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Abstract 

Calibration of movement tracking systems is a 
difficult problem faced by both animals and 
robots. The ability to continuously calibrate 
changing systems is essential for animals as they 
grow or are injured, and highly desirable for 
robot control or mapping systems due to the 
possibility of component wear, modification, 
damage and their deployment on varied robotic 
platforms. In this paper we use inspiration from 
the animal head direction tracking system to 
implement a self-calibrating, neurally-based 
robot orientation tracking system. Using real 
robot data we demonstrate how the system can 
remove tracking drift and learn to consistently 
track rotation over a large range of velocities. 
The neural tracking system provides the first 
steps towards a fully neural SLAM system with 
improved practical applicability through self-
tuning and adaptation. 
 

1 Introduction 

The problem of calibration is a key one in both nature and 
robotics; how can an animal or robot maintain accurate 
tracking of its movement when both it and its 
environment can change. In nature, an animal must 
maintain calibration of the neural and sensory systems 
used to track movement, rotation, grasping and striking, in 
the face of challenges such as growth, damage, and 
change in its environment. Likewise, in robotics, one 
might imagine an ideal robot control system that can be 
flexibly deployed on a range of varying robotic platforms 
without the need for manual fine-tuning of the tracking 
system parameters. If the tracking system could 
autocalibrate, not only would it not require exact initial 
parameters, but it would be able to adapt if the robot was 
damaged or modified. For example, a service robot which 
lost pressure in a tyre might recalibrate and continue to 
keep track of its location and orientation. A grasping 
robot which had an arm component bent or shortened 

would be able to recalibrate and continue to perform its 
intended task. 

In this paper we describe the first stage of work 
towards developing a completely self-tuning neural 
SLAM system; a self-calibrating, neurally-based robot 
orientation tracking system. We use a spiking neural 
network to address two of the key issues in self-
calibration; removing drift, and developing consistent 
tracking for turns in both clockwise and counter-
clockwise directions. The core network provides a 
significant increase in biological relevance over extant 
neurally-inspired systems such as RatSLAM [Milford et 
al., 2008, Milford, 2008, Milford et al., 2009], while 
providing a means for improved practical performance 
through self-tuning and adaptation.  

The paper continues as follows. In Section 1.1 we 
briefly describe the anatomical background of the head 
direction tracking system in animals, and provide an 
overview of the typical modelling approaches in Section 
1.2. Section 2 presents the network architecture and 
connectivity, while Section 3 details the autonomous 
calibration procedure. In Section 4 the experimental 
procedure is described with the results presented in 
Section 5. Section 6 discusses the results and details 
possible directions for future work. 

1.1  Head Direction Neurons 
Head direction (HD) neurons are cells in the mammalian 
brain that fire when an animal is facing in a certain 
direction relative to cues in the environment [Taube, 
2007]. A number of other neuron types perform 
computation to help maintain this representation of 
orientation state in the HD cells. Of particular relevance 
to the model presented in this paper is a class of neurons 
called angular head velocity (AHV) cells. There are two 
categories of AHV neuron – symmetric AHV neurons 
which fire to indicate rotational speed, responding to both 
clockwise and counter clockwise rotation, while 
asymmetric AHV neurons indicate rotational velocity, 
firing only for rotation in one direction.  
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1.2 Network Models of Head-Direction Cells 
Computational models of the head direction system 
typically use a continuous attractor network [Sharp et al., 
2001]. An attractor is a dynamical system that tends 
towards one or more equilibrium states over time; a 
continuous attractor is stable in a continuum of states 
instead of a set of discrete states. For HD networks, the 
attractor states are stable firing patterns able to represent 
any possible orientation across the population of HD 
units. These states are created by the interaction between 
two sets of weights, one excitatory and one inhibitory. 

• Excitatory connections strongly connect neurons 
that encode similar orientations, so that groups of 
neurons encoding similar orientations are coopted 
into firing together. The group of firing neurons is 
often called an activity bump (see Figure 1). 

• Inhibitory connections strongly connect neurons 
that encode dissimilar orientations, so that groups 
of neurons that encode dissimilar orientations 
cannot sustain firing together. 

 
Figure 1 – A group of neurons firing together in a 
network are known as an activity bump or activity 
packet. When used to represent a head direction 
network, nearby neurons encode similar orientations. 

The major computational models of head direction 
networks have used static network connections that were 
already perfectly balanced and tuned [Song et al., 2005, 
Skaggs et al., 1995, Redish et al., 1996, Goodridge et al., 
2000, Xie et al., 2002]; we call these models the non-
adaptive attractor models. Some studies have considered 
the calibration issue such as work by Zhang [Zhang, 
1996], Stringer et al. [Stringer et al., 2002] and Hahnloser 
[Hahnloser, 2003]. However, most of these approaches 
have assumed the existence of visual cues in the 
environment that were already ‘mapped’ to specific 
animal or robot orientations.  

2 Network Model Architecture 

The network model (see Figure 2) consists of three 
different types of neurons: 

• head direction (HD) cells, which encode the robot’s 
orientation, 

• right and left turn angular head velocity (AHV) 
cells, which encode, respectively, clockwise and 
counter clockwise rotational velocity, and 

• symmetric angular head velocity cells, which 
encode rotational speed. 

 
Figure 2 – Network architecture. The head-direction 
cells encode the robot’s orientation, while the clockwise 
and counter-clockwise cells encode the robot’s angular 
velocity. The symmetric angular velocity cells encode 
the robot’s rotation speed in either direction. 

2.1 Network connections 
The network contains three sets of connections; recurrent 
excitatory connections from each HD cell to other HD 
cells, excitatory connections from HD cells to the 
clockwise and counter-clockwise AHV cells, and 
inhibitory connections from the clockwise and counter-
clockwise AHV cells to the HD cells (see Figure 3). We 
present equations for the recurrent HD connections, which 
change under the adaptation algorithm, and briefly 
describe the other connections. 
Recurrent HD Connections 
There are 100 HD cells in the network, each connected by 
recurrent excitatory weights, given by a Gaussian function 
of the distance between the cells (see Equation 1). The 
strength of the connection WHH from HD cell i to HD cell 
j is given by  

 (.)
22

, 2
, noise

rd
excit

HH
ij feGW HHij−=  (1) 

where rHH is the distance, in number of cells, of one 
standard deviation of the Gaussian (set to n/8 for all trials) 
and d is the circular distance (i.e. with wrapping at the 
ends) from cell j to cell i, given by 

 )],)mod((),),(min[mod(, njoinoijd iiij −−−−=  (2) 

where oi is a systematic shift which is applied to the 
direction of the initial Gaussian weights. It is this shift 
which causes a continuous drift in the attractor bump and 
which is corrected for by the adaptation algorithms 
presented in this study. fnoise(.) is a noise function defined 
as 

 (.).1(.) gaussfnoise λ+=  (3) 
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where λ is a noise weighting (set to 0.1) and gauss(.) is a 
Gaussian random process with zero mean and unit 
standard deviation.  
HD – AHV Connections 
The HD cells are also directly connected to the left and 
right turn asymmetric AHV cells with excitatory 
connections. There are n left turn and n right turn AHV 
cells. The AHV cells also connect back to the HD cells 
with inhibitory connections that are “offset” (see Figure 
3); the offset is to the “left” for all left-turn AHV cells and 
to the “right” for all right-turn AHV cells. These offset 
inhibitory connections are what shift the firing location in 
the HD cells to represent changes in the robot’s 
orientation. The symmetric AHV cells project to all HD 
cells, and while they don’t contribute to the activity of the 
HD cells, they provide information used by the calibration 
algorithm to tune the HD connections. 

 
Figure 3 – The head direction network contains three 
classes of cells and a range of excitatory and inhibitory 
connections. HD cells excite their close neighbours 
strongly and more distant neighbours less strongly. HD 
cells also excite the asymmetric AHV cells using a 
similar neighbourhood relation. The left turn AHV cells 
project back to the HD cells with an offset in one 
direction (“leftwards or counter clockwise”) and the 
right turn AHV cells projected back to the HD cells with 
offset in the other direction (“rightwards or clockwise”). 
The symmetric AHV cells project to all HD cells and 
provide information used by the calibration algorithm to 
tune the HD connections.  

2.2 Neuron and Synapse Model Parameters 
In this section we provide the key system parameters 
required to replicate this work. To keep descriptions 
concise, we provide references where appropriate for 
further reading. Neurons were modelled as leaky 
integrate-and-fire (LIF) cells [Stein, 1967] (for parameters 
see Table 1). Synaptic currents were modelled as fast rise, 
slow decay currents [Wang, 1999] (see Table 2). 

Table 1: Leaky integrate-and-fire cell parameters 
Symbol Description Value 

Vrest Resting potential -70 mV 
Vthresh Spike threshold -52 mV 
Vreset Spike reset potential -59 mV 
Gleak Leak conductance 0.02 µS 
Cexcit Capacitance of HD cells 0.5 nF 
Cinhib Capacitance of AHV cells 0.25 nF 

Table 2: Synapse parameters  
Symbol Description Value 

Gexcit Max. excitatory conductance 0.002 µS 
Ginhib Max. inhibitory conductance 0.002 µS 

Vexcit 
Excitatory current reversal 

potential 0 mV 

Vinhib 
Inhibitory current reversal 

potential -90 mV 

Psyn 
Synaptic channel opening 

probability 0.2 

synτ  Synaptic current time constant 100 ms 

3 Autonomous Network Calibration 

In this section we present the components of the 
adaptation algorithm that address the first and second 
tuning requirements, namely: 

• Keeping the activity bump still when the rotational 
velocity signal is zero; this is drift-removal 
calibration. 

• Moving the activity bump at the same speed in both 
directions given turns of the same speed; this is 
rotation calibration. 

The connections in the model that change under 
adaptation are the recurrent excitatory HD connections 
described in Section 2.1.  

3.1 Drift-Removal Calibration 
The drift calibration process is active only when the 
rotational speed signal is below a threshold ωt. The 
change in the strength of the recurrent connection W from 
HD cell i to HD cell j is given by: 

 ))((1, jjsiij rrmrW −=Δ α  (4) 

where α1 is the learning rate, ri is the current firing rate of 
cell i and ms(rj) is the short-term average firing rate of cell 
j, calculated as an exponential moving average with a 
time constant of 50 ms. Normalisation is applied across 
all connection weights W to ensure weights remain 
bounded. Figure 4 illustrates the relationship between the 
current and short-term average cell firing rates and the 
consequent weight changes. 
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Figure 4 – Learning to keep the activity bump encoding 
the robot’s orientation stationary when the velocity 
signal is zero. This graph shows the current bump across 
the HD cell population (black line) and the short term 
exponential moving average (grey line) which lags 
slightly behind. The bump is drifting to the right. 
Connections from the current bump to the region 
denoted with plus symbols are strengthened (thick 
curved arrow) which tends to pull the bump in the 
direction opposite to the direction of drift. Conversely, 
connections from the current bump to the region denoted 
with minus symbols are weakened (thin arrow) which 
tends to stop pulling the bump in the direction of drift.  

3.2 Rotation Calibration 
When the rotational speed signal is above threshold ωt, 
the change in the strength of the recurrent connection W 
from HD cell i to HD cell j is given by: 

 jiisjij crrmrW ))((2, −=Δ α  (5) 

where r and ms(.) are as defined in Equation 4, α2 is the 
learning rate, and cj is a calibration term: which is zero if 
the rate of change of firing rate of neuron j, given the 
current velocity signal, is correct, positive if the rate of 
change of firing rate is too low (i.e. the bump is moving 
too slowly), and negative if the rate of change of firing 
rate is too large (i.e. the bump is moving too quickly). It is 
calculated as: 

 
sym

jsj
j AHV

rmrabs
Kc

))(( −
−=  (6) 

where K is a constant that controls the overall speed of the 
bump through the HD network for given AHV input, and 
AHVsym is the current input from the symmetric AHV 
cells. K was chosen to be 25 in these studies, which 
results in reasonable bump movement speed for given 
AHV input. The value of cj is positive if rotational 
tracking is lagging and negative if rotational tracking is 
leading.  

4 Experimental Procedure 

Rotational velocity data was generated using a Pioneer 
3DX robot in two different scenarios. The first “arena” 
scenario consisted of the robot being placed in a walled 
3 × 3 metre area rich in visual features. The movement 
scheme consisted of the robot randomly spinning on the 
spot or remaining still, with the breakdown given in 
Table 3. Each turn or stationary segment was performed 
for a random time duration between one and three seconds 
long, with an average duration of two seconds. 
Commanded turn velocities were fixed for any single turn 
segment and ranged randomly between 30 and 120 
degrees per second. 

Table 3: Arena Movement Types and Durations 

Movement Type Percentage 
Active (desired) 

Percentage 
Active 

(achieved) 
Stationary 50% 41.44% 
Clockwise 25% 29.57% 
Counter-
clockwise 25% 28.97% 

 
The second scenario involved extracting rotational 

velocity data from a robot performing exploration and 
delivery tasks over an entire office building floor, as 
described in [Milford et al., 2009]. The rotational data 
was extracted from a robot that was translating as well as 
turning and which did not have discrete turning / 
stationary modes as in the arena scenario. The velocities 
of the two datasets are compared with histograms in 
Figure 5. 

 
Figure 5 – Rotational velocity histograms for the 
encoder derived velocities in the (a) arena and (b) 
delivery robot scenarios. The arena velocity histogram 
has clear stationary periods, while the delivery robot 
scenario has velocities distributed over the entire range, 
with relatively few completely stationary periods. The 
peaks at -27 and +27 degrees in (b) are caused by the 
robot’s movement scheme. 

4.1 Velocity Extraction From Sensors 
Two rotational velocity signals were logged by the robot 
at a rate of 7 Hz. The first was extracted from the wheel 
encoders, while the second was taken by performing 
whole image offset matching on successive panoramic 
images taken by the robot’s camera and mirror setup. 
Images were compared using a sum of absolute 
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differences (SAD) matcher for all rotational offsets, with 
the SAD aΔ  for a particular pixel offset a given by: 

 ( )∑∑
= =

Δ−
+−=Δ

res resy

y

x

x

tt
yax

t
xya pp

1 1
 (7) 

where p is a pixel greyscale intensity value, a is the image 
offset in pixels, Δt is the time interval between the two 
images and (xres, yres) is the image resolution in pixels. 
The rotational velocity ω is given by: 

 
restx

a
Δ

= min2πω  (8) 

where amin is the offset for which Δa is minimized. 

 
Figure 6 – For the arena experiments, a Pioneer 3DX 
robot was placed in a 3 × 3 metre area with low walls in 
an environment that contained many visual features. 

4.2 Network Initialization 
In all tests of the network, the untrained HD connection 
weights were initialised with random noise and a 
systematic bias as could be expected in a biological 
system. The bias was implemented by offsetting the 
recurrent excitatory HD connections, such that each cell 
was not connected to itself but rather to one offset to the 
side. The angular velocity threshold ωt was set to 1 degree 
per second. The drift removal learning rate α1 was set to 
1.5e-11, and the turn calibration learning rate α2 was set to 
6e-14, and the network was trained for 2500 seconds of 
turning data. 

5 Results 

This section presents results from 3 different datasets; 
firstly from the robot arena experiment, using 1) wheel 
encoder outputs and 2) visual flow from the same 
experiment, then finally 3) encoder-derived rotation 
information from a more naturalistic robot delivery 
experiment. Two key figures are presented for each 
dataset that show the performance of the HD system 
during stationary and turning conditions. 

For the stationary condition, the first figure (refer to 
Figure 7a) shows the HD network’s representation of the 
robot’s orientation over a period of ten seconds when the 

rotational velocity signal is zero, for a range of initial 
orientation states. In a correctly functioning HD network, 
the orientation representation should not change, but due 
to the bias in the initial weights the activity packet drifts 
continuously. These figures are supplemented by the 
average absolute drift quantities over time (averaged over 
all starting orientations) provided in Table 4. The 
untrained network continues to drift over time, while the 
trained network stabilizes in seconds with negligible drift.  

Table 4: Pre- and post-training drift over one second. 

Data Set Average Absolute Drift (deg) 
2.5 s 5 s 7.5 s 10 s 

Pre-training 65 110 139 157 
Arena (encoders) 1.5 1.4 1.4 1.5 

Arena (visual flow) 1.5 1.6 1.5 1.5 
Delivery Data Set 1.7 1.7 1.8 1.8 

 
For the turning condition, the second figure (refer to 

Figure 7b) shows the rotational velocity as encoded by the 
HD system for turns of different speeds in both directions. 
To generate this figure, the network was fed a velocity 
signal indicating a turn in one direction, followed by a 
velocity signal indicating a turn of identical speed and 
duration in the opposite direction. The total turn angle, as 
tracked by the network, was noted for each turn velocity, 
and the process was then repeated for a range of turn 
velocities. The figure shows total tracked turn angle in the 
commanded turn direction, so a negative angle represents 
tracking a turn in a direction opposite to that commanded. 

The second set of figures was supplemented by a turn 
rate error quantitative metric. The baseline turning rate 
was calculated as the average of the two turn angles as 
represented in the HD network. The absolute difference 
between either angle and the average was then expressed 
as a percentage, and deemed the turn rate error: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−
=

2/)(
)2/)((100turnrate

21

211
err θθ

θθθabs  (9) 

where θ1 and θ2 are the measured turn angles. Therefore a 
turn rate error of 0% means that turns were tracked at 
equal speed in both directions, while an error of 33% 
means that the network tracked a turn in one direction as 
proceeding twice as quickly as in the other. Table 5 shows 
the turn rate errors for the network, for both pre-training 
and after each training data set. Training resulted in 
significant improvement in error for all data sets. 

Table 5: Pre- and post-training turn rate errors. 

Data Set Turn Rate Error 
(%) 

Pre-training 34.5 
Arena (encoders) 3.2 

Arena (visual flow) 2.6 
Delivery Data Set 4.5 

 
In the following sections, performance for each data set is 
examined in more detail. 
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5.1 Performance with Initial Weights 
All training runs started with the same initial HD 
connection weights, so these results apply for all datasets 
prior to training (see Figure 7). The network was unable 
to hold a stationary heading, and grossly overestimated 
the magnitude of clockwise turns while underestimating 
counter-clockwise turns. 

 
Figure 7 – (a) Before training, the network’s 
representation of an initial robot orientation drifts 
rapidly despite the rotational velocity signal being zero. 
The rate of drift is about 15 degrees per second. (b) 
Before training, the network is unable to consistently 
represent robot turns of various speeds in either 
direction. Counter-clockwise turn velocities are 
overestimated, while clockwise turn velocities are 
underestimated. 

5.2 Performance After Training 
After training with both the wheel encoder (see Figure 8) 
and visual flow odometry (Figure 9) the network stably 
represented head direction for both stationary and turning 
conditions. Figure 11a shows the trained network 
correctly tracking robot orientation over a period of thirty 
seconds. 

 
Figure 8 – (a) After training with the encoder velocity 
signal, the network’s representation of orientation does 
not drift when the velocity signal is zero. (b) Same 
duration turns in either direction result in approximately 
equal changes in the head direction network’s 
representation of the robot’s orientation. The mapping 
between turn speed and encoder turn speed is also 
approximately linear. 

 
Figure 9 – After training with the vision velocity signal, 
the network’s performance is very similar to training 
with the wheel encoders. (a) Representation of 
orientation does not drift when the velocity signal is 
zero. (b) Same duration turns in either direction result in 
approximately equal changes in the head direction 
network’s representation of the robot’s orientation. 

5.3 Delivery Robot Dataset 
The delivery robot dataset presented some additional 
challenges to the tuning of the HD system. Because the 
robot was constantly in motion, there were fewer periods 
when the robot was not turning. The effect on the HD 
tuning was that there was little time for the drift removal 
calibration (part 1 of the learning rule) to influence the 
HD connection weights, since this part of the learning rule 
requires an angular head velocity of less than 1 deg/sec 
(rotational threshold ωt) in order to function. In the arena 
dataset the robot was stationary over 40% of the time (in 
terms of rotational velocity), while in the delivery robot 
scenario the robot was only stationary 7.8% of the time. 

An additional challenge was the small maximum 
turning rate (angular head velocity) of less than 30 
degrees per second in either direction (compared with 
around 100 degrees per second in the arena dataset). This 
rate was similar to the drift velocity caused by the initial 
systematic bias in the HD connection weights. 
Consequently, many turns in one direction could be 
cancelled out or even reversed by the bias. Interestingly, 
although turn rates above 30 degrees per second were not 
experienced in training, the network was able to track turn 
rates of up to 120 degrees per second quite consistently in 
both directions (See Figure 10). Figure 11b shows the 
trained network tracking robot orientation over a period of 
thirty seconds, although due to non-linearities low 
velocity turns are not tracked very well. However, the 
performance is still far superior to the untrained network, 
which sometimes tracks turns in the opposite direction to 
reality (i.e. at B, where pre-training the network tracks an 
actual clockwise turn as being counter-clockwise). 
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Figure 10 – (a) After training with the delivery robot 
data set, the network’s representation of orientation does 
not drift when the velocity signal is zero. (b) Same 
duration turns in either direction result in approximately 
equal changes in the head direction network’s 
representation of the robot’s orientation. 

6 Discussion and Future Work 

There are several aspects of the work that warrant 
discussion. The first regards the faithfulness of the 
network model to the neural circuits it is based upon. The 
model presented in this paper represents a significant 
improvement in biological relevance compared to 
previous robot-based models of head direction cells such 
as that of Milford et al. [Milford et al., 2003]. Neurons are 
modelled using spiking neurons rather than rate-coded 
neurons, and most importantly, connectivity is not 
assumed to be perfectly pre-wired and static. Instead, an 
initially noisy, biased, drifting neural representation of 
head direction is calibrated using adaptive learning rules. 
The learning algorithms use biological plausible 
mechanisms such as total synaptic weight normalization 
[Royer et al., 2003] and mean firing rate normalization 
[Turrigiano et al., 2004]. 

Through the use of symmetric angular head velocity 
cells, the model differs from previous models [Song et al., 
2005, Skaggs et al., 1995, Redish et al., 1996, Goodridge 
et al., 2000, Xie et al., 2002]. Furthermore, unlike 
previous approaches which have used simulated or highly 
idealized training data, we have trained and tested the 
network using real-world robot data obtained from both 
wheel encoder information and visual flow. The 
calibration relies only on equal-speed turns in either 
direction generating either equal-magnitude wheel 
encoder or visual flow input to the HD network. It is 
interesting to note that calibration can occur somewhat 
independently of the robot movement behaviour, as 
demonstrated by the use of data from two different robot 
schemes. The calibration scheme also tunes the robot’s 
orientation tracking system to track velocities far larger 
than encountered during its training phase, as 
demonstrated using the delivery robot dataset. 

 
Figure 11 – Tracking performance over 30 seconds pre- 
(dotted line) and post (solid line) training, compared to 
the integral of the input velocity signal (dashed line) for 
the (a) arena dataset and (b) delivery robot dataset. Pre-
training the network exaggerates counter-clockwise 
(positive) turns, tracks counter-clockwise turns when the 
robot is actually still (see A), and underestimates 
clockwise turns. For the delivery robot dataset the 
trained network struggles to track low rotational speeds 
(see B) but fares much better than the untrained network, 
which represents rotation in the opposite (and wrong) 
direction. 

Exactly the same network (connectivity, learning 
rates, time constants, and initial conditions) was used for 
training with all three datasets, and despite the large 
differences in the magnitude and distribution of turn rates 
in the training data, the network converged well to a 
stable head direction representation in all cases. This 
flexible calibration suggests the potential for ‘out of the 
box’ operation on a variety of operating environments and 
robot hardware. 

The specific subset of the navigation problem 
addressed in this paper is also solvable using current 
engineering approaches such as Kalman Filter techniques. 
However, navigation systems such as RatSLAM have 
demonstrated that pursuing a bio-inspired solution to 
engineering problems can eventually produce systems that 
outperform the state of the art engineering systems. No 
current engineering system as a whole navigates as well 
as a rat; our aim in this work is to understand how it may 
be possible to form a superior navigation system through 
modelling and understanding mechanisms of rat 
navigation. 

One key improvement to the current HD system will 
be the addition of loop closure calibration. By introducing 
recognition of orientation loop closures – when the robot 
has rotated through 360 degrees and is facing the way it 
started, the system will have an additional means of 
calibration. Further extending the network to include 
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place cells and grid cells will enable calibration of 
translation tracking. The ultimate goal will be the 
development of a self-tuning, spiking neuron model of the 
current RatSLAM system. Combining the already capable 
robot mapping performance of RatSLAM with the 
improved neural models and self-tuning capability will 
provide a system that can be flexibly deployed on a range 
of platforms.  
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