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Abstract—In an automotive environment, the performance of a speech recognition system is affected by environmental noise if the 

speech signal is acquired directly from a microphone. Speech enhancement techniques are therefore necessary to improve the 
speech recognition performance. In this paper, a field-programmable gate array (FPGA) implementation of dual-microphone 
delay-and-sum beamforming (DASB) for speech enhancement is presented. As the first step towards a cost-effective solution, the 
implementation described in this paper uses a relatively high-end FPGA device to facilitate the verification of various design 
strategies and parameters. Experimental results show that the proposed design can produce output waveforms close to those 
generated by a theoretical (floating-point) model with modest usage of FPGA resources.  Speech recognition experiments are also 
conducted on enhanced in-car speech waveforms produced by the FPGA in order to compare recognition performance with the 
floating-point representation running on a PC. 

 

Index Terms—Field programmable gate arrays, array signal processing, speech enhancement, speech recognition. 
 

I. INTRODUCTION 

The operation of various in-car devices such as mobile phones, navigation systems, entertainment systems and climate 
controls are known sources of driver distraction, which increase the potential of accidents while driving.  In various 
countries, it is illegal to operate mobile phone handsets whilst driving and only the use of hands-free telephones are permitted.  
The desire to develop hands-free operation of all these devices has lead to an interest in using speech as a natural and 
less distracting means of interacting with the car. 

In the automobile environment interfering noises generated by things such as the car’s engine, road conditions and other 
traffic are a major impediment to acquiring high quality speech signals.  This situation makes the operation of hands-free 
telephones less comfortable as the noise superimposed with the speech makes the conversation difficult to hear.  Devices 
which rely on using speech recognition for control also suffer due to the generally poor quality of speech acquired directly.  
Speech enhancement techniques which reduce the levels of noise in the signal are beneficial for both in-car telephony and 
devices that require speech recognition for control. 

Speech enhancement techniques can generally be broken into two classes based on the number of microphone signals 
considered.  Single channel techniques utilise the signal from only one microphone and have historically included a variety 
of algorithms, some of the most common being adaptive filter techniques (Lim & Oppenheim 1979) and spectral subtraction 
techniques (Boll 1979), (Berouti et al. 1979), (Ephraim & Malah 1984).  Some of the limitations associated with single 
channel techniques include the introduction of musical noise and increased signal distortion as signal-to-noise ratios (SNR) 
decrease. 

Multi-channel speech enhancement techniques refer to algorithms which combine acoustic signals from two or more 
microphones to perform spatial filtering.  One benefit of multi-channel enhancement techniques is the ability to adjust or 
steer the microphone array (beam), using signal processing, in order to focus the signal acquisition on a specific location 
where the target source is. Multi-channel techniques are also expected to offer the ability to enhance signals at lower SNR due 
to the inclusion of multiple independent transducers (Johnson & Dudgeon 1993).  These benefits are offset by the obvious 
increased costs involved in having multiple microphones and the processing required for these additional signals.  Two-
microphone speech enhancement has started to gain momentum as it provides some of the benefits of multi-microphone 
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methods, while not being too costly to implement (Aarabi & Shi 2004), (Ahn & Ko 2005), (Beh et al. 2006). 
To realise a speech processing system in an automotive environment, an appropriate hardware platform is required.  

Cost is a key factor in the highly competitive automotive environment, yet speech processing techniques such as delay-and-
sum beamforming (DASB) require some digital signal processing (DSP) capability.  Thus, the hardware solution must be 
cost effective while still providing relatively high-performance DSP. 

FPGA based signal processing can significantly outperform equivalent DSP processor solutions (Halupka et al. 2007), 
(Bagni & Zoratti 2007).  As demonstrated by Halupka et al. (2007) in their implementation of a phase-based speech 
enhancement technique, a fixed-point DSP processor may not be capable of providing sufficient real-time processing power.  
Research done in conjunction with this work has successfully implemented the single channel spectral subtraction method on 
FPGA (Whittington et al. 2008). 

Xilinx, a leading FPGA vendor, has developed the Xilinx Automotive (XA) product family specifically for automotive 
applications.  The Xilinx XA Spartan-3A DSP FPGA is a lower cost member of the Xilinx XtremeDSPTM device portfolio, 
which includes larger and higher performance FPGAs, such as the Virtex-4 SX.  With well over one million system gates, plus 
memory and XtremeDSPTM slices, the Xilinx XA Spartan-3A DSP FPGAs are the ultimate target for our work (Kitagawa 
2008), (Xilinc Inc 2007). 

The design is initially developed in a high-end device (i.e. Virtex-4 SX), and gradually reworked towards a lower-end device 
solution (i.e. Spartan-3A).  This is possible due to similarities in their architecture, particularly the XtremeDSPTM slices (also 
called DSP48 slices) in Virtex-4 devices, designs can be ported between XtremeDSPTM devices in a reasonably straight-forward 
manner (Xilinc Inc 2008). 

This paper focuses on the FPGA design of a dual microphone delay-and-sum beamformer for speech enhancement 
specifically designed toward cheaper and efficient solutions for in-car environments.  In Section II, the dual-microphone 
enhancement method using DASB is presented.  Section III describes a fixed-point FPGA implementation of the algorithm.  
Experimental results verifying the FPGA design are presented in Section IV.  This is followed by discussion and conclusions in 
Section V. 

 

II. DELAY-AND-SUM BEAMFORMING 

Beamforming is a method of spatial filtering which differentiates desired signals from noise and interference based on their 
location.  The direction where the array of microphones is steered is called the look direction. The simplest beamforming 
algorithm is the delay-and-sum beamformer which works by compensating signal delay to each microphone appropriately before 
they are combined using an additive operation.  The outcome of this delayed signal summation is reinforcement of the desired 
signal while the noise in each microphone tends to cancel each other. 

The illustration of the dual-microphone DASB is given in Fig. 1.  Consider a desired signal received by N omni-directional 
microphones sampled at discrete time k, in which the input to each microphone is an attenuated and delayed version of the 
desired signal  nn ksa   and noise vn given by:  

 

   kvksax nnnn    (1) 

 
In the frequency domain via Fourier transform, the array signal model is: 
 

      VdX  S  (2) 

 
where d represents the array steering vector which depends on the actual microphone and source locations.  For a source 
located near the array, the wavefront of the signal impinging on the array should be considered a spherical wave and the source 
signal is said to be located within the near-field of the array instead of a planar wave commonly assumed for a source located 
far from the array. In the near field, d is given by (Bitzer & Simmer, 2001): 
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where dn and dref denote the Euclidian distance between the source and the microphone n, or the reference microphone, 
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respectively, and c is the speed of sound. 
To recover the desired signal, each microphone output is weighted by frequency domain coefficients w n (ω ) .   The 

beamformer weights are designed to maintain the beam at the look direction to be constant (e.g. wHd = 1).  For a dual 
microphone case, the beamformer output is the sum of each weighted microphone: 
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The inverse Fourier transform results in time domain signal y(k). 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Dual-microphone delay-and-sum beamforming. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The block diagram of the dual-microphone DASB system. 

 

III. FPGA IMPLEMENTATION 

In this section, the FPGA implementation of the dual microphone DASB technique is described.  The target device for the 
implementation was a Xilinx Virtex-4, however the need to be able to realise the design on a low-cost FPGA device 
motivated a number of the design decisions discussed below. 

A. Structure of the Two-Channel DASB System 

The delay filters of DASB are realised in the frequency domain due to the ease of expressing the unity gain and linear 
phase shift transfer function directly.  In the time domain this would require a fractional delay filter. The realisation of 
frequency domain filtering leads to the overall structure for the two-channel DASB system as shown in Fig. 2. 

From Fig. 2, the common speech analysis blocks of pre-emphasis, overlapped framing, Hamming windowing and 
Discrete Fourier Transform (DFT) are required to transform each frame to the frequency domain.  Once in the frequency 
domain, delay filtering is performed by multiplying each frame of the signal with the coefficients of the corresponding delay 
filter.  After delay filtering, the two resultant signals are summed and transformed back into the time domain.  The final signal is 
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reconstructed by overlapping and adding successive output frames. 
 

B. Overall Design Strategy 

1) 3-FFT design:  This is the most straightforward strategy.  Its overall structure is almost identical to Fig. 2, except that the 
DFT and Inverse DFT blocks in Fig. 2 are replaced by the standard FFT/IFFT blocks.  The most obvious advantage of the 3-
FFT design strategy is that there is almost no need for buffering because there are no blocks in the system that are shared 
by different processing tasks.  However, one obvious disadvantage of this design strategy is that three FFT/IFFT blocks – 
which are high on DSP48 resource usage – are employed.  While this DSP48 resource requirement may not be too high for 
the Virtex-4 device, it most probably is for a low-cost device.  This is the reason for considering a 1-FFT design strategy. 
2) 1-FFT design:  As shown in Fig. 3, an alternative strategy employs only one FFT/IFFT block.  This design shares the 
FFT/IFFT block, using it three times (twice for FFT, once for IFFT) during each frame period.  Although this arrangement 
requires more general resources for buffering, one instead of three FFT/IFFT blocks will significantly reduce the DSP48 
resources, which are very limited in a low-cost FPGA device such as a  Spartan-3A DSP.  According to this observation, the 
1-FFT design strategy is chosen for this implementation. 

 

C. Timing Arrangement 

In general, the timing arrangement for the 1-FFT system must satisfy the following two requirements: 

1) There is no time overlap between shared blocks – that is, data should not be fed into the block while it is still 
processing previous data. 

2)  The entire system remains a real-time system where there is no significant accumulated processing delay. 
 

 
 
 

 
 
 
 
 

 
 

 
Fig. 3. The overall structure of the 1-FFT design strategy. 

 
The key to a correct timing arrangement is the construction of the start pulse signal which is connected to the start pin of 

the standard FFT/IFFT block. The rising edges of this pulse signal determine the times at which the FFT/IFFT operation starts. 
To meet the first requirement above, the start pulse for the second channel data must not occur before the FFT processing of 
the first channel data is finished and the start pulse for the IFFT operation must not occur before the output data is ready. 
To meet the second requirement, all three FFT/IFFT operations must be finished before the next frame of data is fed into 
the buffer. 

This system uses 512 samples in each frame and there is a 50% overlap between the neighbouring frames, so all three 
FFT/IFFT operations need to finish within a 256 data sample period.  For the FFT/IFFT block used, the output data will be 
ready exactly 5210 clock cycles after the rising edge of the start pulse.  With a 50 MHz clock for the FPGA hardware, this 
means that the rising edge of the next start pulse must be at least 104.2 µs later. 
 The real-time processing requirement can be easily satisfied for the input data sampling frequency of 16 kHz (i.e. sample 

period of 62.5 µs), as 153 FFT/IFFT operations could be performed within the 16ms 256 data sample period.   To speed up 
development it was desirable to make use of some of this unused processing bandwidth by allowing for a data sample rate of 80 
kHz.  This factor of five increase enabled Xilinx System Generator (XSG) simulations to run faster by roughly the same order of 
magnitude.  Setting the gap between the three start pulses (for each data frame) to ten times the increased data sample period of 
12.5 µs easily meets the FFT/IFFT latency requirement of 104.2 µs. The resultant start pulse sequence is shown in Fig. 4, which 
works for both 16 kHz and 80 kHz data sampling rates. 

 

D. Other Aspects of the Implemented System 

1) The pre-emphasis filters:  The common practice to re- move spectral tilt using a pre-emphasis filter is characterised by 
the following difference equation: 
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     197.0  ixixiy  (6) 

 
where x(i) and y(i) are the ith input and output samples, respectively.  Its implementation requires a delay block, a multiplier 
and an adder. 

As shown in Fig. 2, the conventional position for the pre-emphasis filter is before any other processing blocks. However, 
since the delay filter for each channel is applied later in the system, the whole process can be regarded as a cascade of the 
pre-emphasis filter and the delay filter.  Therefore, these two filters can be combined and applied in the frequency domain. 
This will save the DSP48 resources that would otherwise be required for the two pre-emphasis filters.  

2) Hamming windowing:  This can be easily implemented with a block of Read Only Memory (ROM) (for the 
Hamming window values) and two multipliers (one for each channel). 

3) Delay filters:  This can be implemented in a similar manner to the Hamming window, using the frequency domain 
representation of the transfer function.  

4) Overlap-and- add reconstruction:  The processed time domain frames must be properly overlapped and added to 
produce the final reconstructed speech signal.  This reverses the framing process performed at the start of the algorithm.   
This is implemented using an addressable shift register and an addition block. 

5) The buffer/output block:  The output from the overlap- and-add block consists of bursts of 256 samples at the system 
clock rate and there are long delays between these bursts.  To make sure that the system emits output samples at a uniform rate, 
we include a buffer/output block. 

6) Buffers:  These are realised using addressable shift registers. 
 
 
 

 
 
 
 
 

 
 

Fig. 4. The start pulse sequence for the 1-FFT system. The parameter T represents  
the test input data sampling period which is one fifth of the operational value. 

 

E. Design Process 

The XSG was used as the primary tool for developing the implementation of the DASB hardware design.  XSG is an FPGA 
development environment that sits above the MATLAB and Simulink software packages (Xilinc Inc 2008).  The XSG package 
contains predefined blocks that can be readily compiled into a hardware description language (HDL) and subsequently 
synthesized for specific Xilinx FPGAs.  Designers can also incorporate their own HDL descriptions into the design.  The XSG 
tool does not provide fully optimised FPGA solutions, however through the access to predefined blocks, it greatly reduces the 
prototyping time. 

The DASB design was originally developed as MATLAB scripts using high precision, complex floating-point arithmetic.  To 
produce an FPGA hardware solution, fixed-point equivalents for the complex operations were required.  Furthermore, minimal 
resource utilisation is necessary to reduce costs.  As quality and cost, in terms of resource usage, tend to go hand-in-hand, a 
multi-step process is usually required with considerable testing and evaluation at each stage.  Our approach was to build the 
DASB XSG model block-by-block based on similar sections of the floating-point algorithm.  On completion, each block was 
tested to ensure correct operation before the next block was developed.  Some optimisation of resource usage was also carried 
out at this time.  To verify each stage of the design, the XSG model was simulated (via the inbuilt XSG simulator) applying 
known inputs and comparing outputs to that of the floating-point algorithm, with a close match indicating an appropriate 
implementation. 

Once all sections of the initial XSG design were complete, they were integrated and the entire design was converted into HDL 
code, synthesised using Xilinx ISE 9.2 tools and implemented on a Xilinx Virtex-4 SX FPGA.  For initial hardware development 
work, the ML 402 development board (containing a Virtex-4 SX35 device) was used.  The FPGA design was then tested against 
the complete floating-point algorithm, the results of which lead to further refinement and optimisation of the design. 
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IV. VERIFICATION OF FPGA DESIGN 

A. System Verification 

Testing involved passing selected input files to the FPGA DASB design and collecting the output as a 
file for analysis. This was performed using a test harness 
developed for work with a spectral subtraction design (Whittington et 
al. 2008), modified to provide two channel inputs. The basic block 
diagram of the test harness is shown in Fig. 5. 

 
 

 
 
 
 
 
 
 
 

Fig. 5. Block diagram of test harness used in system verification. 

 
 
To verify that the designed system worked correctly, the ramp signals shown in Fig. 6 were used.  The system was setup to 

have symmetrical delay filters, i.e. distances from the two microphones to the speaker are the same. In this case, the ideal output 
should be a constant zero. 

The XSG simulation and FPGA outputs are shown in Fig. 7, whilst Fig. 8 shows the difference between the two outputs.  The 
maximum difference in amplitude is within 1x10-4 representing approximately 4-bits of quantisation error. 

Another test to verify the design was using modulated chirp signals as shown in Fig. 9.  A modulated chirp signal is a signal 
in which frequency increases with time (up-chirp) which is modulated by another chirp so that the amplitude also varies with 
time.  The purpose of this signal is to provide frequency sweeps across time to test the frequency response of the designed filters 
so that any frequency related errors can be quantified. 

The system was setup to use asymmetrical delay filters.  The floating-point MATLAB and FPGA outputs are in Fig. 10 with 
the amplitude difference between the two outputs shown in Fig. 11.  The maximum difference is again in the region of 4-bits 
quantisation error. 
 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 

Virtex4 ML402 Kit  

Fig. 6. Ramp signals used to verify the designed system.  
A ramp signal was fed to Channel 1 and its inverse fed to Channel 2. 

Fig. 7. The output of XSG simulation and FPGA using ramp signals  
as input. The accuracy of the FFT/IFFT block is set at 24 bits. 
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Fig. 8.   Amplitude difference between the XSG simulation and FPGA output using ramp signals as input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 
 
 

 
 
 
 
 
 
 

Fig. 9. Modulated chirp signals used to verify the designed system. Fig. 10. The output of floating-point MATLAB and fixed-point FPGA 
using modulated chirp as input. 
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Fig. 11. Amplitude difference between the floating-point MATLAB  
and fixed-point FPGA outputs using modulated chirp signals as input. 

 
 

B. Test Results on Real Speech Data 

The test inputs involve real speech recordings from microphone arrays in a car environment.  For the symmetrical case, test 
files are obtained from the AVICAR database (Lee et al. 2004).  Microphone 2 is chosen as Channel 1 and that from 
Microphone 6 as Channel 2.  Fig. 12 shows an example of two input signals.  The output from the floating-point MATLAB 
version and that from FPGA are shown in Fig. 13.  Fig. 14 shows the difference between the two outputs. 

For the asymmetrical case, the test files were obtained from data collected in conjunction with this work (Kleinschmidt et 
al. 2009).  The signal from Microphone 0 as Channel 1 and that from Microphone 3 as Channel 2.  Fig. 15 shows the 
input signals.  The output of the floating-point MATLAB version of the system and that of the FPGA is shown in Fig. 16.  
Fig. 17 shows the difference between the two outputs. 

The amplitude of the difference plots again validates that the FPGA implementation generates outputs that are close to 
that generated by the floating-point model. 
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Fig. 14.  Difference between the output of the floating-point MATLAB 
version  

and that of the Virtex-4 FPGA DASB. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

s. Fig. 13. Output of the floating-point MATLAB and FPGA delay-and-sum  

beamformers using symmetrical delay filters. 

Fig. 15.  Input speech signals for asymmetrical delay filters. Fig. 16. Outputs of the floating-point MATLAB and FPGA delay-and-sum 
beamformers using asymmetrical delay filters. 
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Fig. 17. Difference between the output of the floating-point MATLAB version  
and that of the designed Virtex-4 FPGA DASB. 

 
 

C. Speech Recognition Experiments 

To evaluate the impact of the quantisation error on recognition performance, the floating-point and FPGA 
implementations of dual microphone delay-and-sum beamforming were applied to the AVICAR database (Lee et al. 2004), 
(Kleinschmidt et al. 2007) and the Australian English In-Car Speech Database collected in conjunction with this work 
(Kleinschmidt et al. 2009).  The microphone pairs used are those described in Section IV.  Utterance decoding was 
performed using the Hidden Markov Model Toolkit (Young et al. 2006).  Results are provided in Tables I and II. 

For both the AVICAR database and the Australian English In-Car Speech Database, the difference between the recognition 
rate using the floating-point model and that using the FPGA implementation is typically below 0.1% for all noise 
conditions.  This confirms that the quantisation error of the FPGA implementation has very little impact on the speech 
recognition performance. 

 

 

 

 

 

 

 

 

 
Table I: Speech Recognition Performance Using Phone Numbers Task of the AVICAR Database.  

All Figures in % Word Error Rate. 
 
 
 
 
 

Noise condition Baseline Floating point FPGA output

Idle 28.4 19.6 19.7

35U 50.4 36.2 36.2

35D 62.8 47.0 47.1

55U 57.1 43.2 43.1

55D 75.3 62.8 62.8

Overall 54.8 41.7 41.8
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Table II: Speech Recognition Performance Using the Australian English In-Car Speech Database. 
All Figures in % Word Error Rate. 

 

D. FPGA resource utilisation 

Table III summaries the resource usage of the current design.  Slices, which represent the general FPGA logic fabric, only 
utilise 31% of the total resources available.  While the current design fits comfortably into a Virtex-4 SX device, the aim is to 
implement the DASB system on a low-cost FPGA such as the  Xilinx Spartan-3A DSP device.  The resource utilisation for the 
Virtex-4 SX device indicates that it is highly probable that this design can be directly implemented on a low-cost FPGA device, 
such as Xilinx Spartan-3A DSP. 
 
 
 

 
 
 
 
 
 

Table III: Virtex-4 FPGA Resource Usage Summary. 
 

V. DISCUSSION & CONCLUSION 

In this paper, a successful FPGA implementation of a speech enhancement technique – dual microphone DASB for 
application to in-car speech recognition – has been presented.  As an initial step, the implementation was carried out on a 
Xilinx Virtex-4 SX device.  In the design, a 1-FFT strategy which saves on the DSP48 resources, which are limited on low-cost 
FPGA devices, has been adopted.  Experimental results show that the hardware implementation generates outputs that are very 
close to theoretical (floating point) results and therefore confirm the correctness of the design.  The small quantisation error has 
little effect on the speech recognition accuracy of two speech databases with differing microphone configurations.  The actual 
resource usage of the design shows promising potential of implementing the current system on a low-cost FPGA device. 
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