
Electrical Engineering Congress
Sydney, Australia, 24-30 November 1994

Automated control of adragline using machine vision

Peter Corke David W. Hainsworth
CSIRO Division of Manufacturing Technology, CSIRO Division of Exploration and Mining
Locked Bag No 9, Preston Vic 3072, AustraIia PO Box 883, Kenmore QLD 4069, AustraIia

Graeme 1. WInstanley, Yunming Li, Hal Gurgenci
CSIRO Division of Manufacturing Technology
PO Box 883, Kenmore QLD 4069, Australia

SUMMARY The research described in this paper is directed toward increasing productivity of draglines through automation. In
particular. it focuses on the swing-t<Klump, dump, and return-to-<!ig phases of the dragline operational cycle by developing a swing
automation system. In typical operation the dragline boom can be in motion for up to 80% of the total cycle time. This provides
considerable scope for improving cycle time through automated or partially automated boom motion control. This paper describes
machine vision based sensor technology and control algorithms under development to solve the problem of continuous real time
bucket location and control. Incorporation of this capability into existing dragline control systems will then enable lIUe automation
of dragline swing and dump operations.

1 INTRODUCTION

"
The work described in this paper is aimed at developing a swing
automation system to improve the productivity ofthe swing-to
dump and dump-to-dig phases of a draglines operation.

Reduction of overburden removal costs has been identified as
the most important means of improving the economic perfor
mance of open cut coal mines. The dragline is the key com-
ponent in the overburden removal process, so improvement in ....
dragline productivity will realise an immediate reduction in
these costs with significant benefits to the industry. At a cost
ofSSOM to SICOM, buying a dragline is a major investment for
any coal mine.' The technology being developed in this project
is expected to increase dragline productivity by up to 4%, which
may mean a saving of S3M1year for a typical Australian coal
mine - translated to a potential saving of $280Mlyear for the
nation.

The overall configuration of a dragline and the w,ay the bucket
is rigged is shown in Figure I. During digging, hoisting and
dumping, bucket motion is controlled using only the drag rope
and hoist rope. The dump rope allows interaction between the
other two ropes and enables a loaded bucket to be tipped at
an appropriate time by a release of drag rope tension. The
entire dragline and boom assembly rotates in order to swing
the raised bucket from the digging to the dumping location.
The loading, hoisting, and dumping operations are explained in
detail in Knights and Shanks[I].

Figure I; Dragline configuration and bucket rigging.
2 DRAGLINE CONTROL

2.1 DragliDe Mathematical Model

The fist step in being able to control a dragline is the develop
ment of a mathematical model of the dynamics of a dragline.
Ridout[2] gives the full non..linf"'~r mMp.1 fnr:l c:imnlp. f"l,P.nnu_
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lum in the context of crane load control. The unconstrained
dragline is a variable-length spherical pendulum, the support
point of which moves along a circular arc. This is a coupled
and highly non-linear system with chaotic tendencies. The
moving constraint placed by the drag rope does make the sys
tem better behaved but adds extra complication to the system
representation. A mathematical model has been developed with
four independent variables:

• Swing angle n, the rotation of the dragline with respect
to some datum;

• Hoist rope length h;

• Hoist rope angle with respect to vertical 0;

• Horizontal projection ofthe hoist rope angle with respect
to the boom, tj;.

The drag rope length is treated in the model as a holonomic
constraint represented by a Lagrange multiplier.

This model is being used -to develop and test control algo
rithms which are to be implemented on a test dragline using
machine vision feedback. The non-linear differential equations
are solved using fourth-<lrder Runge-KUlla procedutes under
MATLAB or a custom numerical simulation.

2.2 Control strategies

Ridout[2] provides an excellent summary of anti-swing control
for loads suspended by cranes. Although the dragline has an
additional rope, the drag rope, for constant rope lengths the
dragline dynamics approximate those of a crane. Open-loop
control strategies have been proposed and are the basis ofseveral
commercially available anti-swing controllers. However open
loop control is critically dependent upon knowledge of the load
oscillation period which is a function ofrope length. Open-loop
control is also unable to compensate for external disturbances
such as wind. Systems based on closed-loop control are capable
of greater performance and disturbance rejection, but require
swing angle sensing.

An attempt to control a production dragline at Curragh col
liery in Central Queensland [3) was unsuccessful because the
empirical approach took no account of the system's changing
dynamics as the position of the bucket changed. This attempt
at dragline swing control clearly identified that the key to the
control was the determination of bucket position. There are a
number of technologies available for bucket position determi
nation but most have to be rejected because of the operational
environmentof the bucket. It is not feasible to have complex in
strumentation located on the bucket. For these reasons a passive
non-<:ontact vision system has been developed. The selection
of vision as the sensory input gives rise to a visual servo system
for the control of a dragline's swing cycle.

2.3 Laboratory demonstration

A laboratory demonstration has been used to demonstrate the
feasibility of closed-loop control usin2 machine vision sensin2
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of load position. A PUMA 560 robot with outstretched arm
represented the dragline and its boom, and a weight suspended
from the robot's gripper represented the dragline bucket. A
camera mounted on the gripper looked downward and was able
to determine the lateral displacement of the suspended weight.
The robot was controlled by a custom VMEbus computer sys
tem running the ARCL robot control software[4). The camera
image was digitised, thresholded and median filtered by Dat
acube MaxVideo10 image processing modules prior to binary
image feature extraction. The last function is performed by an
APA-SI2+ module[S), a locally developed and manufactured
device, which is capable of computing the zeroth to second
moments, perimeter and bounding box ofall connected regions
in the scene at video rates. The binary image features allow
computation of the weight's centroid at 50 Hz with minimum
latency. If the swinging weight is modeled as a simple pen
dulum it can be shown that proportional-derivative control will
stabilize the weight's position. In the demonstration, vision de
rived weight position and velocity were fed back with adjustable
gains. Suitable gain settings were determined by experiment
and allowed the suspended weight to traverse a set path with
very little overshoot. The experiment clearly established the
feasibility of the general approach.

3 MACHINE VISION SENSING OF BUCKET LOCA
TION

During digging, hoisting and dumping, bucket motion is con
trolled using two ropes, the drag rope and the hoist rope. Bucket
motion in the vertical, boom, plane can be determined by trian
gulation from measutementof rope lengths and tensions. How
ever this does involve some approximation since in practice the
drag rope is a catenary not a straight line. Instrumentation to
obtain rope length and tension data is already routinely installed
on production draglines.

In the plane orthogonal to the boom, the rope suspension sys
tem allows the bucket to swing freely, essentially as a simple
pendulum. This swing, or slew motion of the bucket is very
important, and is effectively used by the operator to optimise
boom motion. For closed-loop bucket position control, the
angle tj; must be known. Knowledge of hoist rope length, h,
allows this angle to be determined from the measuted lateral
displacement of the bucket which can be determined from a
single camera viewpoint. Thus full three dimensional measute
ment is not required, and this greatly simplifies the system to
be implemented.

3.1 Camera Positioning

An important consideration in the proposed system is the loca
tion of the camera. If a camera is mounted in a position where
its field-<lf-view covers the appropriate 2D projection of bucket
motion, bucket position can be derived from the suitably scaled
offset of the bucket image from the centre of the image. Our in
vestigations suggest that the most suitable camera position is at
the endofthe dragline boom looking vertically downwards. For
a full size machine, where the boom is 100m long, this location
mav DOse accessibility and maintenance problems. It may also



be necessary to explicitly account for structural compliance in
the boom which will increase the order of the dynamic model.

3.2 Image Segmentation

The most important part of the machine-vision based bucket
identification system is to reliably segment the moving bucket
from the background, given the constraints of 'real time' oper
ation. The segmentation must be robust enough to work under
lighting conditions varying from bright sunshine with strong
shadows to night operation with f100dlamp illumination. Other
effects such as dust clouds and rain must also be considered.

The bucket is fabricated from steel and does not have a par
ticularly high contrast with respect to the mine floor. During
the swing-to-dump cycle the bucket is filled with overburden
and is even harder to distinguish from the mine floor. Seg
mentation techniques based on differential motion cannot be
applied since both the dragline-mounted camera and the bucket
are moving at different rates relative to the background. In fact
it is this relative motion of the two objects, moving with respect
to background, that is the quantity to be measured.

In order to increase the contrast of the bucket with respect to
the mine floor, we have modified the scene in a manner that is
both robust and inexpensive. This allows segmentation to be
performed very quickly using simple thresholding techniques.
The spreader bar and arch areas of the bucket strucwre, which
have been observed not to suffer abrasion during filling, have
been painted a bright green colour in order to provide sharp
contrast with the predominantly grey mine floor background.
This green component can be extracted through colour filters or
electronically as the green component of a colour video image.
Both approaches are being investigated. An additional benefit
of this simple approach is that it increases bucket visibility for
the dragline operator, particularly in the presence of dust.

The segmentation process consists of the following steps:

• thresholding of raw image;

• morphological processing of thresholded image;

• bucket centroid determination.

The thresholding of the raw video image converts a grey scale
image to a binary image. Morphological processing then reo
moves unwanted background artifacts and noise in the bucket
arch and spreader bar regions. Currently a chain coding tech
nique is used to compute the centroid associated with the bucket
arch and spreader bar regions in the morphologically processed
binary image.

The required rate of image segmentation and centroid determi
nation can be estimated from the dynamics of the suspended
bucket The hoist rope length of a dragline during normal oper
ation varies from 10m to 90m. Assuming the bucket behaves
as a simple pendulum, this will result in a range of natural fre
quencies between 0.05 Hz and 0.2 Hz. Using the general rule
of thumb that the sampling rate in a digital control system be 10
times the closed loop bandwidth. this results in a reauired visual
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Figure 2: A raw frame from videoofbucketon ACIRL dragline.

sampling rate of2 Hz. The corresponding sample interval is 10
CCIR frame times. Recent work by Corke[6] has demonstrated
robot visual closed loop control at 50 Hz (CCIR frame rate)
which far exceeds the requirements for the dragline case.

The vision processing system outlined above computes bucket
centroid at 5 Hz, and is sufficient to satisfy the sampling rate
criterion. The extra speed and expense of the hardware feature
extractor, the APA-512+ used in the robot baseddemonstration,
does not appear to be warranted in this application.

4 EXPERIMENTAL RESULTS

4.1 A model drag\ine

Australian Coal Indusay Research Limited (ACIRL) at
Riverview in Brisbane has a Dragline Performance Centre with
an operational one-tenth scale dragline. This unit is being used
for testing the system components before the automated swing
control system is developed for a production dragline.

4.2 Segmentation results

CCIR standard video has been taken of bucket motion on the
ACIRL dragline with a camera looking down from the boom.
Figure 2 is a representative frame ofthe raw image. The regions
of high intensity correspond to those areas of the bucket that
have been painted green. Figure 3 shows a processed frame
in which the painted regions of the bucket arc and spreader
bar have been extracted. The approximate bucket centroid is
computed from the identified bucket arc and spreader bar. The
centroid is approximate because currently, nO account is made
of bucket orientation. The image processing is performed On a
Datacube MaxVideo200 image processing computer.

The segmentation process operates on a region of interest in the
di2itised ima2e frame in order to minimise computation time.



Figure 3: A processed frame of bucket image showing bucket
arch and spreader bar.

The position of the region of interest is detennined from the
known lengths of the dragline's hoist and drag ropes.

4.3 Future work

Currently the existing laboratory system is being transferred
to the ACIRL model dragline. The ACIRL dragline control
system consists of two parts:

I. a personal computer based dragline control computer;

2. a Sun workstation hosted Datacube image processing
computer.

Given the relatively low sample rate, the inter-computer com
munication will be via a serial communications link.

Rope length and slew transducers have been fined and tests
commenced on the open loop control of the dragline. The next
stage, to commence shortly, is for integration of the machine
vision bucket position sensor into a closed loop control system.

5 CONCLUSIONS

This paper has outlined the problem of sensing and control
ling the position of a dragline bucket. It has been shown that
machine-vision based control of a pendulum, simulating the
motion of a dragline bucket, is possible in the laboratory. In
addition, promising results have been obtained in experiments
in the segmentation of the bucket on the one-tenth scale ACIRL
dragline. Future work will involve the incorporation of the vi
sion based position sensor into a visual servo closed loop system
to control the bucket motion.
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