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Abstract 19 

 20 

A crucial process of chlamydial development involves differentiation of the replicative reticulate 21 

body (RB) into the infectious elementary body (EB). We present experimental evidence to 22 

provide support for a contact-dependent hypothesis for explaining the trigger involved in 23 

differentiation. We recorded live-imaging of C. trachomatis-infected McCoy cells at key times 24 

during development and tracked the temporo-spatial trajectories of individual chlamydial 25 

particles. We found that movement of the particles is related to development. Early-to-mid 26 

developmental stages involved slight wobbling of RBs. The average speed of particles increased 27 

sharply at 24 hpi (after the estimated onset of RB-to-EB differentiation). We also investigated a 28 

penicillin-supplemented culture containing EBs, RBs, and aberrantly enlarged stressed 29 

chlamydiae. Near-immobile enlarged particles are consistent with their continued tethering to the 30 

chlamydial inclusion membrane (CIM). We found a significantly negative, non-linear association 31 

between speed and size/type of particles, providing further support for the hypothesis that 32 

particles become untethered near the onset of RB-to-EB differentiation. This study establishes 33 

the relationship between the motion properties of the chlamydiae and developmental stages, 34 

whereby wobbling RBs gradually lose contact with the CIM and RB detachment from the CIM is 35 

coincidental with the onset of late differentiation. 36 

 37 

38 
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Introduction 39 

 40 

Members of the Chlamydiaceae are ubiquitous bacterial pathogens in humans and animals. 41 

While many primary chlamydial infections are asymptomatic or of limited severity, severe 42 

disease and the most serious sequelae are thought to be associated with chronic or persistent 43 

infection or repeat infections that may occur over years or decades. In the laboratory, cultured 44 

eukaryotic cells such as HEp-2 or McCoy cells and various animal models are used as suitable 45 

model systems for primary chlamydial infection. Under these optimized conditions, chlamydiae 46 

undergo a typical developmental cycle, which is highly conserved across the genus. Initial 47 

internalization of the infectious chlamydial elementary body (EB) particle occurs within the first 48 

two hours, shortly followed by differentiation of the EB into the chlamydial replicative form, the 49 

reticulate body (RB). RBs are thought to multiply exponentially, replicating their DNA every 2-3 50 

hours for approximately 6-10 generations. At 16+ hours post-infection (hpi), an unknown signal 51 

provokes the onset of RB to EB differentiation, whereby individual RBs engage in a cellular 52 

condensation process, progressing through a poorly-defined intermediate body (IB) form, and 53 

ending with the metabolically-inactive, but highly infectious EB, thereby closing the 54 

developmental “cycle”. Unlike the initial differentiation step which can be reasonably well 55 

synchronized, the late differentiation step is always asynchronous. Indeed, few EBs can be 56 

observed in relatively young inclusions while significant numbers of RBs can often be seen in 57 

late inclusions (for C. trachomatis, these stages occur at approximately 20 and 48 hpi, 58 

respectively). Another perennial observation is that RBs are often observed in association with 59 

the chlamydial inclusion membrane (CIM) (21, 22, 27, 37), the membrane of the parasitophorous 60 

vacuole that contains the chlamydiae and is derived from the host cell plasma membrane (14). 61 
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This is further supported by various imaging methods including cryo-electron microscopy (14), 62 

indirect immunofluorescence, confocal electron microscopy and Nomarski differential 63 

interference contrast imaging (10, 15, 16, 31). 64 

 65 

Models for persistent or chronic infection have also been established both in vitro and in animal 66 

models. Under conditions that induce a classical stress response in many bacteria, such as 67 

exposure to IFN- (3) or penicillin (23, 34), infection with phage (18), or deprivation of iron (30) 68 

or amino acids (9), chlamydial RBs undergo a dramatic morphological change to non-dividing, 69 

aberrantly enlarged RBs (termed maxiRBs or mRBs), that will not differentiate into EBs (3, 23, 70 

30, 34). Coincidental to the morphological change, expression of stress response genes is up-71 

regulated (e.g. hsp60), while expression of genes thought to be involved in late differentiation 72 

(e.g. omcB) is blocked (5, 6, 13). Because mRBs may be kept in culture for several weeks 73 

(except for phage-induced stress) and removal of the stressor “unlocks” development and allows 74 

resumption of late differentiation to EBs, the stress response of the chlamydiae is thought to 75 

represent a suitable in vitro model for persistent infection (1, 2, 4, 25). 76 

 77 

We have previously proposed a model for chlamydial development that reconciles many of the 78 

observations outlined above (26, 35). Two essential features of the model are RBs replicating in 79 

type III secretion (T3S)-mediated contact with the CIM, and disruption of T3S activity through 80 

physical detachment from the CIM being associated with RB to EB differentiation. This so-81 

called “contact-dependent” model has several important theoretical implications. First, an RB 82 

that actively translocates T3S effector proteins through the CIM (i.e. an RB tethered to the CIM) 83 

should not differentiate into an EB. Second and correlated to the first, an RB whose T3S system 84 
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remains active for extended periods of time, by definition, should represent a persisting 85 

chlamydial cell. Biomathematical simulations predict two situations under which detachment of 86 

RBs from the CIM is physically restricted: the case of normal size RBs in a small, tight 87 

inclusion, and that of abnormally large RB(s) in normal size inclusions (17, 35). The biological 88 

relevance of these simulations lies in the frequent occurrence of multiple small or lobar 89 

inclusions, e.g. for C. pneumoniae and C. caviae, in a single infected cell, and the observation of 90 

stress-induced mRBs, respectively. In either case, because of imposed spatial constraints, 91 

disruption of contact-induced T3S activity through physical RB detachment becomes a statistical 92 

rarity as the RB/mRB size approaches that of the inclusion that contains it. Remarkably, 93 

therefore, the observed in vitro persistence is not only a prediction of the biomathematical model 94 

but an implication of it as well. 95 

 96 

We now present experimental evidence using innovative real-time light microscopy that provides 97 

some support to the contact-dependent hypothesis in its most fundamental aspects. We captured 98 

images of C. trachomatis-infected McCoy cells at key times during development using a 99 

Richardson RTM3 microscope optimized for live cell imaging in extreme dark field (28). Live 100 

images were obtained with a high resolution color analogue output video camera and recorded 101 

with Volocity software (Improvision, Coventry, UK). Taped imaging sequences were captured in 102 

Final Cut Pro and converted to Quicktime movies. We then analyzed these movies to obtain the 103 

spatial time-dependent trajectories of the movement of individual chlamydial particles in each 104 

infected cell, allowing kinematic calculations of the displacement and speed of individual 105 

particles. Results of these experiments provide new evidence in support of the T3S-mediated 106 

contact-dependent hypothesis for chlamydial development.  107 
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 108 

Materials and Methods 109 

 110 

Live microscopy in the RTM3 111 

We used the Richardson RTM-3 microscope that allows capture of very high resolution (>50 112 

nm) images under real time conditions, facilitated by design improvements including an 113 

extremely light-tight and ultraclean design, removal of stray wavelengths (UV, near IR), reduced 114 

vibration, and images being captured via an electronic detector rather than the human eye (29). 115 

An extreme-dark condenser and infinity-corrected 100x oil objective (1.4 NA), and images 116 

captured to tape through the 3 chip-CCD camera gave a resolution of NTSC 640x480 pixels. 117 

Live imaging was simultaneously viewed on a high resolution broadcast monitor (tape capture) 118 

and on a MacIntosh G4 (still images or time-lapse capture with Volocity software, Improvision, 119 

Coventry, UK).  120 

 121 

Living infected and mock-infected McCoy cells were imaged at various times post-infection. 122 

Semi-confluent McCoy monolayers seeded in 2-chambered slides (one chamber uninfected) 123 

were infected with C. trachomatis serovar K/UW-31with an MOI of ~1. Alternatively, cells in 124 

one chamber were exposed to penicillin G at 24 hpi. Times were selected to distinguish early 125 

through mature inclusions. Imaging of one representative inclusion at each developmental time 126 

was captured on DVCPro tape (30 frames/sec, 30 mB/frame) as well as individual images 127 

captured using Volocity software (Improvision, Inc.). Tape segments were converted to Quick 128 

Time movies with Final Cut Pro. Duplicate slides were prepared at specific developmental times 129 
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and fixed for IFA or immunoperoxidase staining for direct comparison with images of unfixed 130 

cells.  131 

 132 

Tracking of chlamydiae 133 

We chose a section of each movie of 10-100 seconds duration in which focus was optimal 134 

(inspection by eye). One movie was recorded for each time point and tracked particles were 135 

confined to a single inclusion in the recorded movie. Each frame was extracted to a separate 136 

Tagged Image File format (using Blaze Media Pro, version 7.0). A computer-coded loop, in 137 

Matlab 7.3.0 (R2007b) with Image Processing Toolbox, imported each frame in succession and 138 

the frames were converted from RBG format to inverted grayscale images. Particles in each 139 

frame were identified according to the level of white intensity relative to the background 140 

intensity of color in neighboring pixels, after a process of calibration of the algorithm’s color 141 

intensity threshold level for particle detection. Each particle location, in Cartesian pixel 142 

coordinates, was determined based on the color intensity in all neighboring pixels. Visual 143 

inspection of the algorithm output of particle locations on the images of each frame confirmed 144 

accurate identification of particles. Once the particles were located for each frame, a list of 145 

scrambled particle locations at consecutive frames was sorted and particles were matched 146 

between frames (this computationally intensive procedure was based on the maximum plausible 147 

displacement in any time interval a particle could move, taken to be 15 pixels per 1/30 second 148 

time interval between frames, and accounted for possible appearing and vanishing of particles in 149 

and out of focus between frames). This provided a complete description of each particle’s two-150 

dimensional time-dependent trajectory. Not all particles in each inclusion could be analyzed 151 

because it was not possible to identify unique particles that were highly clustered near others, 152 
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particularly in regions in which cell debris and other material obscured the view. All particles 153 

that could be clearly identified within the optimal resolution attainable and could be tracked over 154 

at least five frames (0.17 seconds) were included in the analysis; particles that were identified as 155 

moving in and out of the plane of focus were included. Particles were tracked for as long as 156 

possible, up to the duration of the movie section analyzed (10-100 seconds), The numbers of 157 

particles included at each time point are indicated in Table 1. Elementary kinematic properties 158 

(displacement and speed) were then calculated.  159 

 160 

 161 

Results 162 

 163 

Movement of chlamydial particles is related to development 164 

In Figure 1, we display still images of C. trachomatis-infected McCoy cells at times 165 

representative of stages of chlamydial development (corresponding video recordings are 166 

provided in Supplemental Material, Videos #1-12). Although visualization of nascent inclusions 167 

is not possible using this methodology, newly internalized (or surface-attached) EBs were clearly 168 

identified by comparison with uninfected cells (compare uninfected and 0 hpi cells in Figure 1). 169 

At later developmental stages, the inclusion became increasingly distinguishable owing to the 170 

higher light refraction of densely packed inclusions and to the differential velocity of chlamydiae 171 

within the inclusion compared to cytosolic contents. EBs/IBs and RBs were recognizably 172 

distinct, respectively as densely centered particles of diameter ranging from 0.2 to 0.3 m and as 173 

hollow centered particles ranging from 0.6 to 1.0 m. The slight difference between these 174 

measurements and accepted sizes (0.25 m and 0.8-1.0 m, respectively) most likely owes to the 175 
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diffuse boundaries between EBs/IBs and IBs/RBs and/or to the dark field illumination method 176 

used for observation. In some instances, single particles were highly mobile in the plane of 177 

observation; but in other cases, movement was unobservable. The degree of particle movement 178 

differed widely: at one extreme, RBs were primarily immobile with only occasional episodes of 179 

wobbling movement; at the other extreme, most EBs were rapidly mobile. In between these two 180 

extremes were intermediate-size particles assumed to be in the process of differentiation to EBs. 181 

We quantified these observations through analysis of the recorded real-time video of C. 182 

trachomatis-infected McCoy cells. For each movie, we tracked the trajectory of individual 183 

chlamydial particles over time (see Figs. 2a, b for examples). The average speed of each particle 184 

over the time of tracking was determined. We found that the average particle speed changed over 185 

the time-course of the developmental cycle (Fig. 3a, Table 1), consistent with the observations of 186 

high EB mobility and in-place RB wobbling.  187 

 188 

Wobbling of RBs in-place increases during exponential growth 189 

During the early to mid stages of development, there are only RBs (8-16 hpi) or a mixture of 190 

RBs and IBs (16-20 hpi). We calculated that the average speed of RBs was 0.93 m/sec (mean 191 

over all particles, standard error 0.11 m/sec) at 8 hpi, 1.10 m/sec (0.07 m/sec, SE) at 14 hpi, 192 

and 2.74 m/sec (0.37 m/sec, SE) at 16 hpi (Fig. 3a, Table 1). The maximum speed of the 193 

fastest particle observed at these times wasm/sec at 16 hpi. The magnitudes of these 194 

speeds are very small relative to the size of the RB particles and in comparison with the speed of 195 

the small EBs (see Table 1). Moreover, the maximum displacement (maximum distance between 196 

two points of a particle’s trajectory) traveled by RBs up to 20 hpi was below the distance 197 

corresponding to the RB radius (average displacement of RBs was 0.18 m and the maximum 198 
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measured displacement over all particles before 20 hpi was 0.59 m), reflecting the in-place 199 

wobbling of RBs. Interestingly, the (average and maximum) speed of RB particles increased 200 

with time (although the size of particles did not change).  201 

 202 

The average speed of RB movement increases sharply at mid-cycle, then decreases  203 

The average speed of particles increased with time until approximately 24 hpi with a sharp 204 

upward trend between 20 and 24 hpi for approximately half of the particles analyzed (Fig. 3a). 205 

Accrued velocity did not correlate with a significant change in particle size as size was randomly 206 

distributed across all particles tested at 24 hpi (Fig. 3b; p=0.2160, Mann-Whitney test based on 207 

categorizing all particles tracked at 24 hpi according to whether their average speed was greater 208 

than or less than the median particle’s speed (7.23m/sec)). At 24 hpi the mean average speed of 209 

particles was 9.02m/sec and the maximum average speed observed was 28.83 m/sec. 210 

Moreover, chlamydial particles at 24 hpi not only displayed accrued average speed, but they also 211 

traveled distances within the inclusion several times greater than the RB radius (Table 1), 212 

consistent with the presumed un-tethering of these particles from the CIM between 20 and 24 213 

hpi. Time 24 hpi coincides with the time at which a substantial proportion of RBs are undergoing 214 

differentiation, and there is still sufficient physical space within the inclusion to allow maximal 215 

movement. After this point in the developmental cycle, the average speed per particle decreases 216 

(Fig. 3a, Table 1). The number of chlamydial particles, and proportion that have become IBs or 217 

EBs, increases with time; consequently the space available for their movement decreases (Fig. 218 

1).  219 

  220 

Penicillin-induced persistent forms are static 221 
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To further explore the influence of particle size on particle motion, we investigated the 222 

movement properties of stress-induced mRBs that are known to “persist” under in vitro culture 223 

conditions. In this experiment, C. trachomatis-infected McCoy cells were exposed to 100U/ml 224 

penicillin G at 24 hpi and the real-time movement was recorded a further 24 hours later (see 225 

Supplemental Material for video recording). Under these conditions, inclusions contained a 226 

mixture of particles of sizes consistent with EBs, RBs, large penicillin-induced mRBs, as well as 227 

a variety of intermediate-size forms (see Fig. 4a). We quantified the size and average speed of 228 

chlamydial particles of each type (Fig. 4b; Supplemental Material, Figs. 5-6, Video #13). 229 

Particles of the size of mRBs had slower speeds (0.81 m/sec median, 0.75-0.88 m/sec 230 

interquartile range) than RBs/I Bs (1.44 m/sec, 1.15-2.05 m/sec IQR), which were slower than 231 

EBs (4.12 m/sec, 3.48-4.72 m/sec IQR); Figure 4b. While there is clearly a significantly 232 

negative, non-linear association between speed and particle size, a rise in the average speed of 233 

RB particles (or IBs in the process of differentiation) relative to mRBs and an even more 234 

substantial rise for EBs are observed. The association between speed and particle size is apparent 235 

and is statistically significant, however, it should be noted that the sample size around the cutoff 236 

between EBs and RBs is relatively small (Fig. 4b).The near immobility of mRBs is consistent 237 

with their possible continued tethering to the inclusion membrane. We also compared the speeds 238 

of particles consistent with the size of EBs (Figure 4b) with particles in the normal development 239 

experiments at 49 hours post infection, so that it is at a similar time post infection and the 240 

majority of particles in the normal development experiment were EBs for reasonable 241 

comparison. We found that speeds of EBs in the penicillin-treated culture were not statistically 242 

different from those in the untreated culture (p=0.4624, Mann-Whitney test) however the treated 243 

culture had slightly lower average speeds (median 4.1m/sec compared with 4.4 m/sec).  244 
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  245 

Discussion 246 

 247 

We have previously proposed a hypothesis for the development of intracellular chlamydiae based 248 

on a combination of electron microscopic and other observations (26) and further developed the 249 

hypothesis using biomathematical modeling (35). Tenets of the so-called contact-dependent 250 

hypothesis of chlamydial development are that (i) as RBs, chlamydiae grow strictly in contact 251 

with the plasma membrane-derived CIM, (ii) contact with the CIM is mediated by surface 252 

projections hypothesized to correspond to T3S injectisomes, (iii) disruption of T3S activity 253 

through physical detachment from the CIM is associated with the onset of late differentiation. 254 

The implied biological significance of the hypothesis is that maintained contact with the CIM 255 

permits continued delivery of chlamydial T3S effectors into the host cell cytosol and subsequent 256 

subversion of cellular processes to benefit chlamydial growth and that disruption of contact 257 

through physical detachment interrupts T3S effector translocation, thus rendering the host cell 258 

less hospitable for chlamydial growth. Because contact of chlamydial particles with the CIM, or 259 

loss thereof, has direct implications on the ability of chlamydiae to move inside the inclusion, we 260 

sought to quantify the movement (distance traveled and velocity) of individual chlamydial 261 

particles at different times along development. For this analysis, we used a Richardson RTM3 262 

light microscope (28, 29) that is optimized for high resolution white-light microscopy and live 263 

recording (30 frames per second) of Chlamydia-infected cells in real time. Limitations of the 264 

quantification of movement include (i) the movies are a cross-sectional two-dimensional slice of 265 

the infected cells and so particles that move in and out of focus are difficult to track. We have 266 

made allowances for this in our image processing computer algorithms but if fast moving 267 
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particles move far when out of focus, then identification and matching of particles is prevented; 268 

(ii) during late stages of development the inclusion lumen is densely packed with EBs and the 269 

spatial constraints are likely to prevent unhindered movement. The high density at late stages 270 

also makes it difficult to distinguish some particles between frames. To alleviate this problem we 271 

only included particles for which we could clearly identify and match particles between frames; 272 

(iii) we could not record the same cell for each stage of the developmental cycle included in our 273 

analysis. We recorded representative cells in the culture at each time point. We acknowledge that 274 

there would be some asynchrony of infection or development, and may be some differences at 275 

times where the same phenotypes are seen. 276 

 277 

The results of our analysis reveal a close relationship between key developmental stages and 278 

motion properties of the chlamydiae. While “movement” of chlamydial bodies has been noted 279 

previously (22), this is the first detailed study using advanced microscopic techniques to (a) 280 

confirm that chlamydiae definitely do undergo movement and (b) link this movement to specific 281 

stages of development. The magnitude and speed of RB wobbling from early to mid stages of 282 

development (Fig. 3a, 8-20 hpi) steadily increases with time, suggesting that individual RBs 283 

gradually lose contact with the CIM allowing for increased movement, and reciprocally 284 

supporting their hypothesized tethering to the CIM via T3S injectisomes. This is consistent with 285 

a decreasing number of surface projections along development as observed by Matsumoto in C. 286 

psittaci (20). Between 20 and 24 hpi, a remarkable gain in movement is observed for 287 

approximately half of the particles in an inclusion, such that average velocities of individual 288 

particles are ~4 times greater at 24 hpi than at 20 hpi (Table 1). Coincidentally the distances 289 

traveled by individual particles are substantially increased, strongly supporting the notion that 290 
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these particles have broken free from the CIM. These results are consistent with the contact-291 

dependent hypothesis where untethering of individual particles is predicted to be asynchronous 292 

during late differentiation.  293 

 294 

Naturally, larger-sized particles will move slower than smaller particles when acted upon by the 295 

same force. It is, therefore, predictable that the decreasing size of the chlamydial particle (from 296 

the 0.8-1.0 m RB to the 0.25 m EB) will affect the degree of movement during late 297 

differentiation. However, we found that the fastest particles in the developmental cycle (at 24 298 

hpi) were of the size of RB particles (Fig. 3b). Given the very marked change observed from 299 

essentially no movement or slight in-place wobbling of RBs to very fast motion of newly 300 

detached RBs, IBs or EBs, we conclude that the large gain of velocity observed between 20 and 301 

24 hpi is not accounted for significantly by the change in the size of the chlamydial particle as it 302 

undergoes late differentiation. A steady decrease in speed was also observed between 24 and 49 303 

hpi, i.e. during late differentiation. We speculate that particles gradually lose velocity as they 304 

bounce off each other and off the CIM in the increasingly crowded inclusion lumen. 305 

Biomathematical simulations of the contact-dependent hypothesis predict that both the 306 

multiplicity of inclusions within a single infected cell and the size of the chlamydial particle 307 

relative to that of the inclusion are determining factors in the outcome of an infection (17, 35). In 308 

multiple, smaller inclusions within an infected cell, the size differential between the inclusion 309 

and that of a replicating RB it contains may become small enough such that loss of T3S-310 

mediated contact between the RB and the CIM becomes improbable. Following the same logic, 311 

the likelihood of an extremely large RB becoming untethered from the CIM diminishes with 312 

increasing RB size. We tested explored this part of the hypothesis using C. trachomatis grown in 313 
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the presence of penicillin. Penicillin-exposed chlamydial cultures are known to produce 314 

aberrantly enlarged mRBs and provide a model for chlamydial persistence, a hallmark of 315 

chlamydial chronic infection and disease in humans (1, 2, 4, 25). In our experiments, cultures 316 

were supplemented with penicillin G at 24 hpi and observed at 48 hpi, allowing for inclusions to 317 

contain a mixture of persistent mRBs as well as normal RBs, IBs and EBs. We found that EBs in 318 

inclusions exposed to penicillin moved at maximal speeds similar to those observed at 49 hpi in 319 

normal cultures (Fig. 4b, Table 1). Particles of the size of RBs were observed to wobble in-place, 320 

while mRBs were either completely static or wobbled slightly in-place. This is, consistent with 321 

these particles being more extensively tethered to the underlying CIM and . This would suggests 322 

that mRBs do may not become un-tethered from the CIM, therefore, do not enter late 323 

differentiation, and de facto persist. Hence, the motion properties of chlamydial particles within 324 

persistent inclusions are entirely consistent with the results of biomathematical simulations that 325 

predict that mRBs persist in vitro owing to their continued tethering to the CIM. Although, this 326 

hypothesis ultimately requires experimental verification, it is consistent with gene expression 327 

studies that have shown both at the transcriptional and protein levels that expression of the T3S 328 

injectisome genes is not significantly affected during persistent growth (5, 24).   329 

 330 

The type III secretion system is thought to be central to the virulence of many bacterial 331 

pathogens including Chlamydia spp. (11, 19, 26). However, there is no consensus as to whether a 332 

functional T3SS exists during the intracellular developmental cycle, and if so, whether tethering 333 

of each single RB to the inclusion membrane via TTSS injectisomes is necessary for chlamydial 334 

development.  A role of T3S in chlamydial pathogenesis is supported by virulence-related 335 

properties of several chlamydial T3S-translocated effectors (7, 8, 33). Our study, however, 336 
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suggests that chlamydial T3S activity – and conversely its disruption through loss of RB contact 337 

with the CIM – is a determinant of chlamydial intracellular development. This is further 338 

supported by Other studies that have indicated the coupleding of  T3S expression or T3S activity 339 

with development (12, 32, 36). An attractive hypothesis emerging from these converging results 340 

is that T3S-mediated translocation of early-mid cycle effector(s) to the infected cell cytosol 341 

maintains the host in a state optimized for chlamydial exponential growth and that disruption of 342 

this state through interruption of T3S translocation may “alert” chlamydiae within the inclusion 343 

to initiate late differentiation and subsequent progress of the infection. Stress-induced inhibition 344 

of this process would then represent a survival mechanism of the chlamydiae whereby a 345 

sustained level of T3S translocation activity maintains viability of fewer chlamydiae but for 346 

extended periods of time. Although our study does not directly address T3S activity and its 347 

potential role in development, our findings are consistent with the contact-dependent hypothesis. 348 

Further experiments beyond the scope of this study would be required to investigate the potential 349 

role of the T3S system on chlamydial development. Our novel approach of using real-time light 350 

microscopy and kinetic analysismodeling with Chlamydia has described chlamydial movement 351 

in a way that has never been done previously. It has elucidated propertiesshed important light on 352 

what we speculate are key events in the regulation of the unique developmental cycle of this 353 

medically important pathogen. 354 
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Figure Legends 482 

 483 

Figure 1: Representative still image frame from each time point recorded by our RTM live 484 

imaging during normal development. Cells are unstained and viewed under RTM image contrast. 485 

Times 40 and 44 hpi are shown in DIC mode. Each bar represents the scale of 10 m. 486 

 487 

Figure 2a: The trajectory over 1.6 seconds of the movement of the center of one representative 488 

chlamydial particle at 14 hpi in an unstained infected McCoy cell (100x original magnification). 489 

The center of this particle moved a distance of 1.28 m in 1.6 seconds (i.e., with an average 490 

speed of 0.8 m/sec). 491 

 492 

Figure 2b: Tracking of 9 individual particles indicating: elapsed time, distance travelled, 493 

maximum velocity, and average velocity for the case of normal development (without the 494 

addition of penicillin) at 14 hpi. 495 

 496 

Figure 3a: Average speed of chlamydial particles at each time point in the developmental cycle. 497 

 498 

Figure 3b: Univariate scatterplot: particles tracked at 24 hpi were separated into 2 groups based 499 

on whether the average particle speed was greater or less than the median average speed, and the 500 

radii of chlamydial particles in the fast versus slow groups are compared. The p-value refers to a 501 

Mann-Whitney statistical test. 502 

 503 
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Figure 4a: Still image from live video imaging of a C. trachomatis-infected McCoy cell (48 hpi) 504 

exposed to penicillin (100U/ml added at 24 hpi). Cells are unstained and viewed under RTM 505 

image contrast (100x original magnification). Sample EBs, RBs and mRBs are indicated. 506 

 507 

Figure 4b: Average velocity of chlamydial particles versus particle radius in an inclusion of C. 508 

trachomatis-infected McCoy cell (48 hpi) exposed to penicillin (24 hpi). Spearman correlation 509 

coefficient between velocity and particle size was determined (r, with p-value). 510 

 511 
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