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Abstract

The component modules in the standard BEAMnrc distribution may appear to be insufficient

to model micro-multileaf collimators that have tri-faceted leaf ends and complex leaf profiles. This

note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined

by a complex collimation device can be completed using BEAMnrc’s standard VARMLC compo-

nent module. That this simple collimator model can produce spatially and dosimetrically accurate

micro-collimated fields is illustrated using comparisons with ion chamber and film measurements of

the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms.

Dose calculations for on- and off-axis fields are shown to produce good agreement with experimen-

tal values, even upon close examination of the penumbrae. Simulation parameters are provided

which should allow other researchers to adapt and use this model to study clinical stereotactic

radiotherapy treatments.

∗Electronic address: t.kairn@qut.edu.au

1



I. INTRODUCTION

Micro-multileaf collimators (μMLCs) are used in stereotactic photon-beam radiotherapy

and radiosurgery. Although they are increasingly used in treatments of extra-cranial targets,

the predominant use of μMLCs is in the treatment of cancers and non-malignant lesions in

the brain. Because cranial treatment sites are usually very small, highly collimated fields

are required, to maximally spare all adjacent healthy tissue [1]. The BrainLAB m3 μMLC

(BrainLAB, Feldkirchen, Germany) fulfills this requirement by deploying leaves that project

to widths that can be as small as 0.3 cm, at the linear accelerator isocentre [2, 3], with

narrow penumbrae. The accurate prediction of dose delivered by such small fields is a

challenge suited to examination through Monte Carlo simulation [4–7], which can be carried

out using the BEAMnrc code [8, 9].

Given the importance of peripheral and penumbral features for these small fields, the

effects of leaf-end and leaf-edge geometries must be reproduced accurately in the Monte

Carlo model. The leaf edge shape of the BrainLAB m3 μMLC consists of three tongues and

three grooves along each leaf side, with all leaf edges focussed towards the photon source.

Each leaf end consists of three planar facets that are angled to match the divergence of the

beam at the extremes of the leaf’s motion (±2.86o from vertical) as well as on the central

axis (0o from vertical). The 26 pairs of leaves in the m3 μMLC’s leaf-banks vary in thickness

from 0.3 cm for the central 14 pairs of leaves, to 0.45 cm for the adjacent 6 pairs of leaves,

to 0.55 cm for the outer 6 pairs of leaves (when all distances are projected to the isocentre).

Several stereotactic radiotherapy collimation systems can be modelled precisely using

component modules in the standard BEAMnrc distribution. For example, the Elekta Syn-

ergy (Elekta Ltd, Crawley, UK) and MRC ModuLeaf (MRC Systems GmbH, Heidelberg,

Germany) miniature MLCs can both be modelled using BEAMnrc’s MLCE component

module [10–12]. Cylindrical micro-collimation systems can be modelled using various other

BEAMnrc component modules (including CONESTAK, CONS3R and FLATFILT) [13, 14].

However, the geometry of the BrainLAB m3 μMLC cannot be modelled exactly, in full de-

tail, using standard BEAMnrc component modules [5]. For instance, both VARMLC and

DYNVMLC allow the modelling of: complex details of leaf edges; leaf focussing towards the

photon source; leaves of different widths within the one MLC; and leaves with either flat

or curved leaf ends [15]. However, neither module permits the modelling of leaves with flat
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ends without varying the end shape with field size, or leaves with three tongues and three

grooves along each side [5, 6].

To approximate the complex geometry of the BrainLAB m3 μMLC, Belec et al [5] have

produced a modified component module for use with BEAMnrc which is based on VARMLC

and allows the modelling of flat, unvarying leaf ends. The layering of three of these com-

ponent modules allows the facets of the m3 μMLC’s leaf ends to be modeled accurately,

for all leaf positions. Additionally, Belec et al [5] have shown that careful selection of in-

put parameters allows these component modules to be used to model leaves that each have

three tongues and one groove on one side and three grooves and one tongue on the other.

This irregular shape has been shown to accurately reproduce the interleaf leakage from the

Brainlab m3 device [5]. Belec et al [5]’s modified VARMLC module is, however, not available

through the standard BEAMnrc distribution.

The component modules in the standard BEAMnrc distribution (such as VARMLC) do

not permit such precise modelling of the details of the μMLC’s geometry. However, this note

aims to establish that the standard VARMLC component module can be used to produce a

beam which conforms to the output of the clinical μMLC device.

The use of a standard BEAMnrc component module is advantageous because the BEAM-

nrc codes are freely and widely distributed, have been thoroughly established as being reli-

able and accurate, are fully documented and supported by the National Research Council

Canada, and are specifically designed to compile and run successfully on a wide range of plat-

forms and systems. This accessibility is a major advantage of using the standard BEAMnrc

codes.

II. MODEL

When using VARMLC to model the m3 μMLC, two major simplifications are involved.

Firstly, the tri-faceted shape of the μMLC leaf ends is simplified into a curve and, secondly,

the three tongues and three grooves along each μMLC leaf edge are modelled as a single

tongue and groove in each leaf.

Figure 1 illustrates the geometric effect of combining the three angled surfaces at the end

of each μMLC leaf into a single curve. The radius of this curve is determined using the
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FIG. 1: Comparison of μMLC leaf end shape illustrated as (a) shape of curved leaf end (light,

solid line) superimposed on shape of angled leaf end (heavy, solid line) and (b) difference (in

centimetres) between lateral positions of rounded and angled leaves, at each height along the leaf.

(To make these differences visible, the horizontal scale on each figure is exaggerated, compared to

the vertical.)

following geometric relationship:

RADIUS =
T 2leaf + 4(Tsectiontan(θ))

2

8Tsectiontan(θ)
, (1)

where Tleaf is the total (vertical) thickness of the μMLC leaf, Tsection is the thickness of

the angled section of the leaf (see Figure 1), and θ is the angulation of the angled section

(the beam divergence at maximum field size, θ = 2.86o). As Figure 1 shows, the maximum

spatial difference between a point on a tri-faceted leaf end and a point at the same height

(distance from the photon source) on the suggested curved leaf is 0.014 cm. However, the

effects of the small physical differences illustrated in Figure 1(b) are mitigated by the use of

leaf position offset corrections in the setting of both the simulated μMLC leaf positions and

the positions of the leaves in clinical treatments. In the BEAMnrc model, the position (P )

of a given μMLC leaf tip is defined by

P = L−

(

RADIUS −
RADIUS

H

√
L2 +H2

)

(2)

where RADIUS is the radius of curvature of the leaf (see Table I), L is the length of the light

field (measured from the central axis) defined by that leaf, H is the height (distance from
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the source) of the μMLC leaf-bank and all values are measured at the μMLC midplane. The

bracketed terms in Equation 2 define an offset that allows for the collimation of the beam by

regions (a) below the centre of the leaf, when the leaf is opened away from the central axis,

and (b) above the centre of the leaf, when the leaf is closed across the central axis. (When

applying Equation 2, positive values of L should be used in case (a), and negative values of

L in case (b).) The shape of the leaf ends in the clinical μMLC is similarly accounted for,

using a field size dependent offset, so that in both the simulation model and the experimental

system, the size of the light field produced by the μMLC matches the size of the planned

radiation field.

A complex leaf edge design is incorporated into the design of of the BrainLAB m3 μMLC

for mechanical, rather than dosimetric, reasons [2]. Whereas a single tongue and groove in

each leaf might be sufficient to minimise interleaf leakage (as in the Siemens 29-leaf and the

Varian 52-leaf MLCs [16]), it was necessary to incorporate three tongues and grooves into

the design of each side of the m3 μMLC in order to offset each leaf’s drive shaft and optimise

the position of the driving motors, in this very confined geometry [2].

FIG. 2: Basic geometry of VARMLC leaf edges, as used in the m3 μMLC model. (Not to scale.)

ZTONGUE and ZGROOV E are measured from the top of the component module.

Due to the limitation that the VARMLC component module allows for only one tongue

and groove per leaf [9], our model of the m3 μMLC was designed with that simplification

(see Figure 2). The position (ZTONGUE and ZGROOV E), width (WTONGUE and

WGROOV E) and height (HTONGUE and HGROOV E) of this tongue and groove were

optimised by comparing virtual film images obtained via simulation of a field produced with

open linear accelerator jaws and closed μMLC leaves, with a commensurate clinical image
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(obtained as described below), where all data were normalised to the central axis dose for a

10×10 cm2 field. The relevant simulation parameters were varied until the resulting virtual

image exhibited peaks (interleaf leakage) and troughs (leaf transmission) which matched the

experimental film in both their period and peak location. As shown in Figure 3, the matching

of the amplitudes of these dose oscillations was only approximate. The maximum difference

between dose peaks measured using film and modelled using Monte Carlo is almost 20 %

(labelled ‘A’ in Figure 3(a)) and the maximum difference between troughs measured with

film and modelled using Monte Carlo is greater than 6 % (labelled ‘B’ in Figure 3(a)). These

discrepancies were accepted because, as Figure 3(a) suggests, variations in measured dose

(arising from either variations in the film’s response to this low dose field [17] or variations

in the sizes of the gaps between each leaf and its neighbour) can be estimated at up to ±12

% of the dose delivered, so a close match between measurement and simulation would be

untenable. (This approximate matching produces a model capable of reliably simulating

the edges of single fields, as exemplified by data shown in Figure 3(b), but also capable of

under-representing the ‘tongue and groove effect’ [18], as shown in Figure 3(c), which should

be considered when combining multiple fields.) The accuracy of the model obtained by this

means can be confirmed through examination of the verification results discussed in the next

section.

Table I lists the optimised values of the parameters that were varied during this commis-

sioning process, as well as the various constants that define the VARMLC m3 μMLC model.

The data in Table I should not be read as an accurate description of the internal geometry

of the BrainLAB m3 μMLC. Rather, these are an example of a set of simulation parameters

that can be used to produce a model of the m3 μMLC which replicates the output of the

clinical device. These values may also be taken as a set of initial parameters and used in

the commissioning of VARMLC models of local m3 μMLC devices at other centres.

In this work, the Varian Clinac 21iX linear accelerator (Varian Medical Systems, Palo

Alto, USA), operating at 6 MV, was modelled in a separate BEAMnrc simulation, producing

a phase-space file 55 cm from the photon source. The resulting data were used as input for

a series of BEAMnrc simulations of the BrainLAB m3 μMLC. The Virtual Water (Standard

Imaging, Middleton, USA) and Gafchromic EBT2 dosimetry film (International Specialty

Products, Wayne, USA) used to obtain experimental images were modelled using the com-

position of Virtual Water reported by McEwen and Niven [19] embedded with a 0.2 mm
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FIG. 3: Comparison of dose profiles from film (heavy lines) and simulation (light lines), showing:

(a) profiles across the closed-leaf field (labels ‘A’ and ‘B’ indicate points of strongest disagreement);

(b) profiles across the alternating closed and open leaf field; and (c) profiles across the sum of a

field with even numbered leaves closed and a field with odd numbered leaves closed (tongue and

groove effect). Doses are normalised to the central axis dose for a 10×10 cm2 field. Vertical dotted

lines in (a) indicate jaw positions. The insets show (a) a 30 × 30 cm2 image of the field, and (b)

and (c) 12× 12 cm2 images of the fields, where white lines indicate the locations of the profiles.

thick layer of polyester. The lateral area of the voxels used in the simulations was 0.1× 0.1

cm2.

The film was scanned on an Epson Perfection V700 Photo flatbed scanner (Seiko Epson

Corp., Nagano, Japan), using a novel setup designed to minimise interference and improve

dose-calculation reliability [20]. Briefly, each scan of the of EBT2 film was made with the

film placed on a plastic frame containing a 17×17 cm2 aperture, so that the film could be

kept out of contact with the glass surface of the scanner. These scans were made before

and after irradiation and were used, along with calibration measurements and scans of the

plastic frame, to determine maps of net optical density, which were corrected for variations
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TABLE I: Modelling the m3 μMLC using VARMLC: Values of parameters that were held constant

and final values of parameters that were varied during model optimisation. Here, numberi denotes

the number of leaf pairs of type i, widthi denotes the width of each leaf of type i measured at the

top of the μMLC leaf-bank and all other parameter names are as defined by Rogers et al [9]

Constant parameters Variable parameters

ZMIN 4.0 WSCREW , HSCREW 0.0

ZTHICK 6.0 ZTONGUE, ZGROOV E 8.7

ZFOCUS -55.0 HTONGUE, HGROOV E 2.20

RADIUS 39.19 WTONGUE, WGROOV E 0.003

NGROUP 5 LEAFGAP 0.003

number1 3 width1 0.3230

number2 3 width2 0.2640

number3 14 width3 0.1755

number4 3 width4 0.2640

number5 3 width5 0.3230

in scanner output and film response, and which were converted to dose. In these analyses

only red-channel data were used; our procedure does not include the blue-channel correction

recommended by the manufacturer. Initial experience with EBT2 film indicates that there

is a noticeable variation in blue channel response between film batches and suggests that

the blue-channel correction adds little value and may introduce additional noise [20].

Further dose measurements were obtained experimentally by adaptively step-scanning

(with a minimum step size of 0.05 cm) using an A16 Exradin MicroChamber (Standard

Imaging, Middleton, USA) in a Scanditronix-Wellhofer Blue Water Phantom (IBA dosime-

try, Louvain-la-Neuve Belgium). The A16 microchamber has a collecting volume of 0.007

cm3, enclosed in a shell with an external diameter of 0.34 cm, and has been shown to pro-

duce accurate measurements of dose from fields down to 1 × 1 cm2 [21]. This system was

modelled for Monte Carlo calculations as a 60 × 60× 60 cm3 volume of water.
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FIG. 4: Comparison of dose profiles across a 0.6×0.6 cm2 square, on-axis field, from film (heavy

lines) and simulation (light lines), showing: (a) profiles in the direction of μMLC motion; (b)

profiles in the direction orthogonal to μMLC motion; and (c) a comparison of simulation profiles

in the directions orthogonal (dotted line) and parallel (solid line) to μMLC motion. Doses are

normalised to the central axis dose for a 10 × 10 cm2 field. Jaws were set at 9.8× 9.8 cm2. Insets

show a 12×12 cm2 image of the fields, from the Monte Carlo simulation, where white lines indicate

the locations of the profiles and arrows show the direction of leaf motion.

III. VERIFICATION

To initially verify the dosimetric accuracy of the fields produced by the VARMLC Monte

Carlo model of the BrainLAB m3 μMLC comparisons were made between relative dose

profiles in water from experiment (using both ion chamber and film measurements) and

simulation, for square fields varying in size from 10× 10 cm2 down to 0.6× 0.6 cm2. Beyond

a depth of 0.3 cm, all depth-dose profiles from simulation were found to be in agreement,

within 1.2%, with profiles obtained experimentally. For the smallest field, agreement along

the depth-dose curve was within 1%. All lateral profiles showed similar agreement, differing

by less than 1%, except at the outer edges of the penumbrae (beyond the 20% isodose) of

fields smaller than 1 × 1 cm2. These very small fields, however, did show agreement within

1% across this region when compared with experimental film data. Figures 4(a), (b) and

(c) exemplify the agreement between the film data and simulation results, for very small

fields, and illustrate a consistency of penumbra width in directions parallel and orthogonal

to μMLC motion that has been previously identified in film-based analyses of BrainLAB
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m3 μMLC fields [22]. (Further examples of comparisons between simulation and experimen-

tal (film and ion chamber) results can be found in supplemental material accessible from

http://scitation.aip.org/medphys/.)

FIG. 5: Comparison of dose profiles across a diamond-shaped quality assurance field, from film

(heavy lines) and simulation (crosses), showing: (a) overlaid profiles in the direction of μMLC

motion; and (b) overlaid profiles in the direction orthogonal to μMLC motion. Doses are normalised

to the central axis dose for a 10 × 10 cm2 field. Jaws were set at 9.8 × 9.8 cm2. Insets show a

12 × 12 cm2 image of the fields, from the Monte Carlo simulation, where white lines indicate the

locations of the profiles and arrows show the direction of leaf motion.

To further test the possible effects of the VARMLC model’s simplified leaf ends and

leaf edges on the shape of field penumbrae, profiles through a range of leaf openings in a

diamond-shaped quality assurance field were examined (see Figure 5). The penumbra widths

were measured (between 20 and 80 % of the maximum in each profile) and for each of the 24

different widths of this field in each direction. All of the penumbra widths obtained from the

simulation were within 1 mm of the corresponding penumbra widths obtained from the film

image. Figure 5 illustrates some examples of these penumbrae, comparing film measurements

and simulation results. There are localised deviations between the measured and simulated

data shown in these profiles, but these do not appear to be systematic. Generally, 99.7

% of pixels in the virtual image agree with the experimental image, within strict gamma

acceptance criteria (2%, 1mm) [23].

These results suggest that the simplifications involved in the development of the

VARMLC model of the BrainLAB m3 μMLC do not necessarily affect the accurate sim-

ulation of field edges. To further test this observation, the analysis was extended to the
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examination of a series of very small, off-axis fields.

Insets in Figure 6 show a single field containing four small off-axis apertures, which was

imaged using film and simulation. The chosen apertures include the smallest square fields

available, given the geometry of the μMLC: The sizes were 0.6× 0.6 cm2 (two 0.3 cm leaves

open), 0.55×0.55 cm2 (one 0.55 cm leaf open), 0.45×0.45 cm2 (one 0.45 cm leaf open), and

0.55 × 0.55 cm2 (one 0.55 cm leaf open), and the (x, y) offsets were (-0.3,0.3), (4.18,-4.28),

(-2.68,2.78) and (1.55,-1.65), respectively. Profiles across all of these apertures, in directions

parallel and perpendicular to leaf motion, are shown in Figure 6.

FIG. 6: Comparison of dose profiles across small offset fields, from film (heavy line) and simulation

(light line), showing: (a) overlaid profiles in the direction of μMLC motion; and (b) overlaid profiles

in the direction orthogonal to μMLC motion. Doses are normalised to the central axis dose for a

10 × 10 cm2 field. Jaws were set at 9.8 × 9.8 cm2. Insets show a 12 × 12 cm2 image of the fields,

from the Monte Carlo simulation, where white lines indicate the locations of the profiles and arrows

show the direction of leaf motion.

The profiles in the leaf-motion direction shown in Figure 6(a) exemplify the results obtain-

able, when one leaf is translated across the central axis, and the resulting field is effectively

being collimated by the upper region of the curved leaf end (shown in the region between 0
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and 3 cm on the vertical axis of Figure 1). The agreement between the data obtained from

measurement and simulation indicates that the VARMLC model is reliably able to replicate

the collimating effect of the BrainLAB m3 μMLC, from situations when one leaf abutting

the central axis (the 0.6 × 0.6 cm2 field) to when both leaves are close to the limit of their

motion (the 0.55 × 0.55 cm2 field). The profiles in the direction orthogonal to leaf motion,

shown in Figure 6(b) provide further confirmation of the suitability of the simplified tongue

and groove in the VARMLC model. Across the whole field, 99.9 % of pixels in the simulated

image agree with the experimental image, within 2%, 1mm acceptance criteria. Again, there

is no systematic deviation at the penumbrae.

The agreement between simulation and experiment in these examples can be regarded as

confirmation that the simplified leaf edges and leaf ends used in our VARMLC model are

suitably replicating the effects of the more complex design of the clinical μMLC device.

IV. CONCLUSION

The Brainlab m3 μMLC device can be modelled using the standard BEAMnrc compo-

nent module, VARMLC. Although the model itself relies on two major simplifications, the

output it produces is spatially and dosimetrically accurate and agrees well with experimental

measurements.

It is therefore possible to recommend the use of a VARMLC model of the m3 μMLC ,

along with a commissioned model of the associated Varian linear accelerator, to simulate

stereotactic radiotherapy and radiosurgery treatments. The use of this simplified model

takes advantage of the accessibility of the BEAMnrc code and its standard component

modules and stands as a useful alternative to the development or application of an in-house

or third-party component module.
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