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INTRODUCTION 

Mesenchymal progenitor cells are the principal cells contributing to bone formation by virtue of their 

ability to differentiate into osteoblasts 1. The multi-step transformation of progenitor cells into bone-

forming cells involves the complex interaction of a variety of growth factors and cell signalling 

molecules. The majority of extracellular signals that guide cells through these types of phenotypic 

progressions bind to the particular class of carbohydrates that is prominent in the extracellular matrix 

of growing and repairing tissues. Heparan sulfate (HS) and heparin are members of the 

glycosaminoglycan (GAG) family of polysaccharides, and the importance of HS to bone is best 

explained by its ability to bind and bioactivate most of the growth and adhesive factors involved in 

regulating bone cell metabolism and osteoblast lineage progression 2, 3. Although constituted by the 

same disaccharide building blocks (though in different proportions), compared to heparin, HS is less 

sulfated, more heterogeneous and present on the surface of most cell types and in the extracellular 

matrix (ECM), while the hyper-sulfated anti-coagulant, heparin, is usually sequestered in mast cells 4.  

The ECM-resident HS acts to concentrate growth factors close to cell surfaces, protecting them from 

extracellular proteases, and facilitating binding to their specific receptors in an active form 3. Heparin, 

both commercially and readily available, is often used to approximate HS action (albeit with reduced 

specificity), and has been shown clinically to interfere with the ligand-binding activities of HS by 

competitively inhibiting the susceptible factors needed by osteoblasts 5, 6, leading to an osteoporotic-

like reduction in bone formation 7-9. Various molecular mechanisms have been proposed for these 

observations, including the enhancement of interleukin-11 signalling through an up-regulation of the 

MAPK pathway 10.  However, a recent two-dimensional (2D) cell culture study has shown that 

although high concentrations of heparin can lead to a reduction in cell numbers with inhibited matrix 

deposition and mineralization, almost certainly by non-specific competition with endogenous HS, low 

concentrations of heparin (5 - 500 ng/ml) actually promote ECM deposition and mineralization in 

osteoblast-like Saos-2 cells 11. Thus heparin may exert biphasic effects, and it appears that low doses 
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might actually be beneficial for bone formation by potentiating local growth factors. However, the 

aforementioned study has two disadvantages; namely it was performed with an osteosarcoma cell line, 

and on it was on a 2D surface. Biomedicine has become increasingly aware of the limitations of 

conventional 2D cell culture. This has greatly intensified the pace by which 3D cell culture systems 

have been developed; it is an environment that might be considered to occupy the space between a 

Petri dish and a mouse. Although traditional culture dishes have had an enormous impact on modern 

biology, the Petri dish and its ancillaries including multiwell plates and glass cover slips, are less than 

ideal to study cells and tissues. The Petri dish surface is rigid and inert without coating, as opposed to 

the in vivo “soft” environment where cells interact intimately with the ECM and with each other in 

three-dimensions. Intracellular transport phenomena between 2D and 3D are drastically different. In 

2D culture systems, cytokines, chemokines, and growth factors quickly diffuse in the media across the 

culture dish, whereas the in vivo environment benefits from chemical and biological gradient diffusion 

systems, which play a vital role in signal transduction, cell–cell communications and development. 

 

The use of mesenchymal progenitor cells (MPCs) for preclinical in vivo studies, wherein they are 

implanted into critical-sized bone defects, is the subject of much interest 12, particularly when they 

employ large-animal, load-bearing immunocompetent models 13. The characterisation of MPCs within 

this context is of great importance, especially considering the potential availability of large numbers of 

immune-privileged, harvestable cells and the similarity in the mechanical features of the bone biology 

in comparison to humans. Although studies have been published on the characterisation of porcine 

bone marrow mesenchymal stem/stromal cells (MPCs) 14, the specific biochemical cues influencing 

their osteogenic differentiation in 3D culture systems and on specific substrates have been explored to 

a much lesser extent 15.  

 

The aims of the present study were two-fold. First, we sought to explore the ability of porcine MPCs 

to differentiate into either the osteogenic or adipogenic lineages within a 2D tissue culture plate 
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system. Secondly, we sought to determine the effect of heparin on porcine MPCs seeded onto poly (e-

caprolactone)-tricalcium phosphate-collagen type I (PCL-TCP-Col) 3D scaffolds.  

The study thus aimed to evaluate the potential use of 3D PCL-TCP-Col scaffolds for future in-vivo 

applications. It also aimed to investigate whether the inclusion of heparin as a substrate would improve 

this system, particularly pertaining to bone tissue engineering by investigating it’s effect on the bone-

forming potential of porcine MPCs. 
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MATERIALS AND METHODS 

 

Progenitor cell extraction, culture conditions and cell seeding 

Bone marrow precursor cells (MPCs) were isolated from 10 - 15 ml of marrow aspirated from 16-

week old Duroc/ Yorkshire Cross pigs using strict aseptic techniques. Progenitor cells were isolated by 

plating the freshly aspirated bone marrow onto polystyrene T-150 culture flasks (approx 5ml of 

aspirate per flask). (Nalgen-Nunc, Denmark) in 30 ml control medium consisting of Dulbecco`s 

Modified Eagle Medium (DMEM:low glucose), 10% fetal bovine serum and 1% penicillin-

streptomycin and incubated at 37oC in a humidified atmosphere containing 5% CO2 (Binder, 

Tuttlingen Germany).  Non-adherent cells were removed at day 4 and the culture media changed every 

3 - 4 days and this was continued until the cells attained 70% confluence. BMSCMPCs were then 

utilised either in 2D studies (for osteogenic and adipogenic assays), or seeded onto 3D PCL-TCP-Col 

scaffolds (with and without the addition of heparin) and observed for their bone tissue engineering 

capabilities.  

 

Two dimensional studies : adipogenic and osteogenic induction:  

For adipogenic induction, cells in their 3rd passage were plated in control media at a density of 5000 

cells/cm2 and on the 2nd day of culture treated with adipo-induction media [(control medium 

containing 1 mM dexamethasone (1 mM stock in 100% ethanol), 0.2 mM indomethacin (100 mM 

stock in 100% ethanol), 0.01 mg/ml insulin, 0.5 mM 3-isobutyl-1-methylxanthine (500 mM stock in 

DMSO)]. The adipo-induction media was replaced every 3 - 4 days and was continued for 6 weeks. 

The adipogenic differentiation was visually monitored by phase-contrast microscopy and the 

formation of lipid-filled vacuoles confirmed by Oil-Red-O staining. For staining, cells were fixed with 

4% (w/v) formaldehyde/1% (w/v) calcium, washed with 70% ethanol and incubated with 2% (w/v) 

Oil-Red-O (Sigma Aldrich; St Louis, USA) for 5 min at room temperature. Excess stain was then 

removed by further washing with 70 % ethanol then diH20). Counterstaining was performed with 
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Meyer’s hematoxylin (H&E; Sigma Aldrich; St Louis, USA). For quantitation, 10 randomly chosen, 

non-overlapping, low power micrographs of each sample were taken; the positive cells were counted 

and compared with the total cell number. 

For osteogenic induction, cells in their 3rd passage were plated in control medium at a density of 3000 

cells/cm2 and on the 2nd day of culture treated with osteo-induction media [(control medium containing 

0.1 mM ascorbic acid 2-phosphate, 10 mM β-glycerophosphate, 100 nM dexamethasone (1 mM stock 

in 100% ethanol)]. The medium was then replaced every 3-4 days and was continued for 4 weeks. 

Osteogenic differentiation was then determined using Alizarin Red staining to assess calcium deposits. 

Briefly, samples were rinsed twice in PBS, fixed with 10% formalin for 10 min at room temperature, 

and rinsed with diH20. Alizarin Red (pH 5.5, adjusted by ammonium hydroxide) (Sigma Aldrich; St 

Louis, USA) solution was added for 30 min sec, and then the wells drain and washed with diH20 until 

clean.  

The morphology of the cells under the different conditions was also observed by light microscopy 

(Leica DM IRB, Germany) following H&E staining. 

 

Three dimensional studies: Collagen lyophilisation and heparin adsorption on PCL-TCP scaffolds 

Scaffolds made from medical grade 80% PCL-20% TCP (Osteopore International, Singapore) were 

fabricated by fused deposition modeling 16 and were punched from a stock sheet yielding scaffolds 1 

mm thick and 5 mm in diameter with a 0 - 90o lay down pattern and porosity of 70%.  Scaffolds were 

next treated with 5 M NaOH for 3 h at 37oC followed by washing with PBS and drying overnight in 

order to make the surface more hydrophilic and to facilitate better cell attachment 17. Rat tail Collagen 

type I (5 mg/ml in 0.5 M acetic acid, Sigma) was neutralised by 71.2 mg/ml sodium bicarbonate 

(volume ratio of collagen:sodium bicarbonate was 100:9). The mixture (70 µl) was added onto the 

NaOH-treated scaffolds that were then placed into 96-well plates.  The scaffolds were left at room 

temperature for 30 min and then frozen at -80oC for 3 days, followed by lyophilisation using a freeze 

dryer for 24 h. Scaffolds were then stored in a dry cabinet. 
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In order to investigate the effects of heparin on osteogenic differentiation in a 3D environment, the 

scaffolds were divided into two groups. The control group was lyophilised with collagen alone, and 

the second group was lyophilised with collagen and then coated with heparin.  For heparin adsorption, 

PCL-TCP-Col scaffolds were placed in the wells of a 96-well plate and sterilized under UV (1h). 

Heparin (10 µl of 0.1 mg/ml; sodium salt from porcine intestinal mucosa (Sigma) diluted in sterile 

PBS) was then added onto the scaffold and left at 4oC overnight. Cells were then seeded onto each 

scaffold suspended within specially cut micropipette tips so as to prevent contact with the bottom of 

the culture wells, and placed into 24-well culture plates (Fig. 1). For osteogenic induction, cells were 

seeded at a density of 3000 cells/cm2 (10 µl cell suspension containing approximately 0.1 X 106 cells), 

and incubated at 37°C for 1.5 h to facilitate cell attachment, followed by treatment with osteo-

induction medium. 

 

 

 

 

Figure 1. Scaffold suspended in media within the modified pipette tip (A). Placed inside the 24-well 

culture plate (B).  

 

Heparin-alexa conjugate 

To enable visualisation of the distribution of heparin within the scaffolds, a heparin-AlexaFluor 

hydrazide conjugate was prepared based on the method modified from Osmond et al. 18  Briefly,  50 µl 

of the EDC solution (10% w/v solution of EDC up in an 0.1 M MES buffer, pH 4.5) (Sigma) was 

added to 300 µl of heparin solution (3 mg of heparin in 300 µl of MES buffer at pH 4.5) and vortexed. 

AlexaFlour488 (0.5 mg) (Molecular Probes) was added to the heparin/EDC mixture and incubated 

overnight at room temperature. The solution was passed through an Amersham PD10 column 

following the manufacturer’s instructions using water as the elution buffer. The Heparin-Alexa 
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solution was concentrated by freeze-drying and stored at 4oC protected from light. The conjugated 

heparin was added to each scaffold in the manner described above.  

 

Confocal laser scanning microscopy 

Confocal laser scanning microscopy was used to determine the extent of adsorption of heparin onto the 

scaffolds lyophilised with collagen, and also to assess the viability of cells within the cell-scaffold 

constructs. For assessment of cell viability, the cell-scaffold constructs were rinsed twice with sterile 

PBS, incubated with 2 µg/ml fluorescein diacetate (FDA) (molecular probes) in PBS for 15 min at 37 

C, then rinsed again twice with PBS. Propidium iodide (PI) (20 µg/ml) (molecular probes) in PBS 

was added for 2 min at room temperature followed by washing with PBS. All steps were performed in 

the dark and samples were then viewed under a Zeiss (LSM510 META) confocal laser microscope. 

 

Cell metabolism: Alamar blue assay  

Cellular metabolism was assessed by the alamar blue assay, wherein dye reduction was considered 

proportional to the metabolic activity of the cells. Assay media (2 ml of 10% (v/v) alamar blue 

(Probes, OR, USA)) was used.  After 3 h incubation, 100 μl of assay media was transferred to a 96-

well plate and absorbance at 570 nm and 600 nm was determined on a microplate reader (Magellan) 

and the percentage reduction of the dye calculated.  

 

Cell proliferation: PicoGreen assay 

PicoGreen dsDNA quantitation kits (Molecular Probes Inc., USA) were used to measure cell 

proliferation by quantitating the amount of double-stranded DNA (dsDNA) in solution.  Samples were 

washed twice with PBS and stored at -80oC until use. Samples were later thawed and the enzymatic 

cocktail (0.1% w/v collagenase + 0.1% v/v trypsin) was added into the culture wells and incubated for 

1 h at 37oC; the samples were mixed by a micropipette every 15 min to ensure complete cell 

detachment and lysis.  Each sample was aliquotted into 3 x 1 mL microcentrifuge tubes and a 1:20 
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dilution in TE buffer was performed.  Samples from each tube were then aliquoted into a 96-well plate 

in triplicates (3 X 100 µl) and incubated with 100 µl of picoGreen working solution, 1:200, for 5 min 

at room temperature, protected from light. Fluorescence of the whole sample mixture was measured at 

excitation and emission wavelengths of 480 and 520 nm, respectively on a microplate reader (Fluostar).  

 

For 3D cell-scaffold constructs, the specimens were washed twice with PBS and placed into cryogenic 

vials, which were immersed into liquid nitrogen for 30 s.  The samples were then stored at -80oC until 

later thawed and cut into small pieces.  Autoclaved deionised H2O (200 µl) was added into each vial 

and the cells lysed using 3 cycles of snap-freezing in liquid nitrogen, with agitation between each step 

to ensure all cells were lysed, followed by thawing to room temperature. Each sample was aliquotted 

into 3 x 1mL microcentrifuge tubes in a 1:10 dilution in TE buffer. Samples from each tube were then 

aliquotted into a 96-well plate in triplicates (3 X 100 µl) and incubated with 100 µl of picoGreen 

working solution, 1:200, for 5 min at room temperature, protected from light and fluorescence 

determined as described above.  

 

Alkaline phosphatase activity 

Triplicates of the supernatant from both the heparin-coated and non-coated groups were collected on 

days 1, 7, 14, 21 and 28 after osteogenic induction, and stored at -20oC. Cells were lysed in RIPA 

buffer and the ALP activity determined. Briefly, samples (50 µl) were incubated with 150 μl of assay 

solution including alkaline buffer, pNPP buffer and substrate pNPP at 37 ºC for 20 min. Calf intestinal 

phosphatase was used as positive control.  Sodium hydroxide (200 µl, 0.1 M) was added to stop the 

reaction and the absorption at 405 nm was measured (triplicates of 100 µl from each tube) using a 

Victor3 1420 multilabel counter (PerkinElmer Life Sciences, Wellesley, MA, USA).  

 

Histology 
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Alizarin Red Staining - Mineralization of the extracellular matrix was determined by Alizarin Red 

staining. Cells were plated in triplicate in osteogenic medium with medium change every 3 days. At end-

point, cells were washed with PBS twice and fixed with 100% ethanol at room temperature for 20 min 

followed by several washes with diH2O. Cultures were then stained with 0.1% alizarin red S (pH 5.5, 

adjusted by ammonium hydroxide) at room temperature for 30 min followed by several washes with 

diH2O. Thereafter, cultures were air dried and documented on an Epson Perfection 1670 photo scanner 

(Seiko Epson, Nagano, Japan).  

Alizarin Red Staining - Mineralization of the extracellular matrix was determined by Alizarin Red 

staining. Cells were plated in triplicate in osteogenic medium with medium change every 3 days. At end-

point, cells were washed with PBS twice and fixed with 10% formalin for 10 min at room temperature 

followed by several washes with diH2O. Cultures were then stained with Alizarin red at room 

temperature for 30 min followed by several washes with diH2O. Thereafter, cultures were air dried and 

documented on an Epson Perfection 1670 photo scanner (Seiko Epson, Nagano, Japan).  

 

 

 

Scanning electron microscopy 

Cell and scaffold morphologies were studied under the scanning electron microscope (SEM). Scaffold 

surfaces were gold-sputtered and observed using 15kV accelerating voltage (Phillips XL30 FEG). 

 

Statistical analyses 

All the experiments were conducted in triplicate for three separate repeats. Significant differences (P< 

0.05) were established using Student’s t test. 
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RESULTS 

 

Differentiation into the adipogenic and osteogenic lineage (2D culture) 

Osteogenic induction 

Osteogenic differentiation was monitored by light microscopy, histomorphology, immunohistology, 

and scanning electron microscopy (SEM). Following induction, H&E staining revealed the change in 

morphology of MPCs undergoing osteogenesis in 2D cultures (Fig. 2A-C), compared with the control 

groups (Fig. 2D-F) which maintained a more elongated morphology and appeared to have proliferated 

to a higher extent than their induced counterparts. and aAlizarin red staining revealed increasing 

amounts of orange-red stained calcium deposits over the culture period (Fig. 2G-I) with no evidence of 

calcium deposition over the time course for the non-induced cells 9Fig. J-L). Such osteogenic 

differentiation was also evident by scanning electron microscopy by day 28 after induction (data not 

shown). Osteogenesis was further confirmed by the expression of type I collagen, demonstrated by 

immunohistochemistry on samples collected after 28 days (Fig. 3B). Both the cellular metabolism and 

proliferation (Fig. 4) of the osteo-induced cultures reached a peak between days 17 and 19, before 

declining. This was in contrast to the metabolic and proliferation profile of the non-induced samples, 

which showed an upward trend throughout the assay period (Fig. 4). 
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Figure 2. H&E (A-F) and Alizarin red (G-L) staining of osteo-induced (A-C, G-I) and non-induced 
cells (D-F, J-L) on days 1, 14 and 28 respectively (100X).  
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Figure 3. Type I collagen immunostaining performed on osteo-induced (A&B) and non-induced cells 
(C&D) on day 28. 
 
 

 
 
          
Figure 4. Graphs showing dsDNA quantitation (A) and metabolic activity (B) of porcine MPC 
undergoing osteogenic induction over a period of 28 days. 
 
 
 
Adipogenic induction 

Following adipogenic induction, H&E staining revealed changes from a fibroblastic, to a flat and oval 

cell morphology (data not shown). Cells at day 42 of induction revealed characteristic lipid droplets 

that filled the cytoplasm of the cells (Fig. 5A-B). Oil-Red-O staining was also performed to confirm 

their presence, and results show that lipid droplets started appearing 28 days after the cultures were 
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induced (Fig. 5C).  By day 42 of induction, a greater proportion of the BMSCMPCs contained lipid 

droplets, and there were also a greater number of lipid droplets within each cell (Fig 5D). Thus porcine 

BMSCMPCs were able to differentiate along the adipogenic lineage when cultured with adipogenic 

induction media. 

 

 
 
Figure 5. Photomicrographs showing adipo-induced cells on day 42. Lipid vacuoles within the cells (A, 
B). Oil Red O staining of adipo-induced cells on days 28 (C) and 42 (D). 
 

Figure 6BA depicts the metabolic activity of adipo-induced and control cultures, an induction which 

rose to a peak between days 25 - 28 before declining, whereas the cell numbers of the adipo-induced 

cells were markedly lower than that of the non-induced cells over the culture period (Fig 6AB). By 

day 42, cell numbers in the non-induced samples had reached a plateau whereas those in the adipo-

induced samples were still increasing. This is in contrast to the osteo-induced samples (Fig. 4) where 

cell numbers in induced and non-induced cultures did not differ significantly over the assay period. 
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Figure 6. Graphs showing dsDNA quantitation (A) and metabolic activity (B) of porcine MPC 
undergoing adipo-induction over a period of 42 days. 
 

Collagen Lyophilisation of PCL-TCP scaffolds and Heparin Adsorption: 

In order to improve cell-seeding efficiency, and to act as a carrier for our biomolecule: heparin, PCL-

TCP scaffolds were functionalised with lyophilised collagen type I. To determine the extent of 

collagen coating, scaffolds were viewed using scanning electron microscopy as depicted in Figure 

7A&B. Alexaflour488 dye-labeled heparin that had been adsorbed to PCL-TCP scaffold before and 

after NaOH treatment is shown in Figure 7C&D, and viewed with fluorescence microscopy. NaOH-

treated scaffolds which were then lyophilized with collagen yielded excellent surface modification of 

the PCL-TCP scaffolds following alkali treatment, and a highly favorable architectural organization of 

the collagen which was conducive to cell attachment and proliferation, as evidenced by the extensive 

and organized fluorescence along the collagen-coated scaffold struts (Fig. 7E). 
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Figure. 7 Scanning electron microscopy images of lyophilised collagen (without cells) on the scaffolds 
(50X) (A) and 500X (B). Alexaflour488 dye labeled heparin which was adsorbed to PCL-TCP scaffold 
before (C) and after (D) NaOH treatment. NaOH-treated scaffolds after lyophilisation with collagen (E). 
 

Osteogenic induction in heparin-adsorbed PCL-TCP-Col scaffolds (3D culture): 

To ensure that the Porcine MPCs were adhered to the PCL-TCP-Col scaffolds either with or without 

exogenous heparin, samples were observed under light microscopy. The opaqueness of the scaffolds 

impeded the visibility of the struts, and thus the cells were visible mainly within the pores of the 

scaffolds. Fourteen to 28 days after induction, the cells that attached to the scaffolds started to 

proliferate and spread out on the surface of the struts, forming an interconnecting network of cells, 

remaining spindle-shaped. Migration of the cells towards the sides of the scaffold pores resulted in 

bridge formation, with cells on the opposite struts of the pores forming cell sheets. The cells within the 

cell sheets started to produce their own ECM components, appearing as cloudy areas under the light 

microscope (data not shown). 

 

Similar to the situation observed under 2D culture conditions (Fig. 6A), the metabolic activity of the 

porcine BMSCMPCs on both the PCL-TCP-Col and PCL-TCP-Col-heparin scaffolds increased from 

day 1 to day 14, before decreasing slightly on day 28 (Fig. 8A). Similar metabolic activity was 
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observed for both scaffold groups on days 1 and 14 after induction.  By day 28 however, the metabolic 

activity of the cells on the PCL-TCP-Col scaffolds remained relatively unchanged from day 14, while 

that of the PCL-TCP-Col-heparin scaffolds showed a marked decrease. DNA quantitation revealed a 

significant increase from days 1 to 14, indicating cell proliferation (Fig 8B). Alkaline phosphatase 

activity of both the PCL-TCP-Col and PCL-TCP-Col-heparin groups remained fairly constant from 

day 1 – day 7 after induction, before rising to reach a peak at day 14 (Fig 8C). A decreasing trend was 

then observed between day 14 and day 28. No significant difference was observed between the two 

groups at all time points except that of day 21, where the ALP expression of the PCL-TCP-Col-

heparin group was significantly lower than that of the PCL-TCP-Col group (p<0.05). 

 

 
 
Figure 8. Metabolic activity of porcine MPCs following osteo-induction (A) dsDNA quantitation (B) 
and alkaline phosphatase expression (C) in collagen and collagen-heparin coated scaffolds, over a period 
of 28 days. 
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Reconstructed images of the 3D cell-scaffold constructs taken using confocal laser microscopy are 

depicted in Figure 9E-H. Viable cells are seen stained green by fluorescein diacetate (FDA), with cell 

attachment and spreading over the scaffold surface. The cells were observed in different planes, 

illustrating that there were cells on the surface of the struts as well as deeper within the scaffold pores. 

Good viability was observed, as shown by the larger proportion of green than red staining in both 

groups. Using SEM, the cells were seen to have colonized and formed layers over the scaffold surface, 

consequently leading to an inability to observe the initial meshwork of collagen on the surface of the 

scaffolds (Fig. 9A-D). Features such as cell sheets and cell bridges between the struts of the scaffold 

could be observed in both the PCL-TCP-Col and PCL-TCP-Col-heparin groups by day 14, later 

followed by cell bridging and formation of dense layers of cell sheets, supporting the idea that porcine 

BMSCMPCs show good affinity for both groups of PCL-TCP scaffolds. Alizarin red staining (Figure 

9I-L) demonstrated orange-red stains of calcium deposits within the small section of tissues after 28 

days of osteogenic induction.  
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Figure 9. Scanning electron microscopy images of porcine BMSCMPC in collagen (A&C) and 
collagen-heparin (B&D) coated scaffolds. Confocal Laser Microscopy photos of porcine BMSCMPC 
in collagen (E&G) and collagen-heparin (F&H) coated scaffolds. Alizarin red staining of 
osteogenically induced porcine BMSCMPC in collagen (I&K) and collagen-heparin (J&L) coated 
scaffolds. All images at day 28. 
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DISCUSSION 

Although the induced differentiation of human marrow-derived stromal cells, as well as other species, 

has been well documented, little research has been done on the characterisation and differentiation of 

porcine bone marrow cells. Confirming the report of Ringe et al 14, porcine MPCs treated here with 

dexamethasone, a synthetic glucocorticoid, demonstrated the ability to undergo lineage-specific 

differentiation. We sought to more fully determine the capacity of porcine MPCs to differentiate down 

the osteogenic lineage within well characterised 3D PCL-TCP-Col scaffolds The mesenchymal 

progenitor cells attached avidly to the surfaces of 3D PCL-TCP-Col scaffolds as revealed by light and 

scanning electron microscopy, and were able to proliferate to fill the spaces on, as well as within, the 

pores of the construct. We utilised collagen type I lyophilised matrix to provide an interconnected 

meshwork leading to a larger surface area, which acted to increase seeding efficiency. The collagen 

also functioned as a carrier matrix for the incorporation of heparin. Our aim to investigate whether 

heparin would act as a possible promoter of osteogenesis was not fulfilled at the doses chosen for this 

study. Despite the heparin exerting no significant effect however, we did successfully utilise this well 

characterised scaffold system and the potential exists for the incorporation and release of other 

biomolecules from this system. 

 

Our study demonstrated cell metabolism and proliferation to increase on the scaffolds between days 1 

and 14. The 3D culture conditions also resulted in the active synthesis and deposition of ECM, 

indicating that a cell-cell and cell-ECM interconnective network was formed. The effect of heparin on 

the proliferation in the 3D environment showed a similar trend for both the metabolic activity as well 

as the DNA concentration of the cells in both the PCL-TCP-Col and PCL-TCP-Col-heparin groups 

over 28 days. There was positive alizarin red staining for calcium deposition observed in both groups, 

similar to that observed in the osteogenically-induced group in the 2D study. Although it was expected 

that the TCP scaffolds would yield a positive alizarin red stain by virtue of their composition, close 
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observation revealed that the sheets attached to the scaffolds also stained positive, supporting the 

proposition that calcification had occurred in the cells.   

 

No noticeable difference however could be detected in the extent of osteogenesis of the two scaffold 

groups (heparin coated and non-coated) in this study.  Both groups stained positive with alizarin red, 

and ALP activity over a period of 28 days also showed similar trends, rising to reach a peak after day 

14 of induction, before declining. ALP is a non-specific, but well characterized early marker, and its 

increase is associated with osteoblastic differentiation. A recent study by Hausser et al. 11  reported 

that heparin has a biphasic effect on osteoblast-like cells – high concentrations of heparin ( 5 µg/ml) 

caused a reduction in cell numbers and inhibited matrix deposition and mineralization, while low 

concentrations (5 - 500 ng/ml) promoted proliferation, matrix deposition and mineralization. In 

contrast, heparin coated onto PCL-TCP-Col scaffolds did not show any significant effects on the 

proliferation and osteogenic activity of porcine BMSCMPCs. It may be that the level of induction by 

the osteogenic media pushed the cells towards osteogenic differentiation to an extent that made it 

impossible to detect any influence brought about by the adsorbed heparin. The osteoconductive TCP 

present in both groups of scaffolds, as well as lyophilized collagen on the scaffolds might have 

compounded this effect; a study by Mizuno et al. 19 found that type I collagen matrix gels could induce 

osteoblastic differentiation of bone marrow cells. With so many factors affecting osteogenic lineage 

progression, any additional effects of heparin on differentiation may not be detectable by the relatively 

insensitive histological staining and ALP assays 

 

The lack of effect of heparin throughout this study is not altogether surprising however. Depending on 

the context of presentation, heparin is a often a poor mimic of tissue-specific heparin sulfate (HS); this 

is seen clinically where its hypersulfated chains are just specific enough to interfere with a host of HS-

dependent metabolic functions, but seldom specific enough to drive appropriate growth factor or cell-

cell interactions 5, 6, 11.  In vitro studies have suggested that a vast repertoire of growth factors require 
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HSPGs as co-receptors to bind to their signaling receptors 20, 21. The fibroblast growth factors (FGFs), 

of which there are over 20 forms, are thought of as the quintessential HS-dependent growth factors, 

and in the human osteogenic syndromes of craniosynostosis and dwarfism, FGF receptor mutants 

show the results of defects in FGF receptor signaling 22-26.  The FGF mitogenic family binds to HS 

chains with moderate affinity 27. The interaction in turn catalyses the binding of the FGFs to their 

cognate, cell surface tyrosine kinase receptors, allowing signal transduction to take place. Early studies 

in this area mistakenly concluded that HSPGs play no direct role in FGF-receptor interactions but 

rather, like heparin in tissue culture, act to protect FGFs from denaturation by sequestering them in the 

ECM 28, 29. Simultaneous discoveries that employed techniques that interfered with cell 

glycosaminoglycan (GAG) expression 30, 31 revealed that, in fact, FGF bioactivity was HS-dependent.  

A similar schema as been shown for HS, and the other major bone stem cell-active factors, the family 

of BMPs, and their threonine-serine kinase BMP receptors 32. HS thus acts to concentrate these 

osteogenically-active growth factors close to cells, protect them from extracellular proteases, shepherd 

them to the cell surface, and facilitate binding to their specific receptors. Currently, it is posited that a 

vast array of other polypeptides, including heparin-binding epidermal growth factor (EGF)-like growth 

factor, hepatocyte growth factor, and the Wnts 33-35, to name just a few, are similarly dependent on 

particular HS species for their activities. The exact roles of HS for the recognition/coupling of ECM-

resident adhesive glycoproteins such as laminin, fibronectin, or thrombospondin, or for HS-dependent 

CAM/cadherin cell-cell binding remains unclear. 

 

However, one thing that has become clear is that relatively specific HS forms exist that bring specific 

ligands into register with their specific receptor isoforms 20, 36. Thus future experiments might 

concentrate on delivering not heparin, but tissue-relevant forms of HS that are known to control 

stem/progenitor cells by virtue of their effects on developmental signaling cascades. We have already 

shown that HS can be successfully microencapsulated and still retain its bioactivity 37. The challenge of 

successfully delivering them into active wound sites thus remains a major therapeutic goal. In the 
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context of bone tissue engineering, the delivery vehicle would need to comprise a scaffold, meeting the 

various, aforementioned criteria including appropriate porosity, strength, osteoinductivity, and 

biocompatability. In the present case of our PCL-TCP-Col scaffolds, these show great potential for 

fulfilling these criteria, especially when used in combination with different biomolecules and cell types, 

and this may be vital in the future to the successful regeneration of critical bone defects that would 

otherwise remain non-restored.  
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