

QUT Digital Repository:
http://eprints.qut.edu.au/

Teague, Donna M. and Roe, Paul (2009) Learning to program : from pear-
shaped to pairs. In: Proceedings of the First International Conference on
Computer Supported Education, 23-26 March 2009, Lisboa, Portugal.

 © Copyright 2009 INSTICC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10895744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LEARNING TO PROGRAM
From Pear-Shaped to Pairs

Donna Teague, Paul Roe
Queensland University of Technology, Brisbane, Australia

d.teague@qut.edu.au, p.roe@qut.edu.au

Keywords: Pair programming, collaborative learning, learning to program.

Abstract: The consistently high failure rate in Queensland University of Technology’s introductory programming

subject reflects a similar dilemma facing other universities worldwide. Experiments were conducted to

quantify the effectiveness of collaborative learning on introductory level programming students over a

number of semesters, replicating previous studies in this area. A selection of workshops in the introductory

programming subject required students to problem-solve and program in pairs, mimicking the eXtreme

Programming concept of pair programming. The failure rate for the subject fell from what had been an

average of 30% since 2003 (with a high of 41% in 2006), to just 5% for those students who worked

consistently in pairs.

1 INTRODUCTION

Like many universities internationally, in recent

years enrolments in Queensland University of

Technology’s (QUT) Information Technology (IT)

degree course have taken a dramatic nose dive,

leveling off more recently but with little promise of

gaining significant ground in the near future.

Attrition from IT courses is historically high

(Kinnunen, P., Malmi, L. 2006; Biggers, M., Brauer,

A. et al. 2008), particularly for women and other

minority groups for whom there is often poor

representation to begin with (Cohoon, J.M. 2002;

Fisher, A., Margolis, J. 2002; Lewis, S., McKay, J.

et al. 2006; Murphy, L., McCauley, R. et al. 2006;

Reges, S. 2006; Varma, R. 2006; Vilner, T., Zur, E.

2006).
Commonly offered as a first year core subject,

introductory programming subjects have an alarming
failure rate (Sheard, J., Hagan, D. 1998; Robins, A.,
Rountree, J. et al. 2003). The serial nature of
programming with sequential dependencies between
topics has a bottleneck effect on a student’s
progression through a subject or course of subjects
(eg from CS1 to CS2) if foundation or prerequisite
skills are not acquired.

Since 2003 an average of 31% of students were
failing QUT’s introductory programming subject.
Attrition from this Australian university’s IT courses
was increasing and enrolments poor. These abysmal

statistics prompted research into the barriers to first
year students learning to program.

This paper documents the results of pair-
programming experiments conducted over two
semesters at QUT to quantify the effectiveness of
collaborative learning on introductory level
programming students. A selection of workshops in
the introductory programming subject required
students to problem-solve and program in pairs,
mimicking the eXtreme Programming concept of
pair programming (Beck, K. 2005).

In the final semester of the experiment, only 5%
of the paired students failed the subject, compared to
a failure rate of 20% for non-paired students.
Students participating in the experiment not only
achieved better overall results in the subject, but
they also performed better in the subject’s final
exam.

These results indicate that the paired students

were able to independently apply their knowledge to

new problems, contrary to the observations in a

similar study (McDowell, C., Werner, L. et al.

2002),. However, our results concur with more

recent findings that students who pair-programmed

were more likely to complete the course successfully

(Braught, G., Eby, L.M. et al. 2008).

2 BARRIERS TO LEARNING

Literature indicates that first year students in

particular face not only cognitive challenges with

complex topics like programming, but also a range

of social and cultural issues during their transition

into university (Cohoon, J.M. 2002; Fisher, A.,

Margolis, J. 2002; Lahtinen, E., Ala-Mutka, K. et al.

2005). These barriers are likely to impede the

students’ full potential being realized or have more

significant negative effects on their learning

outcome resulting in failure or withdrawal from the

unit, or withdrawal from IT degree entirely.

Collaborative learning is known to provide

benefits to students including generating enhanced

interest in the material, engagement in the learning

environment, greater overall achievement and a

more enjoyable learning experience (Wilson, J.D.,

Hoskin, N. et al. 1993; Gokhale, A.A. 1995;

Williams, L., Kessler, R.R. 2000; McKinney, D.,

Denton, L.F. 2006).

Consistently in first year IT subjects at QUT,

attendance levels at scheduled lectures, tutorials and

workshops dramatically decline through the

semester. In the first week of semester 1 2007, the

introductory programming subject saw on average

80% of students attending workshops, and by the

end of semester the average attendance rate at

workshops was only 16%. Subsequent semesters

experienced a similar pattern of attendance.

It seems to the authors that introductory

programming students (at least at QUT) are reluctant

to seriously embrace the advice offered by academic

staff for successfully completing the subject. During

our experiment, those students who attended

scheduled lectures on average spent about half the

recommended time per week studying the

programming subject. Each week, on average only

about half the students attending lectures could say

they had studied or practised the material introduced

in the previous week’s lecture at all. These

responses suggest that a ‘devil may care’ attitude

may be responsible for students deferring any

significant effort or focus in the course material until

the last possible moment. Not unexpectedly, many

of them end up struggling to complete complex

programming projects in a very limited amount of

time. They find themselves with little of the

working knowledge required to solve the assessment

task. Elevated stress levels compound the problem

often resulting in the student’s inability to

successfully complete the assessment item in time.

Poor grounding in the ‘building block’ basics of

programming like variable declaration, function

definition and parameter passing in the early weeks

of semester make the more advanced topics of loops,

recursion and abstract data types almost impossible

to grasp. Even with the ‘wake-up’ call of a failed

first assessment item and a renewed enthusiasm for

putting in some real effort, there is all too often little

chance to catch up on the workload in time to

salvage a decent grade for the subject. The student

is in danger of losing confidence in their own ability

and disengaging from the subject altogether.

Why do students fail to engage in the first place?

One possibility is the stark contrast between the

closely monitored high school environment and the

adult world of university. Adolescence is

characterised by growing dissatisfaction with, and

resistance to, authority (White, A.M. 2004), and it is

during this stage that students find themselves with

the sole responsibility for their learning. This could

present the immature student with the opportunity to

make poor judgement calls in terms of their

commitment to, and organisation and planning of

their university obligations (Begley, S. 2000).

But it is not only school-leavers who fail to

engage. Those students who don’t fit the IT student

stereotype include not only women, but mature-age

students and others who see studies in IT as

complementary to their career aspirations, rather

than the focus thereof (Vilner, T., Zur, E. 2006;

Peckham, J., Stephenson, P.D. et al. 2007). These

students may initially have a better study ethic, but

can struggle with a lack of supporting social

structure in the learning environment (Cohoon, J.M.

2002) and disinterest in or inability to relate to the

learning material (Fisher, A., Margolis, J. 2002).

2.1 Engaging Students

“I hear and I forget. I see and I remember. I do and I

understand.” [Confucius]

The literature on CS education embraces the notion

that lots of hands-on practice and experimentation is

especially important for novice programmers

(Hassinen, M., Mäyrä, H. 2006), because their

knowledge of programming is not passively

absorbed through texts and lectures, but rather

actively constructed via their own practical

experiences (Bruner, J. 1990; Ben-Ari, M. 1998;

Huitt, W. 2003).

Collaborative learning establishes an

environment conducive to learning and addresses the

social and cultural barriers facing first year students

and enhances their learning experience (Wilson,

J.D., Hoskin, N. et al. 1993; Gokhale, A.A. 1995;

Williams, L., Kessler, R.R. 2000; McDowell, C.,

Werner, L. et al. 2002; Gehringer, E.F., Deibel, K. et

al. 2006). Students benefit from peer support while

learning, and at the same time are motivated by peer

pressure and a sense of purpose and belonging

(McKinney, D., Denton, L.F. 2006).

To further support this literature, first year IT

students at QUT were surveyed in 2007 and an

overwhelming number responded that they believed

learning programming collaboratively would not

only have a positive influence on their confidence

and ability to develop sound programming skills, but

would also make studying programming more

engaging and fun (Teague, D., Roe, P. 2008). Hanks

(2006) had also reported that the attitude of students

to pair programming was mostly positive, and

particularly beneficial to women.

Using pair programming in the learning

environment has been documented as having

significant educational benefits including active

learning and improved retention, program quality,

and confidence in the solution (McDowell, C.,

Werner, L. et al. 2002; Williams, L., Wiebe, E. et al.

2002; Nagappan, N., Williams, L. et al. 2003;

McDowell, C., Werner, L. et al. 2006; Mendes, E.,

Al-Fakhri, L. et al. 2006). Students also find

programming in pairs creates a social rather than

competitive environment which promotes interaction

and lends twice as much brain power and an extra

set of eyes to a programming exercise (Simon, B.,

Hanks, B. 2007).

3 GOING PAIR-SHAPED

Following the 2007 survey and aiming to develop a

collaborative learning environment to support novice

programmers (Werner, L.L., Hanks, B. et al. 2004;

Keefe, K., Sheard, J. et al. 2006; Bagley, C.A.,

Chou, C.C. 2007) an experiment was conducted over

two semesters involving introductory level

programming students at QUT

The hypothesis tested was that pair-programming

style collaborative learning has a positive effect on

students’ learning outcome.

3.1 The Experimental Environment

The experiments were conducted over two

semesters, each of 13 weeks.

ITB001 (Problem Solving and Programming) is

a core programming subject of QUT’s IT Bachelor

degree and is perhaps the equivalent of CS1 in the

US. This subject is offered by the university every

semester, but is normally undertaken by students in

the first semester of their degree course. Students

enrolling in this subject in the second semester of

any year consist mainly of a small number starting

their course mid-year and those who initially fail the

subject and are forced to repeat it.

ITB001 represented 25% of a full-time study

workload, and during the experiment weekly contact

consisted of a two hour lecture and a two hour

workshop. Workshops involved students

completing programming exercises to reinforce in a

practical way the material previously introduced in a

lecture. Attendance at workshops was strongly

encouraged but was neither obligatory nor counted

towards final grades. Apart from lectures and

workshops, all students were expected (according to

university guidelines) to dedicate an extra 8 hours

per week to self-directed study for a total of 12

hours study per unit per week.

The assessment for this unit consisted of two or

three individual assignments of increasing difficulty

(total of 50%) and an end of semester written exam

(50%).

Workshops for semester 2, 2007 were conducted

without the use of computers, where students

concentrated more heavily on the analysis, problem

solving and design of their exercise solutions on

paper. 2008 saw workshops conducted in

laboratories with exercises completed on computers.

The experimental subjects were those students

who had previously self-allocated to any one of a

number of workshops where the first author was on

the teaching staff. These students were instructed on

the logistics of pair programming during class and

were also encouraged to continue collaboration with

their partner outside normal class times.

The control group became those students in other

workshops, in which no collaborative learning

support was given. It is worth noting that although

the first author was tutoring the paired students,

items of assessment for grading were distributed to

teaching staff on a random basis and therefore that

author would have been responsible for grading both

students from the paired as well as unpaired

workshops over the course of the experiment.

3.2 Pair Selection

Pairs were determined by self-selection. For some

students, the prospect of being able to work with a

friend throughout semester was something they

relished. Others were initially more reluctant to pair

because they either had not formed friendships with

anyone in the workshop or they simply preferred to

work alone. These students were asked to discuss

their computing and programming experience (if

any), and the teaching assistant then helped them

pair with someone of similar skill levels.

Initially all students were paired in the

workshops where the experiment was undertaken.

However, workshop numbers were large and

attendance fluctuated dramatically. As the semester

progressed, it proved more difficult to manage the

pairs as inevitably one or other of them was away

and/or had dropped out. If students resisted the

pairing– or their partner deserted them and they

expressed a preference to work alone, they were

allowed to do so. A small number (9%) of the

students, who regularly attended workshops where

the experiment was conducted, worked individually

and were included in the control group.

A student was considered to be a “paired” if they

attended six or more of the weekly workshops

during semester (ie approximately half). It is

reasonable to assume that these students would have

at least been exposed to the pair programming

pedagogy, and had experienced studying in a

collaborative environment. Results of the

experiment may easily have been skewed in favour

of pairing, had the subjects been only those paired

students who attended most of the workshops, as

regularly attending workshops could be a

contributing factor for success. All other students

completing ITB001 during the two semesters of the

experiment were considered to be “non-paired”.

3.3 Pair Programming

Students in these workshops formed pairs from the

first week of semester and were provided with

literature concerning the benefits of collaborative

learning. They were also given verbal and written

instructions on pair-programming together with

background information to read. Teaching assistants

instructed on the logistics of collaborating with their

partner according to the eXtreme Programming

concept of pair programming (Williams, L., Kessler,

R. 2003). Each student in the pair assumed a

different role for each exercise (or in the case of

larger exercises, the roles were swapped at intervals

of 15 minutes or so):

– the “driver” took control of the keyboard/pen:
eg recording the algorithm; writing code;
debugging and executing the code

– the “observer” was responsible for thinking
strategically, asking questions, watching for
errors, suggesting alternatives, and providing
technical input

Each week these students were reminded of the

distinct roles each partner in the pair was to play.

Teaching assistants directed the students at regular

intervals to swap roles and encouraged intensive and

continuous interaction between the paired students.

The pairing experiments were formally

conducted during the two hour weekly workshop

and continued for the duration of each semester.

Students were encouraged to continue their paired

collaboration outside the workshops by completing

unfinished workshop exercises and work on the

analysis and problem-solving of their assignments.

Figure 1: QUT Student Failure Rates - First Year Subjects.

Figure 2: Distribution of grades.

As all assignments were for individual submission,

collaboration between students was forbidden past

the design stage.

Table 1. Pairing experiment student numbers.

Semester ITB001 Workshops Number of Students

 Paired Non-Paired Paired Non-Paired

2, 2007 2 4 16 77

1, 2008 4 14 64 274

4 RESULTS

4.1 Grades Awarded

Figure 1 plots student grades awarded at QUT for

the first four core subjects of its Bachelor of IT

degree from 2003. ITB005, ITB004 and ITB002 are

subjects normally undertaken concurrently with

ITB001. The ITB001 data shown in this figure

represents the entire cohort of ITB001 students

(paired and non-paired), while ITB001 PAIRED

show the results for paired students only.

Prior to the pairing experiment, ITB001’s failure

rate averaged 30%, with a peak in 2006 of 41%.

Amongst the paired student population, there

was a dramatic fall in failure rate for ITB001 in both

semesters of the experiment, dropping to just 5% in

semester 1, 2008 (n = 431, p < .001). At the other

end of the spectrum, 70% of paired students

achieved a grade of 6 or 7 on a scale of 1 (low) to 7

(high).

Figure 2 summarises the distribution of grades

awarded for the entire cohort of ITB001 students,

paired and non-paired ITB001 students during the

experiment.

4.2 Exam Results

Paired students not only achieved better overall

grades than the non-paired students, but they

significantly outperformed the control groups in all

sections of the final exam which included

comprehension, tracing, problem solving and code

writing questions (n = 431, p < .001).

4.3 Predicting Results without Pairs

In order to estimate what grades the paired students

may have achieved had they not participated in the

pairing experiment, a comparison is made between

ITB001 and another subject of a comparable level

technical nature, ITB004 Database Systems.

ITB004 teaches database design, the concepts and

terminology relating to databases, and involves

writing data manipulation statements in Structured

Query Language (SQL). Each week, ITB004

conducted a two hour lecture and two hours of

workshops. Although small group discussion was

encouraged during one hour of the workshops, no

formal collaborative learning structure was in place

for these students. Assessment for ITB004 consists

of individual assignments (total 35%) and a final end

of semester exam (55%), with a further 10%

awarded for workshop participation.

Final results for students who completed these

two subjects consecutively during the experiment

period (whether they paired or not) were compared.

Therefore, it is reasonable to assume that that study

of each of these subjects was influenced to a similar

degree for example by family and social

commitments, employment, competing study

commitments as well as attitude to and motivation

for study.

Figure 3 shows the relationship between

students’ grades for both subjects, by graphing the

variation in grade between ITB001 and ITB004.

There were a similar number of unpaired students

who achieved a higher grade in ITB004 as those

who performed better in ITB001. This is evidenced

by the symmetry of the grades curve for that subject.

Of those 105 unpaired students, 42% achieved a

similar result in both subjects, and were awarded the

same grade for both. 28.5% performed better in

ITB004 and 29.5% performed better in ITB001.

By comparison, a greater proportion of students

who took part in the pairing experiment (the paired

students) achieved a better grade in ITB001 than in

ITB004. Although a significant number (52%)

attained the same grade for both subjects, more than

38% of students performed better in ITB001 while

just under 10% performed better in ITB004.

This comparison of student grades for two

similarly technical subjects further supports the

theory that learning programming in a collaborative

environment involving pair-programming had a

positive effect on student results. One might also

expect that students who enjoyed the benefits of

pair-programming in ITB001 may well have

employed those collaborative learning skills to their

ITB004 studies and had a positive effect on their

grade for ITB004 too. Had the experiment been able

to eliminate any copy-cat effect in ITB004, the

results shown in the comparison of these two

subjects may well have been even more convincing.

5 CONCLUSION

The failure rate of students in the introductory

programming subject involved in this experiment

enjoyed a dramatic fall from a high of 41% to just

5%. Although it is acknowledged that other factors

may have contributed to this improvement including

teaching staff, subject content, programming

language and student cohort, paired students

performed significantly better than those who were

not paired in the same semester, with exposure to the

same subject structure.

Furthermore, given results data from another

subject undertaken concurrently by the same

students, it is reasonable to suggest that the paired

students achieved greater than expected had they not

had the support of the pair-programming learning

environment.

Students exposed to pair-programming and

supported by a collaborative learning environment

outperformed the control group of students who

worked independently throughout semester in the

final exam as well as overall subject results.

6 OBSERVATIONS

“Engaging” in the pair programming experiment

involved the students firstly selecting, and then

establishing a rapport with another student. Where

there existed no significant conflict or imbalance in

terms of language, work ethic or skills level,

successful social engagement between students had

a positive follow-through effect on the business end

of the programming tasks each week.

Figure 3: Difference in grades for two units for paired and non-paired students during experiment period.

By virtue of their social interaction, the paired

students established a productive learning

environment for each other on their level. The ego-

charged stereo-typical student was given the

opportunity to flex his IT muscles for a peer who

may speak the same lingo and appreciate the display

of competitive prowess. Alternatively, the student

who may have harboured reservations about their

ability was able to develop a non-threatening

learning environment by pairing with a peer of

similar experience and level of confidence in the

course material.

Once relationships were formed between the

pair, the students unwittingly tended to maintain a

two-way support structure by having a more

personal reason to attend the workshop and engage

in the material: a sense of obligation to their partner.

They were provided with not only an opportunity to

discuss the work and contribute to the pair’s

progress but there was also an expectation by their

partner to do so. This peer pressure seems to have

more of an influence on the motivation of the novice

student than any amount of pressure from the

teaching staff. The students’ obligation to, and stake

in their partner’s learning experience had at least as

high a priority as any sense of obligation to their

own learning outcome. Because it is difficult to play

a very passive role in a pair (as opposed to a larger

group) students seemed to develop a commendable

study ethic while paired.

Collaborative learning generally worked so

effectively that it seemed unfortunate that students

were not given the opportunity to continue pair-

programming throughout development of their

assignments. The requirement that ‘group

assignments’ not be incorporated in the subjects’

assessment on the basis that they may not accurately

reflect an individual’s level of acquired skill and

contribution may be misplaced. The better

performance in the final exam shows that paired

students did acquire the necessary problem solving

and programming skills. Incorporating peer

evaluation into a paired assignment could exploit the

sense of obligation that developed in well-formed

pairs to ensure students contributed adequately,

while oral presentation or written examination of the

assignment could further ensure that marks are

awarded fairly.

7 FURTHER WORK

Further pair-programming experiments over a longer

time period would be useful to further support the

theory that collaborative learning has a positive

effect on student outcome.

In future work, analysis of workshop attendance

rates may be useful in order to determine any

correlation between such attendance and student

outcome.

REFERENCES

Bagley, C.A., Chou, C.C., 2007. Collaboration and the

Importance for Novices in Learning java Computer

Programming. ITiCSE Conference '07. Dundee,

Scotland.

Beck, K., 2005. Extreme programming explained :

embrace change Boston, MA, Addison-Wesley.

Begley, S., 2000. Getting Inside a Teen Brain. Newsweek.

135: 58-59.

Ben-Ari, M., 1998. Constructivism in Computer Science

Education. Twenty-ninth SIGCSE technical

symposium on Computer science education 30(1).

Biggers, M., Brauer, A., Yilmaz, T., 2008. Student

Perceptions of Computer Science: A Retention Study

Comparing Graduating Seniors vs. CS Leavers. 39th

SIGCSE technical symposium on Computer science

education, Portland, OR, USA, ACM.

Braught, G., Eby, L.M., Wahls, T., 2008. The Effects of

Pair-Programming on Individual Programming Skill.

39th SIGCSE technical symposium on Computer

science education (SIGCSE '08), Portland, OR, USA,

ACM.

Bruner, J. 1990. Constructivist Theory. Retrieved 19

July, 2007, from http://tip.psychology.org/bruner.html.

Cohoon, J.M., 2002. Recruiting and Retaining Women in

Undergraduate Computing Majors. ACM SIGCSE

Bulletin 34(2).

Cohoon, J.M., 2002. Women in CS and Biology. ACM

SIGCSE Bulletin, Proceedings of the 33rd SIGCSE

Technical Symposium on Computer Science Education

SIGCSE '02 34(1).

Fisher, A., Margolis, J., 2002. Unlocking the clubhouse:

the Carnegie Mellon experience ACM SIGCSE

Bulletin 34(2).

Gehringer, E.F., Deibel, K., Whittington, K.J., 2006.

Panel: Cooperative Learning—Beyond Pair

Programming and Team Projects. SIGCSE 2006

Technical Symposium on Computer Science

Education. Houston, Texas USA.

Gokhale, A.A., 1995. Collaborative Learning Enhances

Critical Thinking. Journal of Technology Education

7(1): 22-30.

Hanks, B., 2006. Student Attitudes toward Pair

Programming. ITiCSE 06: Proceedings of the 11th

annual conference on Innovation and technology in

computer science education.

Hassinen, M., Mäyrä, H., 2006. Learning Programming by

Programming. 6th Baltic Sea Conference on

Computing Education Research, Koli Calling.

Huitt, W. 2003. Constructivism. Educational Psychology

Interactive. Retrieved 19 July 2007, 2007, from

http://chiron.valdosta.edu/whuitt/col/cogsys/construct.h

tml.

Keefe, K., Sheard, J., Dick, M., 2006. Adopting XP

practices for teaching object oriented programming.

ACM International Conference, Hobart, Australia,

ACM.

Kinnunen, P., Malmi, L., 2006. Why Students Drop Out

CS1 Course? 2006 international workshop on

Computing education research ICER '06.

Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M., 2005. A

Study of the Difficulties of Novice Programmers. 10th

annual SIGCSE conference on Innovation and

technology in computer science education ITiCSE '05.

Lewis, S., McKay, J., Lang, C., 2006. The Next Wave of

Gender Projects in IT Curriculum and Teaching at

Universities. Eighth Australasian Computer Education

Conference (ACE2006), Hobart, Tasmania, Australia,

ACS.

McDowell, C., Werner, L., Bullock, H., Fernald, J., 2002.

The Effects of Pair-Programming on Performance in an

Introductory Programming Course. 33rd SIGCSE

technical symposium on Computer science education.

Cincinnati, Kentucky ACM.

McDowell, C., Werner, L., Bullock, H.E., Fernald, J.,

2006. Pair programming improves student retention,

confidence, and program quality Communications of

the ACM 49(8).

McKinney, D., Denton, L.F., 2006. Developing

Collaborative Skills Early in the CS Curriculum in a

Laboratory Environment. SIGCSE 2006 Technical

Symposium on Computer Science Education. Houston,

Texas, USA.

Mendes, E., Al-Fakhri, L., Luxton-Reilly, A., 2006. A

Replicated Experiment of Pair-Programming in a 2nd-

year Software Development and Design Computer

Science Course. ITiCSE 06: Proceedings of the 11th

annual conference on Innovation and technology in

computer science education Bologna, Italy.

Murphy, L., McCauley, R., Westbrook, S., 2006. Women

Catch Up: Gender Differences in Learning

Programming Concepts. SIGCSE 2006 Technical

Symposium on Computer Science Education. Houston,

Texas USA.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang,

K., Miller, C., Balik, S., 2003. Improving the CS1

Experience with Pair Programming. 34th SIGCSE

technical symposium on Computer science

Peckham, J., Stephenson, P.D., Harlow, L.L., Stuart, D.A.,

Silver, B., Mederer, H., 2007. Broadening participation

in computing: issues and challenges. ACM SIGCSE

Bulletin, Proceedings of the 12th annual SIGCSE

conference on Innovation and technology in computer

science education ITiCSE '07 39(3).

Reges, S., 2006. Base to basics in CS1 and CS2.

SIGCSE’06, Houston, Texas, USA, ACM.

Robins, A., Rountree, J., Rountree, N., 2003. Learning and

Teaching Programming: A Review and Discussion.

Journal of Computer Science Education 13(2): 137-

172.

Sheard, J., Hagan, D., 1998. Our failing students: a study

of a repeat group. Proceedings of the 6th annual

conference on the teaching of computing and the 3rd

annual conference on Integrating technology into

computer science education: Changing the delivery of

computer science education ITiCSE '98.

Simon, B., Hanks, B., 2007. First Year Students'

Impressions of Pair Programming in CS1. Third

International Computing Education Research

Workshop. Georgia Institute of Technology, Atlanta,

GA USA, ACM.

Teague, D., Roe, P., 2008. Collaborative learning: towards

a solution for novice programmers. Proceedings of the

tenth conference on Australasian computing education.

Wollongong, NSW, Australia, ACS.

Varma, R., 2006. Making Computer Science Minority-

Friendly. Communications of the ACM 49(2).

Vilner, T., Zur, E., 2006. Once She Makes it, She is There:

Gender Differences in Computer Science Study.

ITiCSE 06: Proceedings of the 11th annual conference

on Innovation and technology in computer science

education, Bologna, Italy.

Werner, L.L., Hanks, B., McDowell, C., 2004. Pair

Programming Helps Female Computer Science

Students. Journal on Educational Resources in

Computing (JERIC) 4(1).

White, A.M. 2004. Adolescence: What, why and when?

Retrieved 26-11-2008, 2008, from

http://www.duke.edu/~amwhite/Adolescence/adolesce

nt2.html.

Williams, L., Kessler, R., 2003. Pair Programming

Illuminated. Boston, Addison-Wesley.

Williams, L., Kessler, R.R., 2000. The Effects of “Pair-

Pressure” and “Pair-Learning” on Software

Engineering Education. Proceedings of 13th

Conference on Software Engineering Education &

Training, 2000.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C.,

2002. In Support of Pair Programming in the

Introductory Computer Science Course. Computer

Science Education 12(3): 197-212.

Wilson, J.D., Hoskin, N., Nosek, J.T., 1993. The Benefits

of Collaboration for Student Programmers. 24th

SIGCSE Technical Symposium on Computer Science

Education SIGCSE 1993, Indianapolis, Indiana US,

ACM Press.

