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Abstract

Semi-automatic segmentation of still images has vast
and varied practical applications. Recently, an approach
“GrabCut” has managed to successfully build upon ear-
lier approaches based on colour and gradient information
in order to address the problem of efficient extraction of a
foreground object in a complex environment. In this paper,
we extend the GrabCut algorithm further by applying an un-
supervised algorithm for modelling the Gaussian Mixtures
that are used to define the foreground and background in
the segmentation algorithm. We show examples where the
optimisation of the GrabCut framework leads to further im-
provements in performance.

1 Introduction

Foreground image segmentation is the task of identifying
an object from the background. Existing approaches rely on
colour information, edge information or region connectivity
where the overall aim is to achieve accurate segmentation
with minimal user interaction.

A recent method of using Graph Cuts by Boykov and
Jolly [4] combines both colour and edge information. The
technique was made iterative by Rother e al. [9] and re-
duced the amount of user interaction required. This process
named “GrabCut” requires the user to draw a rough bound-
ing box around the foreground object in an image. This box
roughly splits the image into background and foreground re-
gions allowing the colours in each region to be statistically
modeled using Gaussian Mixture Models (GMMs). This
paper discusses two modifications that can be made to the
GrabCut process to improve segmentation performance.

The original GrabCut algorithm uses a fixed number of
Gaussians in each GMM, however it is shown in this paper
that the number of Gaussians used to model the foreground

and background can have a significant effect on segmenta-
tion performance. The addition of the CLUSTER algorithm
[3] analyses the foreground and background regions prior
to segmentation and estimates the optimal number of Gaus-
sians needed in each GMM in order to best model each re-
gion.

GrabCut also utilizes edge information to identify the
border between foreground objects and background. This
is done by analysing the gradient (change in color) between
two neighboring pixels. Altering the algorithm to construct
the background GMM using only background pixels in the
bounding box in subsequent iterations gives a more accu-
rate model of background colors around the selected object.
This effectively focuses the method on the region of inter-
est by removing isolated background colors from the GMM
that are not spatially close to the foreground object.

These modifications to GrabCut are tested on real-world
images used by the GrabCut authors and are available on
their website [1]. This dataset contains both ground truth
data and bounding box locations, allowing for consistent
benchmarking and quantitative performance evaluation of
the proposed method. Test cases using images from the
Temple dataset [10] are also included along with discus-
sions of these results.

2 Background

The ability to accurately extract a foreground object from
an image is desirable functionality for any consumer level
graphics package. It also has applications in the realm of
computer based intelligent surveillance where recognition
or tracking may need to be performed on foreground ob-
jects such as people or vehicles. The ability to extract these
moving objects from a dynamically changing background
is a crucial step.

The most rudimentary form of digital image segmenta-
tion requires the user to manually specify each foreground



pixel individually. Although highly accurate, it is both slow
and tedious for what is a cognitively simple task. More in-
telligent methods of object segmentation fall into two cate-
gories: border-based and region-based methods [6].

Border-based techniques such as intelligent scissors [7]
require the user to specify seed points around the border of
the object. The algorithm treats the image as a graph where
each pixel is a node and assigns each path with a cost based
on the colour gradient between the two pixels. The task
of defining the border around the foreground object can be
done by computing the minimum cost path between seed
points. Although simpler than manually selecting pixels,
the method still requires a significant amount of user input.
This is especially true in high resolution images where a
large number of seed points are required to accurately draw
around the object.

More recent region-based techniques improved the task
of segmentation by reducing the amount of user interaction
required. Intelligent Paint [8] and the well known Magic
Wand tool in Photoshop are examples where the user is
only required to specify a given region in the foreground
object. From this region, colour statistics are computed and
connected neighboring regions that display similar statis-
tics are segmented out. A newer method by Blake ef al.
[2] require the user to draw a rough thick border around
the object which essentially establishes three regions, a def-
inite foreground, a definite background and a border region
that contain both. This is known as the Trimap from which
colour statistics for each region are modeled using Gaussian
Mixture Markov Random Field (GMMREF).

A popular technique known as Graph Cut [4] builds on
these earlier works by combining both border and region
information to improve segmentation performance. The
method requires the user to specify both a foreground and
background region from which colour statistics can be mod-
eled using GMMs. Like Intelligent Scissors, a graph is
set up where every pixel is represented by a node in the
graph. The nodes are linked to its neighbouring pixels,
with the edge connecting them given a cost weighted by the
difference in the pixels’ colour values. Two other nodes,
called the source and sink node, represent the foreground
and background. These nodes are each connected to every
pixel node. A cost is also applied to these edges according
to the probability of the connected pixel’s colour occurring
in the foreground/background distribution. Once the graph
is set up, segmentation is done by performing a graph cut
using the min-cut/max-flow algorithm [5] which attempts
to optimally separate the source and sink nodes (foreground
and background pixels) from each other. A method named
Lazy Snapping [6] adds a further step where the initial seg-
mentation boundary produced by the Graph Cut can be ma-
nipulated by the user through draggable vertices allowing
for a more accurate border.

GrabCut [9] improves on Graph Cut by further reduc-
ing the amount of user interaction through provision of a
simple bounding box around the foreground object. The
bounding box splits the image into two regions, a definite
background region and a mixed background/foreground re-
gion from which two GMMs are created to model the back-
ground and foreground. Unlike Graph Cut the foreground
is not explicitly marked and as such the foreground GMM
will be inaccurate due to the presence of background pixels
in the mixed region. To overcome this Graph Cut is per-
formed iteratively, since after the first iteration some back-
ground pixels in the mixed region will become correctly
classified allowing the GMMs to be updated for next itera-
tion. This process repeats until the segmentation converges
and no more changes occur.

3 Image Segmentation by Optimised Grab-
Cut

This section describes the optimised GrabCut segmenta-
tion algorithm.

3.1 RGB Data Models

The input image to the algorithm is an RGB image, Y,
composed of n pixels. The user then selects a foreground
region F' and the remainder of the image is assigned to the
background B. Each region is then modelled using GMM’s
with K subclasses, for which the following parameters are
required to specify the k*" subclass,

7y, = the weight assigned to pixel of subclass &,
pr = the mean vector of the subclass,

R, = the covariance matrix of the subclass.

Hence, if K is the total number of subclasses then we can
use the notation 7, 4z and R to denote the sets 72|, i |
and Ry, kl,(:l. The complete set of parameters that are then re-
quired to define the GMM are K and ¥ = (m, u, R). The
probability density function for pixel y,, for which the ran-
dom variable X,, = k (denoting the number of subclasses)
is given by,

pynlxn (yn|k, E) =

1 - —
2 B V2eap—0.5(yn — ) By (yn — )
(1)

As we don’t know the subclass that each of the pixels
belongs to we define a conditional probability as follows,

K
Py, (Yn|X) = Zﬂ'kpyn\wn (ynlk, X). (@)
k=1



From this we can then calculate the log of the probability
for Y as follows,

N
log py (y| K, %) =Y _ log(py, (yn|%)- 3)

n=1

The objective is then to estimate K and ¥ = (7, u, R).
This can be done using the minimum description length
(MDL) criterion as applied to the equation,

N
MDL(K,%) = ) 10g(py, (ya| %) + 0.5L log(N M).

n=1

“)
The major difference between the MDL and other meth-
ods such as EM and AIC is the dependence on the penalty
term on the total number of data values N M which in prac-
tice prevents overfitting of the data model. An effective al-
gorithm for the solution of the parameter set using the MDL
criterion was developed by Bouman ez al. [3] and may be

summarised as follows:

1. Initialise the number of subclasses K, for the optimi-
sation.

2. Forall K > 1,

Initialise 2 = (1/K0, Yns o Son_, Yntlh),
Apply an iterative EM algorithm until the change
in MDL(K, ¥) is less than a threshold,

Record ¥ and MDL (K, ¥),

e Reduce number of clusters.

3. Choose K and X g which minimise the MDL.

The Gibbs energy for segmentation was formulated by
[4] and can be written as follows,

E(ak,%,y0) = Y 0y, (n]D) + V(eyy), ()

where «,, € {0, 1} assigns to each pixel a unique GMM
component either from the background or the foreground
model. The smoothness term is taken to be the same as the
term that was used in the original GrabCut algorithm and is
as follows,

Vie,y) =~ Z [an # am] exp(—0Bzm — ZnH2)a
(m,n)eC
(6)

where, the constant ¢ = 50 after using a training set
set and optimising against ground truth [9]. The constant
B = (2E((2m — 2n)?)) ! was chosen by [4], where E(.) is
the expectation operator.

Figure 1. Background optimisation proce-
dure. Red is foreground, blue is background.
Left: Original image with selection box. Cen-
tre: Initial labelling. Right: After 1st segmen-
tation.

3.2 Adaptive Iterative Energy Segmenta-
tion

The energy minimisation that is used is based upon the
iterative procedure that was presented in [9] et al. and the
algorithm is as follows:

1. User selects foreground region of image, hence inital-
ising F' and B.

2. Initalise o, = On € B and a,, = 1In € F.

3. Calculate optimal GMMs for foreground and back-
ground.

4. Estimate segmentation using mincut to solve for
ming E(a, k, 3, yn).

5. Reassign B and F' according to the results of the seg-
mentation, limiting B to only pixels within the original
selection window.

6. For dE(a, k, 2, yn) > €,

e Calculate optimal GMMs for foreground and
background.

e Estimate segmentation using mincut to solve for
ming F(a, k, 2, yn).

e Reassign B and F' according to the results of the
segmentation.

The key differences between the iterative energy seg-
mentation algorithm proposed here and that of [9] are
twofold. Firstly, with each iteration the number of GMMs
is varied based upon the MDL driven optimisation strategy
described in the previous sub-section. This feature removes
the variations that may be induced on the segmentation due
to the arbitrary setting of the K parameter by the user.
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Figure 2. Change of segmentation accuracy
with respect to K, the no. of sub-classes.

Secondly, following the first pass of the segmentation,
the background B is constrained to only be the pixels in the
original foreground selection window, where as the origi-
nal algorithm considers the entire image. This provides a
more localised modelling of the background colour distri-
bution, theoretically providing a better segmentation result.
As a consequence, this also reduces the total number of pix-
els which are considered in the iterative energy segmenta-
tion and produces considerable improvements in the speed
of the MDL optimisation. This optimisation procedure is
illustrated in Figure 1.

4 Results and Discussion

The real-world dataset [1] is used to evaluate the per-
formance of the proposed algorithm. The dataset contains
49 images of a wide range of objects in scenes of varying
complexity. The dataset also includes bounding box coor-
dinates and ground truth data, although two of the supplied
bounding boxes were poorly chosen and these images were
subsequently ignored in our tests. Ground truth data allows
different segmentation schemes to be benchmarked using
scores based on the percentage of pixels inside the bound-
ing box that are correctly classified. The results are shown
in Figure 2.

The graph shows the average segmentation accuracy
over the 47 images with respect to the number of GMM
components used. It can be seen that the alterations to the
original algorithm provides a small, but clear improvement.

The terms used in the figures are as follows. ‘CLUS-
TER’ refers to the MDL optimisation described in Section
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Figure 3. Change in segmentation accuracy
with varying K for image 24077.jpg.

3. ‘BG Opt’ refers to the background optimisation scheme
applied to subsequent iterations. It should be noted that K
with respect to the CLUSTER algorithm refers to the set
upper limit allowed for the value of K, and that the actual
number of components used in the foreground/background
modelling dynamically varies between each iteration. A
poor selection of K can have a significant detrimental im-
pact on the segmentation result.

Rother et al. [9] stated to use S components in the GMMs
and this can be verified from the results shown. It can be
seen that the segmentation accuracy plateaus after K = 5.
It needs to be stressed, however, that the results shown are
averaged over all the images in the database. An image can
have more or less components as its optimal value of K. In-
creasing K can result in a worse segmentation as over fitting
occurs when modelling the colour distributions. An exam-
ple of this can clearly be seen in Figure 3. As the CLUS-
TER algorithm attempts to estimate the optimal number of
Gaussian components, its results do not vary as much from
changing the value of K. This allows an arbitrary value of
K with a sufficient upper bound to be safely set. Some ex-
ample segmentaiton results from this dataset can be seen in
figures 5 and 4.

The Temple dataset was also used to evaluate the algo-
rithm. This dataset contains 233 images from varying views
of a scaled model of “Temple of the Dioskouroi”. The
model exists over a uniform background and thus is quite
easy to segment accurately. Holes exists in the model how-
ever, and it is found that the original GrabCut has difficulty
correctly segmenting these holes. Ignoring the holes, it is
found that K = 5 is able to produce a clean segmentation
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Figure 4. Segmentation examples. Top: Original image + bounding box. Middle: Grabcut Bottom:

CLUSTER + BG Opt.

of the temple in most images, bar some minor blemishes.
K > 5 provides small benefits as there is little room for
improvement. Having K < 5 however, begins to introduce
severe artifacts into the segmentation result. This is demon-
strated in Figure 6.

The reason for the difficulty in detecting the holes in
these images is not immediately apparent. The holes, like
the majority of the background, is black while the fore-
ground object is significantly brighter. When viewed un-
der a different light, however, the problem becomes clear.
Figure 7 shows a histogram equalised greyscale example
image, colour-mapped for clarity. It can be seen that the in-
tensities within the holes are different to the rest of the back-
ground. As all pixels within the user selected boundary are
initialised as foreground, these intensity values which are
rare in the initial background model, would not be classi-
fied as background.

No ground truth are available for the segmentation of
this dataset. As the segmentation of the boundary has been
deemed to be accurate (K >= 5), quantitative assessment
of the algorithms’ performance will be based on its ability
to detect the holes. The table in Figure 8 shows the results.

Tests were run through all 233 images using the Grab-
Cut algorithm with K = 2, 3,4, 5,7, 10 and both the GMM
optimisation and GMM optimisation with background op-
timisation with a maximum K of 7. The holes are classi-
fied into two types, ‘major’ and ‘minor’, according to their
sizes. Holes are classified as ‘minor’ when it only appears

as a narrow strip. This is illustrated in Figure 9a. A false
detection is when an area (usually in shadow) is incorrectly
segmented as a hole, as shown in Figure 9b.

From the results, it can be seen that the hole detection
rate increases as K decreases. This can be explained in the
modelling of the colourspace. If K is large, components
of the GMM can be used to directly represent the colours
within the holes, resulting in the situation described earlier.
However, if K is small, there may be insufficient compo-
nents available to model just these colours itself, and will
need to be represented with the black that occurs in the
background by a single Gaussian. This allows the holes to
be segmented as background in subsequent iterations of the
algorithm.

While having a small value of K (< 5) is able to bet-
ter detect holes, it is likely not worth the cost segmentation
errors that may occur. The CLUSTER algorithm, however,
is able to provide better hole detection while maintaining
clean segmentation with the maximum Gaussian mixture
number set at 7. This is most likely due to its ability to
dynamically vary the number of Gaussians in both the fore-
ground and background models independently according to
the MDL based criterion.

The main improvement is achieved when the background
optimisation is included. By constraining the background
model to only the pixels within the user selection on all
but the initial iteration, a better representation of the local
colour distribution around the object is achieved. From Fig-
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Figure 5. Segmentation examples. Top: Orig-
inal image + bounding box. Middle: Grabcut

Bottom: CLUSTER + BG Opt.

ure 7, it can be seen that the background colours near the
object are more similar to those in the holes than the rest of
the image, pushing the weightings of the pixels within the
holes toward that of the background. Figure 10 shows the
segmentation results of a test image.

5 Conclusion

This paper describes two modifications to the GrabCut
object segmentation algorithm that improve segmentation
accuracy without increasing user interaction. The CLUS-
TER optimization technique is shown to improve segmenta-
tion performance and stability by removing the negative ef-
fects caused by using an unsuitable value of K. The addition
of background GMM optimization helps GrabCut focus on
the region of interest around the border of the foreground
object. This is shown to significantly improve segmentation
performance when the foreground object contains holes. It
is important to keep in mind that the original GrabCut algo-

a) Original image

s e

b) K =2

K =4 K =5
K =17 f) K =10

Figure 6. Temple segmentation (holes filled).

rithm is a two step process of an initial automatic segmen-
tation followed by manual user touchups (if necessary). By
improving the accuracy of the initial segmentation via the
two GMM optimization techniques the reliance on manual
touchups can be decreased or even completely eliminated in
some images.
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Figure 7. Intensity map.



| Major | Minor | False |

Ground Truth 279 75 -
GrabCut K = 2 135 15 12
GrabCut K =3 144 13 0
GrabCut K =4 139 8 0
GrabCut K =5 128 4 0
GrabCut K =7 116 5 0
GrabCut K = 10 98 0 0
CLUSTER 155 29 1
CLUSTER + BG Opt 239 39 0

Figure 8. Temple segmentation results.

a) 1 ‘major’ and 2 ‘minor’

b) 1 false detect

Figure 9. Hole classification.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

http://research.microsoft.com/vision/cambridge/i3l/seg
mentation/GrabCut.htm.

A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Inter-
active image segmentation using an adaptive gmmrf model.
In 8th European Conference on Computer Vision, 2004.

C. A. Bouman. Cluster: An unsupervised algorithm for
modeling gaussian mixtures. Technical report, Prude Uni-
versity, July 2005.

Y. Boykov and M.-P. Jolly. Interactive graph cuts for op-
timal boundary and region segmentation of objects in n-d
images. In IEEE International Conference on Computer Vi-
sion, 2001.

Y. BoyKov and V. Kolmogorov. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimiza-
tion in vision. [EEE transactions on Pattern Analysis and
machine Intelligence, 26(9):1124-1137, 2004.

Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping.
In SIGGRAPH *04: ACM SIGGRAPH 2004 Papers, pages
303-308, 2004.

E. N. Mortensen and W. A. Barrett. Intelligent scissors for
image composition. In SIGGRAPH ’95: Proceedings of the
22nd annual conference on Computer graphics and interac-
tive techniques, pages 191-198. ACM, 1995.

L.J. Reese and W. A. Barrett. Image editing with intelligent
paint. In Proceedings of Eurographics 2002, pages 714-723,
2002.

e) CLUSTER

f) CLUSTER + BG Opt

Figure 10. Temple segmentation example.

[9] C. Rother, V. Kolmogorov, and A. Blake. “grabcut” - in-

teractive foreground extraction using iterated graph cuts. In
ACM SIGGRAPH 2004, pages 309 — 314, 2004.

[10] S.M. Seitz, B. Curless, J. Diebel, D. A. Scharstein, and R. A.

Szeliski. A comparison and evaluation of multi-view stereo
reconstruction algorithms. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on,
volume 1, pages 519-528, 2006.



