
Object-centric Process Models and

the Design of Flexible Processes

by

Guy Matthew Redding

A dissertation submitted for the degree of

IF49 Doctor of Philosophy

Faculty of Science and Technology

Queensland University of Technology

Brisbane, Australia

Principal Supervisor: Prof. Marlon Dumas

Associate Supervisor: Prof. Arthur H.M. ter Hofstede

September 2009

Certificate of Acceptance

Statement of Original Authorship

The work contained in this thesis has not been previously submitted for a

degree or diploma at any other higher education institution. To the best of

my knowledge and belief, the thesis contains no material previously published

or written by another person, except where due reference is made.

Signed:

Date:

Acknowledgements

In 2003 I was first exposed to the possibility of a research career while

on internship at a large software company. My supervisor at that time

once remarked that “Completing a PhD is the most difficult thing I’ve ever

done”. Such a thing sounded too easy to say and it stuck with me, since

programming seemed to require a greater creative effort than writing. So I

was initially fairly sceptical about that. However, if we fast-forward 6 years...

I now fully agree.

My first round of thanks are due to my supervisory team of Marlon

Dumas and Arthur ter Hofstede – otherwise known as Team Martha. It’s

been an honour and a privilege to work in a team with such vast knowledge

and experience. Your ways of working are amazing to observe and have been

simply inspiring for me. My first realisation after our initial meetings was

of my tendency towards mañana theory and practice, but three years later

I hope that the whole enchilada is a satisfactory reward for your efforts.

Thanks are also due to the industry partner company for this project,

FlowConnect Pty Ltd from Sydney, for providing me with both the oppor-

tunity to undertake this study and for access to valuable data and models

from the field. I enjoyed both visits to the premises of FlowConnect during

this project and I send my best wishes for the future to Adrian Iordachescu,

Jarka Sipka, plus the rest of the folks at FlowConnect.

The BPM Group and School of IT at QUT is a vibrant, stimulating place

to work due to many smart and fun people there who hail from all over the

globe. Thus, from QUT I have made many fulfilling friendships, some of

whom are already known as old mates. I sincerely hope these friendships

will last long into the future. Through a healthy mix of in-house and out-of-

office activities (specifically, the coffee group, squash group, Friday evenings

group and Mittagessen Gruppe) you guys have helped me through this period

of my life. I am extremely grateful to know such people from all over the

world as my friends.

I must also thank my immediate family (Phil, Gayle, Gina, Bianca &

Carmel) for sticking with me through all these years of study while we’ve

been so many kilometres apart. Guess it’s gonna seem mighty strange not

having to try to understand any further explanations of how the PhD is

going! I love you guys, cheers for every little piece of your support. A special

mention also to Bern Healey for his interest in each step of this journey.

I’ve saved the best until last. Kat, I wouldn’t want to have shared the

last several years with anybody else – your belief in me has been amazing.

Without you in my life it’s highly likely that none of this would have been

possible. For always being there without question throughout the dizzy-

ing highs and terrifying lows of the most difficult thing I’ve ever done, you

thoroughly deserve the ultimate acknowledgement. Although you really are

deserving of much, much more!

¨̂

Guy Redding

15th September, 2009

Abstract

Mainstream business process modelling techniques promote a design para-

digm wherein the activities to be performed within a case, together with their

usual execution order, form the backbone of a process model, on top of which

other aspects are anchored. This paradigm, while effective in standardised

and production-oriented domains, shows some limitations when confronted

with processes where case-by-case variations and exceptions are the norm.

In this thesis we develop the idea that the effective design of flexible pro-

cess models calls for an alternative modelling paradigm, one in which pro-

cess models are modularised along key business objects, rather than along

activity decompositions.

The research follows a design science method, starting from the formula-

tion of a research problem expressed in terms of requirements, and culminat-

ing in a set of artifacts that have been devised to satisfy these requirements.

The main contributions of the thesis are: (i) a meta-model for object-centric

process modelling incorporating constructs for capturing flexible processes;

(ii) a transformation from this meta-model to an existing activity-centric

process modelling language, namely YAWL, showing the relation between

object-centric and activity-centric process modelling approaches; and (iii) a

Coloured Petri Net that captures the semantics of the proposed meta-model.

The meta-model has been evaluated using a framework consisting of a set

of workflow patterns. Moreover, the meta-model has been embodied in a

modelling tool that has been used to capture two industrial scenarios.

i

Keywords

object-oriented, object-centric, process-oriented, activity-centric, workflow

systems, process aware information systems, model transformation, workflow

patterns, flexibility, flexibility patterns.

ii

Contents

1 Introduction 1

1.1 Research Area . 1

1.2 Problem Statement . 5

1.3 Research Questions . 8

1.4 Research Design . 9

1.5 Original Contributions . 11

1.6 Thesis Outline . 12

2 Literature Review 13

2.1 Process Modelling . 13

2.2 Object Behaviour Modelling 18

2.3 Process Modelling meets Object Modelling 24

2.4 Process Flexibility . 31

2.5 Summary and Discussion . 40

3 O-C Process Modelling Meta-Model 41

3.1 Object Behaviour Meta-Model 42

3.2 Working Example – Gas Pipeline Investigation 50

3.3 Transforming O-C Models to A-C Models 54

3.4 Tool Support . 67

3.5 Summary and Discussion . 69

4 O-C Extensions for Flexibility 73

4.1 Patterns of Flexibility . 74

4.2 Elements for Flexible O-C Processes 77

iii

4.3 Working Example – Social Service Provision 80

4.4 Tool Support . 88

4.5 Summary and Discussion . 93

5 Formalisation 95

5.1 Base Model in CPN . 96

5.2 Extended Model in CPN . 106

5.3 Summary and Discussion . 112

6 Pattern Support 115

6.1 Control-flow Pattern Evaluation 115

6.2 Taxonomy of Flexibility Evaluation 145

7 Epilogue 161

7.1 Summary of Contributions 161

7.2 Fulfillment of Solution Criteria 164

7.3 Future Work . 167

iv

List of Figures

1.1 The PAIS Development Lifecycle 2

1.2 Classification of PAIS Framing (from [27]) 4

1.3 Activity-centric and Object-centric Process Representations 6

2.1 The 20 Original control-flow Patterns 17

2.2 Example UML Activity Diagram 19

2.3 Example UML State Machine Diagram 21

2.4 Example UML Sequence Diagram 22

2.5 Business Process Modelling Spectrum 30

2.6 Spectrum of Flexibility Types, inspired by [89] 35

3.1 Object Behaviour Meta-Model in ORM 43

3.2 Pre-Gateway, Processing Sub-State and Post-Gateway 45

3.3 Optimistic and Pessimistic Gateways 46

3.4 Optimistic and Pessimistic Gateway Configurations 47

3.5 Pre- and Post-Gateways Connected by Message Signals . . . 49

3.6 O-C Modelling Notation . 50

3.7 Gas Pipeline Inspection Example – Class Diagram 51

3.8 Example of an Object Behaviour Model 53

3.9 Transformation Procedure Overview 57

3.10 Gas Pipeline Inspection Process Model in YAWL 59

3.11 Task Input Combination Reduction Rule 62

3.12 Task Output Combination Reduction Rule 62

3.13 Task Join Combination Reduction Rule 63

3.14 Task Split Combination Reduction Rule 63

v

3.15 Task Split Combination Reduction Rule (XOR-split) 64

3.16 Task Split Combination Reduction Rule (OR-split) 65

3.17 Example Combinations Where Reduction is not Applied . . 66

3.18 Inspection Process Model in YAWL Following Reduction Rules 67

3.19 Screenshot of the Inspection Process Model in FlexConnect . 69

4.1 Abstract Types and Concrete Types 77

4.2 ORM for Flexibility Extensions 78

4.3 Patterns of Flexibility in the Framework 81

4.4 Extended Object Model Elements 82

4.5 Object-centric Social Services Delivery Model 83

4.6 Creation Pattern of Flexibility 84

4.7 Delegation Pattern of Flexibility 85

4.8 Nesting Pattern of Flexibility 87

4.9 Nested Unplanned Sub-processes 88

4.10 UML Class Diagram for Object-centric Flexibility 90

4.11 Social Services Model in FlexConnect 91

5.1 State-Transition diagram of an Object Lifecycle 96

5.2 Creation of a Root Instance 97

5.3 CPN - Sending Signals from an Optimistic Gateway 98

5.4 CPN - Receiving Signals at an Optimistic Wait-for-all Gateway 99

5.5 CPN - Pessimistic Gateway Sending 100

5.6 CPN - State . 101

5.7 CPN - Creating and Cancelling Tasks 102

5.8 CPN - Completed Tasks . 103

5.9 CPN - Child Instance Creation 105

5.10 CPN - State Transition . 107

5.11 CPN - Add Dynamic Signal 108

5.12 CPN - Creation . 109

5.13 CPN - Delegation . 111

6.1 WCP-1 – Sequence . 116

vi

6.2 WCP-2 – AND-Split . 117

6.3 WCP-3 – AND-Join . 118

6.4 WCP-4 – Exclusive choice in the same state machine 119

6.5 WCP-5 – Simple merge within the same state machine . . . 120

6.6 WCP-5 – Simple merge across different state machines . . . 121

6.7 WCP-6 – Multi-choice . 122

6.8 WCP-7 – Structured Synchronising Merge 123

6.9 WCP-8 – Multi-Merge . 124

6.10 WCP-9 – Structured Discriminator 125

6.11 WCP-10 – Arbitrary Cycles 126

6.12 WCP-12 – MI without synchronisation 127

6.13 WCP-13 – MI with a priori design knowledge 128

6.14 WCP-14 – MI with a priori runtime knowledge 129

6.15 WCP-15 – MI without prior runtime knowledge 130

6.16 WCP-16 – Deferred choice between three states. 131

6.17 WCP-18 – Milestone . 133

6.18 Parallelism in YAWL . 146

6.19 Choice in YAWL . 146

6.20 Iteration in FlexConnect . 147

6.21 Parallel Interleaving in YAWL 148

6.22 Multiple Instances in YAWL 148

6.23 Cancellation in YAWL . 149

6.24 Create Additional Instance in FlexConnect 151

6.25 Late Binding in FlexConnect 153

7.1 Flexibility Patterns Coverage of FlexConnect 163

vii

viii

List of Tables

3.1 Heuristics Net Sample from Figure 3.8. 56

6.1 Summary of Control-flow Pattern Support (Patterns 1-20) . 143

6.2 Summary of Control-flow Pattern Support (Patterns 21-43) . 144

6.3 Summary of Taxonomy of Flexibility Support 158

ix

x

1

Chapter 1

Introduction

1.1 Research Area

The flow of work in an organisation is supported by processes that provide

a guideline for conducting day-to-day operations, and information systems

that serve to automate day-to-day operations. However, the processes that

guide an organisation and the information systems (specifically IT systems

and applications) that support those processes are commonly mismatched –

a situation that has been described as the Business-IT divide [95]. These

mismatches are often blamed on the lack of understanding or misunder-

standing that an organisation has of its IT systems and vice-versa. Closing

the divide between business and IT has been an aspiration for some time

due to the many purported benefits, which include improved requirement

analysis and enactment, more efficient business automation, greater busi-

ness collaboration (both internally and externally), enhanced organisational

competitive advantages, better accountability and higher ongoing IT project

success rates.

The discipline of Business Process Management (BPM) has emerged as

a paradigm that includes methods, techniques and tools to support the de-

sign, documentation, enactment, management and analysis of operational

business processes [7]. BPM is both a way of thinking about the workings of

2 CHAPTER 1. INTRODUCTION

a business and a discipline for continuous improvement and management of

business process models. BPM is a holistic management approach that has

been positioned as an enabler to progress towards closing the Business-IT

divide. However, employing BPM in principle does not completely bridge

the Business-IT divide since BPM does not mandate “process-awareness” in

IT systems. Recognition of this technological gap has led to the emergence

of software suites known as Process-Aware Information Systems (PAIS).

According to the definition given in [27], PAIS are software systems that

manage and execute operational processes involving people, applications,

and/or information sources on the basis of process models. PAIS are based

on technology frameworks that extend BPM for the purpose of enabling

business process automation. As shown in Figure 1.1, business process au-

tomation is achieved by following the PAIS development lifecycle. The PAIS

development lifecycle is a procedure that consists of several phases identi-

fied as the design, implementation, enactment and diagnosis phases. Each

phase in the lifecycle is related to a number of different tools and systems to

support PAIS development and business process automation.

Figure 1.1: The PAIS Development Lifecycle

At the heart of the PAIS development lifecycle are process models. A

process model provides a level of abstraction over an information system

that makes it possible for a business analyst to specify the operations of a

business in terms of what needs to be done (e.g. the tasks in a process).

Business operations are captured by process modelling tools, avoiding the

need to capture a process with low-level software code. Abstraction away

from software-related details of a system into the realm of process models is a

1.1. RESEARCH AREA 3

highly desirable aspect of process modelling. Some benefits offered by PAIS

include an improved ability to react to process change, business performance

is easier to measure and the current and/or historical status of work within

an organisation can be queried. The trend towards process automation using

PAIS technology is exemplified by the developments in process-aware systems

and tools by commercial practice. Some examples of such systems and tools

include: IBM Websphere MQ Workflow, FLOWer by Pallas Athena, JBoss

jBPM and TIBCO iProcess Suite.

To automate a process by means of PAIS, the process must be encoded

using a process modelling language. The disadvantage of this explicit en-

coding is that assumptions are often made concerning how the tasks in a

process should be related. These assumptions may turn out to be incorrect

and/or not applicable to all cases. It can be argued that this is due to main-

stream process modelling techniques. Mainstream process modelling tech-

niques (e.g. BPMN) often promote a tightly-framed design paradigm wherein

the activities that may be performed within a case, together with their usual

execution order, form the backbone of a process on top of which other aspects

are anchored. This Fordist paradigm [98], while effective in standardised and

production-oriented domains, breaks when confronted with loosely-framed or

ad-hoc framed types of processes in which case-by-case variations, exceptions

and user-initiated overrides are the norm. As one might imagine, attempting

to automate loosely-framed or ad-hoc processes is a more challenging task

than attempting to automate tightly-framed processes, due to the additional

concern of balancing process automation with process flexibility.

In Figure 1.2, several categories of PAIS have been arranged according

to the degree with which each category of PAIS defines or frames a process

(e.g. tightly-framed, loosely-framed, ad-hoc framed or unframed) and the

nature of process participants of the PAIS (e.g. Process-to-Process, Process-

to-Application or Application-to-Application). According to the PAIS clas-

sification given in Figure 1.2, workflow technologies can be seen to mostly

focus on tightly-framed processes, while less attention is devoted to captur-

ing more loosely-framed types of processes. However there is a perpetual

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Classification of PAIS Framing (from [27])

need for workflow technologies to cope with processes that are not always

tightly-framed. Within the PAIS development lifecycle, a key question is

how loosely-framed business process models may be designed to achieve a

satisfactory level of both automation and flexibility. Given this question, it

can be observed that the effective design and enactment of flexible processes

calls for a different approach to encode process models.

Object modelling and process modelling are two examples of established

approaches to represent information systems [48] in general and PAIS in

particular. Each approach adopts a different perspective and has its own way

of thinking. Process models are usually structured in terms of an activity-

centric approach, which provides a holistic view on the functions (that are

executed by activities) in a process and their temporal order of execution to

1.2. PROBLEM STATEMENT 5

achieve a goal. Meanwhile, modelling an information system in terms of an

object-centric approach leads to the definition of object types, associations,

intra-object behaviour and inter-object interactions. The key difference in

an object-centric process modelling approach is that the behaviour relevant

to an object is captured within a process model, instead of being separated

from the process. In this thesis we investigate the possibility of marrying OO

modelling techniques with process modelling to define a generic object-centric

process modelling language.

1.2 Problem Statement

It can be observed that in most popular process modelling languages and

notations, objects are positioned as second-class citizens in process models.

This is evidenced by the situation where objects are placed around the edge

of an activity-centric process model. This positioning limits the role that

objects play in activity-centric process models, and leads to undesirable out-

comes such as forcing a process modeller to maintain two different types

of models (activity-based process models in addition to state-based object

models). In this thesis, we raise the positioning of objects to first-class cit-

izens by proposing a language that focuses on capturing object lifecycles in

process models.

Firstly, we must establish the differences between an activity-centric and

an object-centric representation of a process. The most notable difference be-

tween these approaches to process modelling lies in identifying the elements

that “come first”. Using the example given in Figure 1.3, an activity-centric

approach primarily consists of a sequence of tasks that belong to a case, e.g.

the “Prepare and Send Invitations” case consists of three tasks; a “Prepare

Template” task, a “Fill, Print and Pack” multiple instance task and a “Post

Invitations” task and state-based object lifecycles that provide input to and

accept output from tasks. An Invitation object (I) is an output of the “Pre-

pare Template” tasks and is an input/output to the “Post Invitations” task,

and a Single Invitation object (S) is an input/output of the “Fill, Print and

6 CHAPTER 1. INTRODUCTION

Pack” multiple instance task. We see that in activity-centric models tasks

change object state and that a weakly defined association exists between tasks

and objects since tasks are linked to object lifecycles.

Figure 1.3: Activity-centric and Object-centric Process Representations

This contrasts with an object-centric approach where the tasks in a pro-

cess belong to object lifecycles and object state is changed by tasks. In Fig-

ure 1.3, tasks that are related to an object are captured by that object. For

example, the “Prepare Template” and “Post Invitations” tasks belong to the

“Invitation Template” object and the “Fill, Print and Pack” task belongs to

the “Single Invitation” object. Tasks are grouped in an object rather than

as a sequence in a case, which represents a strongly defined association be-

tween objects and tasks. This represents an alternative method of designing

a process that gives a common criteria for the modularisation of a business

process and supporting data. A desirable outcome of this approach is to al-

low the potential for change. An object and related process logic are located

together and tasks are decoupled from inter-object communication, which

1.2. PROBLEM STATEMENT 7

allows the process logic of an individual object to be changed with minimal

side-effects on other objects or on the process at large.

Secondly, there are many issues in process modelling that centre around

process flexibility. An advantage of process modelling is the clarity with

which control-flow dependencies and relations between tasks in a process

are identified and defined. However, merely capturing task dependencies

and relations often does not paint the whole picture of control-flow in a

process. It is known that during the execution of a process, exceptions to

control-flow can occur [10]. Exceptions are caused by the need to deal with

work in an unforeseen manner. This is due to situations where case-by-case

variations are exposed during process enactment. Case-by-case variations

and exceptions commonly occur in domains where an attempt to employ

a standard approach to specifying the flow of work is inadequate. These

situations are often difficult to appropriately capture using a conventional

approach to process modelling without introducing artificial constructs or

work-arounds.

In such situations, work is created in an unplanned or on-demand manner.

This causes problems for modelling notations or tools that do not have the

capability or functionality to capture the fact that work can be created in

these ways, creating the potential to pollute the control-flow in an attempt

to support unplanned or on-demand work. Even worse, the correct type of

flexibility to use for a particular situation is difficult to define without the

ability to handle exceptions of particular types. Thus, a gap still exists in

process modelling to allow a satisfactory balance between process structure

and the ability to handle unplanned or on-demand work.

In this thesis we investigate how an object-centric approach can be used

for process modelling. An additional goal is to address existing issues on

the topic of process flexibility. Specifically, the problem addressed by this

research is to define and evaluate a meta-model for a process modelling

language to explicitly address the design of flexible process models.

8 CHAPTER 1. INTRODUCTION

1.3 Research Questions

In light of the above problems, the objective of this research project is to

address the following research questions:

• What are the key conceptual differences between object-centric and

activity-centric approaches to process modelling?

• What set of concepts are needed in order to model typical business

processes from the perspective of business objects and their lifecycles

and how do these concepts relate to one another?

• How do object-centric process modelling approaches compare with

activity-centric approaches in terms of their ability to capture typi-

cal business processes?

• What concepts need to be added into a basic object-centric process

modelling approach in order to support highly flexible processes, where

process participants can significantly alter the execution of a process?

The first question stems from the observation that the activity-centric

approach is presently a more popular choice for contemporary process mod-

elling, as evidenced by the wide-spread acceptance of process modelling no-

tations such as BPMN [66]. Thus, the key concepts of the object-centric

approach need to be identified since these object-centric concepts are not as

well understood. The second question takes the conceptual investigation into

the object-centric approach another step further and motivates the definition

of a syntax and a formal semantics of the approach to provide the founda-

tion for object-centric models. The third question highlights the need for

an in-depth comparison between the object-centric and activity-centric ap-

proaches in order to reveal the strengths, weaknesses and suitability of either

approach for process modelling. The final question is inspired by the need

to establish if and how an object-centric approach can enhance flexibility in

process models.

1.4. RESEARCH DESIGN 9

1.4 Research Design

The research design of this project was based on the guidelines of the design

science methodology by Hevner et al [36]. In accordance with the principles

of design science, the project was primarily centered around the development

of artifacts. Each artifact contributes in one of two ways to the project. An

artifact either provides a contribution to the body of knowledge (including

foundation artifacts such as theories, frameworks and methods) or provides

a contribution as an application to the appropriate environment (including

technological artifacts such as tools and applications).

The artifacts developed during the course of this project were constructed

to address the research questions and to provide a clearer understanding of

the object-centric process modelling approach through the development of a

generic object-centric process modelling language. Three key artifacts were

developed: 1) a meta-model for object-centric process models, 2) an object-

centric process modelling tool and, 3) a Coloured Petri Net (CPN). The

artifacts are not stand-alone and are related to each other in the following

ways. The meta-model defines the syntax for the modelling tool and in-

corporates a set of constructs to capture a set of patterns found in flexible

business processes. The meta-model is embodied in the modelling tool which

was tested using process models taken from industrial scenarios. A formali-

sation of the language was defined using a CPN which captures the semantics

of the approach and provides the ability to simulate process models exported

from the modelling tool.

The meta-model and the CPN are foundation artifacts that adds to the

rigor of the research project, whereas the modelling tool is a technological

artifact that adds to the relevance. A number of design evaluation meth-

ods identified in [36] were used to evaluate the artifacts. The meta-model

introduced in Chapter 3 was evaluated using an observational method by im-

plementing and testing the meta-model as the foundation upon which O-C

process models can be developed. The modelling tool discussed in Chapters 3

and 4 was evaluated using a structural testing method by implementing and

10 CHAPTER 1. INTRODUCTION

testing real-life models that were contributed by the industry partner using

the tool. The CPN in Chapter 5 was evaluated using simulation experiments

using data exported from the modelling tool. In Chapter 6 the expressive-

ness of the meta-model and modelling tool was evaluated by a static analysis

method that used the Revised Workflow Control-flow Patterns [83] and Flex-

ibility Patterns [89] as an evaluation framework.

A number of requirements were formulated to address the research ques-

tions, which are presented below as six criteria for a solution.

1. The language must be defined in terms of a meta-model. In

this thesis we aim to define an object-centric language to process mod-

elling and investigate applications of the language. The elements of the

approach and their associations should be captured as a meta-model

to provide the necessary syntax for object-centric process modelling.

2. The language must be flexible. The modelling language must

have the ability to capture scenarios that experience ad-hoc change

and case-by-case variation.

3. The language must have a graphical modelling notation. The

language must be visual, based on a syntax that is captured as a meta-

model that should aid the design of object-centric process models.

4. The language must be embodied in a modelling tool. The lan-

guage must be embodied in a modelling tool to provide a computer-

assisted way of constructing and validating flexible object-centric pro-

cess models.

5. The language must have a formal grounding. A formal founda-

tion serves the purpose of removing ambiguity regarding the runtime

behaviour of all the modelling elements of the language. On the ba-

sis of the formal foundation, the ability to reason about the language

and test process models developed using the language to validate be-

havioural correctness should be possible.

1.5. ORIGINAL CONTRIBUTIONS 11

6. The language must be ‘suitable’. The language must have the

ability to support recurring patterns of control-flow in process models

and have the ability to support a range of patterns of flexibility.

The criteria for a solution provide the means to evaluate the artifacts.

Each artifact was created and evaluated using an incremental development

cycle that consisted of three phases: 1) Design, 2) Implementation, and

3) Testing. The phases of the development cycle were repeated until each

artifact fulfilled the relevant criteria for a solution. The testing phase of

each artifact was completed using data and process models provided by the

industrial partner for this project, namely FlowConnect Pty Ltd (formerly

Shared Web Services). To evaluate the suitability of the approach for process

modelling, pattern-based evaluations of the approach were completed.

1.5 Original Contributions

The following is a list of original contributions that are presented in details

in this thesis:

• Proposal of a base meta-model for a object-centric process modelling

language with constructs that capture the classical workflow control-

flow patterns and a transformation procedure from an object-centric

model to a YAWL model, and are implemented in a modelling tool.

• An extension to the base model that allows recurrent patterns of flex-

ibility to be captured. Identification and documentation of recurring

patterns of flexibility that are included as extensions to the base meta-

model, and are implemented in a modelling tool.

• A formalisation of the language using the CPN notation, which enables

testing of object-centric model behaviour prior to deployment. The

CPN has been designed, implemented and tested using the CPN Tools

software.

12 CHAPTER 1. INTRODUCTION

1.6 Thesis Outline

This thesis is organised as follows:

Chapter 2 introduces related literature in the field of process modelling

and flexibility and positions the thesis in terms of the existing body of work

from these areas.

Chapter 3 introduces a base meta-model presented as an Object-Role

Model [32] for object-centric process models. The meta-model is used as the

basis for a transformation technique to activity-centric process models.

Chapter 4 presents an extended meta-model that allows flexibility to

be handled by capturing unplanned activities in an object-centric process

model, while maintaining other desirable properties of process models such

as maintaining process control and management.

Chapter 5 presents a formalisation that captures the operational se-

mantics of object-centric process models using the CPN notation [40].

Chapter 6 presents an evaluation of the object-centric approach which

was undertaken in terms of these two pattern-based frameworks: 1) Revised

Workflow Control-flow Patterns [83] and, 2) Taxonomy of Flexibility [89].

Chapter 7 brings closure to the thesis with an epilogue and a discussion

of topics for future work.

13

Chapter 2

Literature Review

This chapter positions the research project by reviewing literature related

to process management and object-oriented modelling. In Section 2.1 an

evaluation of literature from the field of process management is performed.

Section 2.2 compares approaches in the UML for modelling the behaviour

of objects and identifies where an extension to state machines can be pro-

vided. In Section 2.3, modelling notations that enable process modelling to

be combined with object behaviour modelling are investigated. This leads

into Section 2.4, where we look at existing approaches towards capturing

and managing flexibility in Process-Aware Information Systems and identify

an existing gap in previous work done on the topic of enabling flexibility in

process models.

2.1 Process Modelling

According to Davenport, processes can be understood to mean “a specific or-

dering of work activities across time and space, with a beginning, an end, and

clearly identified inputs and outputs: a structure for action” [22]. Process

modelling is performed by business analysts using modelling tools to depict

the real world processes undertaken by an organisation. These models rep-

resent processes from a variety of different scenarios within an organisation

14 CHAPTER 2. LITERATURE REVIEW

that have the means to communicate complex business functions in a format

that is intended to be understandable to people. A process model is often

used as a foundation to prescribe how things should be done and is essen-

tially a guideline of what the process should look like. The enacted process

is determined during the system development lifecycle [81].

Business process modelling is a very broad field of research and prac-

tice. This is due to the overwhelming number of modelling notations and

languages and that may be used for the purpose of process modelling, each

having a different definition in terms of modelling primitives and semantics.

Process modelling is an area that has applicability to both software engi-

neering and information systems management since a process model can be

used for at least two purposes: 1) As a communication tool, and 2) As an

executable software artifact. The list of benefits from modelling a business

process includes the possibility for process analysis, process improvement,

process automation and process reuse. However we focus on the involve-

ment of software artifacts in a Process-Aware Information System (PAIS),

concentrating on process modelling concerns related to process automation

(or execution) and as such, take the following definition of PAIS “a PAIS

is a software system that manages and executes operational processes involv-

ing people, applications, and/or information sources on the basis of process

models” from [27].

Many notations for business process modelling exist, each presenting dif-

ferent ways of capturing the same thing and having various levels of expres-

sive power. A small subset of these includes general modelling notations

that may be applied to modelling outside of business processes such as Petri

Nets, to more specialised modelling notations and languages such as Event-

driven Process Chains (EPCs) [65], Business Process Modelling Notation

(BPMN) [66], Business Process Execution Language (BPEL) [11] and Yet

Another Workflow Language (YAWL) [5].

The Business Process Modelling Notation (BPMN) [66] has become a

popular mainstream process modelling notation. BPMN makes a distinction

between private (internal), abstract (public) and collaboration (global) pro-

2.1. PROCESS MODELLING 15

cesses and aims to create a bridge between the design and implementation

of processes. Processes in BPMN consist of event, activity and decision flow

objects, connected by sequence flow, message flow and association message

objects, which are grouped into pools or lanes. BPMN models are not di-

rectly executable and must be mapped to an executable language such as

YAWL to facilitate implementation of a model captured using BPMN [23].

Commercial workflow management systems (WfMS) that are based upon

an activity-centric modelling approach (such as BPMN) are quite common

and include systems such as FileNet1, IBM WebSphere MQ Workflow2 and

Staffware3. Activity-centric standardisation efforts also exist such as XPDL

[113], which is a language that can capture both the graphical representation

and semantics of a BPMN diagram. However, it was noted and demonstrated

in [2] that the activity-centric approach is not the most desirable approach

for PAIS analysis and design in all circumstances. It was noted that the

assumption is commonly made that control-flow within a case is specified in

isolation from the remaining cases, resulting in several undesirable outcomes,

such as alteration of process specifications to fit a workflow management

system, disguising coordination within custom components and potential

sequentialisation of tasks that should be executed in parallel.

Some examples of work that has focussed on bridging the gap between

conceptual modelling of requirements and deployment of information sys-

tems has been contributed by Kueng et al [48] and Weber et al [106]. Kueng

et al discuss and demonstrate the application of a methodology to derive

the objects or artifacts (the building blocks of an information system) from

an analysis of goals, activities and logical dependencies in a problem domain

(the requirements). Weber et al tackle the same issue from a different per-

spective by focussing on a structured methodology (a lifecycle consisting of

a modelling phase followed by a configuration phase) for mapping the steps

(or activities) in process models to IT infrastructure. As has been pointed

out by Weber et al, the level of guidance provided by the BPM development

1http://www.filenet.com
2http://www-306.ibm.com/software/integration/wmqwf/
3http://www.staffware.com

16 CHAPTER 2. LITERATURE REVIEW

lifecycle for process implementation and enactment is usually presented on

a fairly abstract level [55].

These works motivate the application of rigorous development methods

to implement and enact process models by firstly recognising the importance

of model quality and correctness, and secondly, providing a methodology to

establish model quality and evaluate model correctness. In other work the

business-IT divide is seen as an issue concerned largely with undertaking

business transformation. Business transformation is the term given to an

initiative that seeks to align people, process and technology. An example of

a tool that provides decision-support to assist with business transformation

named the BT Workblench is introduced and the results of its application

to the business transformation is presented by Lee et al [54].

To provide a basis upon which meaningful comparisons could be drawn

between workflow products, a set of workflow patterns was proposed [6]. A

list of the original 20 control-flow patterns, grouped into six classes, is shown

in Figure 2.1. The original list of patterns has since been revised and now

includes 39 control-flow patterns [83] that can be used to comprehensively

evaluate the capabilities of process-aware information systems and process

modelling notations with an increasingly specific focus. The intention of the

workflow patterns is to provide insights into the comparative level of suitabil-

ity of a process modelling tool or system, while maintaining independence

from any particular vendor, process modelling language or notation.

Initially, patterns were developed that focused upon the control-flow per-

spective to describe the execution of tasks and their sequence of execution.

Workflow patterns that focus upon other perspectives have since been pro-

posed, such as the data perspective [82], resource perspective [86] and ex-

ception handling [84]. The wide applicability of the workflow patterns has

been demonstrated in a number of research efforts by conducting evalua-

tions of various process modelling languages in terms of the patterns; such

as UML Activity Diagrams [112], Business Modelling Language (BML) [110],

BPML [4], BPMN [66], BPEL [11] and Open Source Workflow Management

Systems [111].

2.1. PROCESS MODELLING 17

Figure 2.1: The 20 Original control-flow Patterns

This collection of pattern-based research has provided the possibility to

evaluate the capabilities of process modelling languages and notations to

form a basis for making meaningful comparisons between the level of func-

tionality that they provide. The results of these evaluations may then en-

able conclusions to be drawn regarding the comparative expressiveness of a

particular system or language. There now exists a substantial number of

pattern-based evaluations in the area of activity-centric modelling languages

and notations4. However from these evaluations it can be seen that the work-

flow patterns have largely been applied to process-aware information systems

and process modelling languages. An observation is that there are relatively

few such expressiveness results for object-centric approaches, leading us to

consider that the object-centric approach to process modelling is an area

worthy of further research.

4Workflow pattern self-evaluations of commercial systems are publicly available from
http://www.workflowpatterns.com

18 CHAPTER 2. LITERATURE REVIEW

2.2 Object Behaviour Modelling

Process models and software models both share notions of structure, be-

haviour and interaction. As such, it is possible to model processes using

the Unified Modelling Language (UML), a collection of modelling notations

that are intended to model the structure, behaviour and functions of soft-

ware systems [18]. The creators of the UML (Booch, Rumbaugh and Jacob-

son) consider that models are used for several purposes, that models contain

semantics and context on several levels of abstraction and that they are rep-

resentations of the essential aspects of a system. As might be expected, the

UML is strongly influenced by object-oriented modelling languages, as can

be seen by the existence of Class Diagrams and its various types of Collab-

oration Diagrams in the UML. However, UML also integrates a number of

notational elements that go beyond pure object-oriented modelling concepts.

In particular, UML Activity Diagrams are intended to support the modelling

of business processes from the perspective of activities, focussing on the flow

of control and data objects between them. Because object behaviour can

be modelled using a variety of notations in the UML, in this section we

examine the UML notations that are used to capture object behaviour and

interaction, including Activity Diagrams, State Machine Diagrams, Sequence

Diagrams and Interaction Diagrams.

An object behaviour model is a static specification of the control-flow

behaviour of one or more related classes that shows the effect of control-flow

behaviour on object data. In object-oriented (OO) modelling, a class is a

conceptual entity that represents either some real or virtual object. A class

encapsulates the characteristics of an object in terms of the object data and

behaviour, and these characteristics may be inherited and specialised from

a generalised class. For example, a Tree class inherits from the Plant class,

since a Tree is a specialisation of a Plant. OO modelling techniques promote

modularity (i.e. related concepts are grouped together in the same class) and

allows the possibility of reuse. Since OO focuses upon the definition of data

structures and object behaviour, there is an opportunity to address the lack

of process modelling support within object behaviour modelling notations.

2.2. OBJECT BEHAVIOUR MODELLING 19

Attempts have been made to model processes within objects, using Activ-

ity Diagrams in the UML [18], for example. UML Activity Diagrams (UML

ADs) are a way of capturing the process-related behaviour of one or more

objects by focussing on the activities that define object behaviour. Strong

points of UML ADs include support for sending and receiving messages at

the conceptual level, support for waiting and processing states and an ac-

tivity decomposition mechanism. Criticisms of UML ADs include a lack of

precise semantics and a lack of support for synchronisation patterns [26].

Figure 2.2: Example UML Activity Diagram

A UML AD is used to depict business logic flow and events that cause

actions to occur and decisions to be made [71]. UML ADs represent the

business and operational workflows of a system, for example the main activ-

ities of an order filling system as shown in Figure 2.2. The notions of state

and object are not well considered by UML ADs since the focus is on the

activities that are performed by a whole system, rather than on the building

blocks (and their states) from which the system is assembled. UML ADs

offer the notion of an edge called an object flow, but this represents data

flow between objects and does not represent control-flow between objects.

It has also been claimed that UML ADs are “not object-oriented”, due

to their focus on activities within business processes [46]. In addition, it

can be considered that UML ADs are not easily integrated with other object

behaviour modelling diagrams in the UML such as Sequence Diagrams, State

Machine Diagrams and Communication Diagrams, which means that UML

ADs can be criticised as having limited value for the purpose of object-

oriented modelling. Upon identifing the limitation that UML ADs (along

20 CHAPTER 2. LITERATURE REVIEW

with most other business process modelling languages) have with correctly

representing inter-process dependencies, Grossmann et al [31] proposed a

new link construct with four link types (disable, enable, invoke and cancel).

Even though we focus on object-centric models rather than activity-centric,

from our perspective this is interesting work since objects have the ability

to communicate in much the same manner.

Statecharts, as conceived by Harel, are a method for modelling system

behaviour [33]. Behaviour in a statechart is captured in terms of the set of

states and transitions that transfer control between states. Statecharts were

founded on the rationale that conventional state machine notations lead to a

potential explosion in the number of states in a model, increasing the amount

of difficulty to read and understand a state machine diagram. The statechart

notation introduces concepts such as state decompositions that contain other

states and/or state machines and support for parallel branches. State de-

compositions promote modularity and enhance the structure of a state-based

behaviour model. However, due to the lack of constructs for inter-process

communication and event sequencing, statecharts are an insufficient mod-

elling notation for process modelling.

State Machine Diagrams (based on statecharts) are seen as an appropri-

ate notation for modelling object behaviour due to the conceptual similarities

that are shared by state machine models and object behaviour such as mod-

ularity, concurrency and hierarchy. Object behaviour is commonly specified

using state machines, and as such the State Machine Diagram was adopted

by the Unified Modelling Language (UML) for exactly that purpose. A State

Machine Diagram allows a designer to model the set of allowable states and

transitions that can occur within a model element (e.g. a class) using the

state machine graphical notation. An example is shown in Figure 2.3.

2.2. OBJECT BEHAVIOUR MODELLING 21

Figure 2.3: Example UML State Machine Diagram

Control-flow and communication dependencies between state machines

are captured in a State Machine Diagram. However, State Machine Diagrams

are distinguished from process modelling approaches, and instead are used for

practical graphical modelling of object behaviour. What is not immediately

clear in a State Machine Diagram (especially in models of complex systems)

is the sequence of control-flow dependencies, or interactions between objects.

In the UML this gap is filled by additional types of modelling notations that

identify and capture different styles of communication between objects such

Sequence Diagrams and Communication Diagrams.

A Sequence Diagram is a form of interaction diagram that is reminis-

cent of a standards proposal by the International Telecommunications Union

called Message Sequence Charts [100]. The purpose of a Sequence Diagram

is to model the set of message sequences between objects in order to achieve

a goal for a specific scenario. Sequence Diagrams specify the sequences of in-

teractions between objects by capturing messages sent and received by each

object and the order in which each invocation can occur, shown for example

in Figure 2.4. A Sequence Diagram represents the lifecycle of the object that

it represents and shows the sequence of the creation of these objects but does

not contain details of data manipulation control-flow routing as a result of

such communication. In addition, a sequence diagram becomes difficult to

follow when modelling multiple branches of messages or handling exceptions.

Extensions to Sequence Diagrams can model control-flow, but these are less

22 CHAPTER 2. LITERATURE REVIEW

widely used because it tends to be the case that modelling using these di-

agrams once again explodes the problem space and leads to the creation of

large, unwieldy and overly complex diagrams.

Figure 2.4: Example UML Sequence Diagram

A few approaches have been investigated on the topic of synthesizing

object behaviour from scenarios by transformation from sequence diagrams

into state machines [17, 35]. These proposals are motivated by the need to

show the behaviour of an object (as a state machine) across scenarios (as se-

quence diagrams) for the purpose of moving from system analysis to system

design. In [35], the behaviour of a UML 2.0 State Machine is generated from

Sequence Diagram analysis by an algorithmic procedure. In [17], extensions

are proposed for both Sequence Diagrams and State Machines in order to

allow concurrency, hierarchy and quantification as well as an algorithm that

transforms scenarios (a collection of Sequence Diagrams) into a state ma-

chine. This provides two sets of object behaviour models. On one hand,

a Sequence Diagram captures individual scenarios involving many objects

whereas a State Machine Diagram captures individual behavioural constructs

of an object.

The UML is only one possible way of modelling object behaviour. An-

other example of an object-based framework that has a focus on processes

is the Object-Process Methodology (OPM) by Dori [25]. In an OPM model

the function, structure and behaviour of a system objects is represented by

2.2. OBJECT BEHAVIOUR MODELLING 23

objects, processes and states. An OPM model concentrates upon defining a

system in terms of objects and processes that are connected together with

structural or procedural links. A structural link (known as an association in

UML) connects an object to an object or and object to a process, whereas

a procedural link connects a state to a process to capture object behaviour

instead of structure. In OPM an object is a container for (and is described

by) one or more states, which are the static parts of a system. An object

changes state when a process is invoked, which is the dynamic part of a

system. OPM recognises that objects are the things that processes act upon

and unlike the UML, focuses the emphasis on modelling object function,

structure and behaviour using a single modelling perspective.

It is well-known that there exists a large number of object behaviour

modelling and specification methods. A comprehensive survey of structured

and object behaviour modelling methods was prepared by Wieringa [108].

Weiringa performed an overview of object behaviour modelling methods and

classified them in terms of external interaction and internal decomposition.

The survey reveals that there is observable convergence between OO mod-

elling techniques and methods, despite their sheer number. For example, a

number of methods share the ability to represent system decomposition into

objects, object operations and object communications – the main problem

is that these methods commonly do the same thing in a different way. A

discussion on the use of the UML as a software system specification method

is included, which points out that the UML way of decomposing a system

is overwhelmingly supported across different OO modelling methods (i.e.

decomposition must be represented by a class diagram, component behav-

ior by a statechart, and component communication by Sequence Diagrams

or Collaboration Diagrams). Further extensions to the UML are discour-

aged for the reason of its existing complexity and comprehensiveness, while

greater use of formal semantics is encouraged in the definition of modelling

techniques (specifically, the UML) to further improve the state-of-the-art of

object behaviour modelling.

24 CHAPTER 2. LITERATURE REVIEW

Finally, an investigation into the reasons why contemporary information

systems fail to implement processes on the basis of empirical studies focussed

on the implementation phase of the process development life cycle was con-

ducted by Mutschler et al [63]. Findings from this work led the authors

to indicate that “process orientation” in industry was scarce, leading to an

identifiable emerging need for “process-awareness”. The study looked at five

problem areas facing information systems in the automotive domain. These

were: 1) Process evolution, 2) Hard-coded process logic, 3) Complex software

customising, 4) Inadequate business functions, and 5) Missing process infor-

mation. Problems 1 to 3 are fundamental problems that occur during the

implementation phase, whereas problems 4 and 5 are related to requirements

analysis. The study suggests that organisations commonly do not attempt to

upgrade a successfully implemented information system to become process-

aware, a phenomenon also noticed by Reijers [78], which raises questions as

to the effectiveness of PAIS to handle real-world processes. This motivates

the need for PAIS to improve support for flexibility concerns in particular.

2.3 Process Modelling meets Object

Behaviour Modelling

Object technology is a mainstream approach for the automation of Informa-

tion Systems in general and PAIS in particular. Mainstream object-oriented

analysis and design practices (e.g. those based on UML) are based on con-

cepts of objects whose structure is captured as classes and whose behav-

ior and interactions are captured as state machines, sequence diagrams and

similar notations. On the other hand, recent trends have seen an uptake

of approaches to Information Systems engineering that treat processes as

a central concept throughout the development lifecycle. There are several

existing process modelling approaches which have sought to integrate pro-

cess modelling with object behaviour modelling for many purposes such as

improving the design of software systems, reasoning about behavioural cor-

rectness, enabling automation or improving process flexibility. In this section

2.3. PROCESS MODELLING MEETS OBJECT MODELLING 25

we identify and discuss a few notable examples of such integrated systems

and modelling notations.

OO design methodologies that use the UML to design and develop Process-

Aware Information Systems have been proposed such as OCoN [30, 109].

OCoN is an example of a PAIS modelling notation that identifies the prob-

lems associated with process automation when different methods, techniques

and tools are used for process modelling and software specification. As a

consequence, workflow models are often not in line with the structure of an

organisation. OCoN resolves this problem by proposing a modelling nota-

tion and an integrated approach to model a process and associated object

behaviour in the same model. This approach allows process analysts and

designers to obtain process-centric view of an OO model in addition to an

automated process model. Weske et al [107], Müller et al [59] and Johan-

nesson et al [41] also present examples of alternative object-centric process

modelling approaches.

An object-centric process modelling language can focus on capturing pro-

cess control-flow behaviour and may not address both data and control-flow

perspectives in the same model. An example of such a language is Pro-

clets [2], which is a formal (Petri net-based) model for representing object-

based workflows in terms of collections of modules, each of which captures

control-flow behaviour (but not data) of a class of objects. Proclets provide

a formal basis for reasoning about behavioural correctness in object-based

workflows, to identify deadlocks in particular. An area of research that has

recently emerged is the artifact-centric approach to process modelling [13],

based on earlier work reported in [64]. An artifact-centric model explicitly

recognises the intertwined relationship between data (objects) and control-

flow in a process, and advocates a modularisation of processes around arti-

facts (which essentially can be considered as business objects).

Previous work in this area has also been reported by Hull et al [38] that

demonstrates an approach to workflow modelling by combining declarative

workflow and process artifacts. Hull also outlined four dimensions for future

research into artifact-centric business process models, which are: 1) iden-

26 CHAPTER 2. LITERATURE REVIEW

tification of business artifacts, 2) artifact lifecycle modelling techniques, 3)

service and task modelling and, 4) definition of associations linking artifacts

to services [37]. The four dimensions are meant to emphasis the separation

of the main concerns of artifact-centric models while allowing the possibility

to cater for both procedural and declarative process models, thus enabling

the approach to capture both rigid and flexible structures.

Artifact-Centered Operational Modelling (ACOM) is a methodology in-

troduced by systems designers at IBM to develop process-based models and

systems based on artifact lifecycles [12]. ACOM focuses on defining the op-

erational goals of an organisation, such as “processing a purchase order”,

by linking operational goals to artifacts. An artifact lifecycle is specified in

terms of artifact tasks. An artifact task involves bringing together informa-

tion from one or more artifacts so that the task can be completed. Com-

pletion of a task results in a change of the business state, although artifact

tasks have no knowledge of the business state or indeed of the tasks that pre-

cede or follow the tasks. Instead, artifacts take care of coordination between

tasks and contain the business state. Model-driven Business Transformation

(MDBT) [49] is a method of transforming an artifact-centric model into an

executable system by mapping business operation models into a solution de-

sign model. Combining the ACOM approach with the MDBT method shows

how the idea of involving artifacts with process models provides a central

step towards realising the vision of Model-Driven Architectures.

Other research proposals such as WASA2 [103] and TriGSflow [42] have

presented methods how object-centric workflow systems may handle dynamic

flexibility and perform database transactions. It can be seen from these pro-

posals that object-centric systems may inherit limitations from being tied

to implementation technologies, such as CORBA [67] in the case of WASA2
and the Gemstone OODBMS5 in the case of TriGSflow . Additionally, it

should be noted that object-centric systems are not found in the commercial

marketplace as commonly as activity-centric systems. Examples of these

5http://www.gemstone.com

2.3. PROCESS MODELLING MEETS OBJECT MODELLING 27

commercial systems include Visuera6, Bonita7 and Metocube8. Another in-

tegrated approach is the Business State Machines model supported by IBM

Websphere Process Server [39], which relies on a paradigm based on commu-

nicating state machines. It should also be noted that an integrated approach

is not to be confused with types of process management paradigms that con-

sist of an API that happens to be encoded in a particular object-oriented

language (e.g. jBPM9).

Kim et al [45] has proposed a design methodology for process models

from a slightly different perspective. The approach by Kim links UML di-

agrams to phases of the process development lifecycle to produce a schema

as output at the conclusion of the lifecycle. There exists a possibility to

extend this methodology to allow process analysts and designers to create

an activity-centric view of an object-centric schema by means of providing

transformations between object-centric and activity-centric models.

There are many existing proposals that have sought to address the ob-

servable mismatch between object models and process models by way of

transforming one approach to the other. Here we look at a few notable

proposals made on this topic. OO modelling approaches have been used as

the base model for process mapping. An architecture for mapping between

OO and activity-centric process modelling approaches has been proposed by

Snoeck et al [96]. Object associations and business rules are captured using

object-relationship diagrams and an object-event table models the behaviour

of domain objects.

Along much the same lines, a proposal to unify the views of state and

behaviour has been proposed by Wagner that formalises the associations

between agents, objects and relationships in a process model [104]. Wag-

ner introduces a modelling notation that combines UML Activity Diagrams

with statecharts to achieve the ability to capture both state and behaviour

in a single model. Aspects that appear to be missing from this proposal

6www.visuera.com
7bonita.objectweb.org
8www.metocube.com
9www.jboss.org/jbossjbpm/

28 CHAPTER 2. LITERATURE REVIEW

includes a consideration of the various kinds of control-flow splits and joins

between objects. This control-flow information is necessary for process model

specifications and this information should be derived directly from an object-

oriented analysis.

Küster et al [52] define a transformation from object behaviour models to

process models. In this proposal object behaviour models (called object life-

cycles) are represented as state machines and process models are represented

as UML activity diagrams. In the meta-model considered in Küster et al,

synchronisation dependencies are captured as synchronisation events which

are akin to synchronous message exchanges between one object of one type

and one object of another type. However, Mohan et al [57] suggest that the

overheads involved in the deployment of e-commerce platforms forces com-

panies to adjust their business processes to conform with the system rather

than modifying the system to match the preferred business processes and

propose a tool called FlexFlow to model applications using statecharts. This

is a motivation for a state machine-based (object-based) approach to model,

enact and control business processes within applications.

The Mentor project proposed an approach to combine state charts and

activity charts to develop workflow specifications [62]. Mentor is an ar-

chitecture that is based upon the execution of state and activity charts.

This project presented an algorithm to perform transformations between cen-

tralised and distributed representations of a workflow by converting specifi-

cations from other languages into state and activity charts then partitioning

activities in the workflow into sub-workflows, thereby “clustering” related

activities together. Such a method is of interest when considering how an

activity-centric (or globalised) model could possibly be converted into an

equivalent object-centric (or localised) model.

Kumaran et al [50] reports on an approach to link business entities with

activity-centric process models for the purposes of providing an alternative

method of process automation by connecting business processes (control-

flow) to business entities (data). This research suggests that the following

properties should be exhibited by information entities (or objects): 1) Enti-

2.3. PROCESS MODELLING MEETS OBJECT MODELLING 29

ties are self-describing, 2) Entities are organised into non-overlapping process

partitions, and 3) Entities are decoupled to allow independent evolution.

Loos and Allweyer [56] have shown how to link EPC with several UML

modelling notations including state machines, activity diagrams, use cases,

sequence and collaboration diagrams. This work provided an early exam-

ple of how business process models could be used as a starting point for

the specification of object behaviour, by demonstrating how the high-level

control-flow captured by EPC can be merged with systems modelling nota-

tions that more closely resemble an implementation. Several reports have

been made on linking Petri nets to either BPM or object-oriented models,

in which process structures are commonly derived in terms of Petri nets

and then modularised into individual sub-nets/pages or objects [53, 58, 20].

These proposals show the applicability of Petri nets in the domains of BPM

and OO modelling.

In Figure 2.5 we categorise several modelling tools from research and in-

dustry mentioned in this chapter into a spectrum of modelling approaches,

represented by tools that can be classified along a spectrum of modelling ap-

proaches that has two extremes: activity-centric and object-centric. These

two approaches have fundamental differences towards process decomposi-

tion. At one end of the spectrum is the activity-centric approach which has

an emphasis on control-flow aspects of a process, meaning that functions and

control-flow between functions are used as the main driver for decomposi-

tion of a process. Some tools that represent this approach include YAWL,

BPMN and TIBCO Business Studio. While use of the activity-centric ap-

proach is currently more popular (i.e. usage indicators of BPMN are report-

ing widespread uptake), it has been noted that this modelling approach tends

to have the effect of “flattening” a process since they are unable to account

for the mix of perspectives that exist in a real process [2].

At the other end of the spectrum is the object-centric approach where

a process is decomposed into a hierarchy of modules, according to the data

or artifacts that belong to the process. Modularisation has been identified

as a decomposition technique that improves flexibility and comprehensibil-

30 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Business Process Modelling Spectrum

ity while shortening development time through module reuse [68]. Tools

that represent this approach include BML [110], BSM [39], OCoN [109] and

COREPROSim [60]. There are also some tools that are found to exist in

the middle of the spectrum, such as FLOWer [8] and the Agent-Object-

Relationship Modeling Language (AORML) [104]. These tools do not use

a fully activity-centric approach, or a totally object-centric approach, but

rather tend to be based on other modelling paradigms such as case handling,

which combines aspects from both activity-centric and object-centric mod-

elling approaches. The spectrum of modelling approaches shows us that a

variety of approaches exist that are essentially used for the same purpose,

2.4. PROCESS FLEXIBILITY 31

but allows us to point out that the fundamental drivers of each approach are

quite different.

Following a review of related literature in the area of process modelling

we can identify several current gaps that exist in the body of knowledge.

Overall, it can be seen that an object-centric approach to process modelling

has not received as much attention as the more conventional activity-centric

approach. However, there are several proposals that have identified the po-

tential role that objects might play in improving the state-of-the-art in pro-

cess modelling. This has also been recognised by industry to a certain extent

with the appearance of commercial tools that capture and implement pro-

cesses on the basis of object lifecycle modelling and execution. There exists

the opportunity to extend this body of work to integrate concepts found in

the software engineering Design Patterns [28] concerned with the creation

of sub-processes (or objects), along with some more advanced synchroni-

sation constructs that are not found in the revised workflow control-flow

patterns [83] to do with synchronisation after having received a threshold

number (maybe also in combination with particular object types) of object

lifecycle completions. Literature in the area of process flexibility is reviewed

in the next section to identify some gaps in research with respect to handling

flexibility in object-centric process models.

2.4 Process Flexibility

It has been recognised in the literature for some time that Process-Aware

Information Systems, such as traditional Workflow Management Systems,

often have difficulties supporting dynamic business processes because they

rely on modelling paradigms that tend to impose a given execution order

between activities and decision points. This fact has been discussed in the

literature for some time which has resulted in many proposals for flexible

workflow languages and tools (e.g. [16, 34, 107, 69, 105, 21]).

Other OO or object-based process modelling approaches have been pro-

posed by Küster et al [52] and Wirtz et al [109]. However, these latter

32 CHAPTER 2. LITERATURE REVIEW

proposals are not motivated specifically by flexibility requirements. For in-

stance, the work of Küster et al is instead motivated by compliance manage-

ment. An alternative paradigm to OO process modelling is case handling [8],

a paradigm for business process support where the primary focus is on the

data supporting a system rather than purely on capturing control-flow be-

haviour. Snowdon et al observes that achieving flexibility is tightly linked to

relaxing control and suggests that shifting focus away from pure control-flow

can lead to less restrictive systems [97].

Bider and Khomyakov have motivated the use of a state-based approach

to achieve process flexibility [15, 14]. Related states are grouped together

with relevant laws (business rules) and connectors (external dependencies)

to form an object. The argument given for a state-based approach depends

on the ability to abstract away from ordering of activities to focus on the

higher-level organisational goals. A goal is achieved when the final state(s)

of an object are reached, otherwise progress towards achieving a goal is still

being made. The focus on goals and states in this approach represents a

departure from how process models are typically designed.

From the literature it can be seen that there is a significant amount

of existing research related to flexible process management. Research in

this field has focused on dealing with runtime deviations with respect to

the expected execution of a process model (dynamic change). A proposal

consisting of five criteria for characterizing dynamic change [80] shed more

light into the shortcomings of conventional process management systems

with respect to flexible execution, and enabled comparative evaluation of the

change-handling capabilities of a number of process management systems.

Weber et al [105] built on top of this work by defining 17 change patterns.

2.4.1 Observations on Flexibility

Work by Klingemann observed that true benefits are gained from flexibil-

ity in process models when flexibility is controlled [47], an observation we

agree with. To achieve flexibility in process models Klingemann classified

2.4. PROCESS FLEXIBILITY 33

three flexible element types; alternative activities, non-vital activities and

optional execution order. There is room remaining on top of the work of

Klingemann to extend his classification to cater for additional types of pro-

cess intervention that can deal with unplanned activities. In addition to

catering for different types of flexible elements, there should be alignment

between computerised and real-world processes. This position is shared by

work done on the ADEPTflex [76] project and Borch et al [19].

Snowdon et al observes that achieving flexibility is tightly linked to relax-

ing control and suggests that shifting focus away from pure control-flow can

lead to less restrictive systems [97]. In work done by Sadiq et al [87], it was

observed that several dimensions of change may affect executing instances of

a process, namely dynamism (the ability to evolve), adaptability (the ability

to react) and flexibility (the ability to defer process specification until run-

time). To handle these dimensions of change, a framework called “pockets of

flexibility” was proposed to define flexible workflow specifications that can

be tailored to runtime circumstances. Recent work by Seidel et al has pro-

posed a conceptual framework for information retrieval to support pockets of

flexibility and presents how this approach can be practically applied within

highly creative, adhoc scenarios such as movie production [93].

In the field of workflow escalation, Georgakopoulos et al [29] outline an

approach to support dynamic changes in workflows in emergent situations

(e.g. for rescue operations during natural disasters). Their focus is on en-

abling decision makers to escalate tasks at runtime by changing the course

of the workflow execution as required, while retaining some level of con-

trol. These concepts promote a balance between structure and flexibility.

In contrast, our work focuses on capturing runtime variability of workflows

at design-time, instead of escalation. In addition, neither the approach pro-

posed by Sadiq et al or Georgakopoulos et al give any indication of the role

that business objects might play in their proposals.

34 CHAPTER 2. LITERATURE REVIEW

2.4.2 Taxonomy of Process Flexibility

A Taxonomy of Flexibility proposed by Schonenberg et al [89] identifies and

defines four types of flexibility in processes. These types are Flexibility by

Design, Flexibility by Change, Flexibility by Deviation and Flexibility by

Underspecification. An explanation of each type of flexibility is listed below:

• Flexibility by Design: for handling anticipated changes in the op-

erating environment, where supporting strategies can be defined at

design-time. Aspects of a notation or system that are related to flexi-

bility by design include the ability to fully support parallelism, choice,

iteration, interleaving, multiple instances or cancellation.

• Flexibility by Deviation: for handling occasional unforeseen be-

haviour, where differences with the expected behaviour are minimal.

This includes the ability to perform actions on tasks such as Undo,

Redo, Skip, Create additional instance or Invoke task.

• Flexibility by Underspecification: for handling anticipated changes

in the operating environment, where strategies cannot be defined at

design-time, because the final strategy is not known in advance or

is not generally applicable. This may be achieved in several differ-

ent ways, including late binding (at design-time), late modelling (at

runtime), before placeholder execution, at placeholder execution, with

static realisation or with dynamic realisation.

• Flexibility by Change: either for handling occasional unforeseen

behaviour, where differences require process adaptations, or for han-

dling permanent unforeseen behaviour. Flexibility by change can be

further divided into two sub-classifications: momentary change (at the

instance level) or evolutionary change (at the type level).

As shown in Figure 2.6, the types of flexibility in this taxonomy can be

characterised by looking at two key process model attributes. Firstly, a pro-

cess model specification is either partial or full, and secondly, flexibility can

2.4. PROCESS FLEXIBILITY 35

be applied at either design-time or runtime. Characterising process models

in this way allows us to see that each type of flexibility covers a different

cross-section of process models. For example, a partially specified process

model at design-time requires Flexibility by Underspecification (late bind-

ing) whereas a fully specified process model requires Flexibility by Design.

Figure 2.6: Spectrum of Flexibility Types, inspired by [89]

This taxonomy reveals a characteristic that, in general, a particular pro-

cess modelling notation provides a good level of support for flexibility by

design and one other type of flexibility. A potential field for investigation

is to evaluate whether a combined process modelling and object behaviour

modelling approach can achieve a greater level of support for the flexibility

patterns than has otherwise been observed in other process modelling nota-

tions. In Figure 2.6, a set of flexible modelling languages have been overlaid

to the taxonomy to indicate which types of flexibility they support. The list

of modelling languages is Declare, COREPROSim , ADEPTflex , YAWL

36 CHAPTER 2. LITERATURE REVIEW

Worklets, Flexibility as a Service (FAAS), Product-Based Workflow Design

(PBWD), FLOWer and work by Saidani et al.

Declare

Declare [70] is an example of a constraint-based workflow modelling

tool that describes loosely structured processes, which is achieved in De-

clare by using a declarative modelling approach. This approach to work-

flow modelling grants a process designer the ability to focus on the ‘what’

rather than the ‘how’. The strength of this approach is that model con-

straints can be added or relaxed (made optional) where needed. This allows

a process expressed with Declare to capture several types of flexibility,

in particular flexibility by deviation and flexibility by change. Support for

flexibility by deviation is achieved by allowing constraints to be specified

as optional constraints, thereby enabling control over constraint violation.

Support for flexibility by change is achieved by allowing both instance and

type level changes at any specified time during process execution. However,

Declare is not suitable for modelling all types of processes, large processes

and highly constrained processes in particular, due to the high number of

constraints which results in a model that is difficult to understand. Perfor-

mance issues have also been identified with this approach.

COREPROSim

COREPROSim [60] is an example of a process modelling tool that pro-

vides a way of modelling a data-driven approach for process specification.

The approach corresponds to flexibility by change. COREPROSim achieves

flexibility by change by translating information regarding the structure of

a product to an adaptation of the process structure. The COREPROSim
process model can then adapt to changes in the product structure, either

static changes at design-time or on-the-fly changes that can occur at runtime,

while restricting process adaptations that would lead to violating soundness

properties such as deadlock. This approach, while very interesting, has mul-

tiplicity constraint limitations between objects. In particular, the notion

2.4. PROCESS FLEXIBILITY 37

of an “external state transition” between object lifecycles can only be ap-

plied to circumstances where there exists one parent object instance and one

child object instance (representing a 1..1 relation), resulting in large product

structure models to capture every dependency between each object.

ADEPTflex

ADEPTflex [76, 77] is an example of an adaptive workflow language that

allows runtime change to both running instances and the workflow schema to

omit, insert or change activities. ADEPT supports flexibility by design and

flexibility by change. Elements of flexibility by design that are supported

include parallelism, choice and iteration, while flexibility by change is sup-

ported by allowing change to occur at any time to an executing instance.

However, all tasks in ADEPT are mandatory and there is no possibility to

specify optional tasks (as opposed to specifying optional task parameters).

Also, additional task instances cannot be created. While presenting a vari-

ety of flexibility options to workflow instances, a workflow schema created

in ADEPT still represents a prescriptive way of working.

YAWL Worklets

YAWL Worklets [9] are an approach that allows dynamic evolution of

workflow specifications, through a mechanism that handles exceptions as

they occur in a running YAWL process model. A worklet is a sub-process

that may be dynamically called during an instance of a process to provide

a method to deviate from the planned way to complete a process. Worklets

have the advantage that the original process specification does not need to

be redesigned in order to cope with unforeseen circumstances. This approach

enables a YAWL specification to support some flexibility by underspecifica-

tion patterns since it allows late binding, late modelling and dynamic place-

holding of the nodes from where a worklet can be enacted. However, a YAWL

Worklet behaves somewhat like a black-box because it cannot communicate

during its lifecycle with the parent process that started it. In addition, after

starting a Worklet the parent process waits at the same point for it to finish

38 CHAPTER 2. LITERATURE REVIEW

in the same manner as a task. These represent control-flow limitations that

should be made possible to overcome.

FAAS

The FAAS proposal [1] is a novel structured approach inspired by the

taxonomy of flexibility that enables a process designer to combine the flex-

ibility aspects of three process modelling approaches, namely YAWL [5],

Declare [70] and YAWL Worklets [9]. The reasoning behind combining

these approaches is gain the relative benefits offered by each approach. At

the implementation level, this approach allows a process designer to take

advantage of accessing the flexible aspects of these different technologies by

arbitrarily nesting them. Thus, a range of flexibility types can be claimed

to be supported. An interesting approach worth investigating would be to

evaluate whether a similar spectrum of flexibility types could be supported

without the need for combining different technologies since each type of tech-

nology has its own approach to workflow specification, which steepens the

complexity of process design due to the need to know (and combine) multiple

languages rather than a single language.

PBWD

PBWD [79, 101] is an approach to specify a process model in accordance

with the structure of a product (its “bill-of-material”). A product in this

context may be either a physical good (such as a car) or a service (such

as awarding unemployment benefits). PBWD is a revolutionary approach to

process modelling, since a cleansheet approach to process design, rather than

an evolutionary approach. Flexibility in the design of a product data model

in PBWD is achieved by leaving the exact path of execution of a process un-

specified until runtime, meaning that PBWD supports elements of flexibility

by design and flexibility by underspecification. However, PBWD focuses on

inferring the high-level structure of a business process, and not its detailed

behaviour. In particular, the PBWD approach does not consider the issue of

describing the behaviour of product lifecycles in an executable manner (e.g.

2.4. PROCESS FLEXIBILITY 39

as state machines), and automatically generating business process models

from such lifecycles.

FLOWer

FLOWer [8] is a tool provided by a company called Pallas-Athena. FLOWer

is an example of a case handling system, where the path of process execu-

tion is loosely defined. In case handling the main concern is instead shared

between appropriate resource allocation to enabled tasks and obtaining suf-

ficient data to complete a case (also known as a process instance). The

result is that the focus of FLOWer process models is upon what can be done

rather than what should be done to complete a case. In terms of the flexibil-

ity patterns, case handling is a very flexible approach due to its support for

elements of both flexibility by design and flexibility by deviation (skip, undo,

redo). However, FLOWer does not support flexibility by underspecification

which means that unplanned tasks cannot be brought into the case.

Saidani et al

Issues related to delegation and role-based constraints that must be han-

dled by flexible process models have been investigated by Saidani and Nur-

can [88]. This work gives insight into delegation (flexibility by underspecifi-

cation) and role-based constraints (flexibility by change). To support such

types of flexibility, a meta-model is proposed that addresses the complexity

involved in balancing concerns on three levels: 1) control-flow flexibility, 2)

resources involved in a process and 3) constraints that must at times be

enforced by a process. Particular recognition is given to delegation, since

the act of delegating (while often a beneficial flexible tool) can cause more

problems than desired. To alleviate these potential problems, limitations are

proposed on delegation that aim to restrict the ability of a role to delegate

within certain control-flow and role-based constraints.

As we have witnessed from the literature presented in this section, en-

abling flexibility is a current concern in process modelling. There exists

40 CHAPTER 2. LITERATURE REVIEW

several different proposals that have analysed and classified types of flexibil-

ity that affect PAIS modelling and execution. The intent of the thesis is to

demonstrate support for multiple aspects of flexibility rather than provide

support for any particular flexibility type. From the literature we can see

different approaches tend to strongly address certain groups of patterns of

flexibility while only weakly addressing others. In this work we seek to sup-

port several different types of flexibility from different categories and achieve

this by using one process modelling approach.

2.5 Summary and Discussion

As introduced and discussed in Chapter 1, the business-IT divide is an on-

going problem facing the development and implementation of PAIS. Over

time, several approaches have contributed to “closing the gap”, resulting in

the present-day situation where the discipline of Business Process Manage-

ment and Business Process Modelling is positioned to provide the next wave

of (process-aware) information systems with the capability of improving the

alignment between business and IT. In this context, it is interesting to imag-

ine the possibilities that may emerge as a result of combining process models

(how an organisation does things) with object models (the building blocks

of an information system).

In this chapter, a review of the literature that focussed on object-centric

process modelling approaches and process flexibility was presented. We have

identified object-centric process modelling as a worthy topic of further re-

search for the following reasons: 1) There appears to be benefits to be gained

from further work into object-centric process modelling, notably in the areas

of ad-hoc multiple instance creation and synchronisation, and 2) Flexibility

in process models could benefit from taking on an object-centric approach.

In the next chapter, we take the first step of this research project by

introducing a meta-model for object-centric process modelling to provide the

foundation for investigating the research problems identified in Chapter 1.

41

Chapter 3

A Generic Object-centric

Process Modelling Meta-Model

In this chapter we introduce the abstract syntax of a generic object-centric

language for process modelling. The syntax is defined by a meta-model de-

fined using the Object Role Modelling (ORM) [32] notation. A proposed no-

tation for the object-centric modelling language is presented as a way of cap-

turing design-time information in a process model using the OO paradigm.

An application of the notation is demonstrated using an example taken from

an industrial scenario of a maintenance process for gas pipelines. This serves

to illustrate how control-flow behaviour in a process model can be captured

by objects and their associations. We then investigate the relationship be-

tween this object-centric meta-model and a mainstream activity-centric pro-

cess modeling language, namely YAWL, by defining a transformation be-

tween the former and the latter. As a result of this investigation, we are

able to demonstrate how object-centric meta-models can be transformed

into activity-centric ones. This chapter is based on work published in [73]

and [74].

42 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

3.1 Object Behaviour Meta-Model

Object-oriented modelling is a paradigm that allows one to document the

structural, behavioural and creational aspects of a system in an object-

oriented way. In this section we will focus upon extracting the salient aspects

of an object behaviour meta-model that allows a model designer to capture

a process using objects. To capture the syntax of object models we present

a meta-model inspired by several concepts that are found in the FlowCon-

nect system developed by FlowConnect Pty Ltd [94], the industry partner

for this project. FlowConnect is a system that supports the development of

software applications based directly on executable object behaviour models,

which provides us with an attractive source meta-model for two reasons.

Firstly, the FlowConnect system seamlessly integrates concepts from

UML state diagrams with concepts from UML sequence diagrams, allow-

ing us to capture both intra-object and inter-object behaviour in the same

model. It is advantageous to capture intra-object and inter-object behaviour

in the same model in order to get a better perspective of object control-

flow relations, state machine behaviour and dependencies. Secondly, the

FlowConnect-based meta-model is a representative of other object-oriented

meta-models that are also founded on a state-based paradigm (e.g. Pro-

clets [2], Merode [96], OCoN [109]), thus it can be claimed that the results

presented here may be adapted to other meta-models. The meta-model is

presented as an ORM in Figure 3.1.

We now describe in details the characteristics of each element and the

relationships between elements in the meta-model. At the highest level in

the meta-model an object model is a container for all classes in an object-

centric model. The object model contains one or more classes that contain

one or more state machines. We define a class as a cluster of state ma-

chines that share some common context. An example of shared context are

states that are all predominantly involved in a Primary Inspection, which are

grouped together to allow the common concepts contained within a Primary

Inspection class to take shape.

3.1. OBJECT BEHAVIOUR META-MODEL 43

Figure 3.1: Object Behaviour Meta-Model in ORM

44 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

A state machine contains an initial state, a final state, and one or more

states. The initial and final states are pseudo-states that explicitly indicate

where the beginning and end of a state machine lifecycle are found. A state

machine has exactly one initial state and exactly one final state. The initial

state is the only state in a state machine that has no incoming transition.

Likewise, the final state is the only state that has no outgoing transition.

When an instance of a state machine is created, the execution begins in the

initial state. When a final state is exited, the state machine instance that

the final state belongs to is terminated. Other states are used to define each

step in a state machine lifecycle. A state represents a moment in a state

machine lifecycle that can be distinguished and given a unique name, for

example, a series of states in the state machine of a primary inspection are

Report Distributed, Data Loaded or Structural Strength Tested.

A transition connects the output of a state (the source state) to the in-

put of another state (the target state) in the same state machine. Transitions

may have an optional Event-Condition-Action (ECA) rule. The occurrence

of an event will cause the transition labeled by that event to be performed.

A transition can have a condition associated with it that must be satisfied

before the transition can occur. When a transition is performed it may also

execute an action.

Each state contains three sub-states; a pre-gateway, processing sub-

state and post-gateway, as shown in Figure 3.2. The processing sub-state

is where zero or more atomic task instances are started and completed. The

pre- and post-gateways are the entry and exit points of the processing sub-

state respectively. The pre-gateway is entered after a transition has been

performed to the state that it belongs to. The processing sub-state is entered

after the pre-gateway is entered. Lastly, the post-gateway is entered after

the processing sub-state has exited.

In our generic meta-model the processing sub-state is a place from which

zero or more atomic tasks are enabled. After control-flow enters this sub-

state the tasks that are enabled by that state may then be started, executed

and completed. A task can be a mandatory task, which means that it is

3.1. OBJECT BEHAVIOUR META-MODEL 45

Figure 3.2: Pre-Gateway, Processing Sub-State and Post-Gateway

necessary for the task to have been completed before the sub-state can be

exited. Since a state can have more than one task, all mandatory tasks

within a state must be completed before the sub-state can be exited.

Conversely, tasks that are not mandatory are optional tasks. Optional

tasks are not required to be completed before exiting the processing sub-

state. If the sub-state is exited and optional tasks have not been completed,

then these optional tasks remain active and can still be completed, but the

completion of an optional task has no effect on the control-flow. A task can

be a multiple instance task, which means that there are a minimum number

of task instances that must be completed, a threshold number of instances

that may be enough to consider the multiple instance task is completed and

a maximum number of instances of that task which may be completed. A

multiple instance task can also be mandatory, meaning that all instances of

the task that were started must be completed before the processing sub-state

can be exited.

The pre-gateway and post-gateway of a state both have an input part and

an output part. For the purpose of enabling inter-object communication

and synchronisation between state machines, a gateway can send signals

to other state gateways and/or receive (wait for) signals from other state

gateways. The input part is the target of zero-to-many incoming signals and

the output part is the source of zero-to-many outgoing signals. The input

and output parts of a gateway are given an ordering. The ordering depends

upon the gateway configuration, which is either optimistic or pessimistic.

46 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

As shown in Figure 3.3, an optimistic gateway configuration has the output

part before the input part, meaning that it sends signals before waiting for

signals whereas a pessimistic gateway configuration has the input part before

the output part, meaning that it waits to receive before sending.

Figure 3.3: Optimistic and Pessimistic Gateways

These gateway configuration options follow a similar approach to what

was reported by work on the OR-Join by Wynn et al [114] although our

definition of optimism and pessimism is slightly different since in this case

a gateway is more than a join; it is a combination of a join and a split with

a configuration that specifies the order of the join and the split. To clarify,

there are four possible optimistic and pessimistic gateway configurations for

a state which are presented in Figure 3.4.

The input part of a pre- or post-gateway has a gateway mode that

is used to specify the control-flow blocking behaviour of a gateway. The

gateway modes are wait-for-one, wait-for-rel and wait-for-all. The wait-

for-one mode specifies that the gateway should release control-flow after

receiving a single signal from any source. The wait-for-rel mode specifies

that the gateway should wait for all signals from any relationship between

two state machines. The wait-for-rel mode is used when a gateway receives

signals from two or more state machine types and control-flow is released

when all instances of any state machine type have sent a signal. The wait-for-

all mode specifies that the gateway will wait for all signals that are expected

3.1. OBJECT BEHAVIOUR META-MODEL 47

Figure 3.4: Optimistic and Pessimistic Gateway Configurations

from all sources that are connected to that gateway. The wait-for-all mode

has a special caveat, since if a wait-for-all gateway is waiting for zero signals

(no state machine instances that send a signal to the gateway were created),

control-flow will be released even though no signals were received.

48 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

In the meta-model there are three different signal types. A signal es-

tablishes a one-way connection between state gateways that belong to two

different state machines. In contrast to a transition, a signal does not have

an ECA rule meaning that it is sent when control-flow enters the output

part of a gateway. There are three types of signal that can link two gate-

ways: spawn (i.e. creates a new state machine), finish (i.e. terminates a

state machine) and message (i.e. non-terminating). A signal has a lower

and upper bound, which are the minimum and maximum number of times

it can be sent, i.e. a spawn signal with a lower bound of 1 and upper bound

of 5 will create a minimum of 1 object instance and a maximum of 5 object

instances. Figure 3.5 is an illustrative example that shows a possible (yet

unrealistic) way that the pre-and post-gateways of two states may be con-

nected by four message signals. State 1 has an optimistic pre-gateway and

optimistic post-gateway and State 2 has a pessimistic pre-gateway and pes-

simistic post-gateway. From this it can be derived that several combinations

of pre- and post-gateway configurations exist that could cause a deadlock.

For example, if State 1 had a pessimistic pre-gateway instead of optimistic,

then deadlock will occur because both pre-gateways of State 1 and State 2

will wait in the input part to receive a signal that will never be sent.

The meta-model captures the fact that some types of signals occur in

response to, or following another signal. For example, a non-terminating

(message) signal Sig02 can only occur following a spawn signal Sig01. Ac-

cordingly, the meta-model includes an association that can be created be-

tween signals to form a relationship between two state machines of different

types. A relationship contains all signals that are communicated between two

state machines. Specifically, a relationship will link a spawn signal to a fin-

ish signal and/or zero or more message signals. The motivation for grouping

signals into relationships between state machines is due to the need for a

parent state machine to keep track of the number of active children it may

have of different types.

The benefits of state machine relationships is not witnessed until runtime.

Having access to the relationships that a state machine is involved in allows

3.1. OBJECT BEHAVIOUR META-MODEL 49

Figure 3.5: Pre- and Post-Gateways Connected by Message Signals

a gateways the ability to block control-flow in a way that is dependent on the

gateway mode, as previously discussed. For example, a wait-for-one gateway

will block until it has received a signal from any source, with the condition

that there is at least one active child in any relationship. A wait-for-rel

gateway will block until all signals have been received from all children from

any relationship, with the condition that the gateway is involved in two or

more relationships. A wait-for-all gateway will wait for all children that

have been started in all relationships that the gateway is involved in, with

the condition that if no children have been started in any relationship then

the gateway does not block control-flow because in this case “no children”

is the equivalent of “all children”.

Figure 3.6 presents a concrete graphical syntax for the concepts intro-

duced above. An object is represented by a white rectangle. A state ma-

chine is represented by a gray rectangle. The initial and final state of a

state machine follow accepted state machine graphical conventions. A state

is represented by a rounded rectangle with a pre-gateway and post-gateway

located at opposite sides of the state (although gateways can be placed on

50 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

any available side of a state). Transitions are represented by an arrow with

an open arrowhead, where the arrowhead points to the target state. The

three types of signal are distinguished by a different arrowhead on a dashed

line; a spawn signal is indicated by a double-filled arrowhead, a finish signal

is indicated by a double-empty arrowhead and a message signal is indicated

by a single filled arrowhead.

Figure 3.6: O-C Modelling Notation

3.2 Working Example – Gas Pipeline Inves-

tigation

In this section we will introduce an example that has been modelled using

an object-centric approach. The example captures a process snippet of in-

vestigation and maintenance for a gas pipeline network provided by a major

gas supplier. A gas pipeline network is a geographically extensive system

that is subject to regular inspections to uncover issues (e.g. faults, wear and

3.2. WORKING EXAMPLE – GAS PIPELINE INVESTIGATION 51

tear, damage, etc.) which must be resolved following a well-defined, quality-

controlled procedure, making this an excellent example in which to test an

application of object-centric process modelling.

Figure 3.7 shows the cardinality and relations between the classes in the

gas pipeline investigation example. The classes in this example are the inves-

tigation class, the primary inspection class, the standard issue and critical

issue (which are issue subtypes) and the follow-up inspection class (which is

a primary inspection subtype).

Figure 3.7: Gas Pipeline Inspection Example – Class Diagram

As with most major infrastructure, gas pipelines are routinely investi-

gated following a well-defined procedure. An investigation is conducted be-

tween two points on the network (a start point and end point) and there

may be two or more types of pipes joined together between the start and

end points. The various types of pipes are often of different ages, are con-

structed of different materials and are operated differently, which means

52 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

that they are subject to different inspections. Thus an investigation consists

of one or more primary inspections (a primary inspection for each type of

pipe) to uncover issues. An issue is a problem with plant and equipment

that is either malfunctioning or functioning below an acceptable level of

performance. Every issue that is discovered during an inspection requires

rectification. There are two issue subtypes, a standard issue and a critical

issue. A domain constraint in this example is that a primary inspection can

have no more than one critical issue, any other issues found are designated

as standard issues. These two types of issues are resolved slightly differ-

ently. A follow-up inspection may be performed as a quality-control test to

re-examine issue rectification, which may in turn uncover additional issues.

Examples of state machine lifecycles that correspond to the primary in-

spection class, as well as two related state machines corresponding to the

critical issue and the issue classes are shown in Figure 3.8. Each class, state

machine, gateway and processing sub-state has been given a unique ID,

which are shown on the model since we will require them later for the pur-

pose of transforming the model to an activity-centric representation. In this

example, a request is accepted to begin an primary inspection. Following

acceptance of the request an initial inspection is performed and zero-to-one

critical issues and/or zero-to-many standard issues are raised. The primary

inspection creates an instance of a standard issue for each issue discovered.

During the resolution of a critical issue, data on the issue is recorded, the

issue is resolved and the issue is marked as fixed. As part of the inspection,

ratings only need to be collected following the resolution of a critical issue,

if one exists. Here we see a need for synchronisation between state machine

lifecycles. Ratings are collected after a message signal sent from the post-

gateway of the “Resolving Issue” state from the critical issue to the pre-

gateway of the “Collect Ratings” state in the primary inspection. However,

if no critical issue exists (i.e. the primary inspection did not previously create

one), then the primary inspection will not wait for the completion of any

critical issues. To achieve this, the pre-gateway of the “Data Loaded” state

in the primary inspection is a wait-for-all gateway that blocks until a finish

3.2. WORKING EXAMPLE – GAS PIPELINE INVESTIGATION 53

Figure 3.8: Example of an Object Behaviour Model

signal is received from the critical issue. If a critical issue was not created

then the gateway does not block, which allows the lifecycle of the primary

inspection to proceed.

54 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

After an interim report has been sent, data on all issues is collected.

This requires that all standard issues have been completed. To achieve this,

the configuration and mode of pre-gateway that belongs to the “All Data

Collected” state is pessimistic and wait-for-all, respectively. This means that

the gateway will block control-flow until all finish signals sent from standard

issues are received before a spawn signal to create a follow-up inspection is

sent, if required. The mode of the post-gateway that belongs to the “All

Data Collected” state is also wait-for-all, meaning that it will block control-

flow until a finish signal is received from the follow-up inspection. If no

problems are found by the follow-up inspection then the primary inspection

is complete. Otherwise, a transition is taken to the Primary Inspection

Complete state to deal with the additional issues that have been found.

3.3 Transforming Object-centric Models to

Activity-centric Models

In this section we introduce a proposal to transform an object-centric model

to an activity-centric model. We use the gas pipeline maintenance process as

an illustration of this proposal. The essence of the proposal is to analyse an

object-centric model in order to extract a set of elementary causal dependen-

cies between events and signals. These elementary causal dependencies are

represented as a causal matrix, also known as a heuristics net [3]. The idea

of using a heuristics net comes from the ProM framework [24], where heuris-

tics nets are used as an intermediate representation to construct a Petri net

from an event log.

3.3.1 Background: Heuristics nets

A heuristics net is composed of a set of transitions, which we call “tasks” to

put them in context. Each task is given a unique ID and has an input and

an output, which are sets of task IDs. The input of a task T represents the

IDs of the tasks that can start task T. If this set is empty, it means that

3.3. TRANSFORMING O-C MODELS TO A-C MODELS 55

the task can be started even if no other task has been completed (i.e. this

is the initial task in the process model, which is indicated with a ‘.’). If the

input of a task is not empty, it contains one of several disjunctions. Each of

these disjunctions should be read as an “Or” of several tasks, indicated by

a ‘|’. For example, in Table 3.1, task 34 has a disjunct 37|39 meaning that a

choice is made between task 37 or task 39 following completion of task 34.

Symmetrically, the output of a task determines which other tasks can be

executed after a given task completes. An empty output (indicated with a

‘.’) denotes a final task. Meanwhile, a non-empty output must be read as

a set of disjuncts. For example, a disjunction of the form 37|39 means that

either task 37 or task 39 can be executed. An output can contain multiple

disjunctions, which are read as an “And” of several tasks, indicated by an

‘&’. For example, the output of task 3 is 5&55&17, which means that after

task 3 completes, task 5 can be executed, and task 55 can be executed, and

task 17 can be executed. A sample of the tasks belonging to a heuristics net

that has been generated from the object-centric model in Figure 3.8 with

some explanatory notes of the task input and output is shown in Table 3.1.

A limitation of heuristics nets is that they can only capture a ‘flat’ repre-

sentation of a process, since they cannot capture sub-processes. To overcome

this limitation, it is desirable to record the ‘humps’ (or sub-process regions)

in the model. This can be achieved by identifying sub-process delimiters

in the object model. A sub-process delimiter is defined by the point in an

object-centric model where an instance of a state machine lifecycle is created

(identified using a spawn signal), the point where a state machine lifecycle is

ended (identified using a terminating signal), and also the sub-process multi-

plicity. The set of sub-process delimiters are then stored and may be recalled

to restore sub-processes in an activity-centric model during transformation

from an object model, which is introduced in the next section.

The inputs/outputs of tasks can be represented either as expressions

composed of & and | operators, or as sets of sets and both representations

are equivalent. A heuristics net is basically a set of tasks, with each task

being associated to an “input” and an “output”. In the rest of this chapter

56 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

Task ID Input Output Notes

0 . 1 An initial task.
1 0|15 3 Input received from task 0 or 15.
3 1 5&17&55 Output sent to tasks 5, 17 and 55.
4 5 8
5 3&23 4 Input received from tasks 3 and 23.
7 4 10
8 4&27 7 Input received from tasks 4 and 27.
10 7 13
13 14 15
14 10&55 13&57 Input received from tasks 10 and 55,

output sent to 13 and 57.
15 13&57 1|16 Input received from tasks 13 and 57,

output sent to either 1 or 16.
16 13 . A final task.
17 3 18
18 17 21
21 20 23
23 21 5&24 Output sent to tasks 5 and 24.
24 21 27
27 24 8
28 . 29 An initial task.
29 28|35 32 Input received from task 28 or 35.
32 29 35|38 Output sent to task 35 or 38.
35 32 29
38 32 41
41 38 . A final task.
57 14 15 Multiple Instance Composite task de-

limiter.

Table 3.1: Heuristics Net Sample from Figure 3.8.

we use set notation to represent the input and output of tasks in a heuristics

net, for example instead of 3|(5&6) we write {{3},{5,6}}. Each element in

the set is itself a set that represents a given disjunct.

3.3. TRANSFORMING O-C MODELS TO A-C MODELS 57

3.3.2 Transformation procedure

The transformation procedure consists of the following three steps, which

are performed in the order depicted in Figure 3.9:

I - Generate a heuristics net from an object model/state machine diagrams.

II - Generate a Petri net from a heuristics net.

III - Transform the Petri net into a YAWL process model.

Figure 3.9: Transformation Procedure Overview

Below, we present an algorithm that automates Step I. For each state

in an object model, this algorithm generates two tasks corresponding to the

pre- and post-gateway. In other words, each pre- or post-gateway in the

object model will lead to one task in the generated heuristics net.

Algorithm 1 takes as input an object model and produces the correspond-

ing heuristics net. The algorithm iterates over each state gateway in order to

generate an input set (preTask) and output set (postTask). Because there

is a one-to-one mapping between state gateways and tasks, the algorithm

treats them interchangeably, meaning that the identifiers of gateways in the

source object model are identifiers of tasks in the generated heuristics net.

The following auxiliary functions are used in Algorithm 1:

• states : ObjectModel → Set of State, is the set of states in an object
model.

• pre, post : State→ Gateway, yields the pre or post gateway of a state.

• inputTransitions, outputTransitions : State→ Set of Transition, yields
the set of input/output transitions.

• source, target : Transition→ State, yields a transition’s source/target.

58 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

• inputSignals, outputSignals : Gateway → Set of Signal, yields a gate-
way’s input/output signals.

• mode : Gateway → GatewayMode, yields a gateway’s mode.

• explode : Set of Signal → Set of Set of Signal. explode({e1, e2, ... ,
en}) = {{e1}, {e2}, ... , {en}}.

Algorithm 1: Generation of a heuristics net

Input: om : ObjectModel
Output: preTask, postTask : Task → Set of Set of Task
predecessors, successors : Set of Gateway
foreach s ∈ states(om) do

predecessors := { post(source(t)) | t ∈ inputTransitions(s) };
successors := { pre(target(t)) | t ∈ outputTransitions(s) };
preInputSignals := { source(g) | g ∈ inputSignals(pre(s)) };
preOutputSignals := { source(g) | g ∈ inputSignals(post(s)) };
postInputSignals := { target(g) | g ∈ outputSignals(pre(s)) };
postOutputSignals := { target(g) | g ∈ outputSignals(post(s)) };
if mode(pre(s)) = wait-for-one then

preTask(pre(s)) := { predecessors, preInputSignals(s) };
else

preTask(pre(s)) := { predecessors } ∪
explode(preInputSignals(s));

postTask(pre(s)) = { { post(s) }, postInputSignals(s) };
if mode(post(s)) = wait-for-one then

preTask(post(s)) := { { pre(s) }, preOutputSignals(s) };
else

preTask(post(s)) := { { pre(s) } } ∪
explode(preOutputSignals(s));

postTask(post(s)) := { successors } ∪
explode(postOutputSignals(s));

end

To analyse the inbound and outbound causal dependencies of a gateway,

each gateway is conceptually decomposed into two parts: the input and the

output. The input corresponds to the signals the gateway has to wait for,

while the output corresponds to the signals the gateway has to send out.

The input and output sets are generated as follows. The pre-gateway in-

put set is the union of the source of each incoming transition with the source

3.3. TRANSFORMING O-C MODELS TO A-C MODELS 59

of each incoming signal, depending on the gateway mode (i.e. wait-for-one

or wait-for-all). If the gateway mode is wait-for-one then the preTask set is

the set of input transition sources (predecessors) and the set of pre-gateway

input signal sources. However if the gateway mode is wait-for-all then the

preTask set is the union of the set of input signal sources converted to a set

of set of signals by the explode function with the set of predecessors. The

postTask set consists of the post-gateway and the targets of all outgoing

signals sent from the pre-gateway. The procedure for constructing the input

and output sets for a post-gateway is symmetric to the corresponding pro-

cedure for a pre-gateway. After the application of Algorithm 1 a heuristics

net is constructed by inserting the input and output set as individual rows

in the net.

In Step II of the transformation procedure the heuristics net is passed

to the heuristics net conversion tool in ProM to obtain a Petri net. Step III

is performed using a workflow net conversion plugin in the ProM framework

to combine the sub-process delimiters with the derived Petri net to create an

‘unflattened’ YAWL model by including sub-process definitions in the YAWL

model as shown in Figure 3.10. This step is merely a syntactic transformation

that aims to exploit the process modelling constructs in YAWL because any

Petri net can be seen as a YAWL process model, but YAWL allows one to

represent certain patterns in a more compact manner.

Figure 3.10: Gas Pipeline Inspection Process Model in YAWL

60 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

We now discuss the procedure to restore sub-processes in the YAWL

model in further details. In the absence of any message signals between

parent and child state machine lifecycles in an object model, the region be-

tween a spawn signal and the finish signal becomes what is known as a

single-entry-single-exit (SESE) region [102]. Since an SESE region and a

YAWL sub-process share the characteristic of having a single entry and exit

point, an SESE region can be directly mapped to a YAWL sub-process. The

start and end points of an SESE region are indicated by sub-process delim-

iters which are defined as part of the transformation from an object model

to a heuristics net. The YAWL lexicon has two kinds of sub-processes; a

composite task (i.e. the YAWL construct for capturing sub-processes) and

a multiple instance composite task (i.e. the YAWL construct for capturing

sub-processes that are executed multiple times concurrently). A composite

task can be distinguished from a multiple instance composite task by in-

specting the lower- and upper-bound multiplicity recorded by the relevant

sub-process delimiter. If the lower- and upper-bound multiplicity equals one

then the sub-process is a composite task, but if the lower-bound is zero or the

upper-bound is greater than one then the sub-process is a multiple instance

composite task.

3.3.3 YAWL Model Reduction Rules

After a model has been transformed from an object-centric to an activity-

centric representation, a number of tasks exist that have empty decomposi-

tions. No work is performed by these tasks, since they are used for control-

flow routing only. We hereby refer to these tasks as control-flow nodes.

These control-flow nodes correspond to gateways in the original model. For

example, task “og05” in Figure 3.10 corresponds to the post-gateway of the

state “All Data Collected” in Figure 3.8. In Algorithm 1, gateways in an

object-centric model are converted to tasks for the purpose of preserving

control-flow behaviour. These tasks in the heuristics net then become empty

transitions when the heuristics net is converted to a Petri net, and then these

empty transitions become YAWL tasks with an empty decomposition when

3.3. TRANSFORMING O-C MODELS TO A-C MODELS 61

the Petri net is converted to a YAWL net. Because control nodes do not

perform work it is possible to remove them by means of model reduction

rules in order to obtain a simpler yet equivalent YAWL model.

Below, we present four reduction rules that we use to post-process the

YAWL nets produced by the above conversion procedure, in order to elim-

inate tasks with empty decompositions. The following notation is used to

represent these reduction rules:

• ε: YAWL task with no decomposition (also called control-flow node).

• T : YAWL task that may or may not have a decomposition.

• X: control-flow join decorator.

• Y: control-flow split decorator.

We now define and illustrate the following four reduction rules:

1. Task Input Combination.

2. Task Output Combination.

3. Task Join Combination.

4. Task Split Combination.

In each rule we attempt to remove an epsilon task (ε) from the model

by combining it with either the previous or subsequent task. Some context

conditions exist for the rules to be applied. For the first and second rules,

X is a control-flow join decorator that is an AND-join or an XOR-join or an

OR-join, Y is a control-flow split that is an AND-split or an XOR-split or

an OR-split. For the third and fourth rules, X and Y must be of the same

type of split or join decorator, or else the reduction rule cannot be applied.

1. Task Input Combination: If a control node ε is connected via an

outgoing arc to a task node T , where T has no more than one incoming

arc from ε and ε has no other outgoing arcs, then the incoming arcs of the

62 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

join X become incoming arcs to T as illustrated in Figure 3.11. In the case

where ε has only one incoming arc (thereby has no join decorator X) the

incoming arc becomes the incoming arc to T . For example, in Figure 3.10

“Gatewayig0” has only one incoming arc which will become the incoming arc

to the “Req. Accepted” task after applying this rule. It is allowable for the

join X to be of a different type to the split Y (e.g. X is an AND-join and Y

is an XOR-split). Relocation of the join X to the task T retains the original

control-flow behaviour because synchronisation at X always occurs before

the tasks T can be executed in both the left and right side of Figure 3.11.

Figure 3.11: Task Input Combination Reduction Rule

2. Task Output Combination: If a task node T is connected via an

outgoing arc to a control node ε where T has no more than one outgoing arc

to ε and ε has no more than one incoming arc from T , then the outgoing arcs

of the split Y are relocated to become outgoing arcs of T , as illustrated in

Figure 3.12. As in the Task Input Combination Reduction Rule it is possible

that the join X can be a different type to the split Y. Relocation of the split Y

from ε to T retains the original control-flow behaviour because control-flow

is split at Y after T is executed in both the left and right side of Figure 3.12.

Figure 3.12: Task Output Combination Reduction Rule

3. Task Join Combination: If a control node ε is connected to a task

T and ε has more than one incoming arc and both ε and T have the same

3.3. TRANSFORMING O-C MODELS TO A-C MODELS 63

join type (e.g. AND-join), then ε and T can be combined to become T . The

incoming arcs to the joins that belong to both ε and T are combined to

become incoming arcs to the join X at T (minus the arc that connects ε to

T) as illustrated in Figure 3.13. If ε has only one incoming arc (i.e. has no

join) then this arc is added to the set of incoming arcs to T .

Figure 3.13: Task Join Combination Reduction Rule

4. Task Split Combination: If a task T is connected to a control node

ε and T has more than one outgoing arc and both nodes have the same split

type (e.g. AND-split) and ε has no more than one incoming arc from T , then

the outgoing arcs from T and ε (minus the arc connecting T to ε) can be

combined to become outgoing arcs of T as illustrated in Figure 3.14.

Figure 3.14: Task Split Combination Reduction Rule

Additional considerations are necessary to deal with conditions on the

arcs of the resulting split if Y is an XOR-split or an OR-split decorator and

also their evaluation order if Y is an XOR-split. The reason for this is that

YAWL’s treatment of these types of splits is such that they exhibit correct

control-flow behaviour no matter what the conditions associated with the

outgoing arcs are.

Let us first examine the case where Y is an XOR-split. In YAWL an

evaluation order is associated with outgoing arcs of an XOR-split and control

is passed at runtime to the first arc of which the condition evaluates to true.

64 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

If there is no arc of which the condition evaluates to true then control is

passed to the arc that comes last in the evaluation order. Hence care needs

to be taken when merging two tasks with XOR-split decorators in order to

preserve their behaviour - in particular, if the arc connecting the two nodes

to be combined is the last arc in the evaluation order, as this means that

at runtime the control-flow could pass this arc if its condition evaluates to

true but also if its condition evaluates to false. Referring to this arc as r and

its associated condition as c, the arcs of the combined XOR-split should be

evaluated in the order of the first XOR-split until arriving at arc r. The arcs

of the second split should then be evaluated in their original order which are

then followed by the remaining arcs (if any) of the first XOR-split in their

original order.

In case r was not last in the evaluation order, then the conditions of the

arcs associated with the second XOR-split should be changed to reflect the

fact that at runtime the control-flow could only be passed if condition c eval-

uated to true as well as their original condition, hence their condition should

change to a conjunction of c and their original condition. For example, if

the tasks in Figure 3.15 are combined using the Task Join Combination rule

where the arcs of the first and second XOR-split are evaluated from top to

bottom, then the evaluation order of the combined task is s, u, v, t (r is re-

placed by u, v) and the conditions associated with u and v change to become

conjunctions consisting of their original condition and the condition associ-

ated with r. In case r was last in the evaluation order, then the conditions

associated with the arcs of the second XOR-split do not need to be changed

because control could pass to the second task in the original model even if c

evaluated to false.

Figure 3.15: Task Split Combination Reduction Rule (XOR-split)

3.3. TRANSFORMING O-C MODELS TO A-C MODELS 65

Let us now consider the case where Y is an OR-split. In YAWL an

OR-split has a designated outgoing arc which is referred to as the default

arc to which at runtime the control-flow is passed if none of the conditions

associated with its outgoing arcs evaluates to true (including the condition

associated with the default arc itself). We will distinguish between the case

where the arc r connecting the tasks to be reduced is the default arc and the

case where another outgoing arc of the first OR-split is the default arc.

In the former case, the default arc of the second OR-split becomes the

default arc of the OR-split resulting from the reduction. Noting that control

would only have passed to the second node in the original model if either all

conditions associated with the outgoing arcs of the first OR-split evaluated

to false or the condition associated with the default arc evaluated to true, the

conditions associated with arcs of the OR-split resulting from the reduction

need to be modified. Hence conditions associated with arcs that originate

from the second OR-split need to change to a conjunction of their original

condition and a disjunction consisting of c and a conjunction where the

elements are negations of the conditions associated with the outgoing arcs

of the first OR-split (excluding r). For example, if the tasks in Figure 3.16

are combined using the Task Join Combination rule where r is the default

arc of the first OR-split and u is the default arc of the second OR-split, the

conditions associated with the arcs u and v become c4 ∧ (c ∨ (¬c2 ∧ ¬c3))

and c5∧ (c∨ (¬c2∧¬c3)) respectively, and u becomes the default arc of the

combined OR-split.

Figure 3.16: Task Split Combination Reduction Rule (OR-split)

The situation is considerably simpler in case r is not the default arc of

the first OR-split. In that case the OR-split resulting from the reduction

inherits the default arc from the first OR-split. The conditions of the arcs

66 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

originating from the second OR-split need to reflect the fact that control

would only have been passed to them in the original model in case not only

their original condition evaluated to true but condition c as well. Hence the

condition of these arcs are a conjunction of their original condition and c.

Certain combinations of control nodes and tasks cannot be reduced. Two

examples are; a control node ε that has a split which is connected to a task

T that has a join; and a task T that has a split which is connected to a

control node ε that has a join, shown in Figure 3.17. Reduction rules are not

applied to these cases because an attempt to reduce such task and control

node combinations will alter control-flow behaviour.

Figure 3.17: Example Combinations Where Reduction is not Applied

Since the target modelling notation in our case is YAWL there are sev-

eral elements in the YAWL lexicon that we make some assumptions about.

Firstly, there are no cancellation regions in the activity-centric model be-

cause a cancellation in a state machine is performed by taking a transition

to a state named ‘Cancelled’ or similar, therefore no explicit “cancellation

region” exists in the generated YAWL model. Secondly, implicit conditions

are the only kind of condition found in the activity-centric model except for

the start and end conditions, which are preserved by the reduction rules to

ensure that a single entry and single exit point exists for every process model

(including sub-processes).

The application of the model reduction rules to the YAWL model from

the gas pipeline inspection example (Figure 3.10) is shown in Figure 3.18.

In this example it has been possible to apply the reduction rules to merge

almost all of the control nodes (pre- and post-gateways) with tasks. The

control-flow behaviour has been maintained and the model is clearer to read.

3.4. TOOL SUPPORT 67

Figure 3.18: Inspection Process Model in YAWL Following Reduction Rules

It is worth noting that there exist other model reduction rule-sets in the

literature: these include Murata’s Petri net transformation rules [61] and

Wynn’s state-space reduction rules [115]. Murata’s rules allow one to trans-

form a Petri net while preserving soundness: if the original net is sound, the

net resulting after applying a transformation rule is also sound. Murata’s

rules can also be used to eliminate tau-transitions (i.e. transitions without

labels) in a net while preserving its semantics. However, Murata’s rules are

defined on Petri nets and need some adaptation to be applicable to YAWL

nets. This is the idea followed by Wynn et al [115] who propose a set of re-

duction rules for cutting down large YAWL nets to ease verification. Again,

these rules could potentially be used to eliminate tasks with empty decompo-

sitions in YAWL models. However Wynn’s reduction rules are considerably

more complex than what we need to post-process YAWL nets produced by

our transformation. This is the reason why we designed a specific set of

reduction rules to this end.

3.4 Tool Support

The proposal including the model reduction rules has been implemented as

a tool programmed in Java on top of the Eclipse platform.1 The tool, known

1http://www.eclipse.org/platform/

68 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

as FlexConnect, is a graphical editor for creating object models. It also

contains a module that enables the automated transformation of state-based

object behaviour models to YAWL nets, based on the algorithm presented

in Algorithm 1. The implementation of the tool relies on libraries from

the ProM framework2 to perform the transformation from a heuristic net

to a Petri net and from a Petri net to a “flat” YAWL net (i.e. the model

contains no multiple instance tasks). Subsequently, these YAWL nets are

“unflattened” by an extension to these libraries. The YAWL nets are then

reduced according to the reduction rules as explained above.

The modelling tool, the model transformation technique and the reduc-

tion rules have been tested using the gas pipeline inspection and maintenance

example, which is a real-life process model provided by the industry partner.

A screenshot of the gas pipeline inspection and maintenance example which

has been modelled in FlexConnect is shown in Figure 3.19. The process

captured by the model in this scenario is a larger version of the model pre-

sented in Figure 3.19 and provided us with an example of a standardised,

well-defined process to test the process modelling concepts that were intro-

duced in this chapter. An extension to these concepts to cater for flexible

process is introduced in Chapter 4.

To test the modelling tool, a subprocess of the whole pipeline inspec-

tion and maintenance model was chosen that consisted of 76 states and 15

objects. This subprocess specifies and coordinates the work involved in in-

specting and repairing the inner concrete lining of a particular type of gas

pipeline. The entire example (the parent of this subprocess) coordinates

the work involved in inspecting and repairing seven different types of gas

pipelines, thus it is approximately seven times larger than this. However,

given the size and complexity of the chosen subprocess, it was decided that

this subprocess would provide a sufficient test scenario for the modelling tool

and transformation algorithm.

2http://www.processmining.org

3.5. SUMMARY AND DISCUSSION 69

Figure 3.19: Screenshot of the Inspection Process Model in FlexConnect

3.5 Summary and Discussion

Modelling Information Systems using object-oriented techniques is a main-

stream design approach. Mainstream object-oriented analysis and design

practices (e.g. those based on UML) are based on concepts of objects whose

structure is captured as classes and whose behaviour and interactions are

captured as state machines, sequence diagrams and similar modelling nota-

tions. In this chapter a meta-model for the purpose of designing O-C process

models was introduced and then discussed in detail. The purpose of defining

the meta-model is to identify the salient aspects of O-C process modelling

and create a foundation upon which O-C process models can be developed.

An O-C modelling notation was introduced and its use was illustrated using

an industrial example concerned with inspection of gas pipelines.

Having established an O-C meta-model and modelling notation, the sec-

ond half of the chapter was concerned with detailing a transformation pro-

cedure and an algorithm to bridge the differences between O-C and activity-

centric process models in terms of control-flow logic. Specifically, we define a

transformation between the proposed O-C meta-model and YAWL. The con-

70 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

clusion of this exercise is that it is possible to transform O-C process models

(defined in the proposed notation) into YAWL, so long as the objects only in-

teract through spawn and finish signals. When intermediate message signals

are involved the transformation can still be done, but the resulting YAWL

model will be “flat” meaning that the decomposition captured in the O-C

process model is lost in the transformation. A question that remains follow-

ing model transformation is a proof of semantics preservation. Such a proof

would require one to produce the set of traces or the state space for each

modelling construct, and to show that this set of traces/state space for the

original construct in FlexConnect and the translated YAWL construct are

identical. Providing this proof is out-of-scope of this thesis.

To validate the transformation procedure the algorithm was implemented

into an O-C modelling tool called FlexConnect which was comprehensively

tested using the gas pipeline investigation and maintenance example to gen-

erate an equivalent model in the YAWL notation. Our proposal is a step

towards bridging O-C models and process models that is intended to be

applied during the design phase of the project development lifecycle.

We observe that a reverse transformation, i.e. from an activity-centric to

an object-centric representation of a process is also possible, but has proven

to be rather difficult to accomplish in practice. The problem of performing

this transformation is that an activity-centric model must contain a signifi-

cant amount of object-centric meta-data to identify the object types, object

boundaries and object input/output(s). Previous work on this problem has

been investigated by Kumaran et al [50], who proposes an algorithm to

discover the business entities (“information-centric” artifacts) in an activity-

centric model. However, precise control-flow dependencies between objects

are missing in the resulting object model (i.e. Which object creates what

other object(s)? Which tasks synchronise between objects? What type of

synchronisation is needed?). The outcome is that the process model struc-

ture is lost after the transformation from activities to objects. Work by

Küster et al [52] also investigated linking the lifecycles of activity-centric

models and state-based object models for the purpose of evaluating object

3.5. SUMMARY AND DISCUSSION 71

model consistency. Although the structure of either model is retained, prob-

lems with this approach are that two types of models must be established

and maintained, plus the definition of hard links between these models makes

the approach inherently inflexible. To advance the transformation proposal

in this chapter to a bi-directional model transformation, an activity-centric

meta-model and/or modelling notation is required that allows an object to

be more than a data storage mechanism.

In the next chapter we will investigate extensions to the base meta-model

for the purpose of enabling flexibility in O-C process models.

72 CHAPTER 3. O-C PROCESS MODELLING META-MODEL

73

Chapter 4

Object-centric Process Model

Extensions for Flexibility

Mainstream business process modelling techniques often promote a design

paradigm wherein the activities that may be performed within a case, to-

gether with their usual execution order, form the backbone on top of which

other aspects are anchored. This Fordist paradigm, while effective in stan-

dardised and production-oriented domains, breaks when confronted with pro-

cesses in which case-by-case variations and exceptions are the norm. We

contend that the effective design of flexible processes calls for a substantially

different modelling paradigm. Motivated by requirements from the human

services domain, we explore the hypothesis that a framework consisting of a

small set of coordination concepts, combined with established object-oriented

modelling principles provides a suitable foundation for designing highly flex-

ible processes. Several human service delivery processes have been designed

using this framework and the resulting models have been used to realise a

system to support these processes in a pilot environment [75]. The frame-

work is presented in this chapter and we show how it is used to address

different flexibility requirements using a series of illustrations.

Process-Aware Information Systems, such as traditional Workflow Man-

agement Systems, have difficulties supporting dynamic business processes

74 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

because they rely on modelling paradigms that tend to impose a given ex-

ecution order between activities and decision points. This fact has been

discussed in the literature for some time leading to many proposals for flexi-

ble workflow support [107, 70, 105, 21]. In this chapter we demonstrate how

to capture highly flexible business processes using an object-centric process

modelling approach. The approach is inspired by, but arguably not lim-

ited to, the delivery of human and social services. Modelling and executing

processes in this domain presents additional challenges compared to other

more standardised domains such as insurance and banking. A key feature of

delivering human and social services is that the type, number and order of

tasks and sub-processes needed to address a case are often not known un-

til runtime. Also, variations on a case-by-case basis and exceptions are the

norm in these processes. An attempt to impose a standard way of delivering

social services is usually met with resistance by the stakeholders involved in

the process – both from the providers and consumers of social services.

In this chapter, we explore the hypothesis that an object-centric mod-

elling approach provides a suitable basis for capturing the extreme levels of

process flexibility needed to manage human social services. The main con-

tribution is a meta-model for the design of highly flexible processes based on

object-oriented concepts. The meta-model has been embodied in a modelling

tool that allows us to design O-C process models. This chapter is based on

work published in [75].

4.1 Patterns of Flexibility

In our experience in applying object-oriented approaches to design process-

aware systems that need to deal with ad-hoc situations, a range of require-

ments have been observed that are condensed into three patterns of flexibility.

A pattern of flexibility is a recurrent problem wherein a designer needs to

account for the fact that a variety of circumstances could be encountered dur-

ing the execution of a process model, yet the scope of these circumstances

needs to be captured at design-time to achieve some uniformity (since an

4.1. PATTERNS OF FLEXIBILITY 75

organisation provides a finite number of services) or to enforce certain con-

straints. Each pattern of flexibility also involves a class of users (e.g. social

workers or case managers). For convenience these patterns of flexibility are

referred to as PoF1-PoF3.

4.1.1 PoF1: Creation Flexibility

Creation flexibility is the ability of a user to trigger the creation of one or

more task instances (jobs) in an unplanned manner during execution of a

process. This pattern of flexibility allows the set of task types to be in-

stantiated as well as the ordering of instantiations to be loosely specified at

design-time. Creation flexibility is similar to the case handling approach [8]

where tasks do not need to be performed in a strict order and do not nec-

essarily have to be completed to complete a case (meaning that the tasks

are optional). At the same time, it is necessary to define constraints re-

garding the number of task instances and/or the state(s) in a process where

unplanned task instances can be created.

Generally speaking, a task instance is created in either a planned or an

unplanned manner. A planned task is created as-specified by process model

logic. An unplanned task presents additional concerns since it is created

on-demand, i.e. if and when the task is required. For example, a Health

Assessment task may require additional tasks that correspond to subtypes

of Treatment, but the additional treatments are difficult to completely plan

at design-time because the treatment(s) depend on the assessment.

4.1.2 PoF2: Delegation Flexibility

Delegation flexibility is the ability of a user to trigger the transfer of context

and data from an executing task to a different task. This pattern of flexi-

bility provides support for circumstances that may change over time (i.e. if

a problem appears during a client interaction, delegate the interaction to a

task that can support the problem). Due to circumstances that frequently

76 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

affect the delivery of human social services, situations regularly occur that

require the context and data from a task to be fully transferred to another

(specialist) task.

To support such situations, a new task (delegatee) takes over execution

of a previous task (delegator). For the purposes of control-flow, a delegatee

replaces a delegator, meaning that when a delegatee completes, the comple-

tion is treated as if the delegator had completed. This feature, together with

the fact that data is fully transferred from the delegator to the delegatee,

distinguishes delegation flexibility from creation flexibility. The delegation

relation is transitive, meaning that a delegatee may also transfer its execu-

tion to another task.This feature, along with the fact that data is transferred

from a delegator to a delegatee, distinguishes delegation flexibility from cre-

ation flexibility. Note that from a data-flow perspective, the delegatee is a

subtype of the delegator, since the delegatee needs to receive as input the

data collected by the delegator and to produce as output at least the same

data as the delegator.

4.1.3 PoF3: Nesting Flexibility

Nesting flexibility is the ability of a user to create instances of nested sub-

processes as they are needed. For example, during execution of a homeless-

ness process a social worker may discover an additional major issue with

the client concerning an alcoholism issue which is well beyond the scope of

the original process that manages homelessness issues. Similar to (task) cre-

ation flexibility, nesting flexibility is sometimes only allowed under certain

constraints (e.g. the number of sub-processes can be bounded or unbounded

and the type of sub-processes can only be created in designated states of

a process). However, nesting flexibility deals with creating sub-processes

rather than creating tasks – we call this situation a referral . This pattern of

flexibility enables a system to create as many layers of ad-hoc sub-processes

as needed to manage issues as they arise, while maintaining sub-process

modularity and retaining process control.

4.2. ELEMENTS FOR FLEXIBLE O-C PROCESSES 77

4.2 Elements for Flexible Object-centric

Processes

We aim to fulfill the objective of achieving flexibility in object-centric mod-

els by proposing a design framework consisting of three abstract types of

business objects, namely the Coordination Object, Job Object and Referral

Object. These objects are used to construct process models that can capture

the patterns of flexibility (PoF1-PoF3) introduced in the previous section.

In this section we describe the properties and interactions of these objects.

We propose to achieve process flexibility via an extended meta-model

that consists of three abstract types of business objects, namely Coordination

Object, Job Object and Referral Object. As shown in Figure 4.1, a concrete

business object type inherits from an abstract type.

Figure 4.1: Abstract Types and Concrete Types

A Coordination Object (COROB) is an object that coordinates a pro-

cess. The COROB is inspired by the recognition that a clear separation must

be made between the tasks managed by a process and how the tasks are con-

nected. The net outcome is known as coordination, which explains how this

object gets its name. A COROB is responsible for both the creation and

synchronisation of the tasks needed to complete a process, managing the ex-

ecution of a process as well as referring out of scope work to other COROBs.

78 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

A Job Object (JOB) is an object that represents a task. A JOB manages

task execution and reports task completion to its parent object. For example,

two JOBs in the social services process model are the Report Collection and

Client Visit which both have the Client Intake COROB as their parent.

A Referral Object (ROB) is an object that allows a COROB to refer

a situation which is outside of its scope to another COROB. For example, if

several unplanned major issues appear during the execution of a Homeless-

ness COROB such as an Alcoholism or Drug Dependency issue, a ROB is

created that operates under the guidance of a user to create a COROB.

The base meta-model of object types and their relations was shown in

Chapter 3 (specifically, Figure 3.1) as an ORM. The flexibility extensions

to the base meta-model are also captured using ORM and is presented in

Figure 4.2. We now introduce the base meta-model extensions.

Figure 4.2: ORM for Flexibility Extensions

An object-centric process model consists of a set of object types (COROB,

JOB and ROB subtypes) and their relations. Every object type specified in

a model is a subtype of one of the three base object types: COROB, JOB

or ROB. For example, a “Homelessness Coordination Object” is a COROB

4.2. ELEMENTS FOR FLEXIBLE O-C PROCESSES 79

subtype and a “Client Appointment” is a JOB subtype. A subtype relation

is established by using a generalisation association. Generalisation is a clas-

sical object-oriented concept that allows a subtype to inherit attributes and

behaviour from a supertype. In the case of object-centric process models

we may make use of generalisation to define an object hierarchy that share

common attributes and behaviour. For example, a “Skin Treatment”, “Eye

Treatment” and “Mental Health Assessment” JOBs are subtypes of a “Treat-

ment” JOB. The generalisation association allows a supertype to delegate its

lifecycle to a subtype at runtime and requires that each subtype sends and

receives the same signals as a supertype and sends and receives at least the

same data as its supertype, while allowing the subtype to capture an object

lifecycle that specialises the supertype. Since the “correct” application of

behavioural specialisation of object lifecycles (i.e. ensuring that inheritance

does not lead to behavioural inconsistencies) is a separate research question

and has been covered in works (for example) by Schrefl and Stumpter found

in [91] and [92], we do not elaborate any further on this topic.

A creation region is a collection of one or more states in a state machine

from within which it is possible to create object instances from a set of object

types. A state can belong to more than one creation region, but those states

must belong to the same state machine. From a creation region, any number

of dynamic signals can be sent. A dynamic signal allows a process designer

to model object communications that may occur (in contrast to static signals

that model communications which will occur, as introduced in Chapter 3),

meaning that users have the possibility of triggering a dynamic signal, but

they may or may not do so. The source of a dynamic signal is a creation

region and the target is an object type. If the state of a source object is

within the creation region, users are offered the possibility to trigger the

dynamic signal. When the dynamic signal is triggered, an instance of the

target object type (or one of its subtypes) is created. The target object type

depends on a selection strategy associated to the dynamic signal and input

given by the user when triggering the dynamic signal. This approach follows

the principle of the Strategy Pattern [28].

80 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

There are four dynamic signal subtypes: the delegation, creation, refer-

ral and nesting signal. A delegation signal allows delegation from a creation

region within a source delegator JOB to a target delegatee JOB. A delegator

may delegate to more than one type of delegatee, which must be a subtype

of the delegator. A creation signal enables instances of a JOB to be created

from a creation region. The difference between delegation and creation sig-

nals is the following. When a delegation signal is triggered, the source object

ceases to exist and is replaced by the target object. Meanwhile, in the case

of a creation signal, a new target object is created and the source object

continues to exist. A parent-child relationship is then established between

the source object and the newly created object.

Creation and delegation signals serve to transfer control to a JOB. On

the other hand, referral and nesting signals serve to transfer control to a

COROB. A user may trigger a referral signal if an issue arises during the

execution of a COROB that falls outside the scope of the COROB. The

newly created ROB then assists users in finding a suitable COROB type to

address the issue in question. During the execution of a ROB, a user (not

necessarily the same who created the ROB) may then trigger a nesting signal,

resulting in the creation of a new COROB to handle the issue in question.

In Figure 4.3, we show how the COROB, JOB and ROB can be connected

using the four dynamic signal types to capture our three PoFs.

4.3 Working Example – Social Service

Provision

As a motivating scenario, we consider a process executed in the context of

a charity organisation. A recently homeless family contacts a charity and

makes an application for assistance. The charity opens a case to manage the

family’s homelessness issue. During the management of the homelessness

case it is discovered that there are additional alcoholism and gambling issues

that individual family members require assistance with. Each of these issues

4.3. WORKING EXAMPLE – SOCIAL SERVICE PROVISION 81

Figure 4.3: Patterns of Flexibility in the Framework

can be mapped to a social service that are offered by the charity, but the

actual delivery of these services remains unplanned. An unplanned situation

is particularly challenging to capture using traditional process modelling

notations due to the possibility that several potential execution scenarios

for a single process model must be captured at design-time. A system that

can coordinate unplanned situations requires a framework which supports

several types of flexibility but can also enforce constraints where necessary.

The elements of the framework are represented graphically using the notation

in Figure 4.4.

In this section we demonstrate how the framework elements can be used

to design a flexible process. For purposes of illustration we refer to a social

service process for a charity organisation that has been modelled using the

object-centric approach presented in this chapter, which is presented in Fig-

ure 4.5. This model consists of a Client Intake COROB that manages the

process of accepting new clients who have contacted the charity for assis-

tance. The COROB is responsible for creating and coordinating the tasks

and sub-processes involved in new client intake such as completing a risk as-

sessment, visiting the client and collecting reports from social workers, whilst

82 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

Figure 4.4: Extended Object Model Elements

also coordinating distribution of major issues to other COROBs. The model

captures several points in the process where flexibility is either allowed or

constrained. For example, a referral to a Homelessness COROB can be per-

formed at any time in the Review Region but at no other time. To counter

the possibility of a variety of exceptional circumstances arising at runtime

the model has been designed to capture the creation, delegation and nesting

patterns of flexibility. The rest of the section uses extracts of the process

model shown in Figure 4.5 in order to discuss how the framework addresses

the three patterns of flexibility.

4.3.1 Demonstrating Creation Flexibility

Creation flexibility is achieved by specifying the set of JOBs that can be

created on-demand by defining a creation region within a COROB then

linking the creation region to those JOBs with the creation signal, as shown

in Figure 4.6. In this example a social worker tailors a plan for a client to

resolve the issue(s) that the client is faced with. Since the plan is tailored to

4.3. WORKING EXAMPLE – SOCIAL SERVICE PROVISION 83

Figure 4.5: Object-centric Social Services Delivery Model

the unique circumstances of an individual, the plan for each client is almost

always different. To operationalise the plan the social worker then requires

access to different tasks offered by the charity (represented by the JOBs).

Creation flexibility gives the social worker the ability to create instances of

a task when it is needed (i.e. in any of these states: “Wait for new plan”,

“Review plan”, “Wait for new version” and “Record case review”), rather

than when it is planned.

When the Client Intake COROB is in a state contained in the Case Man-

agement Region, 1..n instances of the Client Interaction JOB, 0..n instances

84 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

Figure 4.6: Creation Pattern of Flexibility

of the Child Support JOB and 0..1 instances of the Rental Assistance JOB

can be created. At least one Client Interaction JOB will be created before

exiting the Case Management Region, but more than one instance may be

created. Any number of Child Support JOBs along with a maximum of one

Rental Assistance JOB may be created. Creation flexibility allows a de-

signer to capture on-demand task creation while also constraining the type

and number of task instances according to the business rules.

4.3.2 Demonstrating Delegation Flexibility

Delegation flexibility is achieved by linking a creation region in a JOB to one

or more tasks using the delegation signal. In Figure 4.7, we demonstrate del-

egation using the Client Interaction delegator JOB. This JOB contains three

states (“Make appointment”, “See client” and “Assessment”) and one cre-

ation region (named “Assessment Region”) that contains the “Assessment”

state. This creation region imposes two restrictions on the Client Interac-

tion JOB. Firstly, delegation from a Client Interaction can only be performed

when it is in the Assessment Region. Secondly, the set of allowable delegatee

tasks from this creation region are the Skin Treatment, Eye Treatment and

4.3. WORKING EXAMPLE – SOCIAL SERVICE PROVISION 85

Mental Health Assessment JOBs which are subtypes of the Treatment JOB.

Delegation is an optional action – a user will make the choice at runtime

Figure 4.7: Delegation Pattern of Flexibility

of whether or not delegation is performed because the multiplicity of each

delegation signal is 0..1. If a delegator has more than one delegatee then a

choice is made by the user to select which JOB will become the delegatee.

Delegation can never be mandatory, i.e. a delegation signal must have a lower

bound of 0. Delegation is not allowed if the upper bound is greater than 1

because this implies creating clones of the delegator. If multiple instances of

a delegator are needed they would firstly be created and then permitted to

delegate as required. In case delegation does not occur during the execution

of a delegator then its execution will complete normally.

This example illustrates how object inheritance is used to capture del-

egation associations between tasks in a process model. However we point

out that delegation extends the concept of inheritance since at runtime a

delegatee must take the data and context of the delegator and must also

complete its lifecycle in the same way that the delegator would have.

86 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

4.3.3 Demonstrating Nesting Flexibility

Nesting flexibility is achieved by linking a creation region in a COROB to

a ROB using the referral signal, then linking a creation region in the ROB

to one or more COROBs using the nesting signal. At runtime, a parent

COROB may invoke the referral signal to create an instance of a ROB. The

ROB may invoke a nesting signal to create an instance of a child COROB

to manage the newly discovered real-world issue. The type of child COROB

to create is determined by a user. The ROB creates two levels of indirection

between the parent and child COROB, giving the framework two advantages.

Firstly, COROBs are decoupled, which establishes COROB modularity.

Secondly, the ROB provides the opportunity for human intervention in a

referral, since referring major issues between in this manner often needs an

approval from a third party resource (e.g. a manager), who can either permit

or deny creation of a new COROB instance. Hence, the ROB behaves as an

arbiter that separates a parent COROB from its children, allowing children

to execute in parallel and allowing a third party resource to maintain control

over nested COROBs.

In Figure 4.8 we see the number of referral signals that may be sent from

the Case Management Region to a ROB is unbounded (0..n) and the ROB is

connected to three COROB types. For example, if a social worker discovers

an alcoholism issue with a client, a ROB will be created in the system which

will in turn create an Alcoholism COROB instance. Alternatively, if an

alcoholism and gambling issue are discovered with a client the system will

create two ROBs and (given management approval) one ROB will create an

Alcoholism COROB and the other will create a Gambling Issue COROB.

The framework places no restrictions on the levels of nesting meaning

that a child COROB can in turn create its own ROBs, which can create

their own COROBs and so on. For example, as shown in Figure 4.9, in

the “Wait for new plan” state an issue resolution plan is prepared for an

unemployed client which identifies an unemployment issue beyond the scope

of the Client Intake COROB. The issue is referred to a nested Work Search

4.3. WORKING EXAMPLE – SOCIAL SERVICE PROVISION 87

Figure 4.8: Nesting Pattern of Flexibility

COROB. However, during execution of the Work Search COROB the client

unexpectedly falls into serious trouble with the police. The Work Search

COROB creates a new ROB, which creates a nested Legal Support COROB

to support the clients unemployment issue.

We observe that the main benefit of nesting flexibility for a user is the

ability to call in different sets of resources and skills in response to situations

as they arise. Nesting flexibility allows a COROB to maintain control over

the type and number of all dependent COROBs without being directly linked

to them, while also establishing an unplanned structure of nested processes.

Using the examples in this section we have demonstrated how an O-C process

model can handle unplanned tasks and issues. The modelling notation is

based on an object behaviour meta-model that has been designed to approach

exceptional circumstances as they occur by engaging creation, delegation

and nesting flexibility. The ability to handle work in the different ways

that it may appear is the point of distinction which allows several flexibility

requirements that were identified in Section 4.1 to be supported.

88 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

Figure 4.9: Nested Unplanned Sub-processes

The concept of creation regions in particular enables a designer to clearly

define which types of flexibility are related to which set(s) of states. This

approach gives a process model designer the ability to express that flexibility

is required at particular points and that flexibility is not required at other

points, which is beneficial for the design of flexible process models. In the

next section we present a tool called FlexConnect that supports modelling

of flexible object-centric models as presented in this chapter.

4.4 Tool Support

A modelling tool named FlexConnect1 has been developed that allows us to

design O-C process models as described in this chapter. FlexConnect is a tool

that assists process designers to develop O-C process models. FlexConnect

was developed using the Eclipse Graphical Modelling Framework (GMF).

The foundation of the tool is the UML Class diagram shown in Figure 4.10

1FlexConnect can be downloaded from http://code.google.com/p/flexconnect/

4.4. TOOL SUPPORT 89

that specifies the FlexConnect GMF Domain Model. The GMF Domain

Model is a specification of the modelling elements and their associations.

The modelling tool has an extension that generates and exports an initial

marking to a file that is used as input to a CPN. The CPN that was developed

for this purpose is discussed in Chapter 5. which provides the ability to

formally check, validate and simulate the behaviour of models that have

been designed using FlexConnect. The modelling tool, export function and

the generated CPNs have been tested with 20 sample O-C process models of

varying sizes in order to evaluate the behaviour of the elements of the base

model as well as validate each pattern of flexibility. This includes the social

services example presented in this chapter (see Figure 4.5) which is shown

as a FlexConnect model in Figure 4.11.

We will now walk through this social services support model at runtime.

Upon entering the Review Region the“Wait for review” state is entered. A

Risk Assessment JOB is completed for the applicant while an initial appli-

cation is being completed. At this stage it is either confirmed or not that

the client has a Homelessness Issue. A Homelessness Issue is a major issue

that requires management by a separate COROB that was designed to man-

age such an issue. If a Homelessness Issue is confirmed, the Main COROB

refers this new work out to a ROB which creates a nested instance of a

Homelessness COROB.

Following creation, the Homelessness COROB will execute in parallel to

the Main COROB, creating its own tasks that manage the needs of the client

to do with their homelessness issue. During the execution of the Homeless-

ness COROB an additional issue is discovered with the client to do with a

drug dependency. The Homelessness COROB reacts to this issue by invok-

ing a referral. The RO is guided by the user to create a nested instance

of a Drug Dependency COROB that executes in parallel to the Homeless-

ness COROB. This parallelism is handled in a structured manner due to the

concept of nesting flexibility.

After the “Client intake” state is entered, three tasks are created. A

Client Visit JOB is created along with two Report Collection JOBs. The

90 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

F
igu

re
4.10:

U
M

L
C

lass
D

iagram
for

O
b

ject-cen
tric

F
lex

ib
ility

4.4. TOOL SUPPORT 91

Figure 4.11: Social Services Model in FlexConnect

Client Visit manages the procedure of a social worker’s visitation to a client,

while the Report Collection manages the work involved with reporting on

the recovery progress of a client.

After exiting the “Client intake” state the Review Region is exited and

the Case Management Region is entered. This region consists of four states,

which are: “Wait for new plan”, “Review plan”, “Wait for new version” and

“Record case review”. In any state of the Case Management Region we have

the ability to create 1..n, on-demand, Client Interaction tasks. Specifically,

at least one Client Interaction TO will be created before the Case Man-

agement Region is exited, but more may be created. This is an example of

creation flexibility. In the “Wait for new plan” state a social worker prepares

a goal-action plan for the client, which is revised in the “Review plan” state,

and a Client Interaction TO is created by the social worker to suit the social

workers need to approach the client with clarifications regarding the case.

During the interaction with the client the social worker finds that the client

needs additional medical care and the Client Interaction is delegated to a

Skin Treatment. Here we see an example of delegation flexibility.

92 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

During the “Wait for new version” state a major alcoholism-related issue

is discovered. To handle this situation an instance of an Alcoholism Issue

COROB is created. The creation of this new COROB is performed using

the same method as the Homelessness Issue COROB, as this method allows

us to manage the uncertainty surrounding the unknown and unpredictable

runtime aspects of the process. These unknown aspects are the elements

of a process that may be invoked, such as an alcoholism issue in this case.

The motivation behind supporting the invocation of process elements in this

manner is due to the unknown aspects of if and when during the execution

of a Homelessness Issue (and indeed, any other process that supports a social

service) that may be encountered.

During the “Record case review” state another major issue is discovered

with the client and an instance of a Gambling Issue COROB is created to

handle the issue. The ability to handle work in the different ways that it

may appear is the point of distinction that allows the flexibility requirements

that were identified in Section 4.1 to be supported.

The output of a valid model constructed using the FlexConnect modelling

tool is a Standard ML (SML) [99] file. An SML file generation function is

found on the FlexConnect toolbar that creates an SML file from an O-C

model by pressing a button named “SML Creator”. Upon pressing this

button, the syntax of the object model is validated. To avoid creating an

invalid SML file the O-C model must pass a series of validation checks. If

one or more of the checks are not passed, a list of the problems that were

found in the model are presented in a popup box and an SML file is not

created. Otherwise, the result is reported in a popup box and an SML file

is created. The checks that are performed on a model include:

• The names of all nodes except Tasks (State Machines, States, Gateways

and Creation Regions) must be unique and non-null.

• The names of all connections (Transitions, Static Signals and Dynamic

Signals) must be unique and non-null.

4.5. SUMMARY AND DISCUSSION 93

• The upper bound of all (static and dynamic) signals must be greater

than or equal to the lower bound.

• The upper bound of all multiple instance tasks must be greater than

or equal to the lower bound.

• Each gateway must have a configuration and a mode.

• Each message signal and finish signal must have either a parent spawn

signal or parent dynamic signal.

The SML file contains an initial marking for the following places in the

CPN: Signal Connections, Gateway Mode, Gateway Configuration, State

Gateways, Transitions, Creation Regions, Dynamic Connections, Generali-

sation Associations and Tasks. Each place is populated by making a call to a

function in the SML file. E.g. the Transitions place calls the getTransitions()

function, which places a single token in the Transitions place that contains

a list of the transitions in the O-C process model. Successfully loading the

SML file into the CPN without receiving any error reports indicates that the

O-C process model is at least syntactically correct, because the type of each

place in the CPN is directly mapped to a concept in the O-C meta-model.

For example, the “Signal Connections” place contains a list of static signals

in the O-C process model and the “Creation Regions” place contains a list

of the creation regions.

4.5 Summary and Discussion

In this chapter we demonstrated how a small set of coordination concepts, in

combination with established object-oriented modelling techniques, enables

the design of highly flexible processes consisting largely of unplanned activ-

ities. In particular we demonstrated how a small set of object types (i.e.

Coordination Object, Job Object and Referral Object) can be combined to

capture different patterns of flexibility. The key principle is that a Coordi-

nation Object defines “what can happen during a case”, rather than “how

94 CHAPTER 4. O-C EXTENSIONS FOR FLEXIBILITY

should it happen”. Any constraints regarding which objects can or should be

created and when, are overlaid on top of the basic object model. This is in

contrast with mainstream process modelling paradigms based on flowchart-

like notations, in which the activities to be performed and their control-flow

relations form the backbone of a process model.

As previously discussed, the main aspect of flexibility of interest is design-

time models that allow the ability to capture the creation of new objects with

the intent of performing unplanned activities at run-time. Of course, while

flexibility is essential in domains such as human services, there are situa-

tions where this flexibility should be constrained. The proposed framework

supports the definition of thresholds to constrain the minimal and maximal

number of JOB and ROB objects of various types that should be started

under a COROB of a given type (cf. the multiplicity constraints of a signal).

In addition to this feature, one may need to define more sophisticated

constraints. For example, situations have been encountered that necessitate

the definition of creation regions. A creation region allows a model designer

to establish when instances of a given JOB or ROB type can be created

under a COROB of a given type – e.g. a ROB corresponding to “Work

Search” COROB should only be started after the “Health Treatment” tasks

have completed. Also, situations can occur where one needs to constrain the

number of JOBs or ROBs of different types that need to complete before a

COROB object moves to a completion state – e.g., a COROB to handle a

case for a homeless family will not complete until the process created to deal

with their homelessness situation has closed.

The FlexConnect modelling tool enables process designers to create O-

C process models. A formalism of the approach was presented as a CPN.

To provide object models to the CPN, an export function was added to

FlexConnect that creates an SML file which can be loaded into the CPN.

Details of the CPN are discussed in the next chapter.

95

Chapter 5

Formalisation

The object-centric meta-model and the flexibility extensions presented in the

previous chapter have been formalised using a Coloured Petri Net (CPN) [40].

The CPN notation is a graphical notation with a formal semantics that con-

sists of places and transitions, which are connected with a directed arc. A

place can hold tokens of a particular primitive type or complex type, (known

as a colour set) which are specified using CPN-ML, the functional language

for CPN. Transitions perform the transfer of tokens between places, which

serves to alter the state of the CPN. CPN is a well-known as a suitable

notation to capture concurrency. Capturing the concurrent execution of ob-

ject lifecycles and synchronisation of the parent-child relationships between

objects is a major concern in an object model, which makes CPN an ideal

method to define the control-flow semantics of O-C process models.

We have used the CPN notation to formally capture the behavioural

semantics of the FlexConnect language. This enables us to define the be-

havioural aspects of both structured and flexible O-C process models. Mod-

elling the behavioural semantics using CPN provides a formal grounding

to the proposal and enables us to formally describe the functionality that

drives an O-C process model. The CPN in this chapter was designed and

implemented using the CPN Tools software, which allows us to take advan-

tage of the execution facilities of CPN Tools to test the runtime behaviour

of object-centric process models. We begin by introducing the Base Model

96 CHAPTER 5. FORMALISATION

concepts (from Chapter 3) in CPN and then the Extended Model concepts

(from Chapter 4).

5.1 Base Model in CPN

A state-transition machine diagram that shows the states and transitions

of an object lifecycle is shown in Figure 5.1. The passage of thread tokens

through this state-transition diagram are the main subject of discussion in

this section. At a particular moment in time, an object instance can be in

one of the following five core states: (1) Gateway Entered, (2) Optimistic

Gateway, (3) Pessimistic Gateway, (4) Gateway Exited or (5) Processing

Sub-state.

Figure 5.1: State-Transition diagram of an Object Lifecycle

To show how object models are executed a series of CPN excerpts are

presented. The states shown in the State-Transition diagram in Figure 5.1

form the core of an object lifecycle. Each of these states is directly mapped

to a place in the CPN because these states represent the status of an object

instance. A token in the CPN that represents an object instance is known

as a thread token, since the execution of an object is managed by a thread

at runtime. A thread token t is a 3-tuple (n, i, j) where n is the name of the

5.1. BASE MODEL IN CPN 97

gateway or state that the instance currently exists in, i is the instance ID

and j is the parent instance ID.

5.1.1 Root Object

A root object is an object that is not created by another object in an object

model, meaning that it has no parent. An instance of an object model is

created when an instance of the root object is created. This is accomplished

in CPN by firing the “Create New Root Instance” transition as shown in

Figure 5.2. An object ID c is obtained from the “Current ID” place which

is incremented to ensure that the ID is unique for the next instance to be

created because all objects are identified using their ID. The unique object

instance ID rule holds for all objects except for instances of a root object.

The parent object instance ID of a root object is given the value of 0. This

instance ID is a reserved root object identifier. The name “is01” is also a

reserved name since it is reserved for the initial state of the root object in

an object model. When the new token is placed in the “Enter Gateway”

place, a new thread token with the value (“is01”,c,0) that represents the

root object of an object model is created.

Figure 5.2: Creation of a Root Instance

5.1.2 Optimistic and Pessimistic Gateways

The thread token of a newly created instance is initially placed in the “Enter

Gateway” place. At this point the thread token will either move to the

“Optimistic Gateway” or “Pessimistic Gateway” place, depending on the

gateway configuration. Each gateway in an object model has a token that

98 CHAPTER 5. FORMALISATION

specifies the gateway configuration in the “Gateway Config” place, which is a

4-tuple (g,c,i,f) where g is the gateway name, c is the gateway configuration

(either optimistic or pessimistic), i indicates if the gateway is the pre-gateway

of the initial state and f indicates if the gateway is the post-gateway of the

final state.

Figure 5.3: CPN - Sending Signals from an Optimistic Gateway

There are two places that contain a thread token when the object life-

cycle is currently in a gateway. These are the “Optimistic Gateway” and

“Pessimistic Gateway” places. The difference between these two places is

the order with which signals are sent and received by the gateway. An op-

timistic gateway sends signals first, as shown in Figure 5.3. When a thread

token is in the “Enter Gateway” place and the gateway is optimistic, the

“Optimistic Sending Gateway” place is enabled. When fired, this transi-

tion sends all signals from the gateway and moves the thread token to the

Optimistic Gateway place.

If the gateway configuration is optimistic this means that the gateway

sends all signals before waiting to receive signals. In this case the “Opti-

5.1. BASE MODEL IN CPN 99

mistic Sending Gateway” transition in Figure 5.4 will be enabled. When

this transition is fired, the object instance token is moved from the “Enter

Gateway” place to the “Optimistic Gateway” place and two signal sending

functions are performed. The gateway can send both spawn signals using

the add spawn signals function and non-spawn signals which are known as

return signals using the add return signals function.

Figure 5.4: CPN - Receiving Signals at an Optimistic Wait-for-all Gateway

Alternatively, when a token representing an object instance is in the “En-

ter Gateway” place and the gateway is pessimistic, either the “Pessimistic

Wait-for-one Gateway”, “Pessimistic Wait-for-all Gateway” or “Pessimistic

Wait-for-rel Gateway” transition is enabled. The choice of which transition

is enabled depends on two things. Firstly, the gateway mode (wait-for-one,

wait-for-all or wait-for-rel) ensures that only one transition will be enabled.

Secondly, each transition has a guard condition that checks the number of

signals that have been sent will only be enabled when the guard condition is

100 CHAPTER 5. FORMALISATION

satisfied. When fired, this transition moves the object instance token to the

Pessimistic Gateway place.

Figure 5.5: CPN - Pessimistic Gateway Sending

5.1.3 Processing Sub-State

After exiting the state pre-gateway, control-flow moves to the processing sub-

state if the function match gateway(g,SGS) evaluates to true where g is the

pre-gateway of the state that control-flow is being transferred to and SGS

is a list of state gateway tuples of the form (g1,s,g2) where g1 is the pre-

gateway of s, s is a processing sub-state and g2 is the post-gateway of s. The

thread token then moves from the “Exit Gateway” place to the “Processing

Sub-state” place. At this moment the tasks contained in the processing

sub-state are enabled. As discussed in Section 3.1, control-flow is blocked

in the processing sub-state until all mandatory tasks have completed. If

has no mand tasks(s,TS) or not(check mand tasks incomplete(s,TS,CT,TI))

evaluate to true, then either a state exists that has no mandatory tasks

5.1. BASE MODEL IN CPN 101

(this state can exit at any instant) or all mandatory tasks that belong to

the processing sub-state have been completed. When the “From State To

Gateway” transition fires, control-flow is passed from the processing sub-

state to the state post-gateway. The relevant fragment of the CPN is shown

in Figure 5.6.

Figure 5.6: CPN - State

5.1.4 Tasks

When control-flow moves to the processing sub-state, instances of atomic

tasks and/or multiple instance tasks that belong to that state can be cre-

ated. The “Tasks” place contains a list of task/state mappings. A state can

contain zero to many atomic tasks and/or multiple instance tasks. If the

guard function task instance missing(s,TI,TS) evaluates to true where s is

a state, TI is a list of active task instances and TS is the list of tasks, the

“Create task” transition is enabled, as shown in Figure 5.7. This function

checks if there is a state in the “Processing Sub-State” place that contains a

task that has not been created yet. Firing the “Create Task” transition adds

an instance of that task to the “Created Tasks” place using the function

102 CHAPTER 5. FORMALISATION

add task instance(s,TS,TI,i). Multiple instance tasks are handled slightly

differently. If an instance of a multiple instance task has already been cre-

ated then the tuple representing that task in the “Created Tasks” place is

updated, meaning that the number of task instances recorded by the tuple

is incremented. In addition, if the upper bound number of instances of a

multiple instance task have already been created then no more instances of

that task can be created.

Figure 5.7: CPN - Creating and Cancelling Tasks

Active task instances can also be cancelled. A task instance may only be

cancelled if there is one or more active tasks in the “Created Tasks” place.

If this condition is satisfied, the “Cancel Task” transition can be fired and

the function cancel task instance(TI,TI,TS) is executed. If an instance of

a multiple instance task is cancelled, the number of active task instances is

decremented for that task. If a task is cancelled, it can be created again. This

is necessary since both ‘optional’ and ‘mandatory’ tasks can be cancelled.

However, a state cannot exit until all mandatory tasks in that state have been

completed. Thus the model allows both optional and mandatory tasks that

have been cancelled to be recreated. Any previous information related to a

cancelled instance of a task is not stored or recalled. In this way, cancellation

of a mandatory task means that it is still possible to exit a state.

5.1. BASE MODEL IN CPN 103

5.1.5 Completed Tasks

To complete an instance of a task, the “Execute Task” transition is fired.

This transition is enabled if the instance available(TI) function evaluates to

true, which indicates that there is an “available” instance of a task that has

been previously created in the “Created Tasks” place. When this transi-

tion is fired, the list of completed tasks CT in the “Completed Tasks” place

is updated to include the task that has just been completed by evaluating

the add completed task(CT,TI,TI) function. The completion of tasks that

belong to a state determines whether the state can exit. When all manda-

tory tasks that belong to a state have completed (has no mand tasks(s,TS)

is true), the “From State To Gateway” transition is enabled. Otherwise,

if a state has no mandatory tasks then the state can exit at any instant

(not(check mand tasks incomplete(s,TS,CT,TI)) is true). In the second case,

if the state has optional tasks that have been created, they are left to com-

plete but they have no effect on control-flow.

Figure 5.8: CPN - Completed Tasks

5.1.6 Spawn Signals

A spawn signal is a signal that creates an object instance. To send a spawn

signal, both the “Optimistic Sending Gateway” and “Pessimistic Sending

Gateway” transitions take the list of spawn signals from the “Spawn Signals”

104 CHAPTER 5. FORMALISATION

place and add any spawn signals that are sent from the gateway to the list of

spawn signals using the function add spawn signals(SL,g,i,CONNS) where

SL is the list of spawn signals from the Spawn Signals place, g is the name

of the sending gateway, i is the ID of the object thread and CONNS is a list

of signal connections from the “Signal Connections” place. A spawn signal

is represented by a 4-tuple (s,i,c,r) where s is the signal name, i is the ID

of the object that sent the signal, c is the number of times that the spawn

signal has been consumed and r is the number of times that the spawn signal

has been requested. A signal connection has an upper and lower bound. The

number of spawn signals that are sent must be greater than or equal to the

lower bound and less than or equal to the upper bound.

A spawn signal can be either “requested” or “consumed”. When a num-

ber of spawn signals are sent by an object this number is recorded as both

r, the number of “spawn requests” and c, the number of “spawn consumed”.

The object instances are “requested” meaning that object instances are not

created at the same time they are requested. After a spawn request has

been made, an object instance can then be created. This is handled by the

“Spawn Child Instance” transition as shown in Figure 5.9. When this tran-

sition is fired, an instance of an object is created which is put in the “Enter

Gateway” place and the number of spawn signals consumed is decremented.

If c for a spawn signal is zero, the “Spawn Child Instance” transition will

not send any more signals of that spawn signal type.

5.1.7 Return Signals

When a spawn signal is added to the “Spawn Signals” place, one or more

return signals are also added to the “Return Signals” place. This is done

because the creation of an object instance with a spawn signal results in

the creation of a new relationship between the parent object that sent the

spawn signal and the child object that received it. A spawn signal sent from

a parent to a child is always followed by a finish signal sent from the child

and to the parent as well as zero or more message signals sent in either

5.1. BASE MODEL IN CPN 105

Figure 5.9: CPN - Child Instance Creation

directions. This necessitates creating a list of return signals to keep track of

the number of each return signal that are “consumed”. The number of return

signals consumed is matched to the number of spawn signals sent, which is

how control-flow synchronisation is performed at gateways depending on the

gateway mode (wait-for-one, wait-for-rel or wait-for-all).

A return signal is represented by a 3-tuple (s,i,c) where s is the signal

name, i is the object instance ID and c is the number of return signals

consumed. When a return signal is sent, c is incremented. The return

signals to be added to the “Return Signals” place are found by making a call

to the function add return signals(RL,g,i,j,CONNS,CONNS) where RL is a

list of return signals, g is a gateway name, i is the parent ID, j is the child ID

and CONNS is a list of signal connections. The list of signal connections in

the “Signal Connections” place is parsed to evaluate which return signals (if

any) will be added to the “Return Signals” place, which occurs as a result

of sending a spawn signal.

106 CHAPTER 5. FORMALISATION

A return signal connection is distinguishable from a spawn signal because

the signal connection has a parent signal, which is defined as the spawn signal

that created a relationship between two object types, whereas a spawn signal

has no parent signal (i.e. parent signal(s) = “” if s is a spawn signal, and

<> “” otherwise). If a signal connection has a parent signal and the source

of the signal connection of that parent signal is the gateway that the thread

token is currently in and the return signal does not already exist in the

“Return Signals” place, then the signal is added to the “Return Signals”

place. Otherwise, if s is a return signal and the return signal already exists

(meaning that the objects involved in the relationship that the return signal

belongs to have already been created) no changes are made.

5.2 Extended Model in CPN

5.2.1 Creation Regions

When a thread token enters a gateway, the thread token can also enter a

creation region. The list of creation regions is contained in the “Creation

Regions” place. In the CPN a creation region is identified by the gateways

that the creation region contains, so the “Creation Regions” place contains a

list of 2-tuples of the form (g,S) where g is a gateway name and S is the set

of signals that that can be sent from the creation region(s) that the gateway

belongs to. If a gateway belongs to more than one creation region, the list

of dynamic signals that can be sent from that gateway as a consequence of

belonging to multiple creation regions are found in S.

As shown in Figure 5.10, when a transition between states is performed

then the marking of the “Current Creation Regions” place is edited. This

place maintains a list of “active” creation regions, which in turn determines

the set of dynamic signals that can be sent at any particular moment in time.

When a thread token enters a gateway, the creation regions that the gateway

belongs to are added and the creation regions that are no longer active as a

consequence of leaving the previous gateway are removed. This is done by

5.2. EXTENDED MODEL IN CPN 107

calling the function update regions(g,T,CRS,ASIGS,i) where g is a gateway

name, T is a list of transitions, CRS is a list of creation regions, ASIGS is

a list of currently active dynamic signals and i is an object instance ID.

Figure 5.10: CPN - State Transition

If the post-gateway of the state from which the transition is being sent

matches a gateway in the “Active Dynamic Signals” place then the list of

signals corresponding to that gateway is removed from the place. If a match

is found in the “Creation Regions” place for the pre-gateway of the state

being entered, then the list of dynamic signals that can be sent by the cre-

ation region that the pre-gateway belongs to are added to the list of dynamic

signals in the “Active Dynamic Signals” place.

If a thread token enters a gateway that is in a creation region then that

creation region becomes an active creation region. This has the effect of

allowing the object to send a set of dynamic signals that can be sent from

the creation region. The types of dynamic signals that can be sent by a

creation region are specified in the “Dynamic Connections” place. This place

108 CHAPTER 5. FORMALISATION

contains a list of dynamic connections that link dynamic signals to creation

regions. If there is also a dynamic signal connection that can be sent from

the current creation region, then the “Add Dynamic Signal” transition is

enabled, as shown in Figure 5.11.

Figure 5.11: CPN - Add Dynamic Signal

A dynamic signal can only be added to the “Active Dynamic Signals”

place if it does not already exist in that place. The transition guard func-

tion no signal exists(ASIGS,DSS) enforces this condition where ASIGS is

the list of dynamic signals that can be sent and DSS is the list of currently

active dynamic signals. If this function evaluates to true and the “Add

Dynamic Signal” transition is fired, then the list of dynamic signals that

can be sent are added to the “Dynamic Signals Sent” place by the function

add d signals(DCS,ASIGS,DSS) where DCS is a list of dynamic connec-

tions, ASIGS is the list of dynamic signals that can be sent and DSS is the

list of currently active dynamic signals.

5.2.2 Creation, Referral and Nesting Signals

The creation, referral and nesting signals are all sent by the “Create” tran-

sition in the CPN as shown in Figure 5.12. To understand why this occurs

5.2. EXTENDED MODEL IN CPN 109

we need to explain the design decision that allows these three signals to be

grouped together. The object designation information (COROB, JOB and

ROB) that specifies the source and target object types of particular signal

types is abstracted away in the CPN (e.g. a nesting signal is sent from a ROB

to a COROB). Making a differentiation between the object designations is of

most use to the model designer at design time since the object designations

provide assistance to develop a syntactically correct object model. At the

implementation phase, it is no longer of any relevance to recall an object

designation because the creation, referral and nesting signals essentially all

create a new object instance. For this reason, these three dynamic signals

share the “Create” transition in the CPN.

Figure 5.12: CPN - Creation

This method of object instance creation relies upon the specification of

object inheritance associations at design time. The benefit of this approach

110 CHAPTER 5. FORMALISATION

is two-fold: (1) it has the effect of grouping related objects together which

promotes structured object model design by making it necessary to create

inheritance associations between objects that may be created by a particular

dynamic signal, and (2) it enables runtime type flexibility since the type of

object that will be created by the dynamic signal is deferred until runtime.

An instance of an object can be created if a dynamic signal of type creation,

referral or nesting is in the “Dynamic Signals Sent” place and the number of

dynamic signals sent is less than the upper bound specified for that signal.

The guard transition function can create(DCS,ASIGS,DSS) enforces this re-

striction where DCS is a list of dynamic connections, ASIGS is a list of

active dynamic signals and DSS is a list of dynamic signals sent. When

fired, the transition increments the number of dynamic signals sent, adds a

new instance of the target object to the Enter Gateway place, increments

the Instance ID and adds any return signals for this object to the “Return

Signals” place.

5.2.3 Delegation Signals

Delegation is a different operation because it involves more than creating an

instance. Delegation changes the type of an executing instance of an object to

another type. This necessitates a different transition in the CPN to capture

this fundamental difference. Other concerns also need to be considered by

delegation. A restriction is placed on when delegation is performed that

confines the ability of an object to delegate only when a thread token is

in the processing sub-state. This is a design decision that was made to

simplify the complexity of performing delegation. It also means that the

CPN matches how delegation is performed by a user, which is done when an

object instance is in a particular state, not a gateway.

If the function can delegate(DCS, ASIGS,DSS,s,CRS) evaluates to a non-

empty string, delegation can only be performed. The function tests that the

current state belongs to a creation region that sends a delegation signal. If

true, the name of the delegation signal is returned. The name of the signal

5.2. EXTENDED MODEL IN CPN 111

is passed to the function delegatee(n,DCS,DSS,OBJS,c,j) which returns the

initial gateway of the delegatee. The thread token that represents the dele-

gator is removed from the “Processing Sub-state” place, which is converted

into a token that represents the delegatee using the function target gate-

way(n,DCS,DSS,OBJS,c) and is placed in the “Enter Gateway” place.

Lastly, it is a condition of the delegator that the delegatee must “take

over” as the sender and receiver of signals that belong to the delegator which

are found in the “Return Signals” place. The function edit d return sig-

nals(RL,g,CONNS,DCS,OBJS,i,c) inspects each return signal for the ID of

the delegator and updates it to the ID of the delegatee. As can be observed

in Figure 5.13, delegation of an object lifecycle involves evaluating a sig-

nificant number of places in the CPN. This is due to the large number of

dependencies involved. After each of the functions related to delegation have

been evaluated, the object lifecycle of the delegatee can begin.

Figure 5.13: CPN - Delegation

112 CHAPTER 5. FORMALISATION

As shown in Figure 5.13, delegation may only be performed when a state

machine lifecycle is in a state. If delegation could be performed from a

gateway this would potentially impact the consistency of an executing model.

For example, if delegation was performed when an instance of an object was

in a pessimistic gateway that had received signals but had not yet sent

signals, this could have the impact of causing control-flow synchronisation

problems because another object may be expecting to receive signals that

will never be sent. The possibility that such scenarios can occur should be

taken into account when designing flexible process models.

Delegation is a powerful tool for a process modeller since it allows a po-

tentially large number of alternative paths in a process model to be specified

at design time, while maintaining process control. This is beneficial in cir-

cumstances when it not known with a great amount of certainty which type

of object is needed to complete a task until a late stage in process execution.

5.3 Summary and Discussion

The CPN described in this chapter is a formal definition of the behavioural

semantics of both the base object-centric meta-model (presented in Chap-

ter 3) and extended meta-model (presented in Chapter 4), which was imple-

mented and tested using CPN Tools. Development of the CPN was com-

pleted in two stages, the base meta-model concepts were designed and imple-

mented in the first stage, then the extended meta-model concepts were added

in the second stage. The addition of the extended meta-model concepts in

the second stage required only minimal changes to the base meta-model.

As a result of this approach to CPN development, the CPN can be divided

into two sections that contains either the base meta-model concepts or the

extended meta-model concepts. These sections can then be further broken

down into the individual parts, e.g. states, transitions, gateways and static

signals for the base meta-model, and creation regions and dynamic signals

for the extended meta-model.

5.3. SUMMARY AND DISCUSSION 113

The CPN also allows us to test the behaviour of object-centric models

using an export function in the FlexConnect modelling tool. Using this

approach to testing object-oriented process models there is no need to create

a new CPN or remodel an existing CPN each time that a different O-C

process model is tested, since the CPN is based on the FlexConnect meta-

model. This means that it is capable of executing any model created by

the FlexConnect modelling tool. This approach is appealing since CPN

development can be quite difficult and time-consuming. However, an existing

limitation in the CPN is that object models loaded into the CPN are assumed

to be syntactically correct, because no syntax checks are performed other

than CPN-ML syntax and type checks performed by CPN Tools.

114 CHAPTER 5. FORMALISATION

115

Chapter 6

FlexConnect Pattern

Evaluation

In this chapter we examine the capabilities and distinctive features of the

FlexConnect modelling language. This has been done by evaluating the

language using the catalogue of Revised Workflow Control-flow Patterns [83]

and the Taxonomy of Flexibility [89]. The evaluations enable us to reason

about the suitability of an object-centric approach to process modelling. A

pattern-based evaluation of the flexible aspects of FlexConnect and YAWL

(including the YAWL Worklet service) is also presented to compare and

contrast how these languages support various types of ad-hoc variations.

The control-flow pattern evaluation of FlexConnect in this chapter is an

extension of the report available at [72].

6.1 Control-flow Pattern Evaluation

In this section the control-flow constructs of FlexConnect are evaluated. The

control-flow pattern evaluation is presented with a description and model

fragments (where relevant), to show how support for each pattern is achieved

by FlexConnect.

116 CHAPTER 6. PATTERN SUPPORT

6.1.1 Basic Control Patterns

WCP-1 Sequence

An activity in a workflow process is enabled after the completion of a pre-

ceding activity in the same process.

In FlexConnect, tasks are contained within states. The completion of

each task is either compulsory or optional. A compulsory task must be

completed before a state can be exited, whereas an optional task has no effect

on control-flow whatsoever. In addition, a state can contain any number of

compulsory and optional tasks. The completion of all compulsory tasks in

a state means that the state can exit. A transition can then be taken from

that state to another state in the same state machine. In Figure 6.1 we show

full support for the Sequence pattern by a sequence of states from the Initial

State, to State 001, to State 002, to the Final State.

Figure 6.1: WCP-1 – Sequence

WCP-2 Parallel Split (AND-Split)

A branch diverges into two or more parallel branches which each execute

concurrently.

To support the AND-Split in FlexConnect, it is necessary to divide the

model into several state machines that will execute independently. Specifi-

cally, an AND-Split is captured by a parent state machine that instantiates

6.1. CONTROL-FLOW PATTERN EVALUATION 117

two or more child state machine instances. An instance of a child state ma-

chine is created by a “spawn signal”. A spawn signal is sent from either

a pre- or post-gateway of a state to the initial state of another state ma-

chine. The child state machine lifecycle executes in parallel to its parent. As

shown in Figure 6.2, the AND-Split is fully supported by sending two spawn

signals (Sig01 and Sig02) with multiplicity of 1..1 from the pre-gateway of

State 001, which will split control-flow into two parallel branches, namely

the child state machines SM02 and SM03.

Figure 6.2: WCP-2 – AND-Split

WCP-3 Synchronisation (AND-Join)

Two or more branches converge into a single subsequent branch. Control

passes to a single subsequent branch after all input branches have completed.

The AND-Join is fully supported in FlexConnect by a gateway that is the

target of two or more signals. In Figure 6.3, the child state machines SM02

and SM03 send finish signals to the post-gateway of State 004 in the parent

state machine SM01. The gateway mode property is “wait-for-all”, which

118 CHAPTER 6. PATTERN SUPPORT

means that the state machine lifecycle will wait (or block) until all signals

that will be sent to the gateway are received. An interesting addition to the

support for this pattern is due to the parent state machine maintaining a

list of active children. Using this list the parent can query the number and

type of its active children. This allows the parent to avoid the possibility

of deadlock at an AND-Join in case any (or all) of the child state machines

that the parent expects to receive a signal from are cancelled.

Figure 6.3: WCP-3 – AND-Join

WCP-4 Exclusive Choice (XOR-Split)

A branch diverges into two or more branches. The thread of control is passed

to one of the outgoing branches based upon a logical expression associated

with the branch.

6.1. CONTROL-FLOW PATTERN EVALUATION 119

A transition can have an optional condition. To capture an XOR-Split,

each outgoing transition from a state has a condition specified (except the

default transition), which are evaluated after the state has exited. Based

on the condition evaluation, a transition is performed to the state which

corresponds to the first condition that is satisfied. The default transition is

evaluated last. A limitation is that an exclusive choice can only be specified

between states that exist in the same state machine, due to the fact that

conditions are only attached to transitions and are not attached to signals.

Conditions are shown in Figure 6.4 as part of an ECA rule on each transition.

Figure 6.4: WCP-4 – Exclusive choice in the same state machine

WCP-5 Simple Merge (XOR-Join)

Two or more branches converge into a single branch. Each incoming branch

passes a thread of control to the subsequent branch.

The simple merge is supported by FlexConnect in two ways; within the

same state machine and across different state machines. Within the same

120 CHAPTER 6. PATTERN SUPPORT

state machine, the simple merge is captured by a state that has multiple

incoming transitions, as shown in Figure 6.5. When one of the transitions

attached to State 005 is performed, the simple merge occurs. An instance of

a state machine can be in only one state at any point in time, guaranteeing

that only one incoming transition out-of-many will be performed to enter a

state. The simple merge may also be achieved across different state machines

that communicate by transmitting signals, as shown in Figure 6.6. The

mode of the gateway that represents the merge is specified as “wait-for-one”.

This gateway mode means that control-flow is released by the gateway when

the first incoming signal is received, but also has the consequence that the

gateway must receive at least one signal or control-flow will not be released.

Figure 6.5: WCP-5 – Simple merge within the same state machine

6.1. CONTROL-FLOW PATTERN EVALUATION 121

Figure 6.6: WCP-5 – Simple merge across different state machines

6.1.2 Advanced Branching Patterns

WCP-6 Multi-choice (OR-Split)

A branch diverges into two or more branches. The thread of control is

passed to one or more of the outgoing branches based upon the result of

logical expressions associated with each branch.

In FlexConnect, the OR-Split is captured by a gateway that sends two or

more signals that have a lower bound multiplicity of 0, as shown in Figure 6.7.

However, instead of basing the result of the split on the evaluation of logical

expressions, the lower and upper bounds of the outgoing signal multiplicity

are interpreted. The lower bound multiplicity of 0 of the outgoing signals

from the pre-gateway of State 001 means that multiple choices can be made

from this gateway. In the example in Figure 6.7, four choices can occur as

122 CHAPTER 6. PATTERN SUPPORT

the outcome of the split: 1) An instance of SM02 is created, 2) An instance

of SM03 is created, 3) An instance of SM02 and SM03 is created, or 4) No

instances of either SM02 or SM03 are created.

Figure 6.7: WCP-6 – Multi-choice

WCP-7 Structured Synchronising Merge

Provides a means of synchronising all splits previously made from a multi-

choice. Four context conditions exist. If only one path, alternative branches

should converge without synchronisation, otherwise all active branches from

a multi-choice split must synchronise.

To support this pattern, the post-gateway of State 002 in state machine

SM01 is set to “wait-for-all”, which means that a state in the parent state

machine will wait until all signals from all children have been received (where

’all’ can also mean ’none’ if no child instances have been created). In addi-

tion, a parent state machine can query the number and type of its children

that are active. This enables the parent to only wait for active children since

6.1. CONTROL-FLOW PATTERN EVALUATION 123

it knows the number of signals it can expect to receive from the children pre-

viously created by an OR-Split (the pre-gateway of State 001). For example,

as shown in Figure 6.8 the parent SM01 will exit from the post-gateway

of State 002 when all finish signals (Sig03 and Sig04) have been received.

The upper bound of these signals is unbounded, but since SM01 knows the

number of active children, it also knows the number of expected signals to

receive from instances of SM02 and SM03.

Figure 6.8: WCP-7 – Structured Synchronising Merge

WCP-8 Multi-Merge

Every active path into the merge triggers the task after the merge. No

synchronisation occurs at the join.

124 CHAPTER 6. PATTERN SUPPORT

When the state machines SM02 and SM03 enter State 002 and State 003

respectively, a multi-merge will occur since each state machine creates a new

instance of state machine SM04 with the spawn signals Sig03 or Sig04. This

means that State 004 is entered twice with no synchronisation occurring

between the state machines with respect to State 002 and State 003, as

shown in Figure 6.9. This satisfies the conditions for this pattern that “every

active path into the merge triggers the task after the merge” and that “no

synchronisation occurs at the join”.

Figure 6.9: WCP-8 – Multi-Merge

WCP-9 Structured Discriminator

Two or more branches converge into a single subsequent branch following an

earlier divergence in the process model. The thread of control is passed on

from the first active incoming branch. Subsequent active incoming branches

are not passed on. The discriminator resets once all incoming branches have

been enabled.

6.1. CONTROL-FLOW PATTERN EVALUATION 125

The structured discriminator is implemented by a waiting state that con-

tains the merge point. As shown in Figure 6.10, each child state machine

(SM02 and SM03) sends a finish signal to a post-gateway in the parent

(SM01). The post-gateway mode is “wait-for-one”, meaning that the merge

is performed when the first child signal received. If multiple signals ar-

rive simultaneously, the choice of which signal performs the merge is non-

deterministic. The construct resets after all signals have been received.

Figure 6.10: WCP-9 – Structured Discriminator

6.1.3 Structural Patterns

WCP-10 Arbitrary Cycles (Unstructured loop)

The ability to represent cycles in a process model that have more than one

entry or exit point.

FlexConnect does not explicitly define loops. This is because the state

machine paradigm that FlexConnect is based upon does not treat unstruc-

126 CHAPTER 6. PATTERN SUPPORT

tured loops as a distinct modelling construct, since any state in a state

machine (apart from the initial and final states) can have more than one in-

coming or outgoing transition. An unstructured loop consists of a repeating

sequence of states and transitions as shown in Figure 6.11. An unstructured

loop in this example begins at State 001 to State 002 to State 003 to State

004 and loops back to State 001. In this loop there are two exit points, from

either State 003 or State 004 to the final state, meaning that the loop can

be classified as an arbitrary cycle.

Figure 6.11: WCP-10 – Arbitrary Cycles

WCP-11 Implicit Termination

A given process or sub-process should terminate when there are no more

remaining work items that can be done now or at any time in the future.

Implicit termination is not supported by FlexConnect because a process

instance is only terminated when the final state is reached (which is an

example of explicit termination).

6.1. CONTROL-FLOW PATTERN EVALUATION 127

6.1.4 Multiple Instance Patterns

WCP-12 Multiple Instances without Synchronisation

Within a given process, multiple instances of an activity can be created.

These instances are independent of each other and run concurrently. There

is no need to synchronise them upon completion.

There are two types of multiple instances in FlexConnect. Firstly, there

are multiple instance tasks that are found within a state. The completion

of multiple instance tasks is specified as either ‘compulsory’ or ‘optional’,

meaning that the completion of the task instances are either required or not

required in order to exit the state that the multiple instance task belongs to.

An optional multiple instance task is started and is left to complete without

synchronising, meaning that the state does not wait for the completion of

optional tasks, which satisfies the criteria for no synchronisation upon com-

pletion. Secondly, multiple instances of child state machines can be created.

A child state machine can be seen as a composite task that contains more

than one task, executed in a sub-process. However, a child state machine

does not always return a finish signal, as shown in Figure 6.12.

Figure 6.12: WCP-12 – MI without synchronisation

128 CHAPTER 6. PATTERN SUPPORT

WCP-13 Multiple Instances with a priori Design Knowledge

Within a given process, multiple instances of an activity can be created. The

required number of instances is known at design time. These instances are in-

dependent of each other and run concurrently. It is necessary to synchronise

them upon completion before any subsequent tasks can be triggered.

Similar to support for the WCP-12 Multiple Instances without synchro-

nisation pattern, FlexConnect supports this pattern with both multiple in-

stance tasks in states and multiple instances of state machines. To support

this pattern using multiple instance tasks, a multiple instance task is defined

in a state and its completion is set to ‘compulsory’. This means that the

state will block until all instances of the task are complete at which time

synchronisation will occur and the state will exit. To support the pattern

using state machines, a spawn signal is used to create child state machine

instances, and each child state machine returns a finish signal to the parent

at lifecycle conclusion. The mode of the gateway in the parent state ma-

chine that receives finish signals from the children is set to “wait-for-all”,

which blocks until a finish signal has been received from all child instances,

as shown in Figure 6.13.

Figure 6.13: WCP-13 – MI with a priori design knowledge

6.1. CONTROL-FLOW PATTERN EVALUATION 129

WCP-14 Multiple Instances with a priori Runtime Knowledge

Within a given process, multiple instances of an activity can be created. The

required number of instances may depend on a number of runtime factors,

including state data, resource availability and inter-process communications,

but is known before the activity instances must be created. Once initiated,

these instances are independent of each other and run concurrently. It is

necessary to synchronise them upon completion before any subsequent tasks

can be triggered.

Support for this pattern is achieved in a similar way to the pattern WCP-

13 Multiple Instances with a priori Design Knowledge. At design time in

this case, the upper bound of the multiple instance task or a spawn signal is

specified as unbounded (n), which allows the number of instances needed at

runtime to be created as needed, as shown in Figure 6.14. This allows any

number of instances to be created which may be dependent on state data or

resource availability.

Figure 6.14: WCP-14 – MI with a priori runtime knowledge

130 CHAPTER 6. PATTERN SUPPORT

WCP-15 Multiple Instances without a priori Runtime Knowledge

Within a given process instance, multiple instances of an activity can be cre-

ated. The required number of instances may depend on a number of runtime

factors, including state data, resource availability and inter-process commu-

nications, but is known before the activity instances must be created. At

any time, whilst instances are running, it is possible for additional instances

to be created. It is necessary to synchronise them upon completion.

Support for this pattern is achieved in much the same manner as the

pattern WCP-14 Multiple Instances with a priori Design Knowledge. At

runtime, a number of instances are created as needed due to the unbounded

(n) upper bound of the spawn signal, as shown in Figure 6.15. This allows

any number of instances to be created which may be dependent on state

data or resource availability that is specified at runtime. Synchronisation of

all created instances of SM02 is performed at the pre-gateway of State 004,

which waits for all created instances of SM02 to complete.

Figure 6.15: WCP-15 – MI without prior runtime knowledge

6.1. CONTROL-FLOW PATTERN EVALUATION 131

6.1.5 State-Based Patterns

WCP-16 Deferred Choice (Deferred XOR-Split)

One of several branches is chosen based upon interaction with the envi-

ronment. Prior to the decision all possible future courses of execution are

presented. After the decision is made execution alternatives other than the

one selected are removed.

In FlexConnect a choice between multiple transitions emanating from a

given state is always deferred until the occurrence of an event that triggers

the exit from a state. The example shown in Figure 6.16 shows a deferred

choice where three transitions are possible from a single state and the decision

of which transition to take is not made until State 001 has exited.

Figure 6.16: WCP-16 – Deferred choice between three states.

132 CHAPTER 6. PATTERN SUPPORT

WCP-17 Interleaved Parallel Routing

A set of tasks is executed in a sequence that is determined at runtime. No

two activities can be active at the same time. The tasks synchronise upon

completion.

The interleaved parallel routing pattern is not supported because Flex-

Connect has no notion of a semaphore. That is, there is no construct that

can be used to restrict task execution across object lifecycles such that no

more than one instance of a task can be executing from a set of tasks in the

manner required to support interleaved parallel routing.

WCP-18 Milestone

An activity is enabled, but cannot be completed until a milestone is reached

elsewhere, which has not expired.

In the example shown in Figure 6.17, there is a milestone at the post-

gateway of State 002 in SM01. At the pre-gateway of State 001, an instance

of SM02 is created and either zero or one instance of SM03 is created. If an

instance of SM03 is created, this impacts the blocking behaviour of the post-

gateway of State 002. A transition to State 003 cannot be performed until

the post-gateway of State 002 has received a finish signal from SM02 and a

message signal from the post-gateway of State 005, depending on whether

an instance of SM03 was created. The post-gateway of State 002 will only

wait to receive a signal from State 005 if an instance of SM03 exists, due to

the “wait-for-all” mode of this gateway. If an instance of SM03 exists, State

003 cannot be exited until State 005 in SM03 has exited.

6.1. CONTROL-FLOW PATTERN EVALUATION 133

Figure 6.17: WCP-18 – Milestone

6.1.6 Cancellation Patterns

WCP-19 Cancel Activity

Disable an enabled activity, before it is completed.

Tasks may be cancelled at runtime by explicitly cancelling a running

instance of a task in FlexConnect model. Both optional and compulsory

tasks can be cancelled. A task instance that has been cancelled can be

restarted.

134 CHAPTER 6. PATTERN SUPPORT

WCP-20 Cancel Case

A workflow instance (a case) and its descendants are disabled and removed.

On the surface cancel case looks relatively easy to support, but it is not

supported in FlexConnect. There is considerable difficulty in supporting

cancel case in FlexConnect since this kind of cancellation has wide ramifica-

tions. Let us discuss this pattern in terms of the CPN from Chapter 5. If a

parent is cancelled, its children should also be cancelled, and those children

may be parents to additional children which also need to be cancelled. The

token representing each object lifecycle may be in one of three places; the

pre-gateway, processing sub-state or post-gateway. Also, these objects may

or may not have sent static signals and/or dynamic signals that need to be

removed and may or may not be in a creation region that needs to be re-

moved. Owing to the design of FlexConnect this pattern is too cumbersome

to support. However, single cases (state machine instances) can be cancelled

as required on an individual basis.

6.1.7 Extended Workflow Control Flow Patterns

WCP-21 Structured Loop

The ability to execute an activity or sub-process repeatedly. The loop has

either a pre or post-condition that determines whether it can continue. The

looping structure has a single entry and exit point.

This pattern is not supported by FlexConnect. The main problem is that

the start and end of a loop cannot be explicitly defined as a loop entry or

exit point using the FlexConnect notation.

6.1. CONTROL-FLOW PATTERN EVALUATION 135

WCP-22 Recursion

A task has the ability to invoke itself. The parent task cannot complete

until all child tasks are complete. There must be at least one path that is

not self-referencing and terminates normally to ensure that the task does not

invoke itself infinitely.

In FlexConnect, an object has the ability to create an instance of itself.

However, it is not possible to specify an end condition that ensures that an

object does not invoke itself an infinite number of times. Thus, this pattern

is partially supported by FlexConnect.

WCP-23 Transient Trigger

If the activity to which the trigger is pointing is not waiting for the trigger

at the time that the trigger is received, then the trigger is lost. Trigger must

be acted upon immediately. Trigger can be safe (one instance waiting for a

trigger) or not safe (multiple instances).

Not supported by FlexConnect.

WCP-24 Persistent Trigger

Relevant parts of a sub process are completed and the sub process continues

without blocking the “mother” process. The trigger can be either buffered

or can initiate a task directly.

Signals are used for synchronisation in situations between parent and

child state machines that run asynchronously. If the children reach the end

of their lifecycle then they will send a finish signal. At this point in time

the parent state machine might not be in a state to wait for the children, so

the signals are persisted to allow them to can be received at the stage when

the parent is ready to receive them. Thus, FlexConnect fully supports this

pattern.

136 CHAPTER 6. PATTERN SUPPORT

WCP-25 Cancel Region (disable an activity set)

Disable a set of activities within an instance. Any executing activities are

stopped. Activities can be part of any process.

Not supported by FlexConnect.

WCP-26 Cancel Multiple Instance Activity

Cancel any multiple instance tasks that have not been completed and move

to the subsequent task.

Partially supported by FlexConnect. Individual instances of a multiple

instance activity can be cancelled but there is no facility to instantly cancel

all active instances of a particular multiple instance activity.

WCP-27 Complete Multiple Instance Activity

Within a given process instance, multiple instances of an activity can be

created. The required number of instances is known at design time. These

instances are independent of each other and run concurrently. It is necessary

to synchronise the instances at completion before any subsequent activities

can be triggered.

Not supported by FlexConnect.

WCP-28 Blocking Discriminator

Two or more branches converge into a single branch following an earlier

divergence. Control is passed on once the first active incoming branch is

enabled for the same process instance. Discriminator resets when all active

incoming branches are enabled for the same process instance. Subsequent

enabling of incoming branches is blocked until the discriminator has reset.

Not supported by FlexConnect.

6.1. CONTROL-FLOW PATTERN EVALUATION 137

WCP-29 Cancelling Discriminator

Triggering the discriminator cancels the execution of incoming branches and

resets the construct. Issue exists with determining the boundaries of the

cancellation region.

Not supported by FlexConnect.

WCP-30 Structured Partial Join

Merge two or more branches into a single branch, once ’N’ incoming branches

have been enabled. Subsequent active incoming branches do not result in flow

of control and are ignored. Join construct resets when all active incoming

branches have been enabled.

This pattern is supported by FlexConnect. Synchronisation occurs at a

structured partial join when a “threshold” number of state machine instances

have completed. The lifecycle of the state machine then continues after “N-

out-of-M” children have finished and subsequent children are ignored.

WCP-31 Blocking Partial Join

The convergence of two or more branches into a single branch. The thread of

control is passed after ’N’ of the incoming branches has been enabled. The

join construct resets when all active incoming branches have been enabled

for the same process instance. Subsequent enablements of incoming branches

are blocked until the join has reset.

Not supported by FlexConnect.

138 CHAPTER 6. PATTERN SUPPORT

WCP-32 Cancelling Partial Join

Two or more branches converge into a single branch. The thread of control

is passed after ’N’ of the incoming branches has been enabled. Triggering

the join cancels the execution of all other incoming branches and resets the

construct.

Not supported by FlexConnect.

WCP-33 Generalised AND-Join

Converge two or more branches into a single branch and pass thread of

control on when all input branches are enabled. Additional triggers received

on one or more branches are persistent and are retained for future firings.

Not supported by FlexConnect.

WCP-34 Static Partial Join for Multiple Instances

Multiple concurrent instances of an activity are created. The required num-

ber of instances is known when the first activity commences. Once ‘n’ in-

stances have completed, the next task is triggered and subsequent comple-

tions of any remaining instances have no effect.

Thus pattern is supported by FlexConnect by setting the “threshold”

property on a signal to a number greater than zero (n), which synchronises

when n-out-of-m instances of a state machine have completed. The remaining

active ‘n’ instances complete their lifecycle with no effect on the process.

6.1. CONTROL-FLOW PATTERN EVALUATION 139

WCP-35 Static Partial Join for Multiple Instances with Cancella-

tion

Multiple concurrent instances of an activity are created and the required

number of instances is known when the first activity starts. Once ‘n’ activity

instances have been completed, trigger the next task and cancel all remaining

instances.

Not supported by FlexConnect, since multiple instances of tasks or state

machines cannot be cancelled as a group.

WCP-36 Dynamic Partial Join for Multiple Instances

Multiple concurrent instances of an activity are created and the required

number of instances is determined by some external factor such as state

data, resource availability or process communications and is not known until

the final instance is complete. It is possible to initiate additional instances

dynamically. Once ‘n’ activities are complete, the next task is triggered.

Any other active instances can be completed but will be ignored.

Partially supported. In FlexConnect, child instances can be triggered in

parallel without a priori knowledge because child objects have a relationship

with a parent object. The relationships between a parent and its children

can also be interrogated to determine if ‘n’ child instances have finished since

there is a threshold property on each signal involved in the relationship. The

remaining active ‘n’ instances are allowed to complete their lifecycle. This

applies generally in FlowConnect to support the “partial join” patterns. This

pattern is partially supported by FlexConnect because the lower-and upper-

bounds for multiple instances of state machines is specified using thresholds

instead of expressions.

140 CHAPTER 6. PATTERN SUPPORT

WCP-37 Acyclic Synchronising Merge

The convergence of two or more branches into a single branch that passes the

thread of control onto the subsequent branch when each incoming branch is

enabled. Where a given branch does not have a thread of control passed to

it at the divergence, “false tokens” are passed along the branch to ensure

that the merge construct can determine which incoming branches are to be

synchronised.

Not supported by FlexConnect because “false tokens” are not part of the

FlexConnect language.

WCP-38 General Synchronising Merge

The convergence of two or more branches where the thread of control is

passed to the subsequent branch when each active incoming branch has been

enabled or it is not possible that the branch will be enabled at any time in

the future.

This pattern is not supported by FlexConnect since it is only possible to

specify structured process models in FlexConnect, meaning that there is no

need to support this pattern.

WCP-39 Critical Section

Two or more connected sub-graphs are identified as “critical sections”. For

any given process instance, only activities in these critical sections can be

active at a given time. Once execution of the activities in one critical section

commences, it must complete before another critical section can commence.

This pattern is not supported by FlexConnect.

6.1. CONTROL-FLOW PATTERN EVALUATION 141

WCP-40 Interleaved Routing

Each member of a set of activities must be executed only once. They can

be executed in any order but no two activities can be executed at the same

time. Once all of the activities have been completed, the next activity can

be commenced.

Not supported by FlexConnect, due to the context condition “no two

activities can be executed at the same time”.

WCP-41 Thread Merge

At a given point in a process, a nominated number of execution threads in

a single branch of the same process instance should be merged together into

a single thread of execution.

In FlexConnect the Thread Merge pattern is supported by the message

and finish signal types, which are used synchronise instances of an state

machine at a gateway.

WCP-42 Thread Split

At a given point in a process, a nominated number of execution threads can

be initiated in a single branch of the same process instance.

Supported by the spawn signal type in FlexConnect, which initiates a

number of instances of a particular state machine according to the upper-

bound of the signal. In this context each instance is viewed as a thread.

142 CHAPTER 6. PATTERN SUPPORT

WCP-43 Explicit Termination

A given process (or sub-process) instance should terminate when it reaches

a nominated state. Typically this is denoted by a specific end node.

Supported by FlexConnect since this language has a specific end node,

which is a final state.

6.1.8 Control-flow Patterns Evaluation Summary

This control-flow pattern evaluation of FlexConnect has demonstrated how

business objects and state machines can be used to model processes using

the modelling syntax that has been introduced and explained in this thesis.

The local semantics of the state-based approach in FlexConnect allows the

language to present solutions to pertinent issues that are often identified by

control-flow pattern evaluations, such as the creation and synchronisation of

multiple instances and synchronisation at an OR-Join using a parent/child

relationship. The results of the control-flow pattern evaluation of FlexCon-

nect is summarised in Table 6.1 and Table 6.2. A good level of pattern

support is seen in the first 20 patterns (17/20 patterns supported), which

correspond to the first set of 20 workflow patterns from [6]. A decreased

level of pattern support is evident in the second set of 23 extended workflow

patterns (6 patterns fully supported, 3 patterns partially supported), which

capture more specific features of a workflow system.

A FlexConnect process model is a routing pattern for a process that

defines the states in a process and the transitions that may be performed

between states in a process. At a higher level in FlexConnect, state ma-

chines are grouped into business objects. Business objects are entities in

FlexConnect that play a role in a system and will be involved in one or more

business processes. To capture the workflow patterns using the object-centric

approach of FlexConnect, heavy use is made of signals instead of transitions

to connect nodes in an object-centric model together. It can be seen from

this pattern-based evaluation that usage of signals (connecting gateways) as

6.1. CONTROL-FLOW PATTERN EVALUATION 143

ID Pattern Name FlexConnect

WCP-1 Sequence +
WCP-2 Parallel Split +
WCP-3 Synchronisation +
WCP-4 Exclusive Choice +
WCP-5 Simple Merge +
WCP-6 Multi-choice +
WCP-7 Structured Synchronising Merge +
WCP-8 Multi-Merge +
WCP-9 Structured Discriminator +
WCP-10 Arbitrary Cycles +
WCP-11 Implicit Termination -
WCP-12 MI without Synchronisation +
WCP-13 MI with a priori Design Knowledge +
WCP-14 MI with a priori Runtime Knowledge +
WCP-15 MI without a priori Runtime Knowledge +
WCP-16 Deferred Choice +
WCP-17 Interleaved Parallel Routing -
WCP-18 Milestone +
WCP-19 Cancel Activity +
WCP-20 Cancel Case -

Table 6.1: Summary of Control-flow Pattern Support (Patterns 1-20)

opposed to transitions (connecting states) is what enables many control-flow

patterns to be supported by the object-centric approach.

The syntax of FlexConnect is very different to the usual syntax of activity-

centric modelling approaches. FlexConnect does not have an explicit mod-

elling notation for the set of control-flow splits and joins that are usually

found in activity-centric process modelling languages such as YAWL (i.e.

AND-Split, AND-Join, XOR-Split, etc). The various types of splits and

joins are supported by sending and receiving signals at gateways using the

mode and configuration gateway properties to specify control-flow behaviour,

often for the purpose of creating new objects. This represents an additional

burden to a process designer, who will have to compose a process primarily

in terms of the objects that the process is constructed of, rather than in

144 CHAPTER 6. PATTERN SUPPORT

ID Pattern Name FlexConnect

WCP-21 Structured Loop -
WCP-22 Recursion +/-
WCP-23 Transient Trigger -
WCP-24 Persistent Trigger +
WCP-25 Cancel Region -
WCP-26 Cancel MI Activity +/-
WCP-27 Complete MI Activity -
WCP-28 Blocking Discriminator -
WCP-29 Cancelling Discriminator -
WCP-30 Structured Partial Join +
WCP-31 Blocking Partial Join -
WCP-32 Cancelling Partial Join -
WCP-33 Generalised AND Join -
WCP-34 Static Partial Join for MI +
WCP-35 Cancelling Static Partial Join for MI -
WCP-36 Dynamic Partial Join for MI +/-
WCP-37 Acyclic Synchronising Merge -
WCP-38 General Synchronising Merge -
WCP-39 Critical Section -
WCP-40 Interleaved Routing -
WCP-41 Thread Merge +
WCP-42 Thread Split +
WCP-43 Explicit Termination +

Table 6.2: Summary of Control-flow Pattern Support (Patterns 21-43)

terms of the sequencing of tasks. It can be recognised that this approach to

process modelling might not be desirable in all situations.

However, some benefits are witnessed from using an object-centric ap-

proach. This approach presents a simple way to capture the OR-Join, which

is often a difficult pattern to implement in workflow languages because it

presents a difficult synchronisation problem where the number of active in-

coming arcs to the join must be known. The OR-Join should block control-

flow until all active incoming arcs have either arrived or have been cancelled.

Using an object-centric approach to the OR-Join, a parent waits until it

has received all signals from all active children. Support for the OR-Join

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 145

is achieved at a gateway simply because a parent knows the number and

type of all active children it expects to receive signals from. This approach

eliminates the need to trace back through a model to discover if an incoming

branch can still complete, because a relationship stores this information.

6.2 Taxonomy of Flexibility Evaluation

In this section we evaluate the FlexConnect and YAWL languages (including

the YAWL Worklets service) using the patterns in the Taxonomy of Flexibil-

ity [90]. The categories included in the Taxonomy of Flexibility are Flexibil-

ity by Design, Flexibility by Deviation, Flexibility by Underspecification and

Flexibility by Change. FlexConnect and YAWL have been evaluated in order

to compare and contrast how flexibility can be achieved by representatives

of both object-centric and activity-centric process modelling languages.

6.2.1 Flexibility by Design

Flexibility by Design is the ability to select the most appropriate execution

path from a set of design-time alternatives to be made at runtime within a

process model. The Flexibility by Design patterns are Parallelism, Choice,

Iteration, Interleaving, Multiple Instances and Cancellation.

Parallelism

FlexConnect supports the Parallelism pattern in the same way it supports

the AND-Split control-flow pattern, as shown in Figure 6.2. An instance of

a child state machine is created by a “spawn signal”. A spawn signal is sent

from either a pre- or post-gateway of a state to the initial state of another

state machine. This gives FlexConnect the ability to execute child several

tasks in parallel, as well as in parallel to the parent lifecycle. YAWL supports

parallelism with a dedicated AND-split operator that enables two or more

tasks following the completion of a task, as shown in Figure 6.18.

146 CHAPTER 6. PATTERN SUPPORT

Figure 6.18: Parallelism in YAWL

Choice

The Choice pattern is supported in the same way as the OR-Split control-

flow pattern is supported. This is, the ability to choose between zero-to-many

state machines from a number of different types of state machines allows the

choice at runtime to be made as to which combination of state machines will

be created, as shown in Figure 6.7. In the example provided, four choices

can occur as the outcome of the split: 1) An instance of SM02 is created,

2) An instance of SM03 is created, 3) An instance of SM02 and SM03 is

created, and 4) No instances of either SM02 or SM03 are created. YAWL

supports the choice pattern with an XOR-split (or OR-split) that allows a

choice of task (B, C or D) to be made following the completion of a task

(A), as shown in Figure 6.19.

Figure 6.19: Choice in YAWL

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 147

Iteration

The Iteration pattern is supported by a state with an outgoing transition

that has the same state as its target. This means that, depending on the

evaluation of conditions at runtime, the path of execution may iterate over

the task contained in State 001, as shown in Figure 6.20. This pattern is

supported in the same manner by YAWL because control-flow in YAWL can

iterate over a task or a set of tasks.

Figure 6.20: Iteration in FlexConnect

Interleaving

Interleaving is not supported because it is not possible to select one-amongst-

many active children to execute at a particular moment in time. YAWL

supports parallel interleaving with the use of a condition that behaves as a

semaphore. As shown in Figure 6.21, this allows only one instance of a task

among a set of tasks (e.g. tasks A, B, C and D) that share the semaphore to

execute at one time.

Multiple Instances

Since FlexConnect supports the Multiple Instances without a priori runtime

knowledge control-flow pattern (WCP-15), all multiple instance pattern vari-

ants are supported since they can be seen as variations/simplifications of

148 CHAPTER 6. PATTERN SUPPORT

Figure 6.21: Parallel Interleaving in YAWL

WCP-15. The solution for the WCP-15 multiple instance pattern is shown

in Figure 6.15. At runtime, a number of instances are created as needed

due the unbounded (n) upper bound of the spawn signal. This allows any

number of instances to be created which may be dependent on state data

or resource availability at runtime. Synchronisation of all created instances

of SM02 is performed at the pre-gateway of State 004, which waits-for-all

created instances of SM02 to complete. Also, if there was no finish signal

Sig02 to indicate the completion of SM02 lifecycles, then this provides sup-

port for multiple instance creation with no synchronisation. Support for the

multiple instances pattern in YAWL is shown Figure 6.22. After task A has

been completed, the expressions xq1 and xq2 are evaluated at runtime to

determine the lower- and upper-bound number of instances of task B that

should be created.

Figure 6.22: Multiple Instances in YAWL

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 149

Cancellation

FlexConnect supports cancellation of task instances at runtime. A cancelled

task instance can then be restarted. Cancellation of a state machine instance

has wider ramifications since if the state machine is a parent of any child

state machines instances, the child state machine instances are also cancelled.

This is not supported. In YAWL, the execution of a task can result in the

cancellation of another task, tasks or a case. As shown in Figure 6.23, the

execution of task B causes task A to be cancelled.

Figure 6.23: Cancellation in YAWL

6.2.2 Flexibility by Deviation

Flexibility by deviation allows control-flow in a process model to deviate

from the prescribed path of execution. The advantage of allowing deviations

is to permit a process to accommodate situations at runtime that require an

alternate sequence of tasks to be performed. The Flexibility by Deviation

patterns are Undo, Redo, Skip, Create Additional Instance and Invoke Task.

Undo

Not supported by FlexConnect or YAWL. However, the description of the

Undo pattern “One point to consider with this operation is that it does not

imply that the actions of the task are undone or reversed” taken from Scho-

nenberg et al, leads one to believe that Undo can be supported by cancelling

150 CHAPTER 6. PATTERN SUPPORT

a task, then restarting it. We consider that this quote is not really true of an

Undo operation (since nothing is ‘undone’), so this pattern is not supported.

Redo

Not supported by FlexConnect or YAWL. In the FlowConnect engine (from

where FlexConnect is inspired), there is a “hammer” concept that allows a

user with appropriate privileges to move the state of execution of an object

to any previous state. However, this is more of an administration feature

than a language feature.

Skip

Partially supported by FlexConnect but not supported by YAWL. If a task

is marked as an ‘optional’ task, then its completion is not required for a state

to exit. Hence, an optional task can be ‘skipped’ by simply stopping work

on the task. The task will persist until it is either completed at a later stage

or it is cancelled. It is not possible to skip a ‘compulsory’ task. There is

no explicit Skip operation in FlexConnect, however partial support for this

pattern is claimed due to optional tasks that need not be completed.

Create Additional Instance

Supported by FlexConnect but not by YAWL. Creating additional instances

of a state machine (that may represent a single task or many tasks), is done

by defining a creation region and linking a creation signal from the region

to a JOB (Job object). At any time when the state machine instance is ‘in’

the region, additional instances of the JOB can be created. A region can be

of any size, meaning it can contain anywhere from a single state to all states

in a state machine. The number of instances created may be restricted by

the lower/upper bounds of the creation signal. As shown in Figure 6.24,

from 1 to n Client Interaction instances, 0 to n Child Support instances and

0 to 1 Rental Assistance instances can be created when the state machine

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 151

lifecycle of the Client Intake COROB (Coordination Object) is in the Case

Management Region.

Figure 6.24: Create Additional Instance in FlexConnect

Invoke Task

The Invoke Task pattern is not supported by either FlexConnect or YAWL.

It is not possible to invoke/execute tasks in a FlexConnect process model

on an adhoc basis. Task invocation can only be done after a transition has

been performed to the state that contains the task. Since a state machine

can only be in one state at one time, support for the Invoke Task pattern

could potentially require to exit the current state and take a transition to

any state, regardless of whether there is a transition connecting the source

and target states. Undesirable side-effects on control-flow synchronisation

(in particular) could be experienced as a result. The same limitation is

witnessed in YAWL Worklets.

6.2.3 Flexibility by Underspecification

Flexibility by Underspecification is the ability to execute and complete a pro-

cess model that contains insufficient design-time information. The Flexibility

152 CHAPTER 6. PATTERN SUPPORT

by Underspecification patterns are Late Binding, Late Modelling, Static –

before placeholder execution, Dynamic – before placeholder execution, Static

– at placeholder execution and Dynamic – at placeholder execution.

Late Binding

From Schonenberg et al, a summary of Flexibility by Underspecification is

given as “This approach to process design and enactment is particularly

useful where distinct parts of an overall process are designed and controlled

by different work groups, but the overall structure of the process is fixed”. In

FlexConnect, there is ability to send work that is outside the scope of a given

state machine to an alternative state machine that can handle the out-of-

scope work in question. This ability is known as a referral. From a creation

region in a state machine, a referral signal can be sent to a ROB (Referral

Object), from where an instance of a state machine (possibly from a set of

state machines) can be created. For example, in Figure 6.25, an instance of a

ROB can create a nested instance of a Gambling Issue COROB, Alcoholism

COROB or Legal Support COROB, depending on whether any of the issues

that these COROBs deal with appeared during the Case Management Region

of the Client Intake COROB. Essentially, this is a late binding mechanism

that allows the target of a referral to remain loosely defined at design time.

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 153

Figure 6.25: Late Binding in FlexConnect

YAWL Worklets also support late binding since a worklet-enabled task

can act as a task ‘placeholder’, which enables the type of the task to be

executed to be dynamically selected at runtime. This ability permits YAWL

Worklets to support late binding without structurally altering the model.

Late Modelling

Not supported by FlexConnect, since process fragments cannot be modelled

at runtime. YAWL Worklets support late modelling of process fragments by

allowing a process model to be created at runtime in response to a situation

where a suitable worklet cannot be found. Parts of a process model can be

left undefined as task ‘placeholders’ which are to be modelled at runtime.

This allows process modelling to be deferred until the last possible moment

at runtime.

154 CHAPTER 6. PATTERN SUPPORT

Static – before placeholder execution

In FlexConnect, the content and boundaries of a creation region is defined

at design time. The content or boundaries of a creation region cannot be

changed at run time. A static placeholder, defined before placeholder exe-

cution is a creation region that consists of a single state. This restricts the

creation region to be enacted at the same process fragment for every instance

of the process. This pattern is not supported by YAWL.

Dynamic – before placeholder execution

A dynamic placeholder, defined before placeholder execution is a creation

region that consists of more than one state. This has the effect of granting a

state machine the ability to send signals from the creation region while the

instance is in any state of the process that belongs to the region for every

instance of the process. This pattern is not supported by YAWL.

Static – at placeholder execution

Not supported by FlexConnect or YAWL.

Dynamic – at placeholder execution

Not supported by FlexConnect. However, YAWL Worklets support this

pattern by specifying a worklet-enabled task at design-time and then allowing

the type of task to be realised at the placeholder to be dynamically chosen

again each time that the placeholder is executed.

6.2.4 Flexibility by Change

Flexibility by change is the ability to modify a process model at runtime such

that one or all of the currently executing process instances are migrated to

a new process model. The Flexibility by Change patterns are Momentary

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 155

Change, Evolutionary Change, Entry Time, On-the-fly, Forward Recovery,

Backward Recovery, Proceed and Transfer.

Momentary Change

Momentary change is supported by FlexConnect with the use of creation

regions. A creation region enables several types of momentary change to oc-

cur, where a momentary change is a change that affects one or more selected

process instances (i.e. the occurrence of an isolated incident). Momentary

change can include the creation of an unplanned task, which is a type of

momentary change that can be modelled and enacted by FlexConnect using

a creation signal. YAWL does not support momentary change.

Evolutionary Change

Evolutionary change is not supported by FlexConnect. YAWL Worklets

support evolutionary changes to a process model with the use of ripple-

down rules. Ripple-down rules can be specified at runtime and are used to

organise worklets into a hierarchy of tasks which are structured according to

the condition(s) that must be satisfied for a particular worklet to be enabled.

Over time, new ripple-down rules can be added and old rules can be altered,

allowing evolutionary change to affect a YAWL process model.

Entry Time

Entry Time is partially supported in FlexConnect by including the initial

state of a state machine as the only state in a creation region, which is also

the only creation region for that state machine. This is the only way in a

FlexConnect model to localise change in a state machine to entry time. This

pattern is not supported by YAWL.

156 CHAPTER 6. PATTERN SUPPORT

On-the-fly

On-the-fly change is supported by FlexConnect. Enactment of a dynamic

signal from a creation region can occur at any time when a state machine

instance is in the creation region. This enables change to be handled as it

occurs in a region, which represents a reactive approach to flexibility. YAWL

Worklets support on-the-fly change because a process can be customised at

any time during its execution and new processes are executed according to

any customisations that have been made during previous executions.

Forward Recovery

Forward recovery (process instances affected by a change are aborted) is not

supported by FlexConnect. Running processes that are affected by change

can be aborted in YAWL Worklets.

Backward Recovery

Backward recovery (process instances affected by a change are aborted, then

restarted) is not supported by FlexConnect. Running processes that are

affected by change can be aborted and then restarted in YAWL Worklets.

Proceed

FlexConnect does not maintain a particular ‘way’ of handling change that

is updated over time. Instead, all possible options are presented to a user

at runtime, and the appropriate type of change needed to fit a situation

confronting a user is chosen at the moment it is needed. No distinction is

made in FlexConnect between existing instances that are handled the old

way and new instances of the same process that are handled the new way.

YAWL also does not support the Proceed pattern.

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 157

Transfer

The transfer pattern is supported in FlexConnect by delegation, which is the

ability of a user to trigger the transfer of context and data from an executing

task to a different task. Delegation provides support for circumstances that

may change over time (i.e. if a problem appears during a client interaction,

delegate the interaction to a task that can support the problem). To support

such situations, a new (delegatee) takes over execution of a previous (dele-

gator), which corresponds to the transfer of an existing process instance to

a new instance. Delegation can only be performed while a state machine is

in a creation region that sends a delegation signal. Support for the transfer

pattern in YAWL Worklets is much more straight-forward, since this pattern

supported by allowing a process fragment to replace another fragment which

allows a task instance to be transferred to another task instance.

6.2.5 Flexibility Patterns Evaluation Summary

In this section we have illustrated how FlexConnect and YAWL support pat-

terns in the Taxonomy of Flexibility. We note that support for the Flexibil-

ity by Design patterns is achieved in the same way as particular control-flow

patterns for both languages. The other categories (Flexibility by Deviation,

Underspecification and Change) allow us to present the usage of other as-

pects of YAWL (through the YAWL Worklet service) and FlexConnect (by

using dynamic signals and creation regions).

As we can see in Table 6.3, both FlexConnect and YAWL achieve sup-

port for a number of flexibility patterns. For both languages, support for

all patterns for any particular category of flexibility in the taxonomy is not

achieved. However, FlexConnect achieves support for a spectrum of flexi-

bility patterns, since we can observe that FlexConnect supports a number

of patterns in each category. This range of support for a variety of pat-

terns indicates that the FlexConnect modelling language can be applied in

a range of situations and allows us to highlight the versatility of the language.

158 CHAPTER 6. PATTERN SUPPORT

Category Pattern FlexConnect YAWL

Flexibility by
Design

Parallelism + +
Choice + +
Iteration + +
Interleaving - +
Multiple Instances + +
Cancellation + +

Flexibility by
Deviation

Undo - -
Redo - -
Skip +/- -
Additional Instance + -
Invoke Task - -

Flexibility by
Underspecification

Late binding + +
Late modelling - +
Static – before PH + -
Dynamic – before PH + -
Static – at PH - -
Dynamic – at PH - +

Flexibility by
Change

Momentary Change + -
Evolutionary Change - +
Entry Time +/- -
On-the-fly + +
Forward Recovery - +
Backward Recovery - +
Proceed - -
Transfer + +

Table 6.3: Summary of Taxonomy of Flexibility Support

Support for the Flexibility by Design patterns that are presented in Scho-

nenberg et al [89] is achieved by FlexConnect and YAWL in the same way

6.2. TAXONOMY OF FLEXIBILITY EVALUATION 159

that related control-flow patterns are supported. This is because of the close

similarities that can be observed between the Flexibility by Design patterns

to particular control-flow patterns. Thus, support for all Flexibility by De-

sign patterns except the Interleaving pattern is achieved in FlexConnect. The

Interleaving pattern is not supported for the same reason that the “Parallel

Interleaved Routing” control-flow pattern is not supported. YAWL supports

all of the Flexibility by Design patterns.

To support the Flexibility by Underspecification patterns, a process mod-

elling language must have a special type of node known as a placeholder. A

placeholder is essentially a black box that represents an incomplete or under-

specified fragment of a process model. The closest concept in FlexConnect

to a placeholder (as it is described in Schonenberg et al) is a creation re-

gion. The main difference between a creation region and a placeholder is

that a placeholder is an underspecified node that has unknown content. In

contrast, the content of a creation region is well-defined (it contains one or

more states), however the purpose of a creation region is to enable unplanned

task creation. Thus, the rationale behind a creation region is the same as

a placeholder, since a creation region identifies the fragments of a process

model that are underspecified and allows runtime adjustments to be made

to the process at the nodes that are contained within the region. A YAWL

Worklet can be seen as a type of placeholder, which allows YAWL to support

many of the Flexibility by Underspecification patterns.

The evaluation shows that flexibility in either language can only be

achieved by incorporating extensions to the core of either language. For

example, to support aspects of Flexibility by Deviation, Flexibility by Un-

derspecification and Flexibility by Change, dynamic signals and creation

regions are used in FlexConnect and the Worklet service is used in YAWL.

Using the Taxonomy of Flexibility as a tool for comparison with other pro-

cess modelling languages, we can observe that FlexConnect compares well

with YAWL in general, especially in the Flexibility by Deviation category.

On the basis of this evaluation and comparison with YAWL we conclude that

FlexConnect is a general-purpose flexible process modelling language.

160 CHAPTER 6. PATTERN SUPPORT

161

Chapter 7

Epilogue

In this thesis an alternative approach for the design of process models was

proposed, in which models are modularised along key business objects rather

than along activity decompositions. This epilogue summarises the contribu-

tions of the thesis, identifies how the criteria for a solution were realised in

the thesis and concludes with a discussion of future work.

7.1 Summary of Contributions

In this thesis a meta-model for object-centric (O-C) process modelling was

introduced, analysed and discussed. To empirically test the meta-model, an

O-C modelling tool was developed called FlexConnect. The modelling tool

was used to capture two large industrial scenarios and the process modelling

capabilities of the approach were evaluated using the control-flow patterns

and the taxonomy of flexibility. A FlexConnect model focuses upon identi-

fying the objects (or artifacts) that are involved in a process and specifies

the relations between them. Object lifecycles are decomposed following an

object-oriented paradigm, with higher-level object lifecycles spawning in-

stances of child objects. The focus on decomposition gives three main ben-

efits to the approach, which have been introduced and discussed over the

course of this thesis.

162 CHAPTER 7. EPILOGUE

Firstly, an O-C approach is a way of modelling that promotes modular-

isation of a process model into objects. An object is an entity in a process

that captures related tasks which share some association such as common

data or purpose. For example, the tasks required to complete an Inspec-

tion are captured by an Inspection object. The modularisation approach

promoted by activity-centric approaches is restricted in terms of the types

of decompositions it allows. The units of decomposition in this approach

are basically functional black-boxes: at runtime, after an activity (task or

sub-process) is started the process waits for the activity to complete. When

modularising in terms of an O-C approach, an object instance has a lifecycle

that manages interaction with other objects at different points in the life-

cycle in addition to task execution. This latter approach to modularisation

is richer. An O-C approach enables modellers to modularise along the key

objects (or entities) of a domain. This enables changes in the requirements

to be addressed within the specification of these entities. In contrast, in

an activity-centric decomposition approach, any changes affecting one entity

might also affect many sub-processes.

Secondly, precise control-flow dependencies between business objects (mod-

ules) are easily identified. In a FlexConnect model these dependencies are

captured using gateways and signals. If an object creates instances of other

objects, a parent/child relationship is established from which the objects

that belong to each other can be derived. This has the advantage of enabling

a parent object to know the number and type of children it should wait for

at a point of synchronisation (a gateway). Synchronisation behaviour can be

further refined by setting gateway and signal properties (by specifying the

gateway configuration, gateway mode and signal mode).

Lastly, the FlexConnect modelling language is a flexible process mod-

elling language. A flexible process model is one that has the ability to cope

with several types of change. We demonstrated how FlexConnect handles

several types of flexibility such as unplanned task creation, task delegation

and task referral by defining an object-oriented framework. As illustrated

in Figure 7.1, a strength of FlexConnect is that a spectrum of flexibility

7.1. SUMMARY OF CONTRIBUTIONS 163

patterns are supported across the taxonomy of flexibility (defined in [89]).

This indicates that the FlexConnect modelling language can be applied in a

range of situations and highlights the versatility of the language. Using the

taxonomy of flexibility as a tool for comparison with other process modelling

languages, FlexConnect compares well with Declare and YAWL Worklets,

and compares favourably with ADEPT1 and FLOWer, especially in the cat-

egory “Flexibility by Design”.

Figure 7.1: Flexibility Patterns Coverage of FlexConnect

164 CHAPTER 7. EPILOGUE

7.2 Fulfillment of Solution Criteria

In Chapter 1, six criteria for a solution were introduced. Below we recall

the criteria and identify how each criterion was realised in the thesis.

1. The language must be defined in terms of a meta-model. In

this thesis we aim to define an object-centric language to process modelling

and investigate applications of the language. The elements of the approach

and their associations should be captured as a meta-model to provide the

necessary syntax for object-centric process modelling.

A meta-model was developed to provide a foundation for the develop-

ment of O-C process models. In addition, an object-to-activity conversion

procedure was defined to transform control-flow from an O-C to an activity-

centric representation, in this case, to produce a YAWL model from an O-C

model. The motivation for providing such a transformation is to show the re-

lations between O-C and activity-centric process modelling approaches from

the control-flow perspective. In particular, the transformation shows that

it becomes difficult or impossible to maintain the process model structure

(i.e. its decomposition into objects) when objects communicate in an arbi-

trary manner. Specifically, the decomposition is maintained if the objects

communicate only through spawn and finish signals.

2. The language must be flexible. The modelling language must have

the ability to capture scenarios that experience ad-hoc change and case-by-

case variation.

The FlexConnect language allows for the flexible instantiation of arti-

facts in a process model as they are required. This language reflects the

different needs that can confront different cases of the same process during

runtime. We demonstrated how the FlexConnect meta-model supports the

design of processes consisting largely of unplanned activities. In particular

we showed how three fundamental business object types (Coordination Ob-

ject, Job Object and Referral Object) can be combined to capture different

7.2. FULFILLMENT OF SOLUTION CRITERIA 165

flexibility requirements. The key underlying principle is that a FlexConnect

model specifies “what can happen during a case”, rather than “how it should

happen”. Any constraints regarding which objects can be created and when,

are overlaid on top of the object model. This approach contrasts with main-

stream process modelling paradigms based on flowchart-like notations, in

which the activities to be performed and their control-flow relations form

the backbone of a process model. Of course, while flexibility is essential in

domains such as human services there are situations where this flexibility

should be constrained. Thus, the approach also supports the definition of

‘thresholds’ to constrain the number of children that a parent can create.

3. The language must have a graphical modelling notation. The

language must be visual, based on a syntax that is captured as a meta-model

that should aid the design of object-centric process models.

A graphical notation was developed on the basis of the FlexConnect

process modelling syntax defined in the meta-model (see Criterion #1). The

notation was introduced in two parts in this thesis. Firstly, the elements

of the notation to model structured processes models were introduced in

Chapter 3. A minimalist set of elements to capture flexible process models

were introduced in Chapter 4. The structured and flexible aspects of the

notation were applied to capture industrial O-C process models provided by

the project’s industrial partner.

4. The language must be embodied in a modelling tool. The lan-

guage must be embodied in a modelling tool to provide a computer-assisted

way of constructing and validating flexible object-centric process models.

A modelling tool called FlexConnect was developed to embody the meta-

model and notation. FlexConnect allows a process modeller to capture both

structured and flexible process models using the graphical notation that was

proposed for O-C process models. The tool has the functionality to transform

control-flow defined in a FlexConnect model to a YAWL model based on the

object-to-activity model conversion procedure, which was implemented using

166 CHAPTER 7. EPILOGUE

customised plugins from the ProM framework [24]. The tool also has the

functionality to generate an initial marking for a Coloured Petri Net (CPN)

that acts as an interpreter for the execution of FlexConnect process models.

5. The language must have a formal grounding. A formal foundation

serves the purpose of removing ambiguity regarding the runtime behaviour

of all the modelling elements of the language. On the basis of the formal

foundation, the ability to reason about the language and test process models

developed using the language to validate behavioural correctness should be

possible.

The semantics of the approach is formally captured by a CPN. The CPN

provides several insights into how the semantics of a flexible modelling ap-

proach can be formally defined, which has the advantage of achieving flexi-

bility without adding overly complex business rules to maintain control over

process behaviour. Besides providing a grounding of the proposal, the CPN

may be used for at least two purposes: 1) Behavioural Correctness. The

CPN enables one to examine a FlexConnect model for behavioural correct-

ness by executing the model in CPN Tools. 2) Simulation. Simulation

of a FlexConnect model can be performed using CPN Tools to validate the

expected runtime behaviour of the model.

6. The language must be ‘suitable’. The language must have the ability

to support recurring patterns of control-flow in process models and have the

ability to support a range of patterns of flexibility.

An evaluation of the FlexConnect language in terms of the control-flow

patterns [6] and taxonomy of flexibility [89] is provided, which highlights the

strengths and weaknesses of FlexConnect as a representative O-C process

modelling language. The evaluation demonstrated the ability of FlexConnect

to capture advanced synchronization patterns such as the OR-Join (in certain

contexts) and multi-instance activity patterns. Several weaknesses were also

demonstrated such as the requirement that AND-Splits can only be captured

by decomposing a business object into sub-objects. This is an approach that

7.3. FUTURE WORK 167

might not be desirable in some settings because the comprehensibility of

large models may be affected if each branch from an AND-Split requires the

creation of a new object. An evaluation of FlexConnect using the taxonomy

of flexibility shows that types of flexibility are supported in all categories of

the taxonomy, allowing us to conclude that FlexConnect is a general-purpose,

flexible process modelling language.

7.3 Future Work

There are several possible directions for future work. We begin with a discus-

sion of the formalisation presented in Chapter 5. To formalise the semantics

of the O-C process modelling approach proposed in this thesis, a CPN was

defined that captures the behavior of FlexConnect process models. The

“fast-forward” capabilities of the CPN Tools software have been used to test

this CPN with example models, by running a large number of transitions

and manually inspecting the resulting state of the CPN.

One direction for future work is to extend this CPN in order to enable

stochastic simulation of FlexConnect process models. Such simulation capa-

bilities would enable analysts to perform cycle-time analysis, resource uti-

lization analysis and activity-based costing of O-C process models. Since the

CPN behaves as a process model interpreter (or a workflow engine), there is

no need to remodel a new CPN each time a simulation on a different process

model is performed. This approach would be appealing for the simulation of

process models that may have been changed between simulations since CPN

development is well-known as begin quite difficult and time-consuming.

The FlexConnect modelling tool is a proof-of-concept artifact prepared in

accordance with the design science methodology. There are many usability

improvements that could still be made to the tool outside of the environ-

ment it has been applied to over the duration of this project. For example,

several improvements could be made to the user interface of the FlexCon-

nect modelling tool, such as automatically adding gateways to states rather

than adding them manually, improving the positioning of gateways relative

168 CHAPTER 7. EPILOGUE

to states, automatically specifying unique IDs for states and gateways and

automatically specifying unique names for gateways (which can be done be-

cause gateway names are symbolic and often have no real meaning).

The work presented in this thesis on an O-C approach to process mod-

elling is primarily focussed on control-flow. The basic structure of control-

flow has been captured, but currently the details of data movement and

resource allocation are missing. Early in the research project, evaluations

of the FlowConnect system were completed in terms of the control-flow,

data [82], resources [85] and exception handling [84] patterns. These evalu-

ations were done to gain an understanding of how FlowConnect works. In

addition to the control-flow pattern support documented in this thesis, the

platform was found to support a significant number of resource patterns, as

well as a reasonable number of the data patterns and several of the exception

handling patterns.

Extending the meta-model proposed in this thesis in order to deal with

the resource and the data perspectives is an avenue for future work. Initial

work in this direction was undertaken during the early phases of the PhD

project, but it was found that a strong control-flow meta-model was needed in

order to overlay the data and resource aspects. Accordingly, the meta-model

presented in this thesis focuses on the control-flow perspective. Previous

research such as that done by Kappel and Schrefl [43, 44] focussed on unifying

data and behaviour using object-oriented design techniques. Although based

on Petri Nets, these early works are not typically concerned with process

modelling. Support for the data perspective in the O-C approach could

be achieved by adding the ability to manipulate and exchange data in the

ways identified by the Workflow Data Patterns (i.e. data visibility, transfer,

interaction and routing).

Similarly, support for the resource perspective could be achieved by pri-

marily adding role types to the O-C meta-model (e.g. user, group, reference,

system) and then specifying the privileges that roles can have over activi-

ties. Achieving comprehensive support for the Workflow Resource Patterns

would require refinement of these basic elements. Inclusion of the data and

7.3. FUTURE WORK 169

resource perspectives would then result in a fully-fledged O-C process mod-

elling language.

Another avenue for further research is to investigate process modelling

patterns that may be specific to the O-C approach. The motivation driving

such an investigation is that the O-C approach brings its own character-

istics to process modelling that are not typically found in activity-centric

approaches. An initial exploration in this area is found in Künzle et al [51].

Reuse in process models is an area that has not received a large amount

of attention in the literature. Thus, an additional possibility for future work

would be an investigation into the potential for higher levels of reuse of pro-

cess models. The main benefit of reuse is to increase development efficiency

through minimisation of model redesign. Since reuse is a design discipline,

it can only be encouraged through the appreciation of best practices and

identification of generalisable solutions. However, encouraging greater levels

of reuse of process models would have the benefit of avoiding reinventing

the wheel during a process model development effort, and would also lead

towards methods for the rapid development of mature process models. The

O-C process modelling approach offers an attractive foundation for more

reuse-oriented process modelling practices by enabling designers to modu-

larise their process models along key business objects.

An O-C approach requires users to understand and conceptualise business

objects. An advantage of activity-centric models in practice is that they are

an effective instrument for facilitating communication with business users.

Since business users often understand what they do in terms of activities

rather than in terms of the objects affected by a process, O-C models can be

criticised for being an “unnatural” modelling approach. Communicating in

terms of objects may require learning a new process modelling “language”.

In practice, this problem can be overcome by increasing familiarity with the

O-C paradigm with methods of training such as workshops. Future work

on this topic could consist of an empirical investigation to identify the main

usability problems of O-C process models.

170 CHAPTER 7. EPILOGUE

As mentioned in the Control-flow Patterns Evaluation Summary of Chap-

ter 6, an O-C process modelling language contains some additional modelling

complexity compared to an activity-centric language. To capture joins and

splits in an O-C process model (e.g. an AND-split) the way of modelling

contains a trade-off that artificial objects must sometimes be created. This

obstacle means it is possible that not all objects in an O-C process model

represent an actual object such as an Inspection or an Issue. However, not

every O-C model is affected by this obstacle, which can emerge as a conse-

quence of improperly perceiving a process in terms of objects. The definition

of a complexity metric may be helpful to better understand and reduce com-

plexity in O-C process models.

171

Bibliography

[1] W. M. P. van der Aalst, M. Adams, A. H. M. ter Hofstede, M. Pesic,
and H. Schonenberg. Flexibility as a Service. Technical Report BPM-
08-09, BPMcenter.org, 2008.

[2] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer. Pro-
clets: A Framework for Lightweight Interacting Workflow Processes.
International Journal of Cooperative Information Systems, 10(4):443–
481, 2001.

[3] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Weijters.
Genetic Process Mining. In Applications and Theory of Petri Nets,
26th International Conference (ICATPN 2005), pages 48–69, Miami,
USA, June 20-25 2005.

[4] W. M. P. van der Aalst, M. Dumas, P. Wohed, and A. H. M. ter Hofst-
ede. Pattern Based Analysis of BPML (and WSCI). Technical Report
FIT-TR-2002-05, Faculty of Information Technology, Queensland Uni-
versity of Technology, 2002.

[5] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005.

[6] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow Patterns. Distributed and Parallel Databases,
14(1):5–51, 2003.

[7] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business
Process Management: A Survey. In Proceedings of the First Inter-
national Conference on Business Process Management (BPM 2003),
pages 1–12, Eindhoven, The Netherlands, June 26-27 2003.

[8] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case handling:
a new paradigm for business process support. Data and Knowledge
Engineering, 53(2):129–162, 2005.

172 BIBLIOGRAPHY

[9] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der
Aalst. Worklets: A Service-Oriented Implementation of Dynamic Flex-
ibility in Workflows. In On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA and ODBASE, pages 291–308, Montpel-
lier, France, October 29 - November 3 2006.

[10] M. Adams, A. H. M. ter Hofstede, W. M. P. van der Aalst, and D. Ed-
mond. Dynamic, Extensible and Context-Aware Exception Handling
for Workflows. In On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated Inter-
national Conferences CoopIS, DOA, ODBASE, GADA, and IS, pages
95–112, Vilamoura, Portugal, November 25-30 2007.

[11] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services, Ver-
sion 1.1. http://dev2dev.bea.com/webservices/BPEL4WS.html, 2003.

[12] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y.
Wu. Artifact-centered operational modeling: Lessons from customer
engagements. IBM Systems Journal, 46(4):703–721, 2007.

[13] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards
Formal Analysis of Artifact-Centric Business Process Models. In Pro-
ceedings of the 5th International Conference on Business Process Man-
agement (BPM), pages 288–304, Brisbane, Australia, September 24-28
2007. Springer.

[14] I. Bider. State-Oriented Business Process Modeling: Principles, The-
ory and Practice. PhD thesis, KTH Royal Institute of Technology,
Computer and Systems Sciences, 2002.

[15] I. Bider and M. Khomyakov. Business Process Modeling - Motivation,
Requirements, Implementation. In ECOOP Workshops, pages 217–
218, 1998.

[16] D. P. Bogia and S. M. Kaplan. Flexibility and control for dynamic
workflows in the WORLDS environment. In Proceedings of the Con-
ference on Organizational Computing Systems (COOCS 1995), pages
148–159, Milpitas, California, USA, August 13-16 1995.

[17] Y. Bontemps, P. Heymans, and P. Schobbens. From Live Sequence
Charts to State Machines and Back: A Guided Tour. IEEE Transac-
tions on Software Engineering (TSE), 31(12):999–1014, 2005.

BIBLIOGRAPHY 173

[18] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley Professional, September 1998.

[19] S. Elleg̊ard Borch and C. Stefansen. On Controlled Flexibility. In Pro-
ceedings of the CAISE*06 Workshop on Business Process Modelling,
Development, and Support (BPMDS ’06), Luxemburg, June 5-9 2006.

[20] J. Campos and J. Merseguer. On the Integration of UML and Petri
Nets in Software Development. In Petri Nets and Other Models of
Concurrency (ICATPN 2006), 27th International Conference on Ap-
plications and Theory of Petri Nets and Other Models of Concurrency,
pages 19–36, Turku, Finland, 2006.

[21] P. Dadam, M. Reichert, S. Rinderle, M. Jurisch, H. Acker, K. Göser,
U. Kreher, and M. Lauer. Towards Truly Flexible and Adaptive
Process-Aware Information Systems. In Information Systems and e-
Business Technologies, 2nd International United Information Systems
Conference, pages 72–83, Klagenfurt, Austria, April 22-25 2008.

[22] T. H. Davenport, editor. Process Innovation: Reengineering Work
through Information Technology. Harvard Business School Press:
Boston, MA, 1993.

[23] G. Decker, R. M. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Trans-
forming BPMN Diagrams into YAWL Nets. In Proceedings of the
6th International Conference on Business Process Management, pages
386–389, Milan, Italy, September 2-4 2008.

[24] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M.
Weijters, and W. M. P. van der Aalst. The ProM Framework: A New
Era in Process Mining Tool Support. In 26th International Conference
on Applications and Theory of Petri Nets (ICATPN), pages 444–454,
Miami, USA, June 20-25 2005.

[25] D. Dori. Object-Process Methodology, A Holistic Systems Paradigm.
Springer Verlag, 2002.

[26] M. Dumas and A. H. M. ter Hofstede. UML Activity Diagrams as
a Workflow Specification Language. In 4th International Conference
on The Unified Modeling Language (UML), Modeling Languages, Con-
cepts and Tools, pages 76–90, Toronto, Canada, October 2001.

174 BIBLIOGRAPHY

[27] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede, editors.
Process-Aware Information Systems. John Wiley & Sons, New Jersey,
2005.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
elements of reusable object-oriented software. Addison-Wesley, Boston,
MA, USA, 1995.

[29] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Managing
Escalation of Collaboration Processes in Crisis Mitigation Situations.
In Proceedings of the 16th International Conference on Data Engineer-
ing (ICDE), pages 45–56, San Diego, California, USA, 28 February -
3 March 2000.

[30] H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Software Sys-
tems with Object Coordination Nets. In Proceedings of the Interna-
tional Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE’98, pages 107–116. IEEE Press, 1998.

[31] G. Grossmann, M. Schrefl, and M. Stumptner. Modelling Inter-Process
Dependencies with High-Level Business Process Modelling Languages.
In Conceptual Modelling 2008, Fifth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2008), pages 89–102, Wollongong, New
South Wales, Australia, 2008.

[32] T. Halpin. Information modeling and relational databases: from con-
ceptual analysis to logical design. Morgan Kaufmann Publishers Inc.,
2001.

[33] D. Harel. Statecharts: A Visual Formulation for Complex Systems.
Science of Computer Programming, 8(3):231–274, 1987.

[34] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke.
A comprehensive approach to flexibility in workflow management sys-
tems. In Proceedings of the international joint conference on Work
activities coordination and collaboration (WACC), pages 79–88, San
Francisco, California, USA, February 22-25 1999.

[35] R. Hennicker and A. Knapp. Activity-Driven Synthesis of State Ma-
chines. In Fundamental Approaches to Software Engineering, 10th In-
ternational Conference, FASE 2007, pages 87–101, Braga, Portugal,
March/April 2007.

BIBLIOGRAPHY 175

[36] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1), 2004.

[37] R. Hull. Artifact-Centric Business Process Models: Brief Survey of
Research Results and Challenges. In On the Move to Meaningful In-
ternet Systems: OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE, Proceedings Part II, pages
1152–1163, Monterrey, Mexico, November 9-14 2008.

[38] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou.
Declarative workflows that support easy modification and dynamic
browsing. In Proceedings of the international joint conference on Work
Activities Coordination and Collaboration (WACC), pages 69–78, San
Francisco, California, USA, February 22-25 1999.

[39] IBM Corporation. Business State Machines. http://publib.

boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.

wbit.help.ae.ui.doc/topics/cundstat.html, 2005.

[40] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Springer-Verlag, 1997.

[41] P. Johannesson and E. Perjons. Design principles for process modelling
in enterprise application integration. Information Systems, 26(3):165–
184, 2001.

[42] G. Kappel, B. Pröll, S. Rausch-Schott, and W. Retschitzegger.
TriGSflow Active Object-Oriented Workflow Management. In Hawaii

International Conference on System Sciences (HICSS’95), Kihei,
Maui, Hawaii, USA, January 3-6 1995.

[43] G. Kappel and M. Schrefl. A Behaviour Integrated Entity-Relationship
Approach for the Design of Object-Oriented Databases. In Proceedings
of the 7th International Conference on Entity-Relationship Approach
(ER 88), pages 311–328, Rome, Italy, November 16-18 1988.

[44] G. Kappel and M. Schrefl. Object/Behavior Diagrams. In Proceedings
of the 7th International Conference on Data Engineering (ICDE 91),
pages 530–539, Kobe, Japan, 1991.

[45] J. Kim and C. R. Carlson. A Design Methodology for Workflow Sys-
tem Development. In Databases in Networked Information Systems
(DNIS), Second International Workshop, pages 15–28, Aizu, Japan,
December 2002.

176 BIBLIOGRAPHY

[46] A. Kleppe and J. Warmer. Making UML Activity Diagrams Object-
Oriented. In 33rd International Conference on Technology of Object-
Oriented Languages (TOOLS), pages 132–143, Mont-Saint-Michel,
France, August 2000.

[47] J. Klingemann. Controlled Flexibility in Workflow Management. In
Proceedings of the 12th International Conference on Advanced In-
formation Systems Engineering (CAiSE), pages 126–141, Stockholm,
Sweden, June 5-9 2000.

[48] P. Kueng, P. Bichler, P. Kawalek, and M. Schrefl. How to compose an
object-oriented business process model? In Proceedings of IFIP TC8,
WG8.1/8.2 working conference on method engineering, pages 94–110,
London, UK, 1996. Chapman & Hall, Ltd.

[49] S. Kumaran. The Model-Driven Enterprise. In Proceedings of the
Global EAI (Enterprise Application Integration) Summit 2004, pages
166–180, Banff, Canada, 2004.

[50] S. Kumaran, R. Liu, and F. Y. Wu. On the Duality of Information-
Centric and Activity-Centric Models of Business Processes. In Ad-
vanced Information Systems Engineering, Proceedings of the 20th
International Conference (CAiSE 2008), pages 32–47, Montpellier,
France, 2008.

[51] V. Künzle and M. Reichert. Towards Object-aware Process Manage-
ment Systems: Issues, Challenges, Benefits. In 10th Workshop on
Business Process Modeling, Development, and Support (BPMDS’09),
Amsterdam, The Netherlands, June 8-9 2009.

[52] J. M. Küster, K. Ryndina, and H. Gall. Generation of Business Process
Models for Object Life Cycle Compliance. In Proceedings of the 5th
International Conference on Business Process Management (BPM),
pages 165–181, Brisbane, Australia, September 24-28 2007.

[53] C. Lakos. Object Oriented Modeling with Object Petri Nets. In Con-
current Object-Oriented Programming and Petri Nets, Lecture Notes
in Computer Science, pages 1–37. Springer, 2001.

[54] J. Lee, R. Akkiraju, C. Tian, S. Jiang, S. Danturthy, P. Sundhararajan,
C. Nordman, R. Mohan, H. Singala, and W. Ding. Business Transfor-
mation Workbench: A Practitioner’s Tool for Business Transforma-
tion. In 2008 IEEE International Conference on Services Computing
(SCC 2008), pages 81–88, Honolulu, Hawaii, USA, 8-11 July 2008.

BIBLIOGRAPHY 177

[55] F. Leymann and D. Roller. Production Workflow - Concepts and Tech-
niques. Prentice-Hall, 2000.

[56] P. Loos and T. Allweyer. Object orientation in business process mod-
elling through applying event driven process chains in UML. In Pro-
ceedings of Second International Workshop on Enterprise Distributed
Object Computing (EDOC’98), pages 102–112, San Diego, CA, USA,
1998.

[57] R. Mohan, M. A. Cohen, and J. Schiefer. A State Machine Based Ap-
proach for a Process Driven Development of Web-Applications. In Pro-
cedings of the 14th International Conference on Advanced Information
Systems Engineering (CAiSE 2002), pages 52–66, Toronto, Canada,
May 27-31 2002.

[58] D. Moldt and R. Valk. Object Oriented Petri Nets in Business Process
Modeling. In Business Process Management, volume 1806 of Lecture
Notes in Computer Science, pages 254–273. Springer, 2000.

[59] D. Müller, M. Reichert, and J. Herbst. Data-Driven Modeling and Co-
ordination of Large Process Structures. In On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA and IS, Pro-
ceedings, Part I, pages 131–149, Vilamoura, Portugal, November 25-30
2007.

[60] D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enact-
ment and Dynamic Adaptation of Data-Driven Process Structures. In
Proceedings of the 20th International Conference on Advanced Infor-
mation Systems Engineering, (CAiSE 2008), pages 48–63, Montpellier,
France, June 16-20 2008.

[61] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE (invited paper), 77(4):541–580, April 1989.

[62] P. Muth, D. Wodtke, J. Weißenfels, A. K. Dittrich, and G. Weikum.
From Centralized Workflow Specification to Distributed Workflow Ex-
ecution. Journal of Intelligent Information Systems (JIIS), 10(2):159–
184, March/April 1998.

[63] B. Mutschler, M. Reichert, and J. Bumiller. Unleashing the Effec-
tiveness of Process-Oriented Information Systems: Problem Analysis,
Critical Success Factors, and Implications. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C, 38(3):280–291, 2008.

178 BIBLIOGRAPHY

[64] A. Nigam and N. S. Caswell. Business artifacts: An approach to op-
erational specification. IBM Systems Journal, 42(3):428–445, 2003.

[65] M. Nüttgens, T. Feld, and V. Zimmermann. Business Process Mod-
eling with EPC and UML: Transformation or Integration? In UML
Workshop, pages 250–261, Mannheim, Germany, November 1997.

[66] Object Management Group. Business Process Modelling Notation, Ver
1.0. http://www.bpmn.org, 2006.

[67] Object Management Group. Common Object Request Broker Ar-
chitecture (CORBA). http://www.corba.org/, accessed: January 10,
2007.

[68] D. L. Parnas. On the Criteria To Be Used in Decomposing Systems
into Modules. Communications of the ACM, 15(12):1053–1058, 1972.

[69] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. DECLARE:
Full Support for Loosely-Structured Processes. In 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference (EDOC
2007), pages 287–300, Annapolis, Maryland, USA, 15-19 October 2007.

[70] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der Aalst.
Constraint-Based Workflow Models: Change Made Easy. In On the
Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA and IS, Proceedings, Part I, pages 77–94, Vilamoura, Portugal,
November 25-30 2007.

[71] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Media,
2005.

[72] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu.
SWS FlowConnect - Control Flow Patterns Evaluation. Technical re-
port, WorkflowPatterns.com, 2006.

[73] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu.
Transforming Object-oriented Models to Process-oriented Models. In
Business Process Management Workshops – Proceedings of the 2007
International Workshop on Business Process Design (BPD), pages
132–143, Brisbane, Australia, September 24 2007.

[74] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu.
Generating Business Process Models from Object Behaviour Models.
Information Systems Management, 25(4):319–331, 2008.

BIBLIOGRAPHY 179

[75] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu.
Modelling Flexible Processes with Business Objects. In 11th IEEE
Conference on Commerce and Enterprise Computing (CEC 2009), Vi-
enna, Austria, July 20-23 2009.

[76] M. Reichert and P. Dadam. ADEPTflex-Supporting Dynamic Changes
of Workflows Without Losing Control. Journal of Intelligent Informa-
tion Systems (JIIS), 10(2):93–129, 1998.

[77] M. Reichert, S. Rinderle, and P. Dadam. ADEPT Workflow Man-
agement System. In Business Process Management, pages 370–379,
Eindhoven, The Netherlands, June 26-27 2003.

[78] H. A. Reijers. Workflow Flexibility: The Forlorn Promise (invited pa-
per). In 15th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE 2006), pages
271–272, Manchester, United Kingdom, 26-28 June 2006.

[79] H. A. Reijers, S. Limam, and W. M. P. van der Aalst. Product-
Based Workflow Design. Journal of Management Information Systems,
20(1):229–262, 2003.

[80] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dy-
namic changes in workflow systems - a survey. Data and Knowledge
Engineering, 50(1):9–34, 2004.

[81] C. Rolland. A Comprehensive View of Process Engineering. In Ad-
vanced Information Systems Engineering, 10th International Confer-
ence (CAiSE’98), pages 1–24, Pisa, Italy, June 8-12 1998.

[82] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der
Aalst. Workflow Data Patterns: Identification, Representation and
Tool Support. In 24th International Conference on Conceptual Mod-
eling (ER 2005), pages 353–368, Klagenfurt, Austria, October 24-28
2005.

[83] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N. Mul-
yar. Workflow Control-Flow Patterns: A Revised View. Technical
Report BPM-06-22, BPMCenter.org, 2006.

[84] N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede.
Workflow Exception Patterns. In Advanced Information Systems Engi-
neering, 18th International Conference, (CAiSE 2006), pages 288–302,
Luxembourg, Luxembourg, June 5-9 2006.

180 BIBLIOGRAPHY

[85] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and D. Ed-
mond. Workflow Resource Patterns. Technical Report BETA Working
Paper Series, WP 127, WorkflowPatterns.com, 2004.

[86] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and D. Ed-
mond. Workflow Resource Patterns: Identification, Representation
and Tool Support. In Advanced Information Systems Engineering,
17th International Conference (CAiSE), pages 216–232, Porto, Por-
tugal, 2005.

[87] S. W. Sadiq, W. Sadiq, and M. E. Orlowska. Pockets of Flexibility
in Workflow Specification. In Conceptual Modeling - ER 2001, Pro-
ceedings of the 20th International Conference on Conceptual Modeling,
pages 513–526, Yokohama, Japan, November 27-30 2001.

[88] O. Saidani and S. Nurcan. A Role-Based Approach for Modeling Flex-
ible Business Processes. In Proceedings of the CAISE 2006 Workshop
on Business Process Modelling, Development, and Support (BPMDS
’06), Luxemburg, June 5-9 2006.

[89] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der
Aalst. Towards a Taxonomy of Process Flexibility. In Proceedings of
the CAiSE’08 Forum, pages 81–84, Montpellier, France, 2008.

[90] M. H. Schonenberg, R. S. Mans, N. C. Russell, N. A. Mulyar, and
W. M. P. van der Aalst. Towards a Taxonomy of Process Flexibility
(Extended Version). Technical Report BPM-07-11, BPMcenter.org,
2007.

[91] M. Schrefl and M. Stumptner. On the Design of Behavior Consistent
Specializations of Object Life Cycles in OBD and UML. In Advances in
Object-Oriented Data Modeling, pages 65–104. MIT Press, Cambridge,
Mass., USA, 2000.

[92] M. Schrefl and M. Stumptner. Behavior-consistent specialization of
object life cycles. ACM Transactions on Software Engineering Method-
ology (TOSEM), 11(1):92–148, January 2002.

[93] S. Seidel, F. Müller-Wienbergen, M. Rosemann, and J. Becker. A Con-
ceptual Framework for Information Retrieval in Pockets of Creativity.
In Multikonferenz Wirtschaftsinformatik (MKWI 2008), Munich, Ger-
many, February 26-28 2008.

BIBLIOGRAPHY 181

[94] Shared Web Services Pty. Ltd. FlowConnect User Guide. see: SP068
User Guide.doc, August, 2003.

[95] H. Smith and P. Fingar. Business Process Management: The Third
Wave. Meghan Kiffer Pr, 2003.

[96] M. Snoeck, S. Poelmans, and G. Dedene. An architecture for bridging
OO and business process modelling. In 33rd International Conference
on Technology of Object-Oriented Languages (TOOLS), pages 132–143,
Mont-Saint-Michel, France, August 2000.

[97] R. A. Snowdon, B. Warboys, R. M. Greenwood, C. P. Holland, P. J.
Kawalek, and D. R. Shaw. On the architecture and form of flexi-
ble process support. Software Process: Improvement and Practice,
12(1):21–34, 2007.

[98] S. Tolliday and J. Zeitlin. Between Fordism and Flexibility: The Au-
tomobile Industry and Its Workers. Berg Publishers, 1992.

[99] J. D. Ullman. Elements of ML Programming. Prentice-Hall, New
Jersey, 1998.

[100] International Telecommunications Union. Formal Description Tech-
niques (FDT) – Message Sequence Chart. Technical Report Z-120,
Telecommunication Standardisation Sector of ITU, 2001.

[101] I. T. P. Vanderfeesten, H. A. Reijers, and W. M. P. van der Aalst.
Product Based Workflow Support: Dynamic Workflow Execution. In
Proceedings of the 20th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE 2008), pages 571–574, Montpel-
lier, France, June 16-20 2008.

[102] J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused
Control-Flow Analysis for Business Process Models Through SESE
Decomposition. In Fifth International Conference on Service-Oriented
Computing (ICSOC), pages 43–55, Vienna, Austria, September 17-20
2007.

[103] G. Vossen and M. Weske. The WASA2 object-oriented workflow man-
agement system. In Proceedings of the 1999 ACM SIGMOD inter-
national conference on Management of data (SIGMOD ’99:), pages
587–589, New York, NY, USA, June 1-3 1999. ACM Press.

182 BIBLIOGRAPHY

[104] G. Wagner. The Agent-Object-Relationship metamodel: towards a
unified view of state and behavior. Information Systems, 28(5):475–
504, 2003.

[105] B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change
Support Features in Process-Aware Information Systems. In 19th In-
ternational Conference on Advanced Information Systems Engineering,
pages 574–588, Trondheim, Norway, June 11-15 2007.

[106] I. Weber, J. Hoffmann, J. Mendling, and J. Nitzsche. Towards a
Methodology for Semantic Business Process Modeling and Configu-
ration. In Service-Oriented Computing - ICSOC 2007, International
Workshops, pages 176–187, Vienna, Austria, September 17 2007.

[107] M. Weske. Formal Foundation and Conceptual Design of Dynamic
Adaptations in a Workflow Management System. In 34th Annual
Hawaii International Conference on System Sciences (HICSS-34),
Maui, Hawaii, January 3-6 2001.

[108] R. Wieringa. A survey of structured and object-oriented software speci-
fication methods and techniques. ACM Computing Surveys, 30(4):459–
527, 1998.

[109] G. Wirtz, M. Weske, and H. Giese. The OCoN Approach to Workflow
Modeling in Object-Oriented Systems. Information Systems Frontiers,
3(3):357–376, 2001.

[110] P. Wohed, E. Perjons, M. Dumas, and A. H. M. ter Hofstede. Pattern
Based Analysis of EAI Languages - The Case of the Business Modeling
Language. In Proceedings of the 5th International Conference on En-
terprise Information Systems (ICEIS), pages 174–184, Angers, France,
April 2003.

[111] P. Wohed, N. Russell, A. H. M. ter Hofstede, B. Andersson, and
W. M. P. van der Aalst. Open Source Workflow: A Viable Direc-
tion for BPM? In Advanced Information Systems Engineering, 20th
International Conference, (CAiSE 2008), pages 583–586, Montpellier,
France, June 16-20 2008.

[112] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,
and N. Russell. Pattern-Based Analysis of the Control-Flow Perspec-
tive of UML Activity Diagrams. In 24th International Conference on
Conceptual Modeling (ER 2005), pages 63–78, Klagenfurt, Austria,
October 24-28 2005.

BIBLIOGRAPHY 183

[113] Workflow Management Coalition. Workflow Process Defini-
tion Interface - XML Process Definition Language, Version
2.0. http://www.wfmc.org/standards/docs/TC-1025 xpdl 2 2005-10-
03.pdf, 2005.

[114] M. T. Wynn, D. Edmond, W. M. P. van der Aalst, and A. H. M.
ter Hofstede. Achieving a General, Formal and Decidable Approach
to the OR-Join in Workflow Using Reset Nets. In 26th International
Conference on Applications and Theory of Petri Nets (ICATPN 2005),
pages 423–443, Miami, Florida, USA, June 20-25 2005.

[115] M. T. K. Wynn. Semantics, Verification, and Implementation of Work-
flows with Cancellation Regions and OR-joins. PhD thesis, Queensland
University of Technology, November 2006.

