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In this paper, we consider the following nonlinear fractional reactidsdsfusion process (NFR-SubDP):

du _ d%u
N Ky gz + f(UxD)| +g(uxt)

wher f (u,x,t) is a linear function of, the functiong(u, x,t) satisfies the Lipschitz condition alaﬂ)tlfy

is the Riemann-Liouville time fractional partial derivative of order {. We propose a hew computation-
ally efficient numerical technique to simulate the process. Firstly, the S&#BP is decoupled, which is
equivalent to solving a nonlinear fractional reaction-subdiffusioraiqn (NFR-SubDE). Secondly, we
propose an implicit numerical method to approximate the NFR-SubDEdIVhthe stability and con-
vergence of the method are discussed using a new energy methodly, Some numerical examples
are presented to show the application of the present technique. Thisdratticupporting theoretical
results can also be applied to fractional integro-differential equations.

Keywords: fractional reaction-subdiffusion equation, implicit numerical mettoashvergence and stabil-
ity, energy method.

1. Introduction

Various fields of science and engineering deal with dynahsigstems that can be described by frac-
tional partial differential equations (FPDE), for exampiemputational biology (See Yuste & Linden-
berg (2001)), physics (See Bisquert (2003); Metzler & Kdaft(2000)), chemistry and biochemistry
(See Yustet al. (2004)), and hydrological applications (See Eal. (2004)) due to anomalous diffu-
sion effects in constrained environments. Fractionalticrejuations have proved particularly useful in
the context of anomalous slow diffusion (subdiffusion)é3éetzler & Klafter (2000)). Subdiffusive
motion is characterized by an asymptotic long-time belravidhe mean square displacement of the
form

tYt — oo, (1..2)

2 2Ky
0O~
where 0< y < 1 is the anomalous diffusion exponent. Subdiffusive motgparticularly important
in the context of complex systems such as glassy and disatdeaterials, in which pathways are
constrained for geometric or energetic reasons. It is atstiqoularly germane to the way in which
experiments in low dimensions have to be carried out.

Yuste & Lindenberg (2001) considered coagulation dynamiigsA — A andA+ A = A and the
annihilation dynamic#\+ A — 0 for particles moving subdiffusively in one dimension. §Bcenario
combines the "anomalous kinetics” and "anomalous diffasaroblems, each of which leads to inter-
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esting dynamics separately and to even more interestingndigs in combination. Yuste & Linden-
berg (2002) also considered a combination of these two phena and proposed to solve the- A
reaction-subdiffusion problem in one dimension. The situsis more complicated for th&+ B prob-
lem, because no such exact formulations or solutions hase theveloped in this case. There is a large
literature on the reaction-diffusion problem with diffat@runcation scheme to represent the reaction
term, but the literature on the reaction-subdiffusion peobis far more recent and relatively unsettled.

In order to generalize the reaction-diffusion problem t@action-subdiffusion problem, we must
deal with the subdiffusive motion of the particles. Yusteal. (2004) proposed the following set of
reaction-subdiffusion equations:

7} 1- 92
Ea(xat) = ODt V{Kyﬁa(){?t)} - RV(X7I)7 (12)

whereKy is the generalized diffusion coefficient that appears in E#y..1) andthl_Vv(x,t) is the
Riemann-Liouville fractional partial derivative of ordér y defined by
1y 1 0 v ovixn)

oDy v(x,t) = F(y) 3t Jo (t—n)l—Vdr" (1..4)
The reaction term has many different forms. For examplereletion termRy(x,t) = ka(x,t)b(x,t)
is a linear form ofa(x,t) andb(x,t); Sekiet al. (2003) proposed a reaction-subdiffusion equation that
at long times corresponds to choosing a reaction term ofdima Ry(x,t) = kthl’Va(x,t)b(xJ). Cao
et al. (2006) considered the Michaelis-Menten reaction systeth thiree molecular species and three
reaction channels. Suppose now that these chemical readie taking place on a one-dimensional
membrane of a cell. Then if there are obstacles present om#émbrane inhibiting diffusion, the
reaction-subdiffusion process is described by the systdmaational differential equations of the form

2

Jaxt) = oDk, oAl t) ~kia(x b0t} + (ko + ks)clxt) (1.5)
2

Tbxt) = oD Y(Ky bl ~kabkb(x)} +keclxt). (1.6)
2

%c(x,t) = ODE_V{KV%C(X,'[)+k1a(X,t)b(X,t)}—(k2+|(3)C(X,t), 1..7)

wherea(x,t),b(x,t), c(x,t) denote concentrationk, is the generalized diffusion coefficient, akidko, ks
are the rate coefficients.

In this paper, computational techniques for simulatingrdaetion-subdiffusion process are consid-
ered. Firstly, the reaction-subdiffusion process is dptemj which is equivalent to solving the following
nonlinear fractional reaction-subdiffusion equation INBubDE):

9 .
2 DK,

d%u
ot 2 + f(uxt)| +9(u,xt), (xt)eQx[0,T]. (1..8)

52
where Q = [0,Ly]. We assume that(u,x,t) is a linear function olu, the functiong(u,x,t) satisfies
the Lipschitz condition anthl’y is the Riemann-Liouville time fractional partial deriwaiof order
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1-—y. Some special fractional reaction-diffusion equationthefform (1..8) have been considered (see
Bisquert (2003); Caet al. (2006); Cheret al. (2007); Henry & Wearne (2000)).

We note that although anomalous diffusion only really maiegsical sense in more than two spa-
tial dimensions, the effects of the NFR-SubDE in one spdiialension are similar to those in higher
spatial dimensions. For this reason, we will focus in thipgraon one spatial dimension and consider
generalizations to higher spatial dimensions in later work

Some different numerical methods for solving space or tiraetional partial differential equations
have been proposed. Laial. (2004) proposed a computational effective method of lifidss method
transforms the space fractional partial differential douminto a system of ordinary differential equa-
tions that is then solved using backward differentiatiomfolas. Meerschaert & Tadjeran (2004) devel-
oped finite difference approximations for fractional adie@edispersion flow equations. Meerschaert
& Tadjeran (2006) examined some practical numerical methodolve the two-sided space-fractional
partial differential equations and discussed stability annvergence of the methods. Tadjeshral.
(2006) presented a second order accurate numerical appatan for the fractional diffusion equation.
Roop (2006) investigated the computational aspects of teridn approximation using continuous
piecewise polynomial basis functions on a regular triaatioih of the bounded domain R?. Liu et
al. (2005) derived an analysis of a discrete non-Markovian sangvalk approximation for the time
fractional diffusion equation. Zhuang & Liu (2006) analgzan implicit difference approximation for
the time fractional diffusion equation, and discussed thbikty and convergence of the method. Lin &
Liu (2007) proposed the high order (2-6) approximationsefftactional ordinary differential equation
and discussed the consistency, convergence and stalfilihese fractional high order methods. Liu
et al. (2007) discussed an approximation of thevi-Feller advection-dispersion process by a random
walk and finite difference method. Cabal. (2006) presented a variable coefficient fractional deixeat
approximation scheme, and used embedding techniques ¢toges variable stepsize implementation
for solving fractional differential equations. ¥ al. (2008) developed a reliable algorithm of the Ado-
mian decomposition method to solve the linear and nonlispace-time fractional reaction-diffusion
equations in the form of a rapidly convergent series withilgasmputable components, but did not
give its theoretical analysis. Itis a more difficult task tdve the fractional subdiffusion equation which
involves an integro-differential equation. Yuste & Aced@®(5) proposed an explicit finite difference
method and a new Von Neumann-type stability analysis forfihetional subdiffusion equation, i.e.,
the NFR-SubDE without the reaction term. However, they ditigive the convergence analysis and
pointed out the difficulty of this task when implicit methcai® considered. Langlands & Henry (2005)
also investigated this problem and proposed an implicitenical scheme (L1 approximation), and dis-
cussed its accuracy and stability. However, the global raoguof the implicit numerical scheme was
not derived and it seems that the unconditional stabilityalby in the range G< y < 1 has not been
established. Cheet al. (2007) presented a Fourier method for the problem, and theg the stability
analysis and the global accuracy analysis of the differappeoximation scheme. Zhuaepgal. (2008)
also proposed new solution and analytical techniques feti@ih numerical solution methods. Thus,
effective numerical methods and error analyses for NFRBEsbare still open problems. The main
purpose of this paper is to solve and analyze this problengusinew energy method.

The structure of the paper is as follows. In Section 2, som#emaatical preliminaries are intro-
duced. In Section 3, an implicit finite difference methodXM) of the NFR-SubDE is proposed. The
stability and convergence of the IFDM are discussed in 8est#t and 5, respectively. Finally, some
numerical results are given, which it is found that the tké&oal results are in excellent agreement with
the numerical results.
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2. Mathematical preliminaries

In this section, we introduce some definitions and mathemlatiotations that will be used in later
sections and state their corresponding properties.
Firstly, we give the definition of the temporal fractionatégral.

Definition 2..1 (Samkoet al. (1993)) Lety(t) € LY(a,b). The integral

1 /0 yn)
1L y(t) = r(y)/a i t>a 2..1)

wherey > 0, is called the Riemann-Liouville fractional integral aflery.

In this paper, we refer tbe [0,T] and 0< y < 1. In order to computd%’+y(t), we begin by dis-
cretizing the temporal domai@, T] by placing a grid over the domain. For convenience, we wil as
uniform grid, with grid spacing = T/n. If we wish to refer to one of the points in the grid, we call the
pointsty,, k=0,1,--- ,nwherety = kr,k=0,1,--- ,n. Hence, fok=1,2,--- |n

y _ 1 e y(n)
lo,y(t) = r Jo o 0 Gt 7dn
g | d (2..2)
= W tkuitk mrvan-
Whent; <n <tj41,j=0,1,...,k—1, using
dy(¢
y(n) =y(tj+1) + %(n —tjt1), N <& <tja,
we obtain
ly(n) —y(tj+1)| < Cit.
Further, we have
t y(t
12, y(t) /k : $dn| < CRYTVHL, 2..3)
tk 1-j tk_
Hence, we have (See Oldham & Spanler (1974)) the followingie.
LEMMA 2..1 Ify(t) € C}[0, T], then
y vy
o Y(tk) = bi"y(tk_j) + R, (2..4)
0+ r(y_|_ 1) ];) | ] y
where
bﬁy)z(j—&—l)y—jVJ=0,1,""n—1» (2..5)

and|Rg,| < Ct/T.

LEMMA 2..2 In (2..5), the coefficienq‘)’)(k =0,1,2,...) satisfy the following properties:
@by =1, >0,k=0,1,2,...;

(i) b > b, k=0,1,2,..;

(iii) there exists a positive consta@t> 0, such that < be<y>TV, k=12,....
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Proof. Let gn(x) =x¥ andyn(x) = (x+1)Y —x". It is easily seen thap;(x) is monotone increasing
andyi(x) is monotone decreasing when- 0. Thus, (i) and (ii) hold.
As for (iii), using

i nv-1 fim n-t 1

nmc bg) nLoo (1+n 1)V_1 ;/’
and the result of a convergent sequence is a bounded sedhencenere exists a positive constéit
such that

ny-1

b(V)

n

< Clv

or
nl<chbynr< Clbl((y)n y
Thus, fromr = T /n, the inequality (iii) is obtained. O

LEMMA 2..3 Ify(t) € C?[0, T], then

y y v
|0+y(tk+1) - |O+y(tk) I-(y tk+1 + % J+1 i ) + Rk ) (2..6)
where|Rf<i),| <cbY iy,
Proof. Fork=0,1,...,n—1, we have
1
I(¥+y(tk+l) - I(¥+y(tk) = ﬁ[fol@rl W r’ f tk n 1 ydn]

. t Y(N+T1)
= gl 5 71)1 v ”‘ijy?k Tn)l Y dn]

. t +
- ﬁuof (tey- 1('1)1 Vdn+ z leY’Zk rf? -y dn]'

If y(t) € C?[0,T], then
ly(n) —y(D)| =1y(&)(n—1)| <Cr.
Whent; < n <tj;1, we can obtain
yn+1)=y(n) = Y(tj+2) =y(tji+1) + (G +1) =Y ()N —tj+1)
= Y(tji2)— 1) +Y'(p)T(N —tj11). (2..7)

y
Hence,ly(n + 1) —y(n) — [¥(tj+2) —y(tj+1)] | < CT°
Thus, we get

y k—1
15, Y(tii) — 1§, y(t) = ﬁ {b|((y>)’(tl) + J;)bkfjfl [V(tj+2) = y(tj+1)] } + R;il,)ﬂ

Where|Rf<l13,| <CbY iy 4 crat).
Thanks to Lemma 2..2, we have proved the following result. O
In this paper, we suppose that the space variaBhgisfiesx € Q = [0,Ly]. Similarly, we discretize
the space domain by place a grid on the spatial axis with gagdiagh. Also, we introduce the notation

X, =ih, i=0,1,....m

whereh = Ly/m.
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Definition 2..2 Let
V= (V17V27 e )mel)T

and
W= (W1)W27 e >Wm—1)T

are the vectors of the real Euclidean spR&&L, we define
m-1 m— 1
(v.w)= 3 viwsh, M2 =(v,v)2 = (5 v?h)?
= =1

and||V]je = max |vl.
1<i<m-1

The following conclusions can be obtained easily.

LEMMA 2..4 Let
AVi = Vit1 —Vi, AW =Wiz1—W,
OV =Viy1— 2V +Vi_1, %W =Wi1—2W +Wi_1,

if Vo =wm =0, then
(6%v,w) = —vawih— (Av,Aw),

where
O%v = (6%v1,0%Va, -+ ,0%Vm_1)T,

AV = (Avi, AV, AV 1),
Aw = (Awy,AWa, -+, AWm_1)".

LEMMA 2..5 Forvi,i=0,1,---,m, if vg = vy, = 0, then
2 < '—3 2 2
VI3 < LxlIv]% o2 [Ajva]“+[|Av]|3]

whereh = Ly/m.
Proof. The first inequality is apparent.
As for the second inequality, I¢t;,| = rrlax l|v.|
m—
io—1 -
Vip=Vit Y Avj, Vip=— 3 Av;.
=1 i=To
m-1
Thus, 2vi| < |va| + 2 |Avj].

J_
Using the Cauchy-Schwarz inequality, we have

4)vi,|*> < 2m

m—1
Vil Y 1Ay
=

Therefore,|V¥|[2 < 2% [h|vi|? + | AVK|3] .

L
< 37 [hvaf +avi3].

(2..8)

(2..9)
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We consider the following NFR-SubDE:

Jdu 1-y azu
7= oD; KVW + f(uxt)| +g(u,xt), (xt)e Qx][0,T] (2..10)

with initial and boundary conditions:
u(x,0) = @(x),0 < x< L, (2..11)
U(O,t) = ¢l(t)a U(Lat) = ¢2(t)a 0<t< T, (212)

where 0< y < 1. In this equation the expression

oD v(x t) = %I&v(x,t) (2..13)

denotes the Riemann-Liouville fractional derivative odier 1— y.
Suppose that the functiof(u,x,t) andg(u,x,t) are smooth enough anfdu, x,t) is monotone de-
creasing fowu. In this paper, we suppose the continuous problem (2.20)2) has a smooth solution
u(x,t) € Gef(Q x [0,T]).

Definition 2..3 Letu(x,t) be defined o2 x [0, T] and put

AU, t) = u(Xit1,t) — u(x,t),

S2u(X;,t) = U(Xi11,t) — 2004, t) + (%1, t)-
Similarly, for an arra)u{‘, i=01...,m k=0,1,...,n, we define

k_ Kk kK x2
AU = Uiy g — U, 6Xu, —u,+1—2u +u, 1-

Integrating both sides of the equation (2..10), we have

20(x:
U ten) —UOG, b)) = 18 Ky et 4 f (U, tert) Xt 1)
4VWW§““”®meﬂm+ﬁ“((mmm0m
Applying Lemma 2..3 and the following formulae:

9%u(x;,t 2 0%u(&,t;
d(xlz ! h255<2( -1 d(xl‘ w1 < <xa

and

/ttk+1 g(u(Xht),Xi ,t)dt _ [g(U()ﬁ ,tk+l)7xivtk+1) + g(U(Xi 7tk),Xiﬂk)] + O(TZ),

k
wherei=1,2,.... m—1; k=0,1,...,n—1, we obtain

NI~

uXi,tr1) = (Xlatk)+r(y+1) Ky'h%dfum,tmwrf(U(><a,tk+1),><a,tk+1)]
k-1
+I’(y+1)12 (le b K v+ 25 G2U(X tej)
k-1

i 3,01~ B 06 ey Xt )

TF
+% [g( (Xiatk+1)axi 7tk+l) + g(u(xhtk)vxhtk)] + 'j/»l?

~—
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where|R Y < Cb )TV (T +h?).
Let

RkyaRZVa : Rh]—ly )

- v o v . . .
andry = KVW’ 2= Foam then the above results can be summarized in the followingiam

LEMMA 2..6
2 L) gy 52
uXi,ter1) = U(Xivtk)+rl[®u(xiatk+l)+.zo(bj+1_bj )OU(Xi, te—j)]
=
k-1
2l F (UK, 1) X ter) + Y (bﬁﬁl b)) f (U(xi, b ), %, b )]
J_
+ 590U, tera), % tiera) + UG ), X, bl + RS,
where

IRK|l> < b 1Y (7 + h2).

3. Animplicit numerical method for the NFR-SUbDE and theoretic analysis

Let uk be the numerical approximation tgx;, t). Applying Lemma 2..6, we can obtain the following
fractional implicit difference approximation (FIDA):

k-1

k—

4= dengutten 3 6% -
17

k—1 .
o (UL X ta) + 1 zb(bﬁﬁl_ B (T, b )
J:

T
+3 [g(UE‘“,Xi,tkH) +g(uik,xi,tk)} , (3..1)

wherei=1,2,.... m—1k=0,1,2,...,n—1.
The initial and boundary conditions can be discretized by

W =g(ih), i=0,1,2,....m (3..2)
= ¢1(k1), U= a(kr), k=0,1,2,---,n. (3.3)
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3.1. Sability of the FIDA

We suppose thai}< (i=01,2---,m; j=0,12-.- n)is the approximate solution of (3..1), (3..2)
and (3..3). The erragk = uk — UK satisfies

k—1
g = gik+r155<25ik+l+rlzo( §+1 y)5x2 <
j=
2 [ U ) = £ Xt )]

+ 2: = o) [F(U ot ) = @ 0t )]

T
+ é |:g( k+1aX| tk+1) g<di(+1axi7tk+l)i|
T
+ 5 ot — 9@ %) (3-4)
and
50_0 sm 0, k=0,1,2,- (3..5)

In this paper, we only discuss the casef @i, x,t) = —au-+ B(x,t), wherea > 0 is a constant and
B(x,t) is independent ad, i.e., f (u,x,t) is a linear function ofi, and suppose that the functigfu, x,t)
satisfies the Lipschitz condition, i.e.,

l9(ug,x,t) —g(uz,x,t)| < Ljug —up|, Vug,Us. (3..6)

So,

f(ul,x,t) — F(@,%,t) = —ag,
|g(uiJ?Xi7tJ) g<u|lvxla )| L‘£|

wherei=1,2--- . m-1; j=1,2,---,n
Therefore, Eq. (3..4) can be rewritten as

k—1
k+1 k 2 k+1 V 2 k—
£i+ = § -l-r155<$i+ —leb( §+1 )55< J
J:

—ars

k—1
k+1 v (V) k=i
&4+ Y (b, —b")e ]
i ]ZO j+1 i i
T
5 [0 ) — 98 s

+% [g(urvxivtk) - g(di(vxi?tk)] : (3..7)
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Multiplying (3..7) byhsik*l and summing up forfrom 1 tom— 1, we obtain

k—1 )
||Ek+1||% (Ek+l,Ek)+I’1(d(2Ek+l,Ek+l)+r1 %(bgﬁlibgw)(észK_J’Ek_Fl)
J:

k—1
_arz(Ek+l’Ek+l)+ar2 Zo(bgy) bggl)(Ek j Ek+l)
J:

o
+3 Z[g(uik“,xmm)—grk i) €l

3 |9(u 8 — 9(T %, ) | 64 2h. (3.8)
Thanks to Lemma 2..4 and the inequality
(Y < 2 [IEV13+EX 1)
wherej =12 --- k+1, we obtain

ESHE < FIIESB+IENIE] —raliel ™)+ 481
1 z( — b)) [—et ek h— (BT, A D)

J

k—1
-ar2||Ek+1||2+ 7 3 (0" = B) [IE< B+ B3
+ELIER L3+ SLOIES |3+ EX|3).

Note that

1
%(bg)’) _ b&?l) — bE)V) _ b|(<y) —1— bl(<y)
j=

and

gk J£k+l |£k J|2+|£k+l| }
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We then have

1
k12 K12 k)2
Bz < SlIE Iz +HIEYE) -

1,2 k+112
2(1+0) [l P+ [ AE 3
k— 1
+2 5 (b)) — b ) (1 T Ph+ [ aE* T )
2 J+l 1 2
=
ar, k-1

~ 2+ [E Y3+

a W W k—j2
> 2f2 (b} =B DIE 3

T 31
+Z|—||Ek||§+ ZLHEkHH%

1 r
< §[|\Ek+1||§+||E"||§}—§[|e'l‘+1\2h+\\AxE"“||§]
R v -j2 k=2
+5 > (67— J+1)(|5 “h+ |AE"2)

22

k—1
ars a
,THEK-Q—ngJr il’zjzo(bgy) |+1)HEk J||2

r k2, 3T k+1)12
+-L|E —L|E .
2 IES(IZ+ 2 IET 2

Also

K k

[E< 341 3 bf [|“'31le J2h+ || AE<)| }-i-al'z > bl [|Ex+1-1|13
o ! &
k—1 k1

<IENB+ra 35 [lef P+ |4E I8 +arz 3 b IEC I3

+5LIEN5+ FLIEE.

Define

k-1 ) . k-1 .
pe=[EE-+11 3 b} (e P+ 1AE T3] + a2 3 o IEIE
1= 1=

Supposing that < 2, we have

3 1
(1- 5101 < (14 5LT)x

1 k-1 1 n
< 1+5Lt 1< 1+35Lt 0
Pk < 17%LT 1 X 17%LT 1
Note thatn=T/7, and

(143l (14 5LT erlT
lim 2 = lim 2 = =&,
n—oo 1—§LT n—oo 1_ﬁLT e—éLT

Thus,
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145Lt

n
Lr) < Gy, thereby,

so, there is a positive constadt > 0, such that<

IEX(|2 < px < Cipa.

Again, from (3..4), we have

gl =€l +r162e! - ar281+§ [g(uI i, t) —o(T X%, t)]
+ 5 [9(u0,x,t0) — 9(W0, %, t0)] -

Similarly, we have

IBHE < [|E°||z+||E1\§} 1£81 2h+||AxEl||]
7ar2||El||2+ sLIIE ||2+||E I3]

< LIIE°||2+ IEZI3] — 3 [(e1)?h+ | AE™13]
arzHEleJr%'-[\E1|\2+HE°||2]

So,p1 < (1+1L)||E°||2 + TLps. FromtL < 2/3, we have

1+71L 1+2
< E°lI5 < —3 |[E°||5 =5|[E|,
-3
i. e,
IEX|13 < C|[E°|13,
whereC = 5C;.

Furthermore, the following theorem of stability can be ated.

THEOREM3..1 The FIDA defined by (3..1) is unconditionally stable.

3.2. Convergence of the FIDA

In this section, the convergence analysis of the FIDA isudised. Leti(x,t) (i=1,2,...,m—1; k=
1,2,...,n) be the exact solution of the NFR-SubDE (2..10) - (2..12) ahoint(x;, ty).

Definenk = u(x,t) —uk, (i=1,2,....m—1; k=1,2,....n) andY* = (n¥,nX,--- ,nk_,)T. Using
uk = u(x;,t) — N, substitution into (3..1) leads to

k—1
.
et = ’7ik+r15x2rlik+l+|’lZO(bﬁﬁl_bgy))éfrli .
J:
12 [ F(U0 ) Xt ) = FOUE % )|
k-1

(b7, — ") [f( a0t )%t ) — Tt )

t
N
BN

QUK b 2) 6 s ) — O % )|

9(u0x, ), X, t) — 9(U x| + R (3..9)
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and
n=0,i=0,12---,m, (3..10)
n§=0, nK=0, k=0,1,2,---,n. (3..11)
Similarly, we can obtain
kil)2 kil vk 2yki1 kil ")y s2vke vkl
IYHZ = (YY) +ra(8Y O Y )+rlzo(bj+l_bj (&Y Y
J:

k-1 ,
—Grz(Yk+1,Yk+l) +ary %(bEY) _ bg?l) (Yk—Jva-s—l)
=

+5 zl [ X b)) — Q(G!(+17Xi7tk+1)} nith

I g K . _ k+1
+5 i; [g(U. X, t) — g(UK, X, tk)} nih
(R kD), (3.12)

Thanks to Lemma 2..4 and the inequalities

(Y, Y4 < Y 3+ 1Y)

rthb(V) L2
(R Y] < 5 Y+ —— IRy,
X 4r1h2bk
we obtain
IY<HLZ < [I\Yk“HzHIYkHz] fl[(n'f+1)2h+||AxYk+1H§]
‘H12< J+1 by)[ '7 ’7k+1h (ORI, AR
—arz\lYk+1||2+m2 Z( b¥) — J+1) [”Yk JHz"‘HYkHHZ]
+3 (IIY"”IlerIIY"II) SLIIY*F|3
rhb
1Lig'(HYkHHz m” k13
Note that
S RN RN )
3 (6 —bly) = b -5 =15
j=
and

k— 2 k
Ik < 2 (IR k]
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We have
V<B4 YK = 3 (14D It 2h+ v 3

k-1 i »
% 3,6 =B (0 Ph+ 4T )

k—1
— 92 (1 b)Y 3+ %52 s (b)) — b)Yk )2

IY<L3 <

NI

_|_

HELIYXIE+ 3 I-IIY"”IIz

rih b( 2 K k
IV S IR
Applying Lemma 2..5, we can obtain
k
YKL < BIIYSHZ+ I YNIZ = FInt Pho+ Acy 3]

k-1 )
33 0~ bﬁﬁlmnl 2+ Ay T [3)

k—1
—RIVRE g2 5 (6 B IV
LZ
FELIVKIE+ FLIYE B+ o RSB
k
Also
k+1)12 K k+1-j2 k+1—j 2 K k+1—j 2
Y23 r 3 by [0 A KT 3] a5 b3
J: =
k— : k—1
k— —j -
< IY¥I3+11 z b “,71 2h 4 || Ac Yk J||%} +ar2.zob§y>||Yk 12
=
UM Luvk“uz IR B
Let

k—1 k-1
_ () [ k=12 k—j|2 V) [1vk—j2
pe= YN+ S by [y P A 3| +ar2 § B[V,
30" [In J+ar23
Applying Lemma 2..6, we have

3 1
(1=SL0)pa < (143 '—T)Pk+01b (T +1?)?,

ie.,
Lt { (v) 2 2}
Pri1 < —5— [P+Cib TV (T+h9)7) .
1-3Lt
Therefore, we obtain
1+1Lr]" k1w
P < Tgu po+ Z)Clbjy V(14 h?)?
2 i=

Note thatpg = 0, then there exists a positive const@ptsuch that

1YKI13 < o < Cok'TY(T+h?)2 < CTY (14 h?)2.
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B
—&— The exact solution
261 |  #  The numerical solution 1

0‘2 0‘.4 016 0.‘8 1
FiIG. 1. Comparison of exact and numerical solutions at timel.0 wheny = 0.90.

THEOREM 3..2 Suppose that the continuous problem (2..10)-(2..a8)ehsmooth solution(x,t) €
Cf(‘f(Q x [0,T]), then there exists a positive constant 0 such that

IY¥l2 <C(r+h) k=1,2,--- n. (3.13)
Further, the FIDA defined by (3..1)- (3..3) is convergent.
4. Numerical results

In this section, three numerical examples are given to detrate our theoretical analysis.
ExAMPLE 4..1 Consider the following NFR-SubDE:

2
0Ugt(vt) N 4 ;E();t)iu ?((5612)};)t5+y62x
—U?+ (24 y)ti e, (4..1)
u(x,0) = 0, 4..2)
u0,t) =t u(dt) =e?tY, (4..3)

where 0< x<1, t>0.
The exact solution of the NFR-SubDE (4..1)-(4..3) is

u(x,t) =t2ves,

FiG.1 shows the exact solution and numerical solution of theAr\ith T = 1/400 andh = 1/20,
attimet = 1.0. From RG.1, it can be seen that the numerical solution is in excellgntement with the
exact solution.

Tablel shows the maximum absolute numerical error of thetesadution and numerical solution of
the FIDA at timet = 1.0 wheny = 0.9. From Tablel, it can be seen that the FIDA yields convergenc
with rateO(T + h?).
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TABLE 1 Maximum error behavior versus
gridsize reduction for Example4..1 at time

t=1.
h T Maximum Error
%) 1%0 1.6040E-3
? ?5 7.4602E-4
2 ap 4.2415E-4
55 55 2.7323E-4

o L . L L L
20 40 60 80 100 120 140 160 180 200
t

FIG. 2. Model simulation of a fertilizatioa®" wave following (4..4) resulting in a travelling front fgr= 0.50 at four spatial
positions.

ExAMPLE 4..2 Consider a travelling wave of a concentration of a mdiecspecies in a crowded
environment. The following nonlinear reaction diffusiaguation is used(See Cabal. (2006)):

Ju _
= = oDt V[KV

2
ag(xxz’t)+f(u)],0<x< L0<t<T, (4.4)

with the boundary condition§§|xzoﬁ|_X = 0 and the initial condition

1, 0<x<l,
U(X’O){O, | < x< Ly,

where f(u) is the cubic polynomialf (u) = Kyu(1—u)(u— 6) with 0 < 8 < 0.5. The reaction term
has realistic chemical reaction features. This equatiecnbdeen used to describe features of action
potential propagation in nerve axons, and calcium fedtilan waves in frog eggs in a crowded spatial
environment(See Fadt al. (2002)). In this example, we takg, = 2.25,0 = 0.2, T =200, Ly = 500um,

| =10um, andt = 0.01,h=0.1.
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-6~ x=20ym
— x=30um
—— x=40um
— x=50um

i i L L L L L L L
20 40 60 80 100 120 140 160 180 200
t

FiG. 3. Model simulation of a fertilizatio@a®" wave following (4..4) resulting in a travelling front for= 0.75 at four spatial
positions.

-~ x=20pm
0ol —+ x=30um
—+— x=40um
— x=50um

L L L L L L L
20 40 60 80 100 120 140 160 180 200
t

FiG. 4. Model simulation of a fertilizatio€a?* wave following (4..4) resulting in a travelling front for= 0.95 at four spatial
positions.

FIG.2, Fic.3 and FG.4 show model simulation of a fertilizati€®a®" following (4..4) in a travelling
front for y = 0.5, y = 0.75 andy = 0.95 at differentx , respectively. 5.5, HG.6 and FG.7 show the
numerical simulation of the equation (4..4) whee= 0.5, y = 0.75 andy = 0.95, respectively. From
these figures, we find that the wave travels more slowly dscreases as to be expected.

ExAMPLE 4..3 Consider the following Michaelis-Menten reactioffidiion equations (See Cabal.
(2006)):
2
% = oD V(Ky 32 —kiAB) + (ko +ka)C,
% _ ODl—V(KV% —kiAB) + k:C, (4..5)
9 = oD Y(K, LS +kiAB) — (kz +ks)C,

whereA, B,C denote concentrationk, is the generalized diffusion coefficient, akidks, ks are the rate
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u(x,t,0=0.5)

=

G. 5. The solutionu(x,t) of (4..4) wheny = 0.50.

=0.75)

u(xt,a:

=

o)

. 6. The solutioru(x,t) of (4..4) wheny = 0.75.

=0.95)

u(x,t,o

FiG. 7. The solutioru(x,t) of (4..4) wheny = 0.95.

coefficients. Here,

Ky =107%k; =0.01 ky = 0.02 k3 = 0.03 Ly = 1, T = 600
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—5—y=05
—%—y=0.75 ||
—+—y=0.95 ||

100 200 300 400 500 600
t

FIG. 8. Concentration A as a function batx = 0.6 for variousy.

0.4

—6—y=05
—*—y=0.75||
—+—y=0.95

035 =4

0.3

0.25 |

0.6,)

0.2t

B(x=

0.15F

0.1

0.05

100 200 300 400 500 600
t

FIG. 9. Concentration B as a function bétx = 0.6 for variousy.

We suppose the periodic boundary condition, i.e.,
A(0,t) = A(Lx,t),B(0,t) = B(Lx,t),C(0,t) = C(Lx,t),

and initial conditions:A(x,0) = 1, B(x,0) = 0, C(x,0) = 1. In this simulation, we choode=0.1,7 =
0.01. The results of the simulation are shown i 8, FG.9 and FG.10.

These figures compare the response of the diffusion systémtiffierent real numberg for A(x,t),
B(x,t) andC(x,t) concentrations, respectively.

5. Conclusions

In this paper, we have proposed an implicit numerical metbhadodel the nonlinear fractional reaction-
subdiffusion process. We have proved the stability and egmnce of the method. Some numerical
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—6—y=05
—*—y=0.75
—+—y=0.95

FIG. 10. Concentration C as a functiontcdtx = 0.6 for variousy.

examples are presented to show the application of the gressmique. This method and supporting
theoretical results can also be applied to fractional itetifferential equations.
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