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In this paper, we consider the following nonlinear fractional reaction-subdiffusion process (NFR-SubDP):

∂u
∂ t

= 0D1−γ
t

[
Kγ

∂ 2u

∂x2 + f (u,x, t)

]
+g(u,x, t)

wher f (u,x, t) is a linear function ofu, the functiong(u,x, t) satisfies the Lipschitz condition and0D1−γ
t

is the Riemann-Liouville time fractional partial derivative of order 1−γ. We propose a new computation-
ally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is
equivalent to solving a nonlinear fractional reaction-subdiffusion equation (NFR-SubDE). Secondly, we
propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and con-
vergence of the method are discussed using a new energy method. Finally, some numerical examples
are presented to show the application of the present technique. This method and supporting theoretical
results can also be applied to fractional integro-differential equations.

Keywords: fractional reaction-subdiffusion equation, implicit numerical method,convergence and stabil-
ity, energy method.

1. Introduction

Various fields of science and engineering deal with dynamical systems that can be described by frac-
tional partial differential equations (FPDE), for example, computational biology (See Yuste & Linden-
berg (2001)), physics (See Bisquert (2003); Metzler & Klafter (2000)), chemistry and biochemistry
(See Yusteet al. (2004)), and hydrological applications (See Liuet al. (2004)) due to anomalous diffu-
sion effects in constrained environments. Fractional kinetic equations have proved particularly useful in
the context of anomalous slow diffusion (subdiffusion) (See Metzler & Klafter (2000)). Subdiffusive
motion is characterized by an asymptotic long-time behavior of the mean square displacement of the
form

〈x2(t)〉 ∼
2Kγ

Γ (1+ γ)
tγ , t → ∞, (1..1)

where 0< γ < 1 is the anomalous diffusion exponent. Subdiffusive motionis particularly important
in the context of complex systems such as glassy and disordered materials, in which pathways are
constrained for geometric or energetic reasons. It is also particularly germane to the way in which
experiments in low dimensions have to be carried out.

Yuste & Lindenberg (2001) considered coagulation dynamicsA + A → A andA + A ⇋ A and the
annihilation dynamicsA + A → 0 for particles moving subdiffusively in one dimension. This scenario
combines the ”anomalous kinetics” and ”anomalous diffusion” problems, each of which leads to inter-
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esting dynamics separately and to even more interesting dynamics in combination. Yuste & Linden-
berg (2002) also considered a combination of these two phenomena and proposed to solve theA + A
reaction-subdiffusion problem in one dimension. The situation is more complicated for theA+B prob-
lem, because no such exact formulations or solutions have been developed in this case. There is a large
literature on the reaction-diffusion problem with different truncation scheme to represent the reaction
term, but the literature on the reaction-subdiffusion problem is far more recent and relatively unsettled.

In order to generalize the reaction-diffusion problem to a reaction-subdiffusion problem, we must
deal with the subdiffusive motion of the particles. Yusteet al. (2004) proposed the following set of
reaction-subdiffusion equations:

∂
∂ t

a(x, t) = 0D1−γ
t {Kγ

∂ 2

∂x2 a(x, t)}−Rγ(x, t), (1..2)

∂
∂ t

b(x, t) = 0D1−γ
t {Kγ

∂ 2

∂x2 b(x, t)}−Rγ(x, t), (1..3)

whereKγ is the generalized diffusion coefficient that appears in Eq.(1..1) and0D1−γ
t v(x, t) is the

Riemann-Liouville fractional partial derivative of order1− γ defined by

0D1−γ
t v(x, t) =

1
Γ (γ)

∂
∂ t

∫ t

0

v(x,η)

(t −η)1−γ dη . (1..4)

The reaction term has many different forms. For example, thereaction termRγ(x, t) = ka(x, t)b(x, t)
is a linear form ofa(x, t) andb(x, t); Sekiet al. (2003) proposed a reaction-subdiffusion equation that
at long times corresponds to choosing a reaction term of the form Rγ(x, t) = k0D1−γ

t a(x, t)b(x, t). Cao
et al. (2006) considered the Michaelis-Menten reaction system with three molecular species and three
reaction channels. Suppose now that these chemical reactions are taking place on a one-dimensional
membrane of a cell. Then if there are obstacles present on themembrane inhibiting diffusion, the
reaction-subdiffusion process is described by the system of fractional differential equations of the form

∂
∂ t

a(x, t) = 0D1−γ
t {Kγ

∂ 2

∂x2 a(x, t)− k1a(x, t)b(x, t)}+(k2 + k3)c(x, t), (1..5)

∂
∂ t

b(x, t) = 0D1−γ
t {Kγ

∂ 2

∂x2 b(x, t)− k1a(x, t)b(x, t)}+ k2c(x, t), (1..6)

∂
∂ t

c(x, t) = 0D1−γ
t {Kγ

∂ 2

∂x2 c(x, t)+ k1a(x, t)b(x, t)}− (k2 + k3)c(x, t), (1..7)

wherea(x, t),b(x, t),c(x, t) denote concentrations,Kγ is the generalized diffusion coefficient, andk1,k2,k3

are the rate coefficients.
In this paper, computational techniques for simulating thereaction-subdiffusion process are consid-

ered. Firstly, the reaction-subdiffusion process is decoupled, which is equivalent to solving the following
nonlinear fractional reaction-subdiffusion equation (NFR-SubDE):

∂u
∂ t

= 0D1−γ
t

[
Kγ

∂ 2u
∂x2 + f (u,x, t)

]
+g(u,x, t), (x, t) ∈ Ω × [0,T ]. (1..8)

whereΩ = [0,Lx]. We assume thatf (u,x, t) is a linear function ofu, the functiong(u,x, t) satisfies
the Lipschitz condition and0D1−γ

t is the Riemann-Liouville time fractional partial derivative of order
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1− γ. Some special fractional reaction-diffusion equations ofthe form (1..8) have been considered (see
Bisquert (2003); Caoet al. (2006); Chenet al. (2007); Henry & Wearne (2000)).

We note that although anomalous diffusion only really makesphysical sense in more than two spa-
tial dimensions, the effects of the NFR-SubDE in one spatialdimension are similar to those in higher
spatial dimensions. For this reason, we will focus in this paper on one spatial dimension and consider
generalizations to higher spatial dimensions in later work.

Some different numerical methods for solving space or time fractional partial differential equations
have been proposed. Liuet al. (2004) proposed a computational effective method of lines.This method
transforms the space fractional partial differential equation into a system of ordinary differential equa-
tions that is then solved using backward differentiation formulas. Meerschaert & Tadjeran (2004) devel-
oped finite difference approximations for fractional advection-dispersion flow equations. Meerschaert
& Tadjeran (2006) examined some practical numerical methods to solve the two-sided space-fractional
partial differential equations and discussed stability and convergence of the methods. Tadjeranet al.
(2006) presented a second order accurate numerical approximation for the fractional diffusion equation.
Roop (2006) investigated the computational aspects of the Galerkin approximation using continuous
piecewise polynomial basis functions on a regular triangulation of the bounded domain inR2. Liu et
al. (2005) derived an analysis of a discrete non-Markovian random walk approximation for the time
fractional diffusion equation. Zhuang & Liu (2006) analyzed an implicit difference approximation for
the time fractional diffusion equation, and discussed the stability and convergence of the method. Lin &
Liu (2007) proposed the high order (2-6) approximations of the fractional ordinary differential equation
and discussed the consistency, convergence and stability of these fractional high order methods. Liu
et al. (2007) discussed an approximation of the Lévy-Feller advection-dispersion process by a random
walk and finite difference method. Caoet al. (2006) presented a variable coefficient fractional derivative
approximation scheme, and used embedding techniques to develop a variable stepsize implementation
for solving fractional differential equations. Yuet al. (2008) developed a reliable algorithm of the Ado-
mian decomposition method to solve the linear and nonlinearspace-time fractional reaction-diffusion
equations in the form of a rapidly convergent series with easily computable components, but did not
give its theoretical analysis. It is a more difficult task to solve the fractional subdiffusion equation which
involves an integro-differential equation. Yuste & Acedo (2005) proposed an explicit finite difference
method and a new Von Neumann-type stability analysis for thefractional subdiffusion equation, i.e.,
the NFR-SubDE without the reaction term. However, they did not give the convergence analysis and
pointed out the difficulty of this task when implicit methodsare considered. Langlands & Henry (2005)
also investigated this problem and proposed an implicit numerical scheme (L1 approximation), and dis-
cussed its accuracy and stability. However, the global accuracy of the implicit numerical scheme was
not derived and it seems that the unconditional stability for all γ in the range 0< γ 6 1 has not been
established. Chenet al. (2007) presented a Fourier method for the problem, and they gave the stability
analysis and the global accuracy analysis of the differenceapproximation scheme. Zhuanget al. (2008)
also proposed new solution and analytical techniques for implicit numerical solution methods. Thus,
effective numerical methods and error analyses for NFR-SubDEs are still open problems. The main
purpose of this paper is to solve and analyze this problem using a new energy method.

The structure of the paper is as follows. In Section 2, some mathematical preliminaries are intro-
duced. In Section 3, an implicit finite difference method (IFDM) of the NFR-SubDE is proposed. The
stability and convergence of the IFDM are discussed in Sections 4 and 5, respectively. Finally, some
numerical results are given, which it is found that the theoretical results are in excellent agreement with
the numerical results.
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2. Mathematical preliminaries

In this section, we introduce some definitions and mathematical notations that will be used in later
sections and state their corresponding properties.

Firstly, we give the definition of the temporal fractional integral.

Definition 2..1 (Samkoet al. (1993)) Lety(t) ∈ L1(a,b). The integral

Iγ
a+y(t) =

1
Γ (γ)

∫ t

a

y(η)

(t −η)1−γ dη , t > a, (2..1)

whereγ > 0, is called the Riemann-Liouville fractional integral of orderγ.

In this paper, we refer tot ∈ [0,T ] and 0< γ < 1. In order to computeIγ
0+y(t), we begin by dis-

cretizing the temporal domain[0,T ] by placing a grid over the domain. For convenience, we will use a
uniform grid, with grid spacingτ = T/n. If we wish to refer to one of the points in the grid, we call the
pointstk, k = 0,1, · · · ,n wheretk = kτ,k = 0,1, · · · ,n. Hence, fork = 1,2, · · · ,n

Iγ
0+y(tk) = 1

Γ (γ)

∫ tk
0

y(η)
(tk−η)1−γ dη

= 1
Γ (γ)

k−1
∑
j=0

∫ tk− j
tk−1− j

y(η)
(tk−η)1−γ dη .

(2..2)

Whent j 6 η 6 t j+1, j = 0,1, . . . ,k−1, using

y(η) = y(t j+1)+
dy(ξ )

dt
(η − t j+1), η < ξ < t j+1,

we obtain
|y(η)− y(t j+1)| 6 C1τ.

Further, we have

|Iγ
0+y(tk)−

1
Γ (γ)

k−1

∑
j=0

∫ tk− j

tk−1− j

y(tk− j)

(tk −η)1−γ dη | 6 Ckγ τγ+1. (2..3)

Hence, we have (See Oldham & Spanier (1974)) the following lemma.

LEMMA 2..1 If y(t) ∈C1[0,T ], then

Iγ
0+y(tk) =

τγ

Γ (γ +1)

k−1

∑
j=0

b(γ)
j y(tk− j)+Rk,γ (2..4)

where
b(γ)

j = ( j +1)γ − jγ , j = 0,1, · · · ,n−1, (2..5)

and|Rk,γ | 6 Ctγ
k τ.

LEMMA 2..2 In (2..5), the coefficientsb(γ)
k (k = 0,1,2, . . .) satisfy the following properties:

(i) b(γ)
0 = 1, b(γ)

k > 0, k = 0,1,2, . . .;

(ii) b(γ)
k > b(γ)

k+1, k = 0,1,2, . . .;

(iii) there exists a positive constantC > 0, such thatτ 6 Cb(γ)
k τγ , k = 1,2, . . ..
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Proof. Let ψ1(x) = xγ andψ2(x) = (x + 1)γ − xγ . It is easily seen thatψ1(x) is monotone increasing
andψ2(x) is monotone decreasing whenx > 0. Thus, (i) and (ii) hold.

As for (iii), using

lim
n→∞

nγ−1

b(γ)
n

= lim
n→∞

n−1

(1+n−1)γ −1
=

1
γ
,

and the result of a convergent sequence is a bounded sequencethen there exists a positive constantC1

such that
nγ−1

b(γ)
n

6 C1,

or
n−1

6 C1b(γ)
n n−γ

6 C1b(γ)
k n−γ .

Thus, fromτ = T/n, the inequality (iii) is obtained. �

LEMMA 2..3 If y(t) ∈C2[0,T ], then

Iγ
0+y(tk+1)− Iγ

0+y(tk) =
τγ

Γ (γ +1)

[
y(tk+1)+

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )y(tk− j)

]
+R(2)

k,γ , (2..6)

where|R(2)
k,γ | 6 Cb(γ)

k τ1+γ .

Proof. For k = 0,1, . . . ,n−1, we have

Iγ
0+y(tk+1)− Iγ

0+y(tk) = 1
Γ (γ) [

∫ tk+1
0

y(η)
(tk+1−η)1−γ dη −

∫ tk
0

y(η)
(tk−η)1−γ dη ]

= 1
Γ (γ) [

∫ τ
0

y(η)
(tk+1−η)1−γ dη +

∫ tk
0

y(η+τ)−y(η)
(tk−η)1−γ dη ]

= 1
Γ (γ) [

∫ τ
0

y(η)
(tk+1−η)1−γ dη +

k−1
∑
j=0

∫ t j+1
t j

y(η+τ)−y(η)
(tk−η)1−γ dη ].

If y(t) ∈C2[0,T ], then
|y(η)− y(τ)| = |y′(ξ )(η − τ)| 6 Cτ.

Whent j 6 η 6 t j+1, we can obtain

y(η + τ)− y(η) = y(t j+2)− y(t j+1)+(y′(ς j + τ)− y′(ς j))(η − t j+1)

= y(t j+2)− y(t j+1)+ y′′(ρ j)τ(η − t j+1). (2..7)

Hence,|y(η + τ)− y(η)−
[
y(t j+2)− y(t j+1)

]
| 6 Cτ2.

Thus, we get

Iγ
0+y(tk+1)− Iγ

0+y(tk) =
τγ

Γ (γ +1)

{
b(γ)

k y(t1)+
k−1

∑
j=0

bk− j−1
[
y(t j+2)− y(t j+1)

]
}

+R(1)
k,γ ,

where|R(1)
k,γ | 6 Cb(γ)

k τ1+γ +Cτ2tγ
k .

Thanks to Lemma 2..2, we have proved the following result. �

In this paper, we suppose that the space variablex satisfiesx ∈ Ω = [0,Lx]. Similarly, we discretize
the space domain by place a grid on the spatial axis with grid spacingh. Also, we introduce the notation

xi = ih, i = 0,1, . . . ,m,

whereh = Lx/m.
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Definition 2..2 Let
v = (v1,v2, · · · ,vm−1)

T

and
w = (w1,w2, · · · ,wm−1)

T

are the vectors of the real Euclidean spaceRm−1, we define

(v,w) =
m−1

∑
j=1

v jw jh, ‖v‖2 = (v,v)
1
2 = (

m−1

∑
j=1

v2
jh)

1
2 (2..8)

and‖v‖∞ = max
16i6m−1

|vi|.

The following conclusions can be obtained easily.

LEMMA 2..4 Let
∆vi = vi+1− vi, ∆wi = wi+1−wi,
δ 2vi = vi+1−2vi + vi−1, δ 2wi = wi+1−2wi +wi−1,

if v0 = wm = 0, then
(δ 2v,w) = −v1w1h− (∆v,∆w), (2..9)

where
δ 2v = (δ 2v1,δ 2v2, · · · ,δ 2vm−1)

T ,

∆v = (∆v1,∆v2, · · · ,∆vm−1)
T ,

∆w = (∆w1,∆w2, · · · ,∆wm−1)
T .

LEMMA 2..5 Forvi, i = 0,1, · · · ,m, if v0 = vm = 0, then

‖v‖2
2 6 Lx‖v‖2

∞ 6
L2

x

2h2

[
h|v1|

2 +‖∆v‖2
2

]
,

whereh = Lx/m.

Proof. The first inequality is apparent.
As for the second inequality, let|vi0| = max

16i6m−1
|vi|,

vi0 = v1 +
i0−1

∑
j=1

∆v j, vi0 = −
m−1

∑
j=i0

∆v j.

Thus, 2|vi0| 6 |v1|+
m−1
∑
j=1

|∆v j|.

Using the Cauchy-Schwarz inequality, we have

4|vi0|
2
6 2m

[
|v1|

2 +
m−1

∑
j=1

|∆v j|
2

]
6

2Lx

h2

[
h|v1|

2 +‖∆v‖2
2

]
.

Therefore,‖vk‖2
∞ 6

Lx
2h2

[
h|v1|

2 +‖∆vk‖2
2

]
. �
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We consider the following NFR-SubDE:

∂u
∂ t

= 0D1−γ
t

[
Kγ

∂ 2u
∂x2 + f (u,x, t)

]
+g(u,x, t), (x, t) ∈ Ω × [0,T ] (2..10)

with initial and boundary conditions:

u(x,0) = φ(x),0 6 x 6 L, (2..11)

u(0, t) = ϕ1(t), u(L, t) = ϕ2(t), 0 6 t 6 T, (2..12)

where 0< γ < 1. In this equation the expression

0D1−γ
t v(x, t) =

∂
∂ t

Iγ
0+v(x, t) (2..13)

denotes the Riemann-Liouville fractional derivative of order 1− γ.
Suppose that the functionf (u,x, t) andg(u,x, t) are smooth enough andf (u,x, t) is monotone de-

creasing foru. In this paper, we suppose the continuous problem (2..10)-(2..12) has a smooth solution
u(x, t) ∈C4,2

x,t (Ω × [0,T ]).

Definition 2..3 Let u(x, t) be defined onΩ × [0,T ] and put

∆xu(xi, tk) = u(xi+1, tk)−u(xi, tk),
δ 2

x u(xi, tk) = u(xi+1, tk)−2u(xi, tk)+u(xi−1, tk).

Similarly, for an arrayuk
i , i = 0,1, . . . ,m; k = 0,1, . . . ,n, we define

∆xuk
i = uk

i+1−uk
i , δ 2

x uk
i = uk

i+1−2uk
i +uk

i−1.

Integrating both sides of the equation (2..10), we have

u(xi, tk+1)−u(xi, tk) = Iγ
0+[Kγ

∂ 2u(xi,tk+1)

∂x2 + f (u(xi, tk+1),xi, tk+1)]

−Iγ
0+[Kγ

∂ 2u(xi,tk)
∂x2 + f (u(xi, tk),xi, tk)]+

∫ tk+1
tk g(u(xi, t),xi, t)dt.

Applying Lemma 2..3 and the following formulae:

∂ 2u(xi, t j)

∂x2 =
1
h2 δ 2

x u(xi, t j)−
h2

12
∂ 4u(ξi, t j)

∂x4 , xi−1 6 ξi 6 xi+1

and ∫ tk+1

tk
g(u(xi, t),xi, t)dt =

τ
2

[g(u(xi, tk+1),xi, tk+1)+g(u(xi, tk),xi, tk)]+O(τ2),

wherei = 1,2, . . . ,m−1; k = 0,1, . . . ,n−1, we obtain

u(xi, tk+1) = u(xi, tk)+ τγ

Γ (γ+1)

[
Kγ ·

1
h2 δ 2

x u(xi, tk+1)+ f (u(xi, tk+1),xi, tk+1)
]

+ τγ

Γ (γ+1)

k−1
∑
j=0

(b(γ)
j+1−b(γ)

j )Kγ ·
1
h2 δ 2

x u(xi, tk− j)

+ τγ

Γ (γ+1)

k−1
∑
j=0

(b(γ)
j+1−b(γ)

j ) f (u(xi, tk− j),xi, tk− j)

+ τ
2 [g(u(xi, tk+1),xi, tk+1)+g(u(xi, tk),xi, tk)]+Rk+1

i,γ ,
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where|Rk+1
i,γ | 6 Cb(γ)

k τγ(τ +h2).
Let

Rk
γ = (Rk

1,γ ,R
k
2,γ , · · · ,R

k
m−1,γ)

T ,

andr1 = Kγ
τγ

Γ (γ+1)h2 , r2 = τγ

Γ (γ+1) , then the above results can be summarized in the following lemma.

LEMMA 2..6

u(xi, tk+1) = u(xi, tk)+ r1[δ 2
x u(xi, tk+1)+

k−1
∑
j=0

(b(γ)
j+1−b(γ)

j )δ 2
x u(xi, tk− j)]

+r2[ f (u(xi, tk+1),xi, tk+1)+
k−1
∑
j=0

(b(γ)
j+1−b(γ)

j ) f (u(xi, tk− j),xi, tk− j)]

+ τ
2 [g(u(xi, tk+1),xi, tk+1)+g(u(xi, tk),xi, tk)]+Rk+1

i,γ ,

where

‖Rk
γ‖2 6 Cb(γ)

k τγ(τ +h2).

3. An implicit numerical method for the NFR-SubDE and theoretic analysis

Let uk
i be the numerical approximation tou(xi, tk). Applying Lemma 2..6, we can obtain the following

fractional implicit difference approximation (FIDA):

uk+1
i = uk

i + r1δ 2
x uk+1

i + r1

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )δ 2
x uk− j

i

+r2 f (uk+1
i ,xi, tk+1)+ r2

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j ) f (uk− j
i ,xi, tk− j)

+
τ
2

[
g(uk+1

i ,xi, tk+1)+g(uk
i ,xi, tk)

]
, (3..1)

wherei = 1,2, . . . ,m−1,k = 0,1,2, . . . ,n−1.
The initial and boundary conditions can be discretized by

u0
i = φ(ih), i = 0,1,2, . . . ,m, (3..2)

uk
0 = ϕ1(kτ), uk

m = ϕ2(kτ), k = 0,1,2, · · · ,n. (3..3)
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3.1. Stability of the FIDA

We suppose that̃uk
i (i = 0,1,2, · · · ,m; j = 0,1,2, · · · ,n) is the approximate solution of (3..1), (3..2)

and (3..3). The errorεk
i = uk

i − ũk
i satisfies

εk+1
i = εk

i + r1δ 2
x εk+1

i + r1

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )δ 2
x εk− j

i

+ r2

[
f (uk+1

i ,xi, tk+1)− f (ũk+1
i ,xi, tk+1)

]

+ r2

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )
[

f (uk− j
i ,xi, tk− j)− f (ũk− j

i ,xi, tk− j)
]

+
τ
2

[
g(uk+1

i ,xi, tk+1)−g(ũk+1
i ,xi, tk+1)

]

+
τ
2

[
g(uk

i ,xi, tk)−g(ũk
i ,xi, tk)

]
(3..4)

and

εk
0 = 0, εk

m = 0, k = 0,1,2, · · · ,n. (3..5)

In this paper, we only discuss the case off (u,x, t) = −αu + β (x, t), whereα > 0 is a constant and
β (x, t) is independent ofu, i.e., f (u,x, t) is a linear function ofu, and suppose that the functiong(u,x, t)
satisfies the Lipschitz condition, i.e.,

|g(u1,x, t)−g(u2,x, t)| 6 L|u1−u2|, ∀u1,u2. (3..6)

So,

f (u j
i ,xi, t j)− f (ũ j

i ,xi, t j) = −αε j
i ,

|g(u j
i ,xi, t j)−g(ũ j

i ,xi, t j)| 6 L|ε j
i |,

wherei = 1,2, · · · ,m−1; j = 1,2, · · · ,n.
Therefore, Eq. (3..4) can be rewritten as

εk+1
i = εk

i + r1δ 2
x εk+1

i + r1

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )δ 2
x εk− j

i

−αr2

[
εk+1

i +
k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )εk− j
i

]

+
τ
2

[
g(uk+1

i ,xi, tk+1)−g(ũk+1
i ,xi, tk+1)

]

+
τ
2

[
g(uk

i ,xi, tk)−g(ũk
i ,xi, tk)

]
. (3..7)
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Multiplying (3..7) byhεk+1
i and summing up fori from 1 tom−1, we obtain

‖Ek+1‖2
2 = (Ek+1,Ek)+ r1(δ 2

x Ek+1,Ek+1)+ r1

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )(δ 2
x Ek− j,Ek+1)

−αr2(Ek+1,Ek+1)+αr2

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1)(E
k− j,Ek+1)

+
τ
2

m−1

∑
i=1

[
g(uk+1

i ,xi, tk+1)−g(ũk+1
i ,xi, tk+1)

]
εk+1

i h

+
τ
2

m−1

∑
i=1

[
g(uk

i ,xi, tk)−g(ũk
i ,xi, tk)

]
εk+1

i h. (3..8)

Thanks to Lemma 2..4 and the inequality

(E j,Ek+1) 6
1
2

[
‖E j‖2

2 +‖Ek+1‖2
2

]
,

where j = 1,2, · · · ,k +1, we obtain

‖Ek+1‖2
2 6 1

2

[
‖Ek+1‖2

2 +‖Ek‖2
2

]
− r1[(εk+1

1 )2h+‖∆xEk+1‖2
2]

+r1
k−1
∑
j=0

(b(γ)
j+1−b(γ)

j )[−εk− j
1 εk+1

1 h− (∆xEk− j,∆xEk+1)]

−αr2‖Ek+1‖2
2 + αr2

2

k−1
∑
j=0

(b(γ)
j −b(γ)

j+1)
[
‖Ek− j‖2

2 +‖Ek+1‖2
2

]

+ τ
2L‖Ek+1‖2

2 + τ
4L(‖Ek+1‖2

2 +‖Ek‖2
2).

Note that

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1) = b(γ)
0 −b(γ)

k = 1−b(γ)
k

and

εk− j
1 εk+1

1 6
1
2

[
|εk− j

1 |2 + |εk+1
1 |2

]
.
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We then have

‖Ek+1‖2
2 6

1
2
[‖Ek+1‖2

2 +‖Ek‖2
2]−

r1

2
(1+b(γ)

k )[|εk+1
1 |2h+‖∆xEk+1‖2

2]

+
r1

2

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1)(|ε
k− j
1 |2h+‖∆xEk− j‖2

2)

−
αr2

2
(1+b(γ)

k )‖Ek+1‖2
2 +

α
2

r2

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1)‖Ek− j‖2
2

+
τ
4

L‖Ek‖2
2 +

3τ
4

L‖Ek+1‖2
2

6
1
2
[‖Ek+1‖2

2 +‖Ek‖2
2]−

r1

2
[|εk+1

1 |2h+‖∆xEk+1‖2
2]

+
r1

2

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1)(|ε
k− j
1 |2h+‖∆xEk− j‖2

2)

−
αr2

2
‖Ek+1‖2

2 +
α
2

r2

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1)‖Ek− j‖2
2

+
τ
4

L‖Ek‖2
2 +

3τ
4

L‖Ek+1‖2
2.

Also

‖Ek+1‖2
2 + r1

k
∑
j=0

b(γ)
j

[
|εk+1− j

1 |2h+‖∆xEk+1− j‖2
2

]
+αr2

k
∑
j=0

b(γ)
j ‖Ek+1− j‖2

2

6 ‖Ek‖2
2 + r1

k−1
∑
j=0

b(γ)
j

[
|εk− j

1 |2h+‖∆xEk− j‖2
2

]
+αr2

k−1
∑
j=0

b(γ)
j ‖Ek− j‖2

2

+ τ
2L‖Ek‖2

2 + 3τ
2 L‖Ek+1‖2

2.

Define

ρk = ‖Ek‖2
2 + r1

k−1

∑
j=0

b(γ)
j

[
|εk− j

1 |2h+‖∆xEk− j‖2
2

]
+αr2

k−1

∑
j=0

b(γ)
j ‖Ek− j‖2

2.

Supposing thatτ < 2
3L , we have

(1−
3
2

Lτ)ρk+1 6 (1+
1
2

Lτ)ρk.

Thus,

ρk 6

(
1+ 1

2Lτ
1− 3

2Lτ

)k−1

ρ1 6

(
1+ 1

2Lτ
1− 3

2Lτ

)n

ρ1

Note thatn = T/τ, and

lim
n→∞

(
1+ 1

2Lτ
1− 3

2Lτ

)n

= lim
n→∞

(
1+ 1

2n LT

1− 3
2n LT

)n

=
e

1
2LT

e−
3
2LT

= e2LT ,
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so, there is a positive constantC1 > 0, such that

(
1+ 1

2Lτ
1− 3

2Lτ

)n

6 C1, thereby,

‖Ek‖2
2 6 ρk 6 C1ρ1.

Again, from (3..4), we have

ε1
i = ε0

i + r1δ 2
x ε1

i −αr2ε1
i + τ

2

[
g(u1

i ,xi, t1)−g(ũ1
i ,xi, t1)

]

+ τ
2

[
g(u0

i ,xi, t0)−g(ũ0
i ,xi, t0)

]
.

Similarly, we have

‖E1‖2
2 6 1

2

[
‖E0‖2

2 +‖E1‖2
2

]
− r1

[
(ε1

1)2h+‖∆xE1‖2
2

]

−αr2‖E1‖2
2 + τ

2L
[
‖E1‖2

2 +‖E0‖2
2

]

6 1
2

[
‖E0‖2

2 +‖E1‖2
2

]
− r1

2

[
(ε1

1)2h+‖∆xE1‖2
2

]

−1
2αr2‖E1‖2

2 + τ
2L
[
‖E1‖2

2 +‖E0‖2
2

]
.

So,ρ1 6 (1+ τL)‖E0‖2
2 + τLρ1. FromτL 6 2/3, we have

ρ1 6
1+ τL
1− τL

‖E0‖2
2 6

1+ 2
3

1− 2
3

‖E0‖2
2 = 5‖E0‖2

2,

i. e.,

‖Ek‖2
2 6 C‖E0‖2

2,

whereC = 5C1.
Furthermore, the following theorem of stability can be obtained.

THEOREM 3..1 The FIDA defined by (3..1) is unconditionally stable.

3.2. Convergence of the FIDA

In this section, the convergence analysis of the FIDA is discussed. Letu(xi, tk) (i = 1,2, . . . ,m−1; k =
1,2, . . . ,n) be the exact solution of the NFR-SubDE (2..10) - (2..12) at mesh point(xi, tk).

Defineηk
i = u(xi, tk)−uk

i , (i = 1,2, . . . ,m−1; k = 1,2, . . . ,n) andYk = (ηk
1,ηk

2, · · · ,ηk
m−1)

T . Using
uk

i = u(xi, tk)−ηk
i , substitution into (3..1) leads to

ηk+1
i = ηk

i + r1δ 2
x ηk+1

i + r1

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )δ 2
x ηk− j

i

+r2

[
f (u(xi, tk+1),xi, tk+1)− f (uk+1

i ,xi, tk+1)
]

+r2

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )
[

f (u(xi, tk− j),xi, tk− j)− f (uk− j
i ,xi, tk− j)

]

+
τ
2

[
g(u(xi, tk+1),xi, tk+1)−g(uk+1

i ,xi, tk+1)
]

+
τ
2

[
g(u(xi, tk),xi, tk)−g(uk

i ,xi, tk)
]
+Rk+1

i,γ (3..9)
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and

η0
i = 0, i = 0,1,2, · · · ,m, (3..10)

ηk
0 = 0, ηk

m = 0, k = 0,1,2, · · · ,n. (3..11)

Similarly, we can obtain

‖Yk+1‖2
2 = (Yk+1,Yk)+ r1(δ 2

x Yk+1,Yk+1)+ r1

k−1

∑
j=0

(b(γ)
j+1−b(γ)

j )(δ 2
x Yk− j,Yk+1)

−αr2(Yk+1,Yk+1)+αr2

k−1

∑
j=0

(b(γ)
j −b(γ)

j+1)(Y
k− j,Yk+1)

+
τ
2

m−1

∑
i=1

[
g(uk+1

i ,xi, tk+1)−g(ũk+1
i ,xi, tk+1)

]
ηk+1

i h

+
τ
2

m−1

∑
i=1

[
g(uk

i ,xi, tk)−g(ũk
i ,xi, tk)

]
ηk+1

i h

+(Rk+1
γ ,Yk+1). (3..12)

Thanks to Lemma 2..4 and the inequalities

|(Y j,Yk+1)| 6
1
2

[
‖Y j‖2

2 +‖Yk+1‖2
2

]
,

|(Rk+1
γ ,Yk+1)| 6

r1h2b(γ)
k

L2
x

‖Yk+1‖2
2 +

L2
x

4r1h2b(γ)
k

‖Rk+1
γ ‖2

2,

we obtain

‖Yk+1‖2
2 6 1

2

[
‖Yk+1‖2

2 +‖Yk‖2
2

]
− r1[(ηk+1

1 )2h+‖∆xYk+1‖2
2]

+r1
k−1
∑
j=0

(b(γ)
j+1−b(γ)

j )[−ηk− j
1 ηk+1

1 h− (∆xYk− j,∆xYk+1)]

−αr2‖Yk+1‖2
2 + αr2

2

k−1
∑
j=0

(b(γ)
j −b(γ)

j+1)
[
‖Yk− j‖2

2 +‖Yk+1‖2
2

]

+ τ
4L(‖Yk+1‖2

2 +‖Yk‖2
2)+ τ

2L‖Yk+1‖2
2

+
r1h2b(γ)

k
L2

x
‖Yk+1‖2

2 + L2
x

4r1h2b(γ)
k

‖Rk+1
γ ‖2

2.

Note that
k−1

∑
j=0

(b(γ)
j −b(γ)

j+1) = b(γ)
0 −b(γ)

k = 1−b(γ)
k

and

|ηk− j
1 ηk+1

1 | 6
1
2

[
|ηk− j

1 |2 + |ηk+1
1 |2

]
.
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We have

‖Yk+1‖2
2 6 1

2[‖Yk+1‖2
2 +‖Yk‖2

2]−
r1
2 (1+b(γ)

k )[|ηk+1
1 |2h+‖∆xYk+1‖2

2]

+ r1
2

k−1
∑
j=0

(b(γ)
j −b(γ)

j+1)(|η
k− j
1 |2h+‖∆xYk− j‖2

2)

−αr2
2 (1+b(γ)

k )‖Yk+1‖2
2 + αr2

2

k−1
∑
j=0

(b(γ)
j −b(γ)

j+1)‖Yk− j‖2
2

+ τ
4L‖Yk‖2

2 + 3τ
4 L‖Yk+1‖2

2

+
r1h2b(γ)

k
L2

x
‖Yk+1‖2

2 + L2
x

4r1h2b(γ)
k

‖Rk+1
γ ‖2

2.

Applying Lemma 2..5, we can obtain

‖Yk+1‖2
2 6 1

2[‖Yk+1‖2
2 +‖Yk‖2

2]−
r1
2 [|ηk+1

1 |2h+‖∆xYk+1‖2
2]

+ r1
2

k−1
∑
j=0

(b(γ)
j −b(γ)

j+1)(|η
k− j
1 |2h+‖∆xYk− j‖2

2)

−αr2
2 ‖Yk+1‖2

2 + α
2 r2

k−1
∑
j=0

(b(γ)
j −b(γ)

j+1)‖Yk− j‖2
2

+ τ
4L‖Yk‖2

2 + 3τ
4 L‖Yk+1‖2

2 + L2
x

4r1h2b(γ)
k

‖Rk+1
γ ‖2

2.

Also

‖Yk+1‖2
2 + r1

k
∑
j=0

b(γ)
j

[
|ηk+1− j

1 |2h+‖∆xYk+1− j‖2
2

]
+αr2

k
∑
j=0

b(γ)
j ‖Yk+1− j‖2

2

6 ‖Yk‖2
2 + r1

k−1
∑
j=0

b(γ)
j

[
|ηk− j

1 |2h+‖∆xYk− j‖2
2

]
+αr2

k−1
∑
j=0

b(γ)
j ‖Yk− j‖2

2

+ τ
2L‖Yk‖2

2 + 3τ
2 L‖Yk+1‖2

2 + L2
x

2r1h2b(γ)
k

‖Rk+1
γ ‖2

2.

Let

ρk = ‖Yk‖2
2 + r1

k−1

∑
j=0

b(γ)
j

[
|ηk− j

1 |2h+‖∆xYk− j‖2
2

]
+αr2

k−1

∑
j=0

b(γ)
j ‖Yk− j‖2

2.

Applying Lemma 2..6, we have

(1−
3
2

Lτ)ρk+1 6 (1+
1
2

Lτ)ρk +C1b(γ)
k τγ(τ +h2)2,

i.e.,

ρk+1 6
1+ 1

2Lτ
1− 3

2Lτ

[
ρk +C1b(γ)

k τγ(τ +h2)2
]
.

Therefore, we obtain

ρk 6

[
1+ 1

2Lτ
1− 3

2Lτ

]k[
ρ0 +

k−1

∑
j=0

C1b(γ)
j τγ(τ +h2)2

]
.

Note thatρ0 = 0, then there exists a positive constantC2 such that

‖Yk‖2
2 6 ρk 6 C2kγ τγ(τ +h2)2

6 C2T γ(τ +h2)2.
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FIG. 1. Comparison of exact and numerical solutions at timet = 1.0 whenγ = 0.90.

THEOREM 3..2 Suppose that the continuous problem (2..10)-(2..12) has a smooth solutionu(x, t) ∈
C4,2

x,t (Ω × [0,T ]), then there exists a positive constantC > 0 such that

‖Yk‖2 6 C(τ +h2),k = 1,2, · · · ,n. (3..13)

Further, the FIDA defined by (3..1)- (3..3) is convergent.

4. Numerical results

In this section, three numerical examples are given to demonstrate our theoretical analysis.

EXAMPLE 4..1 Consider the following NFR-SubDE:

∂u(x, t)
∂ t

= 0D1−γ
t

[
∂ 2u(x, t)

∂x2 −u+
Γ (5+2γ)

Γ (6+ γ)
t5+γ e2x

]

−u2 +(2+ γ)t1+γex, (4..1)

u(x,0) = 0, (4..2)

u(0, t) = t2+γ , u(1, t) = et2+γ , (4..3)

where 06 x 6 1, t > 0.
The exact solution of the NFR-SubDE (4..1)-(4..3) is

u(x, t) = t2+γ ex.

FIG.1 shows the exact solution and numerical solution of the FIDA, with τ = 1/400 andh = 1/20,
at timet = 1.0. From FIG.1, it can be seen that the numerical solution is in excellentagreement with the
exact solution.

Table1 shows the maximum absolute numerical error of the exact solution and numerical solution of
the FIDA at timet = 1.0 whenγ = 0.9. From Table1, it can be seen that the FIDA yields convergence
with rateO(τ +h2).
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TABLE 1 Maximum error behavior versus
gridsize reduction for Example 4..1 at time
t = 1.

h τ Maximum Error
1
10

1
100 1.6040E-3

1
15

1
225 7.4602E-4

1
20

1
400 4.2415E-4

1
25

1
625 2.7323E-4
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FIG. 2. Model simulation of a fertilizationCa2+ wave following (4..4) resulting in a travelling front forγ = 0.50 at four spatial
positions.

EXAMPLE 4..2 Consider a travelling wave of a concentration of a molecular species in a crowded
environment. The following nonlinear reaction diffusion equation is used(See Caoet al. (2006)):

∂u
∂ t

= 0D1−γ
t

[
Kγ

∂ 2u(x, t)
∂x2 + f (u)

]
,0 6 x 6 Lx,0 < t 6 T, (4..4)

with the boundary conditions∂u
∂x |x=0,Lx = 0 and the initial condition

u(x,0) =

{
1, 0 6 x 6 l,
0, l < x 6 Lx,

where f (u) is the cubic polynomialf (u) = Kγ u(1− u)(u− θ) with 0 < θ < 0.5. The reaction term
has realistic chemical reaction features. This equation has been used to describe features of action
potential propagation in nerve axons, and calcium fertilization waves in frog eggs in a crowded spatial
environment(See Fallet al. (2002)). In this example, we takeKγ = 2.25,θ = 0.2, T = 200,Lx = 500µm,
l = 10µm, andτ = 0.01,h = 0.1.
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FIG. 3. Model simulation of a fertilizationCa2+ wave following (4..4) resulting in a travelling front forγ = 0.75 at four spatial
positions.
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FIG. 4. Model simulation of a fertilizationCa2+ wave following (4..4) resulting in a travelling front forγ = 0.95 at four spatial
positions.

FIG.2, FIG.3 and FIG.4 show model simulation of a fertilizationCa2+ following (4..4) in a travelling
front for γ = 0.5, γ = 0.75 andγ = 0.95 at differentx , respectively. FIG.5, FIG.6 and FIG.7 show the
numerical simulation of the equation (4..4) whenγ = 0.5, γ = 0.75 andγ = 0.95, respectively. From
these figures, we find that the wave travels more slowly asγ decreases as to be expected.

EXAMPLE 4..3 Consider the following Michaelis-Menten reaction-diffusion equations (See Caoet al.
(2006)):

∂A
∂ t = 0D1−γ(Kγ

∂ 2A
∂x2 − k1AB)+(k2 + k3)C,

∂B
∂ t = 0D1−γ(Kγ

∂ 2B
∂x2 − k1AB)+ k2C,

∂C
∂ t = 0D1−γ(Kγ

∂ 2C
∂x2 + k1AB)− (k2 + k3)C,

(4..5)

whereA,B,C denote concentrations,Kγ is the generalized diffusion coefficient, andk1,k2,k3 are the rate
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FIG. 5. The solutionu(x, t) of (4..4) whenγ = 0.50.
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FIG. 6. The solutionu(x, t) of (4..4) whenγ = 0.75.
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FIG. 7. The solutionu(x, t) of (4..4) whenγ = 0.95.

coefficients. Here,

Kγ = 10−5,k1 = 0.01,k2 = 0.02,k3 = 0.03,Lx = 1,T = 600.
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FIG. 8. Concentration A as a function oft at x = 0.6 for variousγ.
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FIG. 9. Concentration B as a function oft at x = 0.6 for variousγ.

We suppose the periodic boundary condition, i.e.,

A(0, t) = A(Lx, t),B(0, t) = B(Lx, t),C(0, t) = C(Lx, t),

and initial conditions:A(x,0) = 1, B(x,0) = 0, C(x,0) = 1. In this simulation, we chooseh = 0.1,τ =
0.01. The results of the simulation are shown in FIG.8, FIG.9 and FIG.10.

These figures compare the response of the diffusion system with different real numbersγ for A(x, t),
B(x, t) andC(x, t) concentrations, respectively.

5. Conclusions

In this paper, we have proposed an implicit numerical methodto model the nonlinear fractional reaction-
subdiffusion process. We have proved the stability and convergence of the method. Some numerical
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FIG. 10. Concentration C as a function oft at x = 0.6 for variousγ.

examples are presented to show the application of the present technique. This method and supporting
theoretical results can also be applied to fractional integro-differential equations.
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