
generation.  

Step5-2: Send and use elite design on each Nash-
Player to the other Nash-Player.  

Step6: Sort non-dominated solutions from combined 
population (Parent population + offspring 
population) on the Pareto-Player. 

Step7: Take the best non-dominated solutions (from 
Step 6) based on their rank and crowing 
distance and replace to new Parent 
population on the Pareto-Player. 

Step8: Update the elite design obtained by Nash-
Player1 and Nash-Player2 

endwhile 
 



For example, if a problem considers two objectives 
( 2

1f x y , 2
2f xy ) to minimize f1 and f2 where 

design variables are x and y. A Hybrid-Game will 
consist of one Pareto Player and two Nash Players. The 
Pareto-Player will use x and y as design variables to 
minimize both f1 and f2 while Nash Player1 will only 
use x to minimize f1 and having design variable yelite 
fixed by Nash-Player2. Nash-Player2 will only use y to 
minimize f2 using xelite fixed by Nash-Player1. 
In Step2, the Pareto-player initialises a random 
population for f1 and f2, and sends the best elite design 
variable (yelite) that minimizes f2 to the Nash-Player1. 
Nash-Player1 initializes a random population using 
this yelite and sends the elite design value (xelite) that 
minimizes f1 to Nash-Player2. Nash-Player2 initializes 
its random population using this xelite value from Nash-
Player1. 
In Step5-1, the Pareto-Player uses elite design 
variables (xelite, yelite) and evaluate if only if the first 
offspring of each generation is considered. In addition, 
this elite design will be replaced if it is not dominated 
by any candidates/individuals in Pareto-Player. Nash-
Players 1 and 2 will use their elite design at each 
generation (Step5-2). 
The difference between NSGA-II with Hybrid-Game 
applied to NSGA-II is that NSGA-II uses only one-
type of population to generate Pareto optimal front 
while Hybrid-Game on NSGA-II considers three-types 
of populations (Pareto-Player, Nash-Player1, Nash-
Player2). The Hybrid-Game can employ more than two 
players if there are more than two objective functions 
or if the problem considers complex multi-objective 
design problem as described in Reference [13]. 
 

 
Figure 2. Hybrid-Game on NSGA-II. 

 
 3. Multi-Objective Mathematical 

Design Optimisation 
 

This section compares the true Pareto convergences 
obtained by NSGA-II and Hybrid-Game on NSGA-II. 
Both NSGA-II and Hybrid-Game use same 
optimization parameters; population size = 100, 
maximum number of generations = [50:500], crossover 
rate = 0.9 and mutation probability = 1/n where n is the 
number of decision variables. Six multi-objective 
mathematical test cases are conducted including non-
convex, non-uniformly distributed non-convex, 
discontinuous, a non-linear goal programming of 
mechanical design, ZDT4, ZDT6.  
 
 3.1. Non-Convex MO Design 
 

This problem which is described in Reference [7] 
considers minimization of equations (1) and (2). 
Random solutions (100,000) are shown in Figure 3. 
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Figure 3. Random solutions (100,000 points). 

 
Figure 4 compares the convergence obtained by 

NSGA-II and Hybrid-Game coupled to NSGA-II. The 
optimization is stopped after 50 generations with a 
population size of 100. It can be seen that the NSGA-II 
will require more function evaluations (marked with 
red circle) while the Hybrid-Game has capture the true 
Pareto front. 
 

 
Figure 4. Pareto front obtained by NSGA-II (red 

dots) and Hybrid-Game (blue dots) after 50 
generations. 

 
 3.2. Non-Uniformly Distributed Non-

Convex Design 
 
This problem defined in Reference [7] considers a 

non-uniformly distributed non-convex problem. It is an 
extended version of a non-linear problem where the 
objective is to minimise equations (3) and (4). Random 
solutions are shown in Figure 5. 
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Figure 6 compares the convergence obtained by 
NSGA-II and Hybrid-Game coupled to NSGA-II. The 
optimization is stopped after 50 generations with a 
population size of 100. It can be seen that the NSGA-II 
requires more function evaluations (marked with red 
circle) while the Hybrid-Game has already capture the 
true Pareto front. 
 

 
Figure 5. Random solutions (100, 000 points). 

 

 
Figure 6. Pareto front obtained by NSGA-II (red 

dots) and Hybrid-Game (blue dots) after 50 
generations. 



  
 3.3. Discontinuous MO (TNK) Design 
 

The problem TNK proposed in Reference [11] 
considers minimisation of equations (5). Random 
solutions are shown in Figure 7. 
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Figure 8 compares the convergence obtained by 

NSGA-II and Hybrid-Game coupled to NSGA-II. The 
optimization is stopped after 100 generations with a 
population size of 100. It can be seen that the NSGA-II 
need more function evaluations to find Pareto members 
in the Section-A while the Hybrid-Game converged to 
the true Pareto front. 
 

 
Figure 7. Random solutions (100,000 points). 

 

 
Figure 8. Pareto front obtained by NSGA-II (red 

dots) and Hybrid-Game (blue dots) after 100 
generations. 

 
 3.4. ZDT6 

This problem is designed by Zitzler, Deb and Thiele 
(ZDT) [12] is formulated by using Eq. (6)- (8). 

  
ZDT6: 
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where m =10, xi  [0,1]. 
 
 
Figures 9- 11 compare the ZDT6 convergences at 100, 
300 and 500 generations obtained by NSGA-II and 
Hybrid-Game on NSGA-II. The optimization is 
stopped after 500 generations with a population size of 
100.  
 

 
Figure 9. Pareto front obtained by NSGA-II (red 
dots) and Hybrid-Game (blue dots) after 100G. 

 



 
Figure 10. Pareto front obtained by NSGA-II (red 

dots) and Hybrid-Game (blue dots) after 300G. 
 

 
Figure 11. Pareto front obtained by NSGA-II (red 

dots) and Hybrid-Game (blue dots) after 500G. 
 

As shown in Figure 11, the NSGA-II needs to run 
more function evaluations to find true Pareto front for 
ZDT6 while the Hybrid-Game coupled to NSGA-II 
successfully captures the true Pareto front. 
 
 4. Conclusions 
 

The optimisation techniques NSGA-II and NSGA-
II with Hybrid-Game are implemented and their 
numerical results are compared in terms of 
performance efficiency and solution quality. Results 
from practical test cases show the broad applicability 
of Hybrid-Game and represent the benefit of using the 
combination of Nash and Pareto-game strategies. 
These methods provide alternative choices to design 
engineer for multi-objective design optimisation 
problems including linear or non-linear. Ongoing work 
focuses on coupling the Hybrid-Game technique to a 
robust design technique Hierarchical Asynchronous 
Parallel Multi-Objective Evolutionary Algorithm 
(HAPMOEA) for time consuming robust multi-

objective/multidisciplinary design optimisation 
problems. 
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