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Abstract—Road features extraction from remote sensed 

imagery has been a long-term topic of great interest within the 

photogrammetry and remote sensing communities for over 

three decades. The majority of the early work only focused on 

linear feature detection approaches, with restrictive 

assumption on image resolution and road appearance. The 

widely available of high resolution digital aerial images makes 

it possible to extract sub-road features, e.g. road pavement 

markings. In this paper, we will focus on the automatic 

extraction of road lane markings, which are required by 

various lane-based vehicle applications, such as, autonomous 

vehicle navigation, and lane departure warning. The proposed 

approach consists of three phases: i) road centerline extraction 

from low resolution image, ii) road surface detection in the 

original image, and iii) pavement marking extraction on the 

generated road surface. The proposed method was tested on 

the aerial imagery dataset of the Bruce Highway, Queensland, 

and the results demonstrate the efficiency of our approach.  

Keywords-road pavement marking; feature extraction; high 

resolution aerial image; multi-resolution image analysis; 
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I.  INTRODUCTION 

Nowadays there is a growing need for accurate road 
models for various applications e.g. traffic monitoring, city 
planning and autonomous navigation. Especially the 
advanced vehicle assistance system (ADAS), includes 
applications such as lane departure warning, lane-level 
vehicle navigation, asks for not only the directional 
information but also the accurate road lane marking details, 
for example, the number of lanes, the location and type of 
lane markings.  

Vehicle-based mobile mapping system (MMS) is a 
widely used method for detailed road information 
acquisition. Many research studies of detection and 
reconstruction of road marks have been carried out in the 
field of terrestrial imagery or close range photogrammetry. 
Due to the difference in data acquisition platform, input data, 
type of feature fused for road identification, approaches 
developed for road geometry extraction based on MMS are 
quite different from each other. For instance, lane markings 
are extracted based on thresholding [1], frequency analysis 
[2]; or from structures, such as  linear or curve [3], Snake 
[4]; or even image classification [5]. An exhaustive review of 
road marking reconstruction approaches based on ground 

photogrammetry can be referred to [6]. However, the 
drawback of MMS is also apparent: it is costly and time-
consuming, which is not suitable for date collection in large 
areas. 

Another method for road lane marking acquisition is 
through feature extraction from remote sensed images. 
However, due to the limitation of the ground resolution of 
images, most of the existing approaches only concentrate on 
the detection of road centerline rather than other sub-surface 
details. Only a few approaches involved the detection of lane 
markings in the extraction of road centerlines. For example, 
Steger et al. [7] extract the collinear road markings as bright 
objects in large scale photographs when the roadsides exhibit 
no visible edges. Hinz and Baumgartner [8] utilized road 
mark features, detected as thin bright lines with symmetric 
contrast, as the evidence for the presence of a road. Besides, 
an automatic vehicle detection module is also employed to 
eliminate the gap of lane segments caused by cars. Another 
approach of road extraction with pavement markings 
detection is presented in [9], where the road marks and zebra 
crossing are segmented based on coloristic and geometric 
characteristics. The detected road marks and zebra crossing 
are then used as clues for the local direction and width of the 
road. The similar work can also been found in [10], where 
the road mark portions are extracted primarily based on 
radiometry variation to provide topology and geometry 
support. On the whole, road pavement marks are only 
regarded as a clue to reconstruct the road network, and thus 
not being focused in. Therefore, the quality requirements 
[11], such as robustness, quality, completeness, are far below 
the lane level applications. 

In more recent works, Kim et al. [12] built a system 
specially designed to extract pavement information for car 
navigation. Tournaire et al. [11] proposed a specific 
approach for dashed lines and zebra crossing reconstruction, 
which relied on external knowledge introduced in the 
detection process as well as in the reconstruction process 
based on primitives extracted in the images.  

In this paper, we proposed an automated road lane 
marking extraction approach based on multi-resolution 
image analysis and anisotropic Gauss filtering. The road 
centerline is firstly detected from the low resolution image, 
which provides the local orientation and rough location of 
the road surface. Anisotropic Gauss filtering is further 
employed to extract the road pavement markings on the 



generated road surface. The workflow of our road lane 
marking extraction algorithm is as shown in Figure 1.  

 
Figure 1.  Flowchart of the proposed system for road marking extraction.  

The reminder of this paper is organized as follows. In 
section 2, the original aerial image is decomposed to get the 
low resolution image using Discrete Wavelet transform. 
Road centerline is then extracted from the low resolution 
image using ISODATA algorithm. In section 3, road surface 
is extracted from the high resolution image using the 
generated road centerline, and road pavement markings are 
further detected with anisotropic Gauss filtering. System 
testing and quantitative evaluation is then given in section 4. 
Finally, the concluding remarks are presented in section 5. 

II. ROAD CENTERLINE DETECTION 

The basic function of multi-resolution image analysis 
approach is based on the fact that different characteristics of 
road features can be best detected in different scales. On one 
hand, road lane details can only be detected in high precise 
images, but at the same time, many local disturbances such 
as shadows can also greatly degrade the results. On the other 
hand, the road position can be easily extracted in lower 
resolution images, where roads are basically considered as 
homogeneous bands of different lengths and orientations. 
Therefore, it is beneficial to extract the desired road features 
at different resolution and consequently combine the 
individual level result to obtain the refined output. 

We employ 2D Discrete Wavelet Transform (DWT) 
instead of pyramid analysis to obtain the low resolution 
image as it can maximally preserve the essential information 
content. In the decomposition of image via wavelet 
transform, proper choice of wavelet is an important issue. 
More than 4300 candidate filter banks were tested in [13], 
and the biorthogonal (9,7) pair has almost the best 
performance in maintaining good visible quality through the 
use of bit allocation in the sub-images. Therefore, the Bior(9-
7) filter bank is utilized here. An example of image 
composition is shown in Figure 2, the original aerial image 
(Figure 2(a)), which has a resolution of 0.1 m and the size of 

1024×1024, is decomposed four levels to a resolution of 0.8 
m with the size of 64×64 (Figure 2(b)). 

The first step of low level image analysis is image 
segmentation, the success of which is critical for the 
successfully detection of road centerlines. To ensure that 
only necessary features would involve in the separability of 
road surface, color space transformation is employed to 
select the appropriate image data. As the road surface made 
of asphalt appears as relatively white under the strong 
illumination of direct sun light in Queensland, which can be 
utilized to assist the color space selection. 

 
Figure 2.  An example of image wavelet decomposition, (a) and (b) are the 

original and the decomposed aerial images, respectively.  

It is necessary to ensure that no more features than 
necessary are utilized when performing clustering. The 
redundancy of the original image can be checked by 
examining the correlation matrix between the spectral bands. 
The correlation matrix of the image shown in Figure 2(b) is 

 
1.00 0.99 0.97
0.99 1.00 0.96
0.97 0.96 1.00

  

It is apparent that the R, G, and B bands within this 

image are highly correlated. Thus, the Principal Component 

Analysis (PCA) transform is utilized to reduce the number 

of image dimension while preserve the essential information 

content of the image. The eigen-values of the covariance in 

Figure 2(b) are  4904.43 76.57 14.97 , which means 

the 1
st
 component account for 96.4% of the total information 

in the image. Therefore, only the 1
st
 component of PCA 

transform is selected for further processing.  
In HSI color space, the distance between the different 

RGB values determines the saturation component: the closer 
they are together, the lower the saturation. The road surface 
presents relatively white compared with other features, i.e. 
grasslands, which means it has low saturation component 
values. The conversion from RGB to HSI is defined as: 
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 If 𝑆 = 0, H is meaningless. 

 If  𝐵/𝐼 >  𝐺/𝐼  then 𝐻 = 360 − H 
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As the vegetation areas, including bushes and grassland, 
have relatively low value of blue component in RGB, the Cb 
component in YCrCb color space is selected to distinguish 
the road surface from these vegetation lands. YCrCb is 
defined as: 

 

𝑌
𝐶𝑏
𝐶𝑟

 =  
0.257 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071

  
𝑅
𝐺
𝐵
 +  

16
128
128

    (2) 

where Y is the brightness, Cr is the red-difference  𝑅 − 𝑌 , 
and Cb is the blue-difference  𝐵 − 𝑌 . 

 
Figure 3.  Three transferred color bands of image Figure 2(b), (a) 1st 

component of PCA transform, (b) the saturation band from HSI color 

space, (c) the Cb component from YCrCb color space, and (d) the composed 
result with the above three images. 

The 1
st
 component of PCA transform, the saturation band 

from HSI color space, and the Cb component in YCrCb color 
space are acquired and stretched using the histogram 
equalization algorithm to enhance their global contrast 
respectively. Then they are further fused using 1

st 
component 

of PCA as R band, saturation component as G band, and Cb 
component as B band, the stretched three bands and the fused 
image is shown in Figure 3(d). 

After the data preparation, the image segmentation 
approach can be used to classify road surface from other 
ground objects. The unsupervised ISODATA algorithm is 
used in our work to segment the aerial image. Three classes, 
which correspond to road regions, vegetations, and shadows, 
are determined (as shown in Figure 4(a)). Segments are 
selected as road features if the following two criteria are 
satisfied: (i) the mean width of the segment is within a 
certain range, (ii) the length to width ratio is larger than a 
preset threshold. Besides, the area filter method is utilized to 
remove small noises that are misclassified into road class. 
After the extraction of road surface, a modified Wang-Zhang 
thinning algorithm [14] is further employed to extract the 

skeletons form the road segment. The generated road 
centerline is actually zigzag thanks to the disturbances from 
shadows or variation of road width. Therefore, the least 
squares line approximation is an appropriate method to fit a 
linear relation between the extracted road centerline points, 
and the result is given in Figure 4 (b). 

 
Figure 4.  (a) the result of image segmentation (White: road regions, Grey: 

vegetation, and Black: shadows), and (b) the extracted road centerline, 
which was approximated by least squares line method. 

III. ROAD SURFACE AND LANE MARKING EXTRACTION 

Up to now, we have obtained the road centreline from the 
low-resolution image. And thus the orientation and the rough 
position of the road surface within high-resolution image can 
be easily acquired. The orientation 𝜃 can be calculated using 
the two endpoints  𝑃1 𝑥1 , 𝑦1  and 𝑃2 𝑥2 , 𝑦2  of the 
centreline segment (See Figure 4.4), which can be derived by 

𝜃 = arctan  
𝑦2 − 𝑦1

𝑥2 − 𝑥1

 

Since the vegetation regions have relatively low value of 
Cb component in YCrCb colour space, only the Cb component 
is utilized to extract the road surface in the original image. 

The contrast enhanced Cb component of the original 
aerial image is as illustrated in Figure 5(a). As one of the 
widely used techniques for monochrome image 
segmentation, histogram thresholding is utilized here to 
segment the aerial image. The Otsu’s algorithm [16] is 
applied on the histogram to automatically determine the 
threshold. The Otsu’s method finds the optimal threshold T, 
which maximizes 

𝑉 𝑇 =
 𝜇 ∙𝜔 𝑇 −𝜇 𝑇  

2

𝜔 𝑇 ∙𝜇 𝑇 


where 𝜔 𝑇 =  𝑝𝑖
𝑇
𝑖=0 , 𝜇 𝑇 =  𝑝𝑖

255
𝑖=𝑇+1 , 𝜇 =  𝑖 ∙ 𝑝𝑖

255
𝑖=0 , 

𝑝𝑖  is the probability of pixels with grey level i in the image. 
Two classes, which correspond to road regions, vegetation 
areas are determined. We can see that the road surface has 
been perfectly segmented as white object in the image. 
Segments are selected as road features if the following two 
criteria are satisfied: (i) the mean width of the segment is 
within a certain range, (ii) the length to width ratio is larger 
than a preset threshold. Besides, the area filter method is 
utilized to remove small noises that are misclassified into 
road class. The two sides of the segmentation result are 

a b 

a b 

c d 



further smoothed by the least squares line approximation, 
and the final road surface is given in Figure 5(d). 

A fast anisotropic Gaussian filter was been proposed by 
GeuseBroek and Smeulders [16] in 2003. The orientation 
filter in two dimensions is given by the convolution of two 
Gaussian filters, presented as: 

𝐺 𝑢, 𝑣 =
1

 2𝜋𝜎𝑢𝜎𝑣
exp −  

𝑢2

2𝜎𝑢
2 +

𝑣2

2𝜎𝑣
2                (4) 

where 𝑢 = 𝑥cos𝜃 + 𝑦sin𝜃 and 𝑣 = −𝑥sin𝜃 + 𝑦cos𝜃. 

 
Figure 5.  Image unsupervised segmentation, (a) enhanced Cb component 

image, (b) image segmentation result, (c) extracted road surface class, and 
(d) road sides smoothed by least square line approximation 

𝜃 is the orientation of the anisotropic Gaussian filter, 𝑥 
and 𝑦  are the Cartesian coordinates of the image pixels. 
Anisotropic Gauss filter can be considered as orientation and 
scale tunable edge and line (bar) detector, which makes it a 
perfect method for the detection of geometrical restricted 
linear features, such as the road lane markings. 

The correct determination of anisotropic Gauss filter 
parameters is the central issue for the lane pavement marking 
extraction. The parameter 𝜃 is set to the rough direction of 
the road centerline, which is already obtained from the low 
resolution image. The ratio of 𝜎𝑢  and 𝜎𝑣  is set to 2 based on 
the road pavement marking guide [17], as the least length to 
width ratio of the lane marking is 2. 𝜎𝑣  is determined by the 
half width of the pavement marking, as the average width of 
pavement marking in the image of Figure 2(a) is 3 pixels, 
thus 𝜎𝑣  is set to be 1.5 here. 

Anisotropic Gauss filtering is utilized to extract the lane 
marking features while restrain the affection from other 
ground objects. To reduce the calculation complexity, PCA 
method is applied on the RGB image and only the 1

st
 

component is chosen for Gauss filtering. The orientation of 
the markings is obtained by the centerline in the low 
resolution image, which is 36.87 degrees for the example 

image. The filtered image is given in Figure 6(b), which is 
then masked by the road surface acquired in the previous 
step. 

 
Figure 6.  Road lane marking detection, (a) 1st component of PCA 

tranform of the original image, (b) anisotropic Gauss filter image, (c) 

extracted road marking, and (d) generated pavement markings 

superimposed on the extracted road surface. 

In the filtered image, the pavement markings with white 
or grey color had a much higher brightness value than the 
road pavement areas composed of dark asphalt. The 
geometric properties and spatial relationships can be further 
utilized for the selection of lane marking candidates: 

 The geometric properties of the lane markings were 
calculated: the lengths, widths, directions, together 
with the areas were examined by the road 
construction manuals [17]. Only regions satisfying 
the rules specified in the manual were selected as 
suitable candidates. 

 The distance and orientation difference between 
neighboring lane markings candidates were 
calculated and analyzed. Only the candidates with 
similar orientation and particular distances would be 
preserved for further processing. 

The final extracted road lane marks are displayed in 
Figure 6(c), and Figure 6(d) shows the generated road marks 
superimposed on the extracted road surface. 

IV. EXPERIEMNTS AND EVALUATOIN  

A set of high-resolution aerial panchromatic images 
taken on 28 November 2008 using the UltraCam-D digital 
camera was used as the test data set. The image scale is 
1:11081, and pixel size is 9𝜇𝑚 (about 10 cm ground spatial 
resolution). The test sites were parts of the Bruce highway, 
located in Gympie, Queensland. The testing road is a single 
carriageway with 2 lanes in the majority of road segments. 

a b 

c d 

a b 

c d 



In order to evaluate the results, we compare the obtained 
road lane feature to a manually digitized reference road 
dataset. The road marking accuracy evaluation is carried out 
by comparing the extracted pavement marks with manually 
plotted markings used as reference data as presented in [18], 
and both data sets are given in vector representation. The 
buffer width is predefined to be the average width of the road 
markings, and we set it to be 15 cm in our experiment. Then 
the accuracy measures are given as: 

1) Detection rate 

d =
length of the matched reference

length of reference
 

2) False alarm rate 

f =
length of the unmatched extraction

length of extraction
 

3) Quality 

q =
length of the matched reference

length of extraction + unmatched reference
 

We selected 8 testing areas from the dataset, which 
covers an area of approximate 2 km

2
. The average detection 

rate is about 97.8%, false alarm rate is only 2.9%, and 
quality reaches 94.6%. The success of lane feature detection 
largely depends on the assumption that the road surface and 
pavement markings are straight within the processing image, 
thus it only works well when the lane marking within the 
image is approximately linear. Therefore, the processing 
image has to be restricted within a limited area to keep the 
road straight. As to the process of large images, image 
partition method can be utilized so that large image can be 
divided into smaller sub-images before the road feature 
extraction. 

V. CONLUDING REMAKRS 

In this paper, a novel road surface and pavement marking 
extraction approach from high resolution aerial images is 
proposed. The developed method, which is based on multi-
resolution image analysis as well as anisotropic Gauss 
filtering, can generate accurate lane level digital road maps 
automatically. The experimental results using the stereo 
digital aerial image dataset with ground resolution of 0.1 m 
have demonstrated that the proposed method works 
satisfactorily. Further work will concentrate on the process 
of seriously curved road surface and large images, which 
may be achieved by using knowledge based image analysis 
and image partition technique. 
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