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ABSTRACT 

 

The buckling strength of a new cold-formed hollow flange channel section known as 

LiteSteel beam (LSB) is governed by lateral distortional buckling characterised by 

simultaneous lateral deflection, twist and web distortion for its intermediate spans. 

Recent research has developed a modified elastic lateral buckling moment equation to 

allow for lateral distortional buckling effects. However, it is limited to a uniform 

moment distribution condition that rarely exists in practice. Transverse loading 

introduces a non-uniform bending moment distribution, which is also often applied 

above or below the shear centre (load height). These loading conditions are known to 

have significant effects on the lateral buckling strength of beams. Many steel design 

codes have adopted equivalent uniform moment distribution and load height factors to 

allow for these effects. But they were derived mostly based on data for conventional 

hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The 

moment distribution and load height effects of transverse loading for LSBs, and the 

suitability of the current design modification factors to accommodate these effects for 

LSBs is not known. This paper presents the details of a research study based on finite 

element analyses on the elastic lateral buckling strength of simply supported LSBs 

subject to transverse loading. It discusses the suitability of the current steel design 

code modification factors, and provides suitable recommendations for simply 

supported LSBs subject to transverse loading. 
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1.0 INTRODUCTION 

 

LiteSteel beam (LSB) is a new cold-formed high strength and thin-walled steel 

section developed by Smorgon Steel Tube Mills, using its patented dual electric 

resistance welding and automated continuous roll-forming techniques. This section 

has a unique mono-symmetric channel shape comprising two rectangular hollow 

flanges and a slender web (Figure 1), and is currently being used as flexural members 

in the light industrial, commercial and domestic markets. The section depth and flange 

width of LSB sections vary from 125 to 300 mm (125, 150, 200, 250 and 300) and 45 

to 75 mm (45, 60 and 75), respectively. Flange height is one third of flange width for 

all the sections with their thicknesses varying from 1.6 to 3.0 mm (1.6, 2.0, 2.5 and 

3.0). Available LSB sections are identified by the section depth, flange width and 

thickness, for example, 300x60x2.0LSB (SSTM, 2005). The nominal yield strength of 

web and flange elements of LSB sections are 380 and 450 MPa, respectively. 

 

Recent research (Mahaarachchi and Mahendran, 2005a) has shown that the structural 

performance of LSBs for intermediate spans is governed by their lateral distortional 

buckling (LDB) behaviour as shown in Figure 1(b). Under flexural action, the 

presence of two stiff hollow flanges and a slender web leads to this buckling mode for 

which a web distortion occurs in addition to the lateral deflection and twist that occur 

in the common lateral torsional buckling (LTB) mode (see Figure 1(a)). This therefore 

reduces its buckling resistance to be lower than that based on lateral torsional 

buckling. Nevertheless, long span LSBs are governed by LTB mode as for other open 

steel sections (Figure 1(b)).  

 

Mahaarachchi and Mahendran (2005a) has shown that the modified elastic lateral 

buckling moment equation developed by Pi and Trahair (1997) to allow for lateral 

distortional buckling effects can be used adequately for LSB sections. However, this 

equation is limited to a uniform moment distribution condition that rarely exists in 

practice (Figure 2). A transverse load on a simply supported beam introduces a non-

uniform bending moment distribution, and is also often applied above or below the 

shear centre (load height effect) as seen in Figure 2. Accurate assessment of these 
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loading conditions in design is important as they can significantly affect the lateral 

buckling strength of steel beams.  

 

In the current steel design standards (i.e. Australian, American and British), a simple 

modification to the elastic lateral buckling moment equation with an equivalent 

uniform moment factor (moment modification) is used to accommodate the effects of 

non-uniform moment distribution, while a load height factor is used in the 

determination of a modified effective length to allow for the effect of loading 

positions. But they were derived mostly based on the data for conventional hot-rolled, 

doubly symmetric I-beams subject to lateral torsional buckling. In contrast, LSBs are 

made of high strength steel and have a unique mono-symmetric cross-section with 

specific residual stresses and geometrical imperfections along with a unique lateral 

distortional buckling mode. The moment distribution and load height effects of 

transverse loading for LSBs, and the suitability of the current steel design code 

methods to accommodate these effects for LSBs are not yet known. The research 

study presented in this paper was undertaken to investigate the effects of moment 

distribution and load height of transverse loading on the lateral buckling strength of 

simply supported LSBs. Two types of common transverse loading were considered, 

the uniformly distributed load (UDL) and the mid-span point load (PL) shown in 

Figure 2. The quarter point loading (QL) was also considered in the moment 

distribution study. Comparisons with the current steel design code modification 

factors were also made in order to make suitable recommendations for LSBs subject 

to transverse loading. This paper presents the details of this study and the results. 

 

2.0 CURRENT DESIGN CODES 

 

Tables 5.6.1 of Australian steel structures design code, AS4100 (SA, 1998), provides 

the following equivalent uniform moment or moment modification factors (m) for 

beams subject to transverse loading. 

 

m = 1.13 for uniformly distributed load     (1a) 

m = 1.35 for mid-span point load                (1b) 
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Alternatively, AS4100 also allows a simple m approximation using Equation 2 that 

applies to any bending moment distribution shown in Figure 3. AS4100 Clause 5.6.3 

allows the effect of load height by increasing the effective length with a load height 

factor of 1.4 in calculating the elastic buckling resistance for top flange loading and 

1.0 for bottom flange loading. 
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Where 

Mm = maximum design bending moment in the segment 

M2, M4  = design bending moments at the quarter points of the segment and 

M3 = design bending moment at the midpoint of the segment 

 

American steel structures design code, ANSI/AISC 360 (AISC, 2005) provides a 

general equation of moment modification factor (Cb) as given by Equation 3 for 

various shapes of bending moment distributions (see Figure 3). This equation was 

originally developed by Kirby and Nethercot (1979). However, ANSI/AISC 360 does 

not provide any explicit provision to account for the load height effect. 
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British steel structures design code, BS5950-1 (BSI, 2000) provides a general 

equation of moment modification factor (mLT) as given by Equation 4 that is 

analogous to the AISC equation, which also applies to various shapes of bending 

moment distributions. The effect of load height when a load is applied at the top 

flange is included by increasing the effective lengths by 20% (load height factor of 

1.2) in calculating the elastic buckling resistance. Otherwise the normal loading 

condition is assumed. 
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AS4100, ANSI/AISC 360, and BS5950-1 are hot-rolled steel structural design codes. 

The cold-formed steel structural design codes generally adopt the equivalent uniform 

moment factor used in the hot-rolled steel structural design codes although there is 

limited research in this area. Pi et al. (1998) showed that moment modification factors 

in AS4100 are reasonably accurate (conservative) for cold-formed channel sections 

while Pi et al. (1997) demonstrated that they are adequate for cold-formed doubly 

symmetric hollow flange beams subject to lateral distortional buckling except for 

beams with low modified slenderness. However, Pi et al. (1999) reported that AS4100 

modification factors are not accurate for cold-formed Z-sections. Kitipornchai et al. 

(1986), Kitipornchai and Wang (1986), Helwig et al. (1997), and Lim et al. (2003) 

also showed that the accuracy of moment modification factors varied depending on 

the section geometry of even the hot-rolled sections such as mono-symmetric I-beams 

and Tee beams. 

 

3.0 FINITE ELEMENT MODELLING OF LSBSs  

 

An elastic finite element (FE) model of LSB was developed using ABAQUS (HKS, 

2005), which was a modification of the earlier model developed by Mahaarachchi and 

Mahendran (2005a). It accounts for various LSB buckling deformations, i.e. local, 

lateral and torsional buckling, and web distortion. ABAQUS S4R5 shell element was 

selected for the finite element model of LSB as it is capable of providing sufficient 

degrees of freedom to explicitly model buckling deformations. This element is a thin, 

shear flexible, isoparametric quadrilateral shell with four nodes and five degrees of 

freedom per node, utilizing reduced integration and bilinear interpolation schemes. An 

element size of 5 mm laterally for both the flanges and web of LSB with length in the 

longitudinal direction of 10 mm was used to provide adequate accuracy (Figure 4). 

Figure 5 shows the boundary conditions used to simulate the required simply 

supported condition. A simply supported condition was defined as both ends fixed 

against vertical deflection, out-of plane deflection and twist rotation, but unrestrained 

against in-plane rotation, minor axis rotation, warping displacement, while only one 

end is fixed against longitudinal horizontal displacement. The pin support (at one end) 

was modelled by using a single point constraint (SPC) of “1234” applied to the node 

at the middle of the web element, while the degrees of freedom “234” of the other 
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nodes were restrained. To simulate the roller support at the other end, all the nodes 

degrees of freedom “234” were restrained. The degrees of freedom notation “123” 

corresponds to translations in x, y and z axes whereas “456” relates to rotations about 

x, y and z axes, respectively.  

 

Two types of loading conditions were simulated, equal end moments, and transverse 

loading. The first loading condition was used as the basic case of uniform moment to 

demonstrate the moment distribution effect, while in the second loading condition, 

transverse loads were applied to the top flange, the shear centre and the bottom flange 

to simulate the load height effect (see Figure 2). The end moment was simulated with 

linear forces applied at every node of the beam end, where the upper part of the 

section was subject to compressive forces while the lower part was subject to tensile 

forces as shown in Figure 5.  

 

A simulation of transverse loading at the shear centre (located away from the cross 

section) in three dimensional modelling using shell elements is complex and difficult 

to achieve. Hence an approximate method was adopted to simulate the shear centre 

loading as shown in Figure 6. In this method, transverse loads (P) were applied to the 

web elements of LSB’s top and bottom hollow flanges while lateral forces (P’) were 

applied through the nodes at the corners of the outer flange plate element and the web 

element of LSB hollow flanges (both top and bottom flanges). The lateral forces (P’) 

created a torque to counter the torque caused by the loading away from the shear 

centre. This approach provided an equivalent loading condition to the ideal shear 

centre loading. Further, the transverse loads were distributed to the web element of 

LSB’s hollow flanges to reduce possible stress concentrations. The same modelling 

approach was used to simulate the load height effects as shown in Figure 7. The 

transverse loads on the web element of LSB’s bottom flange was simply removed to 

simulate the top flange loading while the removal of transverse loads on the web 

element of LSB’s top flange simulated the bottom flange loading. Note that the lateral 

forces (P’) were also applied to provide the required counter torque (see Figure 7).  

 

A series of elastic buckling analysis was carried out to obtain the elastic lateral 

buckling moments (LDB and LTB) of simply supported LSBs subject to moment 

distribution and load height effects of transverse loading. Elastic buckling behaviour 
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of three LSB sections was investigated to include the effect of section geometry in the 

investigation, LSB125x45x2.0, LSB250x60x2.0 and LSB300x75x3.0. Based on 

AS4100 rules, they are classified as compact, non-compact and slender sections, 

respectively. The beam lengths were varied from intermediate to long spans to 

observe the relationship of lateral buckling modes (LDB vs. LTB) to the loading 

conditions. 

 

4.0 VALIDATION OF THE FINITE ELEMENT MODEL 

 

The developed finite element model of LSB was able to simulate the three distinct 

buckling modes of local buckling for short spans, lateral distortional buckling for 

intermediate spans and lateral torsional buckling for long spans. To verify the 

accuracy of the adopted finite element type, mesh density, loading (the basic uniform 

moment case) and boundary conditions, the solutions of the elastic buckling analyses 

using the finite element model for LSBs subject to a uniform moment were compared 

with the solutions obtained from finite strip analyses based on THINWALL (Hancock 

and Papangelis, 1994), and the modified elastic lateral buckling moment equation 

developed by Pi and Trahair (1997), which allows for the lateral distortional buckling 

effects as follows. 
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Where the approximate effective torsional rigidity (GJe) is given by: 
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EIy = minor axis flexural rigidity 

EIw = warping rigidity 

JF = torsion constant for a single hollow flange 

d1 = depth of the flat portion of the web 

t = thickness 

L = beam length 



8 
 

 

Figure 8 compares the elastic buckling moments versus span results obtained from the 

three methods. It shows that finite element analysis (FEA) results agree well with the 

results from both THINWALL and Mod equation, with an average difference of less 

than 2% and 3%, respectively. For short span LSBs, both FEA and THINWALL 

predicted local buckling as the critical buckling mode (precedes lateral distortional 

buckling). LSB250x60x2.0 and LSB300x75x3.0 appear to be subjected to local 

buckling when the span is between 1.0 and 1.5m or less while for LSB125x45x2.0 the 

relevant span is between 0.3 and 0.75m or less. The elastic lateral distortional 

buckling moment can be obtained from THINWALL for short span LSBs, but this 

was not feasible in FEA. Therefore it was also not possible to use FEA to investigate 

the moment distribution effect for the full range of beam slenderness of LSBs (only 

feasible for intermediate to long spans). Nevertheless, these comparisons indicate that 

the adopted finite element model is sufficient to predict the elastic buckling moments 

for all the buckling modes associated with LSB sections, i.e. local buckling, lateral 

distortional buckling and lateral torsional buckling modes.  

 

5.0 FINITE ELEMENT ANALYSIS RESULTS AND DISCUSSIONS 

 

5.1 Non-uniform Moment Distribution Effect of Transverse Loading  

 

Tables 1 and 2 present the elastic buckling moment results for simply supported LSBs 

subject to transverse loads (the uniformly distributed load (UDL) and the mid-span 

point load (PL)) at the shear centre. The equivalent uniform moment distribution 

factors (m) are also presented in Tables 1 and 2. The factor m is the ratio of the 

elastic lateral buckling moments for non-uniform moment (Mod-non) and uniform 

moment (Mod) conditions, i.e. m = Mod-non / Mod. The elastic lateral distortional 

buckling moment given by Equation 5a can be written as: 
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22 / LGJEIK ewe         (6b) 

     

Ke is a modified torsion parameter which expresses not only the torsion component of 

lateral buckling, but also the web distortion. Low Ke value means high beam 

slenderness and vice versa. In comparison to lateral torsional buckling, the above 

equations use the effective torsional rigidity parameter GJe instead of GJ. 

 

The results in Tables 1 and 2 are also plotted against the modified torsion parameter 

(Ke) in Figures 9 and 10, respectively. The results generally show that the non-

uniform moment distribution caused by transverse loading increases the elastic lateral 

buckling strength of simply supported LSBs compared with the uniform moment case. 

The mid-span point load (PL) case provides higher strength benefits because of less 

severe moment distribution than in the uniformly distributed load (UDL) case, i.e. 

high moment region is concentrated at mid-span. However a variation of non-uniform 

moment benefits exists for both UDL and PL cases as shown in Figures 9 and 10 

where the m factors appear to be a function of the modified torsion parameter (Ke). 

The m factors reach the upper bound for LSBs with high beam slenderness (lower Ke 

values) where they are subjected to lateral torsional buckling, but they progressively 

reduce with increasing Ke values (lower beam slenderness) along with increasing 

level of web distortion during lateral buckling, ie. lateral distortional buckling. This 

may indicate that the lateral distortional buckling mode unfavourably influences the 

non-uniform moment distribution benefits, more importantly when the web distortion 

is significant.  

 

The m factor variation also demonstrates that it is more severe for LSBs with 

transverse loading compared to the moment gradient case. This may be because 

unlike for LSBs subject to a moment gradient, shear stresses are not negligible for the 

transverse loading cases, which appear to increase the reduction of non-uniform 

moment benefits due to the web distortion effect of LDB. A study by Ma and Hughes 

(1996) also showed the significant effects of uniformly distributed vertical load on the 

lateral distortional buckling strength of monosymmetric I-beams in comparison to the 

uniform moment case.  
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Figures 9 and 10 compare the m factors based on FEA results and AS4100 (Eq.1a, 1b 

and 2), ANSI/AISC 360 (Eq.3) and BS5950-1 (Eq.4). They indicate that the current 

steel design code factors do not provide accurate predictions. It is evident that the 

current m factors are unconservative as they are given as constant values (i.e. 1.13 

for UDL and 1.35 for PL based on AS4100 Table 5.6.1), independent of beam and 

section slenderness. This does not reflect the observed m variation due to web 

distortion. The comparison also shows that the specific factors in Table 5.6.1 of 

AS4100 (Eq.1a and 1b) are closer to the upper bound results, implying that it may 

only be suitable for LSBs subjected to lateral torsional buckling. This observation is 

justifiable as this m equation was originally developed for lateral torsional buckling. 

 

The FEA results also show that LSBs with higher Ke values may be subject to other 

buckling modes which precede lateral distortional buckling mode. For the UDL case, 

this non-lateral buckling mode is shear buckling near both supports, and for the PL 

case it is a local web buckling (or web bearing buckling) at mid-span. This is because 

the transverse loading is always accompanied by shear stresses which become more 

critical than the bending stresses in the case of low beam slenderness. When the 

bending stresses are dominant, the shear stresses can be negligible such as in the 

intermediate and high beam slenderness cases. Further, a transition mode occurs (Ke ≥ 

0.8 approximately) from pure lateral buckling mode to the non-lateral buckling mode, 

which appears to be an interaction of the two buckling modes. Figures 11 (a) to (e) 

show these non-lateral buckling modes of LSBs with higher Ke values (lower beam 

slenderness). As the purpose of m factor is for the pure lateral buckling (LDB and 

LTB), such results that were limited by other buckling modes (including interaction) 

are not relevant and thus were not considered in this study. Elastic buckling analysis 

based on the three dimensional shell finite element models was not able to provide the 

lateral buckling moments for the full beam slenderness range of LSBs. Thus if 

required, other elastic buckling analysis techniques such as energy methods may have 

to be used to derive solutions exclusively for lateral distortional buckling, especially 

for cases with higher Ke values.  

 

The variation of m factor as shown in Figures 9 and 10 is quite interesting as it 

appears to keep decreasing with increasing Ke value, where at one stage (higher Ke 
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values) it may become less than one (i.e. LSB’s lateral buckling strength is below that 

of the basic uniform moment case). However, this is due to the presence of non-lateral 

buckling modes in the region of low beam slenderness, which suggests that the m 

factor should not be less than one. Also at that stage, it is close to the local buckling 

region based on the results from the basic case of uniform moment (Figure 12), where 

the moment distribution effect is negligible. A comparison of elastic buckling 

moments for transverse loading and uniform moment cases in Figure 12 shows why 

the m factor decreases in this region of low beam slenderness.  

 

A more accurate m factor for both UDL and PL cases than the currently available 

factors can be obtained by developing an equation as a function of Ke to reflect the 

level of web distortion of LDB and assuming the lower bound of m factor as 1.0. 

 

For UDL: m = 1.125 - 0.145 Ke
2 + 0.008 Ke (1.0 ≤ m  ≤ 1.125) (7a) 

 

For PL: m = 1.34 - 0.25 Ke
2 + 0.06 Ke            (1.0 ≤ m  ≤ 1.34)       (7b) 

 

These equations were derived based on the best fit of data associated only with lateral 

buckling (LDB and LTB) in Figures 9 and 10 with an average percentage error less 

than 1%. They appear to be more complex, requiring the calculation of the modified 

torsion parameter (Ke). However, it is considered as simple to use since all the 

required parameters in the calculation of Ke are readily available in the Design 

Capacity Tables of LSBs (SSTM, 2005). 

 

Finite element analyses were also conducted for simply supported LSBs subjected to 

quarter point loads (QL) and the elastic buckling moment results were analysed using 

the same procedure as described above for the other two transverse load cases. The 

results showed that the benefits for the QL case are very small for LSBs. The highest 

m factor was found to be 1.04 (4% improvement from the basic case of uniform 

moment), which was obtained for LSBs subject to LTB. This is because the bending 

moment distribution for the QL case is closer to a uniform moment distribution, thus 

only a negligible benefit will result. As for the other two transverse load cases, the 

level of web distortion in LDB mode was also found to be unfavourable to the already 
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small strength benefits for the QL case. As in the other two transverse load cases, it is 

reasonable to ignore the moment distribution effect for LSBs subjected to non-lateral 

buckling modes as well as the interaction buckling mode that occur with increasing Ke 

values. It appears that completely neglecting the benefits for QL is an ideal solution as 

it is not worth increasing the design complexity for a small moment capacity gain at 

the most. Comparison with the currently used m factors generally agree with this 

recommendation as they (Equations 2, 3 and 4) also recommend an m factor equal to 

1.0, except for the factor given in AS4100 Table 5.6.1 (m = 1.09). The factor in 

Table 5.6.1 of AS4100 is unconservative and is not even close to the FEA results of 

the case subjected to LTB mode. Hence the use of this higher m factor of 1.09 is not 

suitable for LSBs. Nevertheless, if a more accurate prediction is required, then the 

following m equation can be used to take into account the benefits from QL with an 

assumption that m shall not be less than one. 

 

For QL: m = 1.04 - 0.22 Ke
2 + 0.025 Ke (1.0 ≤ m ≤ 1.04)  (7c) 

 

On the use of m or Cb factors to determine the design moment capacities of LSBs, it 

is recommended that the design method in many cold-formed steel codes is used in 

which the elastic lateral buckling moment for the uniform moment case is modified 

by using the appropriate m or Cb factor and used in the member capacity calculation. 

 

5.2 Load Height Effect of Transverse Loading  

 

The load height effect was studied for simply supported LSBs subject to the first two 

transverse load cases of uniformly distributed load and mid-span point load at the top 

flange (TF) and bottom flange (BF) loading discussed in the last section. Table 3 

presents the elastic buckling moment results from the finite element analyses. The 

results are also presented in a dimensionless format in Figure 13 where the 

dimensionless buckling load (DBL) is defined as follows: 

 

For UDL: DBL = ey
3 GJEI/QL      (8a) 

For PL: DBL = ey
2 GJEI/QL     (8b) 
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where the buckling load (Q) is obtained from the elastic buckling finite element 

analysis and L is the span. 

 

Figure 13 demonstrates that the destabilising effect of loading above the shear centre 

(top flange loading) decreases the buckling resistance while the loading below the 

shear centre (bottom flange loading) produces the opposite effect. When a transverse 

load acts above the shear centre and moves with the beam during lateral buckling, it 

exerts an additional torque about the shear centre axis, subjecting the section to an 

additional twisting thus reducing the buckling resistance. Conversely, for loading 

below the shear centre, the additional torque opposes the twist rotation of the beam, 

thus increasing the buckling resistance. Figure 14 shows the differences in the torsion 

level of LDB for various load heights (shear centre, top flange and bottom flange). 

This effect is more important for beams with low beam slenderness as the torsion 

level is significant to create a larger additional torque than for beams with higher 

beam slenderness for which its lateral component is more dominant than the torsion 

components. This is evident from the results that the load height effect is more 

important for LSBs with a high modified torsion parameter (Ke). However, the elastic 

buckling analyses for cases with high Ke values were also limited by other buckling 

modes which precede lateral distortional buckling (similar to the moment distribution 

study). The results associated with non-lateral buckling modes were therefore not 

considered in this study on load height effects. 

 

BS5950-1 (BSI, 2000) and AS4100 (SA, 1998) treat the destabilising effect of top 

flange (TF) loading by using a factor known as load height factor (kl) to increase the 

effective length (Le = L x kl). They recommend kl factors of 1.4 and 1.2, respectively, 

for this purpose. The increased effective length can be used to calculate the elastic 

buckling resistance (Mod-non) for top flange loading using Equations 5 (a) and (b). 

However for loading below the shear centre (i.e. BF loading), both design codes 

conservatively ignore its beneficial effects. The British cold-formed steel design code, 

BS5950-5 (BSI, 1998) adopts a similar load height factor as in BS5950-1. However, 

other cold-formed steel design codes, AS/NZ4600 (SA, 2005) and AISI Specification 

(AISI, 2004), do not provide any explicit provisions to take account of load height 

effect. 
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Figures 15 and 16 compare the dimensionless buckling loads from the elastic finite 

element buckling analysis results with the predictions using BS5950-1 and AS4100 

for top flange loading. In calculating the Mod-non for top flange loading using the 

design code method of effective length, the actual m factors based on the elastic 

buckling analyses in the previous section were used to include the moment 

distribution effects, ie. the final Mod-non value was obtained by multiplying the Mod-non 

value from Eq.5a based on the increased effective length with the actual m factor.  

The comparison indicates that the design code prediction does not represent the actual 

load height effect (TF) variation, i.e. too conservative for lower Ke value (higher beam 

slenderness) and unconservative for the opposite case, particularly with BS5950-1 

predictions. AS4100 prediction is better than that of BS5950-1 as it is only slightly 

unconservative in the higher Ke region due to its higher load height factor (kl) of 1.4 

(1.2 in BS5950-1). 

 

Trahair (1993) provides an approximate solution to predict the elastic lateral buckling 

strength of a beam subjected to load height effects as given by the following equation.  
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Where; Mcr = elastic lateral buckling moment including load height effect 

Myz = elastic lateral buckling moment for uniform moment case (Mod) 

yQ = load height  

Py = 2 E Iy / L
2  

 

The use of this more accurate equation for design purposes is permitted in AS4100 

(SA, 1998). Figures 15 and 16 also plot the dimensionless buckling load (DBL) 

calculated using Trahair’s solution. In using Equation 9, actual m factors based on 

the elastic buckling analyses presented in the previous section were used to include 

the moment distribution effect. The comparison demonstrates that Trahair’s equation 

is reasonably accurate with the elastic buckling results for both TF and BF cases. 

Thus this equation can be safely implemented to calculate the LSB’s lateral buckling 
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moments (LDB and LTB), provided an appropriate m factor is used. The use of 

accurate m factors, which include the unfavourable effect of web distortion in lateral 

distortional buckling, allows treating the load height effects without considering the 

web distortion effect. In other words, the web distortion effect is exclusively 

considered within the moment distribution effects. Note that accurate m factors are 

also used in the comparisons using BS5950-1 and AS4100.  

 

Trahair’s equation appears to be superior than the current design method based on 

effective length concept as it can be applied for any load heights using the yQ 

parameter in Equation 9 (not limited to TF and BF cases). The comparison of 

predictions from Trahair’s equation and AS4100 for the TF case in Figures 15 and 16 

indicates that for LSBs with lower beam slenderness (higher Ke value), they are quite 

close although the latter is less accurate (slightly unconservative). The slight 

overestimation from AS4100 method may not be very significant for design purposes 

as there are many other unaccounted factors that may compensate for this inaccuracy. 

The effective length method is also easier to use than Equation 9 due to its simplicity 

and conservatism for cases with high beam slenderness. Therefore the use of AS4100 

method based on effective length may be still adequate for LSBs. 

 

The current steel design codes usually ignore the beneficial effects of loading below 

the shear centre. Its significant benefits are not important, particularly for intermediate 

and short spans as its ultimate strength is very likely to be limited by its section 

capacity, while unrestrained long span beams are rarely used in practice. This 

conservative approach can be safely adopted for LSB design. Alternatively, Trahair’s 

equation (Eq. 9) can be simply used to obtain the higher elastic buckling moment 

(Mcr) for loading below the shear centre of LSBs. 

 

Further, the load height effects due to TF and BF loading can also be expressed as a 

load height ratio, which is defined as the ratio of elastic lateral buckling moment for 

the case of top or bottom flange loading to that for shear centre loading. Figure 17 

uses this format and plots the elastic buckling analysis results from this study as well 

as the predictions based on the current design code methods and Trahair’s equation 

(Eq. 9). It is therefore able to confirm the many observations made based on Figures 
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15 and 16. It also demonstrates that the variation between the two transverse load 

cases (PL and UDL) can be considered small, indicating that these two cases are 

sufficient to represent the load height effect on LSBs, although further research into 

other transverse load types may be useful. 

 

6.0 CONCLUSIONS 

 

This paper has described a series of finite element analyses undertaken to investigate 

the moment distribution and load height effects of transverse loading on the elastic 

lateral torsional and distortional buckling strength of simply supported LSBs. The 

strength benefit due to non-uniform moment distribution reaches the upper bound for 

LSBs with high beam slenderness, but it reduces with lower beam slenderness due to 

the increasing level of web distortion of lateral distortional buckling as well as 

increasing shear stresses, until other buckling modes that precede lateral buckling 

govern. The current moment distribution (m) factors in AS4100, ANSI/AISC 360 

and BS5950-1 were found to be inadequate. Hence it is recommended that the new m 

equations proposed in this paper are used in the design of LSB flexural members. The 

effect of loading above the shear centre creates additional twisting that reduces the 

elastic lateral buckling resistance of simply supported LSBs, while loading below the 

shear centre produces the opposite effects. The benefit of the latter is often neglected 

in the current steel design codes, and the same approach can also be conservatively 

used for LSBs. For top flange loading, the approximate AS4100 method based on an 

increased effective length is reasonably adequate to allow for its destabilising effects. 

A more accurate method is also given in this paper to calculate the elastic lateral 

buckling moments of LSBs with any load height. The proposed m equations 

incorporate the unfavourable effect of web distortion, thus its use is also important for 

the accurate assessment of load height effects on simply supported LSBs subject to 

transverse loading. 
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  (a) LiteSteel Beams (LDB and LTB)              (b) I-beams (LTB)    

  

Figure 1:  Lateral Buckling Modes of Beams 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Simply Supported Beam with Various Loading Conditions 

 

 

 

Figure 3: Moment Diagram for Equations (1) to (4) 
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Figure 4: Typical Finite Element Mesh for LSB Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Modelling of Boundary Conditions and End Moment 
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Figure 6: Schematic View of Modelling Transverse Load at Shear Centre 

 

 

 

 

 

 

 

 

Figure 7: Schematic View of Modelling Transverse Loads at Top and Bottom 

Flange Levels 
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Figure 8: Comparison of Elastic Buckling Moments vs. Span from Finite 

Element Analysis, THINWALL and the Mod Equation for LSBs 
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Figure 9: m Factors for the UDL Case based on Elastic Buckling Analyses 
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Figure 10: m Factors for the PL Case based on Elastic Buckling Analyses 
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(a) 1.5m LSB300x75x3.0 with a UDL 

 

     

(b) 1.5m LSB300x75x3.0 with a UDL  (c) 1.5m LSB250x60x2.0 with a PL 

 

     

(d) 2m LSB250x60x2.0 with a UDL  (e) 2m LSB250x60x2.0 with a PL 

 

Figure 11: Other Critical Non-lateral Buckling Modes 

 

 

 

 

 

 

 

 

 

 

 

Interaction of lateral 
distortional buckling 
with shear buckling 
near the support 

Interaction of lateral 
distortional buckling 
with local web buckling 
(bearing) at mid-span 

Local web 
buckling 
(bearing) at 
mid-span 

Shear 
buckling near 
the support 

Front view 
(deformation) 

Note: view is 
exaggerated 
for clarity 



26 
 

 

 

 

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

Span (mm)

E
la

st
ic

 B
u

ck
li

n
g

 M
o

m
en

t 
(k

N
m

)

THINWALL (lateral buckling load for uniform moment)
THINWALL (critical buckling load for uniform moment)
FEA (critical buckling load for uniform moment)
FEA (critical buckling load for UDL case)
FEA (critical buckling load for PL case)

 

Figure 12: Comparison of Typical Elastic Lateral Buckling Moment versus Span 

curves for Transverse Loads (UDL and PL) and Uniform Moment Cases 
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Figure 13: Load Height Effects (Top Flange and Bottom Flange Levels) for 

Simply Supported LSBs based on Elastic Buckling Analyses 

 

 

 

         

 

 

Figure 14: Load Height Effects on the Lateral Distortional Buckling Mode  

(2.5m LSB250x60x20 Subjected to a UDL) 
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Figure 15: Comparison with Current Design Methods in Predicting the Lateral 

Buckling Strength of Simply Supported LSBs Subjected to Load Height Effects 

(UDL Case) 
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Figure 16: Comparison with Current Design Methods in Predicting the Lateral 

Buckling Strength of Simply Supported LSBs Subjected to Load Height Effects 

(PL Case) 
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Figure 17: Comparison of Load Height Ratios 
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Table 1: Elastic Lateral Buckling Moments of Simply Supported LSBs  

Subjected to a Uniformly Distributed Load (UDL) 

LSB 
Span 

FEA Buckling 
Moment (Mod-non) m 

Factor

Currentm Factors 

 d x bf x t AS4100 
Table 5.6.1 

AS4100 AISC BS5950.1 

(mm) (mm) (kNm) Mode Eq.2 Eq.3 Eq.4 

125 x 45 x 
2.0 LSB 

750 29.76 LB - 1.13 1.17 1.14 1.08 

1000 25.83 LDB+ 1.039 1.13 1.17 1.14 1.08 

1500 19.76 LDB 1.108 1.13 1.17 1.14 1.08 
2500 13.48 LDB 1.121 1.13 1.17 1.14 1.08 
4000 8.98 LDB* 1.122 1.13 1.17 1.14 1.08 
6000 6.12 LTB 1.119 1.13 1.17 1.14 1.08 

10000 3.74 LTB 1.122 1.13 1.17 1.14 1.08 

250 x 60 x 
2.0 LSB 

1500 29.62 nLB - 1.13 1.17 1.14 1.08 

2000 30.80 LDB+ 0.988 1.13 1.17 1.14 1.08 

2500 27.34 LDB 1.061 1.13 1.17 1.14 1.08 

3000 24.47 LDB 1.092 1.13 1.17 1.14 1.08 
4000 20.28 LDB 1.115 1.13 1.17 1.14 1.08 

6000 14.99 LDB* 1.121 1.13 1.17 1.14 1.08 

10000 9.65 LTB 1.122 1.13 1.17 1.14 1.08 

300 x 75 x 
3.0 LSB 

1500 96.53 nLB - 1.13 1.17 1.14 1.08 

2500 79.91 LDB+ 1.038 1.13 1.17 1.14 1.08 

3000 70.97 LDB 1.084 1.13 1.17 1.14 1.08 

4000 58.08 LDB 1.113 1.13 1.17 1.14 1.08 

6000 42.55 LDB* 1.125 1.13 1.17 1.14 1.08 
10000 27.15 LTB 1.126 1.13 1.17 1.14 1.08 

LDB*  Lateral distortional buckling mode with negligible web distortion  
LDB+ Lateral distortional buckling mode with shear buckling near the supports (interaction) 

nLB  Non-lateral buckling mode (shear buckling near the supports) that precedes LDB 
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Table 2: Elastic Lateral Buckling Moments of Simply Supported LSBs  

Subjected to a Mid-span Point Load (PL) 

LSB 
Span 

FEA Buckling 
Moment (Mod-non) m 

Factor

Currentm Factors 

 d x bf x t AS4100 
Table 5.6.1 

AS4100 AISC BS5950 

(mm) (mm) (kNm) Mode Eq.2 Eq.3 Eq.4 

125 x 45 x 
2.0 LSB 

750 36.41 nLB - 1.35 1.39 1.32 1.18 

1000 30.79 LDB+ 1.239 1.35 1.39 1.32 1.18 

1500 23.58 LDB 1.323 1.35 1.39 1.32 1.18 
2500 16.04 LDB 1.334 1.35 1.39 1.32 1.18 
4000 10.69 LDB* 1.337 1.35 1.39 1.32 1.18 
6000 7.34 LTB 1.341 1.35 1.39 1.32 1.18 

10000 4.48 LTB 1.345 1.35 1.39 1.32 1.18 

250 x 60 x 
2.0 LSB 

1500 34.17 nLB - 1.35 1.39 1.32 1.18 

2000 36.41 LDB+ 1.168 1.35 1.39 1.32 1.18 

2500 32.68 LDB 1.269 1.35 1.39 1.32 1.18 

3000 29.27 LDB 1.309 1.35 1.39 1.32 1.18 
4000 24.20 LDB 1.330 1.35 1.39 1.32 1.18 

6000 17.81 LDB* 1.332 1.35 1.39 1.32 1.18 

10000 11.49 LTB 1.336 1.35 1.39 1.32 1.18 

300 x 75 x 
3.0 LSB 

1500 116.3 nLB - 1.35 1.39 1.32 1.18 

2500 95.64 LDB+ 1.243 1.35 1.39 1.32 1.18 

3000 84.96 LDB 1.297 1.35 1.39 1.32 1.18 

4000 69.50 LDB 1.332 1.35 1.39 1.32 1.18 

6000 50.72 LDB* 1.341 1.35 1.39 1.32 1.18 
10000 32.51 LTB 1.348 1.35 1.39 1.32 1.18 

LDB*  Lateral distortional buckling mode with negligible web distortion  
LDB+ Lateral distortional buckling mode with web local buckling at mid-span (interaction) 

nLB  Non-lateral buckling mode (web local buckling at mid-span) that precedes LDB 
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Table 3: Elastic Lateral Buckling Moments of Simply Supported LSBs Subjected 

to Top Flange (TF) and Bottom Flange (BF) Loading 

LSB 
Span General 

Buckling 
Mode 

For TF case (kNm) For BF case (kNm) 
 d x bf x t 

(mm) (mm) UDL PL UDL PL 

125 x 45 x 2.0 
LSB 

750 LB - - - - 

1000 LDB 18.56(+) 19.64(+) 36.27 45.37 

1500 LDB 16.16 22.67 24.17 37.82 
2500 LDB 12.13 17.29 14.98 23.08 
4000 LDB* 8.44 7.65 9.55 9.09 
6000 LTB 5.90 8.67 6.39 9.69 

10000 LTB 3.65 5.42 3.83 5.78 

250 x 60 x 2.0 
LSB 

1500 nLB - - - - 

2000 LDB 21.72(+) 20.25(nLB) 46.83(+) 55.48(+) 

2500 LDB 20.44 21.87(+) 36.71 46.33 

3000 LDB 19.35 21.47 30.97 38.99 
4000 LDB 17.25 19.47 23.81 29.74 

6000 LDB* 13.59 15.53 16.47 20.30 

10000 LTB 9.13 10.63 10.19 12.38 

300 x 75 x 3.0 
LSB 

1500 nLB - - - - 

2500 LDB 57.99(+) 62.06(+) 110.95 139.76 

3000 LDB 54.36 60.23 92.87 117.15 

4000 LDB 48.14 54.24 70.22 88.03 

6000 LDB* 37.94 43.26 47.74 59.05 
10000 LTB 25.50 29.57 29.10 35.77 

LDB*  Lateral distortional buckling mode with negligible web distortion 
(+)  Lateral distortional buckling mode with shear buckling or local web buckling (interaction) 

nLB  Non-lateral buckling mode (shear buckling or  local web buckling) that precedes LDB 

 

 

 

 




