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Abstract 

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) 

nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation 

techniques. The films were deposited at room temperature in high vacuum condition on 

glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray 

diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films 

indicated non-crystalline nature. The surface roughness of all the films showed in the order 

of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron 
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Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to 

WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as 

observed using Transmission Electron Microscopy (TEM). A slight difference in optical 

band gap energies of 3.22  eV and 3.12 eV were found between the as-deposited WO3 and 

WO3:Fe films, respectively. However, the difference in the band gap energies of the 

annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 

and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing 

applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to 

certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the 

subject of another paper.  

Keywords: Iron-doped Tungsten oxide; Electron beam evaporation; Co-evaporated thin 

films; Surface morphology; Optical properties; Surface characterization   

1. Introduction  

Various techniques have been used to deposit metal oxide thin films for gas sensing 

applications. This includes sol-gel, chemical vapor deposition, advanced gas deposition, 

and physical vapor deposition [1-6]. Each of the film deposition techniques has its own 

advantages and limitations. The gas sensing properties of the metal oxides are determined 

by their intrinsic properties, but can also be enhanced by adding impurities, reducing  

particle size, and modifying the surface morphology  and porosity of the films. Thin films 

are usually compact and the sensing layer is limited to the surface whereas thicker films are 

commonly porous and hence the whole layer can interact with the gas species. If a 

controlled porosity can be achieved, then the gas sensing properties of nanostructured thin 
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films can be enhanced significantly [7]. From a theoretical study elsewhere, the sensitivity 

for gas detection can be improved if the grain size is smaller than 50 nm [8]. Film thickness 

can have significant effect in optimizing sensor selectivity and sensitivity [9]. Gas detecting 

sensitivity also depends on the reactivity of film surface as sensors are strongly influenced 

by the presence of oxidizing or reducing gases on the surface. The reactivity can be 

enhanced by impurities, defects and active species on the surface of the films, increasing 

the adsorption of gas species. It has been shown that inclusion of different doping metals in 

the oxide films increased the sensitivity to specific gases [10-16]. Gas detection capacity 

can also be enhanced by mixing metal oxides since each material has its own response and 

the mixture can add sensitivity and selectivity to specific gas species and also often 

improves sensor quality and performance [7, 17-19]. An increase of response towards 

certain gasses has been reported elsewhere, when iron oxide was added into tungsten oxide 

film [20]. 

 

In this paper Electron Beam Evaporation (EBE) process has been used to produce pure and 

iron-doped tungsten oxide thin films for gas sensor applications. Deposition of tungsten 

oxide using EBE can produce nanostructured thin film with porosity suitable for gas 

sensing applications.  Whereas the properties of iron-doped tungsten oxide films by EBE 

for gas sensing applications are not well documented in the literature.  In this study physical 

characterization of pure and iron-doped tungsten oxide thin films have been performed in 

order to determine the structure of the films, composition, crystallinity and optical 

properties. Atomic Force Microscopy (AFM) was used to study the surface morphology of 
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the films.  Transmission Electron Microscopy (TEM) was used to investigate the structure 

of the films. The chemical composition was investigated using X-Ray Photoelectron 

Spectroscopy (XPS) whereas the crystalline nature of the films was determined using 

Raman spectroscopy. The optical properties of the films have been characterized using UV-

Vis-NIR spectroscopy. Some preliminary gas sensing measurements of the pure and iron-

doped tungsten oxide films were performed and reported. Extensive study of the films for 

gas sensing application will be discussed in another paper. 

2. Experimental Methods 

2.1. Sample Preparation 

Pure and iron (10 at%) incorporated tungsten oxide thin films were produced using electron 

beam evaporation technique. The films have been deposited on a 12 mm x 12 mm 

substrate. The substrate was microscopy glass slides. Prior to film deposition the glass 

substrate was well cleaned with acetone. A 10 mm diameter WO3 pellet (99.9% purity) and 

99.95% purity Fe were used as source targets for evaporation. The WO3 was first baked in 

an oven at 800 oC for 1 hour in vacuum before used for evaporation to remove any moisture 

in the material. The electron beam evaporator has dual electron-guns that enable to co-

evaporate two materials simultaneously.  The WO3 and Fe targets were placed separately in 

two copper crucibles that were kept in water-cooled copper hearth of the two electron guns 

for evaporation. The WO3 target and Fe were heated by means of an electron beam that 

have been obtained through heating of tungsten filament cathodes. Two independently 

power supplies were employed to heat the tungsten filaments. The substrates were placed 

normal to the evaporation sources at a distance of about 40 cm from the source targets. The 
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chamber was evacuated to a base pressure of about 1.33 x 10-5 Pa to 1.33 x 10-4 Pa and an 

accelerating voltage of about 4 kV was used during evaporation.  

 

During the deposition, film thickness was monitored using two independent quartz crystal 

monitors for WO3 and Fe. The metal oxide layer was grown at an average evaporation rate 

of 1.0 A/s (6 nm/min). The evaporation rate of Fe during co-evaporation with tungsten 

oxide was about 0.1 A/s (0.6 nm/min). In this paper films of about 200 nm thick have been 

produced at room temperature. Annealing of the WO3 and WO3:F films was performed at 

300 oC for 1 hour in air at a relative humidity of about 30% and the results were compared 

with the as-deposited films.  

      

     



Thin Solid Films, 518 (2010) 4791–4797; doi:10.1016/j.tsf.2010.01.037. 
 

 

 6

Figure 1 AFM images of WO3 and WO3:Fe films before (a, c) and after (b, d) heat 
treatment of the samples at 300oC for 1 hour, respectively. 
 
 
 
 
 
2.2. Sample Characterization 

Film thicknesses were performed using Dekatak mechanical styles thickness profilometer 

and the measurements were comparable with the thicknesses obtained form the quartz 

crystal monitors. AFM images of the film surface were obtained using an NT-MDT Solver 

P47 scanning probe microscope (NT-MDT Co., Moscow, Russia) with "Golden" Si 

cantilevers operated in contact mode. A 10 nm diameter tip was used to scan the 

morphology of the films. The chemical properties of the WO3 and WO3:Fe films were 

determined using X-ray Photoelectron Spectrometer (XPS). Data was acquired using a 

Kratos Axis ULTRA XPS incorporating a 165 mm hemispherical electron energy analyser.  

The incident radiation was Monochromatic Al Kα X-rays (1486.6 eV) at 150 W (15 kV, 10 

mA) and at 45 degrees to the sample surface.  Photoelectron data was collected at take off 

angle of theta = 90 o. Survey (wide) scans were taken at an analyser pass energy of 160 eV 

and multiplex (narrow) high resolution scans at 20 eV. Survey scans were carried out over 

1200 - 0 eV binding energy range with 1.0 eV steps and a dwell time of 100 ms.  Narrow 

high-resolution scans were run with 0.05 eV steps and 250 ms dwell time. Base pressure in 

the analysis chamber was 1.33 x 10-7 Pa and during sample analysis 1.33 x 10-6 Pa.  

 
Table 1 Average particle diameter and average surface roughness of the WO3 and WO3:Fe 
films obtained using Nova image analysis.  

Material 
 

Particle Diameter 
(nm) 

Surface Roughness 
(nm) 
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WO3 - 2.4  
WO3 (annealed) 9  2.6  
WO3:Fe 12  3.2  

WO3:Fe (annealed) 12  2.9  

 
Raman measurements were performed using Renishaw  inVia Raman spectrometer to 

determine the chemical structure and physical state of the film. A  Renishaw frequency 

doubled NdYAG laser excitation source of wavelength 532 nm was used. To avoid local 

heating of the samples, small power of about 5 mW were applied on the samples. A Raman 

shift between the wavenumbers 200 to 1200 cm-1 has been measured. The reflectance and 

transmittance of the WO3 and WO3:Fe films on glass substrate were measured using 

PerkinElmer Lambda 900 UV-Visible-NIR spectrophotometer with a 150 mm integrating 

sphere. The measurements were performed in the wavelength range 300 to 2500 nm at 

normal angle of incidence. The measured reflectance and transmittance values were 

subtracted from the base (zero) signal. Teflon coating was used as a 100% reference. 

 

The sensing properties of the WO3 and WO3:Fe films were measured to determine the 

sensing capacity of both films.  The resistance and voltage fluctuation across the sensor 

were measured using noise spectroscopy to characterize the sensitivity and selectivity of the 

films [21]. Some preliminary results of the films to NH3 gas at 200 oC are shown in this 

paper. 

3. Results and Discussions 

3.1. Nanostructure Properties of the Films 

Figure 1 shows AFM images of the as-deposited and annealed WO3 and WO3:Fe films. Fig. 

1a is the micrograph of the as-deposited WO3 film which displayed the morphology of 
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amorphous nature. Fig. 1b belongs to the annealed WO3 film. The film displayed particles 

with defined boundaries and large porous structure. Fig. 1c-d shows the morphology of the 

as-deposited and annealed WO3:Fe films, respectively with slightly promoted particle size 

but reduced porosity at the surface of both films. The average diameter of the particles and 

average roughness of the films were estimated using the Nova and Image Analysis software 

as shown in Table 1. The surface roughness of the WO3 film increased slightly after 

annealing. The particle size of the WO3:Fe film after its heat treatment remained unaltered 

but its surface roughness decreased slightly (see Table 1). It had been reported earlier that 

the particle size of WO3 film was not changed significantly when annealed at temperatures 

below 300oC [22]. In order to improve the gas-sensing characteristic of a film, 

optimizations of the particle size and porosity are important factors.  
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Figure 2 XPS survey (wide) scan of as-deposited and annealed WO3, and WO3:Fe films (a), 
and high resolution spectra of W 4f (b), O1s (c), C 1s (d) and Fe 2p (e). For clarity the 
spectra A (WO3), B (annealed WO3), C (WO3:Fe) and D (annealed WO3:Fe)  have been 
shifted vertically. 

Table 2 XPS peak positions of W 4f, O 1s, C 1s and Fe 2p obtained from WO3 and WO3:Fe 
films. 

Element Peak Position BE (eV) 
WO3 Annealed WO3 WO3:Fe Annealed WO3:Fe 

W 4f 36.4 36.2 36.1 35.9 
O 1s 531.2 531.0 531.0 530.8 
C 1s 284.8 284.8 284.8 284.8 
Fe 2p - - - 712 
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Figure 2 shows cross-sectional TEM images of annealed WO3 and WO3:Fe films with 

electron diffraction inserted at the inset of the images. The WO3:Fe film appears to have a 

compact microstructure over the entire film as compared to the porous WO3 film. This 

looks consistent when compared with the AFM results. Circular reflection rings of electron 

diffraction patterns of the films were obtained indicating the nanocrystalline nature of the films. The 

WO3 also shows discrete electron diffraction patterns. 
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 Figure 3 Raman spectra of WO3 and WO3:Fe films before and after annealing at 300oC for 
1 hour in air measured using 532 nm NdYAG laser source and a power of 5 mW at the 
sample 
 

3.2. Chemical and Crystalline Nature of the Films 

Figure 3 shows X-Ray Photo-electron Spectroscopy (XPS) spectra of the as-deposited and 

annealed WO3 and WO3:Fe films. A general survey of the spectra between binding energies 

0 to 1200 eV obtained from scans on the surface of the films are shown in Fig. 3a. From the 

spectra, photoelectron peaks of W, O and C were observed in all of the films.  In addition 

Fe was detected in very small quantity in the annealed WO3:Fe film only.  From high 
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resolution spectra the peak positions of W 4f (Fig. 3b), O 1s (Fig. 3c), C 1s (Fig. 3d)  and 

Fe 2p (Fig. 2e) have been determined as shown in Table 2.  

 

The carbon is probably due to the atmospheric contamination and its peak value at binding 

energy of 284.8 was taken as an energy reference. The core level of W 4f5/2  and W 4f7/2  

peaks for the as-deposited WO3 film were measured at binding energies of 38.5 eV and 

36.4 eV, respectively. The W 4f7/2   peak obtained for the as-deposited WO3 film (36.4 eV) 

was higher than the fully oxidized WO3 film reported elsewhere [23, 24].  The W 4f5/2  and 

W 4f7/2  peaks were shifted  towards lower energies by 0.2 eV (38.3 eV and 36.2, 

respectively) when the samples were annealed at 300 oC for 1 hour. This indicated the 

improvement of the structure of the film towards stoichiometric equilibrium after heat 

treatment. The O 1s peaks found at 531.2 eV is characterized as metallic oxides of WO3.  

This binding energy of O 1s is shifted to lower energy by 0.2 eV (i.e. 530.0 eV) after heat 

treatments of the as-deposited sample. Both the W 4f and O 1s core level binding energies 

shifted by the same amount and this is most likely a shift of Fermi level [25]. Similarly the 

W 4f5/2 and W 4f7/2  core levels of the as-deposited WO3:Fe film found at 38.2 eV and 36.1 

eV were shifted by 0.2 eV (38.0 eV and 35.9 eV, respectively) when annealed the film at 

300oC for 1 hour. The Fe 2p spectrum of the annealed WO3:Fe  (Fig. 2e) contains a broader 

peak of iron oxides which resulted from Fe+3 species [20].  
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Figure 4 Transmittance and reflectance as a function of wavelength between 300 nm to 
2500 nm of (a) WO3 film and (b) WO3:Fe film. Spectra of both the as-deposited and 
annealed samples are shown. 

Raman spectroscopy was employed to characterize the chemical and crystalline nature of 

the WO3 and WO3:F thin films as both films were found to be amorphous at grazing 

incidence X-ray Diffraction measurements [24]. From Figure 3, the as-deposited WO3 film 

has a week and broad Raman peaks around 951 cm-1 and 775 cm-1. These features are 

characteristic of amorphous materials assigned to the stretching frequency modes of  the 

bridging oxygen W=O and O-W-O, respectively [26]. Raman peaks of the annealed sample 

were slightly blue-shifted with peak positions at about 957 cm-1 and 779 cm-1, respectively. 

The addition of Fe to WO3 seems to prompt an increase in particle size and probably 

induced the formation of little crystallization of the WO3 film, as can be seen from the 

Raman intensity. From AFM it was observed a slight increase of particle size after 

annealing the film. The high (low) Raman frequency modes around the wavenumber 950 

cm-1 (770 cm-1) decreased (increased) in intensity when the particle  size increases. This 
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could be due to vibrations of surface atoms which become comparable in number with 

volume atoms for small size crystallites.  
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Figure 5 Tauc plot showing h1/2 vs E=h of (a) WO3, and (b) WO3:Fe films before and 
after annealing. 

 

3.3. Optical Properties of the Films 

Optical properties of tungsten oxide films were measured in the solar wavelength range 

between 300 nm and 2500 nm. Figure 4a-b shows the transmittance and reflectance of 200 

nm thick WO3 film and 225 nm thick WO3:Fe film before and after heat treatments. From 

the figures, the on-set of transmittance for the WO3 film increases sharply as compared to 

the WO3:Fe film. After annealing the samples at 300oC for 1 hour, the optical transition 

wavelengths were slightly shifted towards higher wavelength. Solar and luminous 

transmittance and reflectance of the films were determined by weighting the transmittance 

and reflectance of the films to the intensity of the corresponding solar and visible spectrum 
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for air mass 1.5 as shown in Table 3. The WO3 film is found to be fairly transparent in 

excess of 80% in its solar transmittance.  

  

The optical absorption coefficient () of the as-deposited and annealed WO3 and WO3:Fe 

films were calculated from the reflectance (R) and transmittance (T) measurements and the 

thickness of the film (d) using the relationship found elsewhere [27]: 







 


T

R
d

1
ln        (1) 

The band gap energy (Eg) of the films was determined from the following relationship 

which is know as Tauc plot [28]: 

n
gEhch )(         (2) 

where h� is the incident photon energy, c is a constant and n is an exponent and has the 

value of 2 for an indirect transition. As shown in Figure 5, extrapolation of the straight line 

curves along the energy gives an estimation of optical band gap energy of 3.22 eV and 3.12 

eV for the WO3 and WO3:Fe, respectively. This showed a slight decrease of the band gap 

energy when iron was incorporate into the WO3  film [29]. Furthermore, the Eg of the 

annealed samples were found to have lower values (WO3=3.12 eV and WO3:Fe=2.61 eV) 

as compared to the corresponding Eg values of the as-deposited films. The reduction of Eg 

after the annealing treatment can be related to the state of formation of crystallization of the 

film. Narrowing of band gap due to increasing crystallite size in sputtered WO3 films has 

been previously observed [30].  The optical band gap energies of the as-deposited (3.22 eV) 

and annealed WO3 (3.12 eV) films obtained in this paper are found to be within the ranges 
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of bang gap energy of WO3 thin films deposited by various methods reported elsewhere [2, 

31, 32].  

Table 3 Solar and luminous transmittance of WO3 and WO3:Fe films before and after 
annealing at 300oC for 1 hour. 

 Film 
Thickness  

T-sol (%) T-vis (%) R-sol (%) R-vis (%) 

WO3 
200 nm 82 76 18 24 

WO3 
(annealed) 

200 nm 80 74 18 25 

WO3:Fe 
225 nm 73 79 17 14 

WO3:F 
(annealed) 

225 nm 75 78 18 14 

 
 

3.4. Gas Sensing Properties of the Films  

Preliminary results indicated that the tungsten oxide film was found to be sensitive to 

various toxic gasses. Figure 6 is an example of WO3 sensor exposed to 10 ppm NH3 gas at 

200oC for different times between 3 to 15 minutes as measured using noise spectroscopy. 

Saturation of the detected power density signal (PDS) occurred after 10 minutes of 

exposure to NH3 gas and this indicated a fast response of the film. Synthetic air was used as 

a reference. The gas sensing measurements technique and results of the tungsten oxide as a 

gas sensor to various gasses at various temperatures will be discussed in another paper. 
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Figure 6  Power Density Spectra (PDS) of WO3 sensor exposed to 10 ppm NH3 at 200oC 
for different times between 3 to 15 minutes.  
 

4. Conclusions  

Thin films of WO3 and WO3:Fe have been developed using electron beam evaporation 

process. The physical properties of the films have been investigated using various 

techniques. The as-deposited WO3 films have shown very fine nanostructured particles with 

amorphous behavior. Annealing of the film at 300oC and/or addition of Fe into the film 

promoted a slight increase of the particle size. The films have shown significant amount of 

porosity and a nearly stoichiometric properties with optical band-gap energies within the 

UV/Vis part of the solar spectrum ranging between 0.38 �m to 0.45 �m. The results are 

found to be suitable for gas sensor application which is also evident from the preliminary 

results. Gas sensing properties of pure and iron incorporated tungsten oxide film will be 

reported in another paper.  
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