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ABSTRACT 

Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of 

contractors prequalification which cause the process more of an art than a scientific 

evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set 

and neural network theories, has been developed aiming to improve the objectiveness 

of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the 

prequalifiers can be identified and the corresponding membership functions can be 

transformed. Eighty-five cases with detailed decision criteria and rules for 

prequalifying Hong Kong civil engineering contractors were collected. These cases 

were used for training (calibrating) and testing the FNN model. The performance of 

the FNN model was compared with the original results produced by the prequalifiers 

and those generated by the general feedforward neural network (GFNN, i.e. a crisp 

neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and 

the mean absolute percentage error (MAPE) were examined during the testing phase. 

These results indicate the applicability of the neural network approach for contractor 

prequalification and the benefits of the FNN model over the GFNN model. The FNN 

is a practical approach for modelling contractor prequalification. 
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Contractor prequalification is a commonly used process to identify a pool of 

competitive, competent and capable contractors from which tenders may be sought. 

The aims of contractor prequalification are to minimise the possibility of contractor 

default and the time involved in bidding by restricting the number of eligible 

contractors involved. In practice, contractors’ suitability to participate in a project bid 

is usually assessed by the project owners according to their previous experience, 

judgement and a set of criteria which might vary between projects and clients. It is 

one of the most challenging tasks performed by an owner or contract administrator 

due to the complexity involved in this process.  

 

Contractor prequalification can be regarded as a complicated two-group nonlinear 

classification problem, in which decisions are made according to the prequalification 

criteria, contractor’s attributes and prequalifier’s judgement. The complexity stems 

from three main features: nonlinearity, uncertainty and subjectivity. Nonlinearity 

refers to the complicated nonlinear relationship between contractor’s attributes and 

the corresponding prequalification decisions made by the prequalifier. As a result, the 

nonlinear models should be more effective than the linear models when modelling the 

process of contractor selection. This argument is supported when comparing the 

performance of the linear model incorporating multiple ratings (Russell, 1992), PERT 

approach (Hatush and Skitmore, 1997a) and multiattribute utility model (Diekmann, 

1981). Uncertainty is mainly due to the fuzziness and randomness associated with 

contractor’s performance, prequalifier’s experience, prequalification criteria and the 

qualitative judgements. These led to the application of the fuzzy set theory (Nguyen, 

1985) and some statistical techniques (Jaselskis and Ashley, 1991). Subjectivity is the 

most difficult obstacle encountered by the researchers and practitioners due to a 
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diversity of prequalification criteria and the variability of input ratings to the same 

contractor, especially if they were assessed by different prequalifiers according to 

their own idiosyncratic perceptions. Multiattribute utility functions were used in an 

attempt to represent the decision-maker’s preference (Diekmann, 1981; Hatush and 

Skitmore, 1998). Despite that, contractor prequalification remains largely an art where 

subjective judgement, based on the individual’s experience, becomes an essential part 

of the process (Nguyen, 1985).  

 

An artificial neural network (ANN) is a massively parallel distributed processor that 

has a natural propensity for storing the experimental knowledge and making it 

available for use. It has been successfully applied in a number of fields including 

pattern classification, prediction and optimisation. Owing to their excellent learning 

and generalising capabilities, neural networks have also been applied to a variety of 

construction domains, including the prediction of potentials to adopt new construction 

technology (Chao and Skibniewksi, 1993), the estimation of construction costs and 

mark-up (Moselhi et al, 1991; Hegazy and Moselhhi 1994; Li et al, 1999), the 

forecast of construction productivity (Chao and Skibniewksi, 1994) and the estimation 

of residential construction demand (Goh, 1998). Recently, Khosrowshahi (1999) has 

demonstrated the applicability of neural networks to contractor prequalification. Lam 

et al (2000) has explored the possibility of improving network performance by 

feeding network with both the actual real prequalification cases and the hypothetical 

cases. To date, most research efforts regarding the application of neural network to 

construction have been focusing on utilising the GFNN’s capability to handle highly 

nonlinear aspects. Fuzzy set theory, on the other hand, can tackle the uncertainties 

involved in the process of prequalification (Nguyen, 1985; Juang et al, 1987; Lam et 
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al, 1998; Lam and Runeson, 1999). It is likely that substantial improvements on the 

contractor prequalification decisions can be made by merging the ANN and fuzzy set 

theories.  

 

A fuzzy neural network is a layered, feedforward, network that processes fuzzy set 

signals and/or has fuzzy set weights (Buckley and Hayashi, 1994). It is a powerful 

approach to many engineering problems (Jang et al, 1997; Zhang and Morris, 1999; 

Brown and Harris, 1994; Horikawa et al, 1992). Several different types of fuzzy 

neural networks have been developed (Liu, 1999). Fuzzy neural networks combine 

the advantages of both fuzzy reasoning (i.e. ability in handling uncertainty associated 

with qualitative information) and neural networks (i.e. ability in learning and 

generalising from prequalification cases). However, little has been published on the 

application of fuzzy neural network to contractor prequalification. 

 

The objective is to evaluate the practicality and effectiveness of the fuzzy neural 

network (FNN) model for contractor prequalification and selection. The versatility of 

this network is displayed through a series of tests using civil engineering projects in 

Hong Kong. A comparison of the results with those generated by the GFNN approach 

helps to establish the effectiveness of the FNN model.  

  

FUZZY NEURAL NETWORK  

Fuzzy Reasoning 

In order to prequalify contractors on an impartial and objective basis, both qualitative 

and quantitative knowledge should be fully utilised and analysed (Ng, 1996). Fuzzy 

modelling is a method to describe the characteristics of a system using fuzzy 
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inference rules (Takagi and Sugeno, 1985). The following is a sample base rule used 

in the prequalification decision-making: 

Rule: If  the candidate contractor’s reputation is very good and financial stability is 

outstanding and technical expertise is excellent and past performance is … 

Then the prequalification decision is qualified. 

 Generally, the following linguistic rules for contractor prequalification are 

based on the forms of above fuzzy rules: 
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where the symbol “*” denotes an algebraic product. 
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The above fuzzy system enables the nonlinear prequalification decision making 

process to be expressed linguistically. Despite this, it is very difficult to identify rules 

and calibrate the membership functions of the fuzzy reasoning. However, the GFNN 

approach can learn and generalise from previous contractor prequalification cases, 

which is particularly useful for this assignment. Fuzzy reasoning is capable of 

handling uncertain and imprecise information while a neural network is capable of 

learning from prequalification cases. The fuzzy model in equation (3) can be 

represented by a FNN proposed hereinafter.  

 

Fuzzy Neural Network Model 

The FNN consists of five layers; i.e. an input layer, a fuzzification layer, a base rule 

layer, a normalisation layer and a defuzzification layer. Several different types of 

neurons may be employed in the network. They have different activation functions 

and carry out different information processing functions. Inputs to the fuzzification 

layer are the prequalification variables, which are in turn used to describe candidate 

contractors’ attributes. Each of these variables is transformed into several fuzzy sets, 

such as “Good”, “Fair” and “Poor”. Each neuron corresponds to a particular fuzzy set 

with the membership function given by its output. Except for the neurons in the 

fuzzification layer, all the activation functions of the neurons in other layers can either 

be the identity functions or the linear functions, which distinguish the FNN from the 

GFNN. Detailed relationships between neurons are shown in Figure 1, and explained 

as follows. 
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The output of a neuron i in the input layer ( I
iO ) is equal to its input (I

iI ). Three kinds 

of activation functions (S-type, Bell-type and Z-type fuzzy neurons) for the neurons in 

the fuzzification layer are employed, and shown in Figure 2. These are: 

)1/(1)( /)( σχ−−+= xexf                                             (4) 

)/)(exp()( 22 σχ−−= xxf                                      (5)  

)1/(11)( /)( σχ−−+−= xexf                                         (6) 

where σχ and  represent the centre and the half width of the Gaussian membership 

function respectively. χ is the parameter that controls the horizontal shift of nonlinear 

transformation of a neuron and σ  is the parameter that controls the slope of nonlinear 

transformation of a neuron. All these parameters will be determined by training the 

FNN. The input and output of neurons can be expressed as follow: 
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Neurons in the fourth layer implement the normalisation function, which can be 

expressed as: 
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The final output, prequalification decisions, of the FNN can be computed via the 

centre of gravity (COG) algorithm. The defuzzification layer performed the COG 

defuzzification and gives the final network output, which can be expressed as: 
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In contrast to the GFNN, it is shown in the above equations that the meaning of fuzzy 

network structure and the weightings are easier to interpret. Moreover, the structure of 

the FNN can be easily determined as compared to that of the GFNN if the number of 

neurons of the input layer is determined, which depends on the number of 

criteria/subcriteria used for prequalifying contractor. 

 

Learning Algorithm of the FNN 

A number of algorithms are available for training the FNN including the back-

propagation algorithm, back-propagation on α-cuts method (Hayashi et al, 1993), 

conjugated gradient algorithm (Hu, 1997) and genetic algorithm (Goldberg, 1989). 

For simplicity, the General Delta Rule algorithm is applied to train the FNN. The 

objective of training is to minimise the sum of squared errors (E) between the 

calculated output of the network ( PpO p , 2, ,1 ,D L= ) and the actual prequalification 

decision in the real case, which can be written as: 

�
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where PpPQDp  , 2, ,1 , L=  denotes the prequalification decisions for a contractor p, 

whose performance attributes and prequalification decisions were collected for 

training the network. The parameters of the network can be adjusted as follows to 

minimise the sum of square errors: 
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where )(kχ is the value of χ  at the iteration of training step k. Other parameters can 

be adjusted similar to that of χ . βη  and)(t are the adaptive learning rate and 

momentum rate terms. The learning rate controls the rate at which the parameters are 

allowed to change at any given presentation. Higher learning rates speed up the 

convergence process, but can carry the potential risk of a network dipping into local 

minimum and lead to oscillations. Therefore, a momentum value is generally 

introduced into the Backpropagation-like algorithms in order to improve the 

convergence but inhibit continuous oscillations, as shown in equation (13). This 

determines the effect of previous parameter changes on the present change in the 

parameter space. 
χ∂

∂E
 can be calculated from the specific structure of the FNN.  

 
CASE STUDY  

To evaluation the applicability of the proposed FNN model, it was used for 

prequalifying contractors. 85 cases relating to 10 public sector projects between 1995-

1999 were collected for this study, and the details of the cases can be found in 

Appendix 1. The following section outlines details in preparing the training pairs 

including the identification of decision criteria, selection of prequalification cases, 

partitioning fuzzy variables, etc. 

 

Identifying Criteria 

A wide variety of criteria have been proposed for contractor prequalification and 

selection (Hatush and Skitmore, 1997b; Holt et al, 1994b; Russell and Skibniewski, 

1988; Ng et al, 1999). There are common characteristics in prequalification criteria 

notwithstanding some variations in owners’ objectives and project requirements 

(Masterman, 1994). Research findings to date indicate that the most commonly used 
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criteria are those pertaining to financial soundness, technical ability, management 

capability, and the health and safety performance of contractors (Hatush and 

Skitmore, 1997a). On the other hand, prequalification criteria should correspond to 

the client’s organisational objectives and project requirements. They may differ from 

each other as the characteristics of the project and contractor are quite distinct and 

dynamic (Ng, 1996). In addition, since the training, background and experience of 

prequalifiers vary considerably, the prequalification criteria used by prequalifiers vary 

equally (Ng et al, 1999). Based on the above considerations, some criteria or 

subcriteria may be added or removed as the collected cases might have different 

prequalification criteria even though most of them could be the same while the 

number of neurons in the input layer of the FNN was fixed in this research.  

 

Based on the current contractor prequalification practice of Hong Kong, 5 main 

criteria and 14 subcriteria were used in this research (see Appendix 1). The five 

criteria used for this research include: (1) Contractor’s Experience, (2) Response to 

the Brief, (3) Approach to Cost-effectiveness, (4) Methodology & Work Programme 

and (5) Staffing. Four of the five criteria, except for the Contractor’s Experience, were 

composed of second level sub-criteria.  A summary of criteria is shown in Table 1.  

 

Cases Selection 

The training pairs are the “environment” which are supplied to the neural network, 

from which the neural network can learn and perform pattern recognition - 

qualification or disqualification. The generalisation performance of the neural 

network highly depends on the training set supplied, even though the neural network 

is capable of generalising from experiences. There are two parts in every training pair, 
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each of which corresponds to the input and output of the FNN, i.e. contractor’s 

performance attributes, and the prequalification decision. The input–output pair for a 

contractor can be shown as: 

Training pair 1:    [87, 92, 88, 96, 89, ,L ]  [Qualified] 

     Training pair 2:    [62, 73, 58, 46, 89, ,L ]  [Disqualified] 

The marks in the first part of the training pair are the contractor performance 

attributes, which are graded by prequalification practitioners. The second part is the 

prequalification decision for the contractor. The input-output pairs for all contractors 

collected were then used as training data in FNN.  

 

In order to give the FNN a more powerful generalisation capability for the two-type 

pattern recognition problem, the following guidelines in collecting the 

prequalification cases are recommended. First, enough training pairs should be 

supplied to have the FNN model parameters calibrated; Secondly, it would be better 

to choose those prequalification cases in which the candidate contractor had 

successfully completed the contract or those cases in which the candidate contractor 

had failed in his contract after being prequalified instead of those cases in which a 

contractor was qualified and was eventually not selected for the contract in the later 

contractor selection phase. This means that those actual cases in which 

prequalification decisions have been practically verified are more preferable to those 

cases in which prequalifiers are unsure of the correctness of the prequalification 

decisions. As a result, the neural network can learn both from the successful and 

unsuccessful prequalification cases; Thirdly, it is also desirable to have a better 

distribution of training pairs to cover as many scenarios as possible rather than the one 

case scenario which dominates the others. This means a proper proportion of qualified 
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and disqualified cases should be maintained in the training set. It is difficult to render 

the FNN with qualification recognition ability when all training samples were the 

disqualification cases, as this could deteriorate the generalisation performance of the 

neural network model.  

 

Partitioning Fuzzy Variables  

The fuzzy variables such as "very good", "good", "fair" and "poor" could be used to 

evaluate each attribute of candidate contractors' performance. A marking system was 

initially introduced such that, if the performance of candidate contractor on specific 

criterion was classified as “very good”, the marks would be above 80.  A “good” 

performance means the score on that criterion to be between 60 and 80, a "fair" 

performance means the score is around 40 to 65, and a “poor” performance is below 

50. The initial membership functions for the “very good” and “poor” were determined 

by the Z-type and S-type activation function (equations (4) and equation (6)), and the 

membership functions for the “good” and “fair” were determined the Bell-type 

function as specified in equation (5). 

 

Pre-processing the inputs and outputs 

Before training the neural network, the marks of each contractor (input data) graded 

by the panel member of prequalifiers were normalised and the prequalification 

decisions (output data) were quantified. The following normalisation formula of input 

data was used: 

γσ
µ−=′ x

x                                               (18) 
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where x′ is the normalised mark of the contractors’ performance attribute, x is the 

original mark of the contractors’ performance attribute, σµ  and are the mean and 

standard deviation of the input variables, γ is the parameter controlling the mapping 

range. About 95% of the input variables data falls within [–1,1] range when the input 

variable follows normal distribution and γ is 1.96. In this study, a value of 96.1=γ  is 

used.  

 

The output values of training pairs were assigned as 0 or 1 for the prequalification 

decision belonging to the binary classification, where 0 represents   "disqualified" and 

1 represents "qualified". It can be seen that the derivatives of the logistic function are 

generally very small when values of the logistic function approach are 0 or 1, 

therefore resulting in very slow learning speed when adopting derivative based 

learning algorithms. In order to avoid this slow convergence, 0.05 and 0.95 were re-

assigned for disqualification and qualification respectively (instead of 0 and 1).  

 

Network performance indicator 

The mean absolute percentage error (MAPE), the maximum of absolute percentage 

errors (MOAPE) and the 2R  efficiency were adopted as network performance 

indicators. These indicators are given by the following equations: 
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where p is the serial number of training pairs and P is the total number of training or 

testing pairs. N
p

D
p pqdandpqd are the desired prequalification decisions computed by 

the neural network for the training pair p. pqd  is the mean value of  prequalification 

decisions. It can be seen from the above equations that the lower the values for MAPE 

and MOAPE and the higher the value of R2, the better is the model efficiency. The 

ideal value for MAPE and MOAPE is zero, in which case the value of R2 model 

efficiency index is unity. 

 

Results and Discussion  

The optimum configuration of the GFNN is obtained through trial-and-error 

experiments with different learning rules, hidden nodes, learning rates and momentum 

coefficients. The learning rules applied included: back-propagation (BP), conjugated 

gradient method, hybrid gradient method (BP and conjugated gradient method) (Hu, 

1997) and Quasi-Newton’s method (BFGS) (Fletcher, 1970). The best network was 

found to consist of 18 hidden nodes in one hidden layer (14-18-1) and the hybrid 

gradient method is the best learning algorithm for this case study. The learning rate 

and momentum coefficient are 0.9 and 0.3 respectively. The stopping criterion was set 

such that the root mean square error (RMSE) is less than 0.001. As far as the FNN is 

concerned, the General Delta Rule is chosen as the learning algorithm for the 

simplicity of calculation of derivatives. The learning rate is not fixed but varied 

according to the performance of the objective function. If the objective function 

continues to decrease in consecutive steps, the learning rate would be increased by 
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multiplying a value greater than 1 such as 1.07. Alternatively, it could be decreased 

by multiplying a value lesser than 1 such as 0.93. The structure of the FNN is 14-42-

42-42-1, which means the number of neurons in input layer, fuzzification layer, base 

rule layer, normalisation layer and defuzzification layer are 14, 42, 42, 42 and 1 

respectively. Owing to the difficulties in collecting prequalification cases, the number 

of neurons in the rule layer was not set as very large. Even though the structure of the 

FNN seems much more complicated than the GFNN, the parameters needing to be 

calibrated in the FNN model is less than that of the GFNN model. 

 

The case as shown in Appendix 1 was used to validate the FNN and the GFNN. In 

this test, all 85 training pairs except the 4 pairs in Appendix 1 were used for training 

the FNN and GFNN, and the four cases were used as the testing pairs for evaluating 

the generalisation performance of the FNN and GFNN. The training procedure was 

stopped after the objective function of learning is less than the pre-designed value 

0.001 both in the FNN and GFNN models. Table 2 summarises the results of 

contractor prequalification decisions made by the FNN, the GFNN and the original 

decisions made by the contractor owner. As shown in Table 2, both the FNN and 

GFNN models produce the same contractor ranking orders without much difference in 

model performance (if the models’ performance are only measured by ranking 

orders). This is the same as the orders ranked by the contract owner. If two 

contractors were prequalified, as occurs in the case, the FNN and GFNN models 

would also qualify contractors A and C. The difference of the two models lies in that 

the output of the FNN for contractor B is lower than the output of the GFNN while 

Contractor D was assigned a higher value by the FNN than that by the GFNN. 

Furthermore, the training of the FNN is almost 3 times faster than that of the GFNN.  
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The cross-validation technique is a more accurate method to evaluate model 

performance (Leisch et al, 1998). This technique was also adapted for verifying the 

applicability and performance of the FNN model for contractor prequalification and 

comparing the performance of the FNN and GFNN models. The 85 cases were 

separated into two sets: 75 for training and 10 for testing. The ten testing cases were 

numbered as 4, 16, 27, 35, 39, 42, 56, 64, 74 and 82. Tables 3 and 4 present the results 

of comparisons between the two categories of prequalification cases (training and 

testing) on the networks’ recognition errors in terms of above error criteria. Tables 3 

and 4 show that the FNN model out performed the GFNN model both in training and 

testing phases. In the training phase, it should be noted that the difference in model 

performances between the FNN and the GFNN was very small, and both the FNN and 

the GFNN can learn from the prequalification cases with considerable accuracy due to 

their massive connections between the neurons. However, it is evidenced from Table 

4 as the FNN presented the best overall performance considering the three numerical 

criteria. In terms of MAPE, the FNN model performed better than the GFNN model, 

with 51.4MAPEFNN = , which is significantly lesser than 87.8MAPEGFNN =  (almost 

two times lesser that of the FNN model). The better generalisation performance of the 

FNN model over the GFNN model can be further revealed by MOAPE and R2. The 

maximum absolute percentage error decreased from 28.46% of the GFNN model to 

17.69% of the FNN model and model efficiency R2 increased from 0.9568 of the 

GFNN model to 0.9914 of the FNN model. Some tuned membership functions for the 

subcriteria such as "Relevant Experience & Knowledge", "Understanding of 

Objectives", etc, are shown in Figure 3. Moreover, the FNN model shows better 

training performance over the GFNN model as less training time was needed to reach 

a pre-specified RMSE. The details of the decrease in objective function of the training 
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process with the iteration steps are shown in Figure 4. It is clear that the training of 

the FNN model is on average three times faster than that of the GFNN model.  

 

CONCLUSIONS 

The current practice of contractor prequalification is characterised by the strong 

nonlinearity between contractor’s performance attributes and their corresponding 

prequalification decisions. The uncertainty associated with the assessment of 

contractor’s data and the subjectivity aroused from the prequalifiers as their training, 

background and experience vary considerably. These characteristics require the 

modelling techniques for contractor prequalification to be capable of handling 

nonlinearity, uncertainty and subjectivity. In this research, a FNN model has been 

developed, based on the fuzzy set and ANN theories. It is possible for the FNN to 

identify the fuzzy rules used by the prequalifiers and tune the membership functions 

by utilising neural networks’ learning capability. The FNN model applying to the case 

study of contractor selection in Hong Kong has produced encouraging results. A very 

close fit was obtained during the training phase and a mean absolute percentage error 

of 4.51% was achieved by the FNN model in the cross-validation. The case study also 

reveals the applicability of the GFNN to contractor prequalification. The ranking 

orders as produced by the FNN, GFNN and the actual prequalification cases were the 

same (see Appendix 1) indicating that the neural network approach is a feasible for 

contractor prequalification. The efficiency and effectiveness of both the FNN and 

GFNN models for the defined problem is due to the learning capability of the neural 

networks in highly nonlinear pattern recognition and the generalisation that matches 

the nonlinear nature of the problem. 
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Comparisons of model efficiency in terms of R2, MAPE and MOAPE show that the 

FNN model can achieve significant improvements over the GFNN model, especially 

at the verification stage. Moreover, the training process of the FNN model is much 

faster than that of the GFNN model. Other advantages of the FNN model over the 

GFNN include a higher degree of comprehensibility and an easier way of determining 

the network structure. With the GFNN models, it is more difficult to interpret from 

the network parameters such as the weights and thresholds whilst it is easier to 

interpret from the FNN parameter such as σχ and . These results suggest that the 

FNN model provides a superior alternative to the GFNN model for contractor 

prequalification, in which fuzzy inference rules and linguistic assessments are 

generally applied. By incorporating fuzzy inference, learning and generalisation from 

prequalifiers’ experience, the FNN method has proven to be a practical way for 

resolving the contractor prequalification problem. The initial success of the 

application of the FNN model for prequalifying civil engineering contractors in Hong 

Kong indicates a bright future for its applications in other construction-related 

selection problems. 

 

Finally, the implication of the results from this research is that the FNN model should 

be much more favourable to the practitioners and researchers in contractor 

prequalification when compared with the conventional feedforward neural network. 
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Figure 1. Configuration of the fuzzy neural network 
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Figure 2 Three types of neuron 
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Figure 3 Membership functions 
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Figure 4 Comparisons of learning performance between the FNN model and GFNN 
model 
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Table 1 Case study of Contractor Selection in Hong Kong Project 

 

Criteria and Subcriteria A B C D 

1. Contractors’ Experience     

(a) Relevant Experience & Knowledge 98 95 85 63 

2.Response to the Brief     

(a) Understanding of Objectives 97 95 96 96 

(b) Identification of Key Issues 95 80 84 80 
(c) Appreciation of Project Constraints    & Special 
Requirement 

96 60 82 80 

(d) Presentation of Innovative Ideas 94 60 81 80 

3. Approach to Cost-effectiveness     
(a) Examples & Discussion of Past Projects to 
demonstrate the Contractor's Will & Ability to produce 
Cost-effective Solution 

86 80 81 80 

(b) Approach to achieve Cost-effectiveness on this 
Project 

83 80 62 60 

4. Methodology & Work Programme     

(a) Technical Approach 82 80 81 80 

(b) Work Programme 81 80 60 94 
(c) Arrangement for Contract Management and Site 
Supervision 

84 94 81 80 

5. Staffing     

(a) project Team Organisation Structure 96 98 96 92 

(b) Relevant Experience & Qualification of Key Staff 84 80 97 80 
(c) Responsibility & Degree of Involvement of Key 
Staff 

86 60 80 80 

(d) Adequacy of Professional & Technical Manpower 
Input 

82 60 97 96 



 27 

 
 

Table 2 Neural Network Results on the Testing Prequalification Cases 

Contractor 
Output of 

FNN 
Rank by 

FNN 
Output of 

GFNN 
Rank by 

FNN 

Prequalification 
decisions made  by 

contract owner 

Rank by 
contract 
Owner 

A 0.9476 1 0.9178 1 Qualified  1 

B 0.2586 4 0.3476 4 Disqualified  4 

C 0.9123 2 0.8489 2 Qualified  2 

D 0.4835 3 0.4423 3 Disqualified  3 

 
 
 
 

Table 3 Comparisons Results of Training by FNN and GFNN 
Criteria FNN GFNN 
MAPE 2.89 3.02 

MOAPE 7.87 8.56 
R2 99.68 99.43 

 
 
 
Table 4 Comparisons Results of Validating by FNN and GFNN 

Criteria FNN GFNN 
MAPE 4.51 8.87 

MOAPE 17.69 28.46 
R2 99.14 95.68 
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APPENDIX 1 Evaluations of the candidate contractors’ attributes  
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Contractor D 

 
Relevant projects: 
-Project N 
-Project E 
-Project O 
 
Relevant Geotechnical Works: 
-Not specified 
 
 

63 

 
 
 
Identified objectives of the 
assignment w.r.t. various phases. 
 
 
 

 
95 
 
 
 

Key issues in terms of design of 
highway structures, traffic, 
environment, E&M, landscape, 
geotechnics etc. were identified. 
Appreciation on the steep natural 
terrain. 
 
 
 

80 
 

 Contractor C 

 
Relevant projects: 
-Project  J 
 
 
Relevant Geotechnical Works: 
-Project K 
-Project L 
-Project J 
 

85 

 
 
 
Especially spelt the objectives of 
the assignment. A specific section 
has been provided for geotechnical 
aspect. The description is quite 
comprehensive. 
 
 

96 
 

Key issues in terms of design of 
highway structures, traffic, 
environment, E&M, landscape, 
geotechnics etc. were identified. 
Appreciation on the steep 
topography and natural terrain. 
 
 
 

84 
 
 

 Contractor B 

Relevant projects: 
-Project G 
-Project H 
-Project I 
 
Relevant Geotechnical Works: 
-Project J 
 
 
 

95 

 
 
 
Especially spelt the objectives of 
the assignment and understand the 
importance NAR and SAR.  
 
 
 

 
95 
 

Key issues on different aspects like 
traffic, highway, environmental, 
geotechnical and utilities have been 
identified. Natural terrain hazard 
assessment, construction assess and 
the planned western drainage 
tunnel were highlighted.  
 
 

80 

 Contractor A 

Relevant projects: 
-Project A 
-Project B 
-Project C 
 
Relevant Geotechnical Works: 
-Project A 
-Project D 
-Project E 
-Project F 

98 
 
 
 
 
 Especially spelt the objectives of 
the assignment. The location of 
access road at unstable geological 
and geotechnical features is 
highlighted. The description is 
quite comprehensive. 
 

97 
 

Key issues on different aspects like 
traffic, highway, environmental, 
geotechnical and utilities have been 
identified. Interface issue was also 
especially discussed. Appreciation 
on the slope stability both during 
construction and operational stages. 
Natural terrain hazard is also noted. 
Preliminary assessment of slope 
stability is provided. 

95 

Sub-criteria 

1. Consultants’ 
Experience 

2. Response to 
the Brief 
 
(a) Understandi

ng of 
Objectives 

 
 
 
  
 
 
(b) Identification 
of Key Issues 
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Contractor D 

 
Description of project 
constraints and requirements in 
various aspects including 
geotechnical issue were quite 
comprehensive. 
 
 
 

80 
 
 
Under the present constraints, 
Scott has presented several 
ideas in various aspects 
including geotechnical, 
environmental, and highway 
engineering etc. to produce an 
optimal design. 
 
 
 

80 

 
 
D has quoted a nos. of past 
project to demonstrate their 
ability and experiences in 
achieving cost-effectiveness 
solution such as Project N, O. 
 
 
 

80 

Contractor C 

 
Understood the constraints of 
steep natural terrain and 
existing structure in the vicinity. 
Use of hand-dug caisson is 
suggested. 
 

 
 

82 
 
 
Under the present constraints, 
Mott has proposed 2 
alternatives, one of re-alignment 
of NAR and the other is to 
change the priority of junction 
so that major route will be along 
lower Sha Wan Drive.  
 
 
 

81 

 
 
C has quoted several past 
projects to demonstrate their 
ability and experience in 
achieving cost-effectiveness 
solution. Project J, K and L 
have been used as examples. 
 

 
81 

Contractor B 

 
Appreciation of project 
constraints in various aspect. 
However, the description is 
considered too brief. 
 

 
 
 
 

60 
 

Use of reinforced earth wall, 
panel and nail for steep cut 
slope have been discussed. 
 
 
 
 
 
 

60 

 
 
B has quoted a nos. of past 
project to demonstrate their 
ability  and experiences in 
achieving cost-effectiveness 
solution such as Project G, H. 
Projects on geotechnical works 
like RE wall at Shatin was also 
highlighted. 

80 

Contractor A 

 
Understood the constrains of 
steep natural terrain and 
existing structure in the vicinity. 
Detailed description of soil 
mantle and boulders are given. 
Figures of extents of existing 
features and geology have also 
been presented. Accessibility of 
the site during construction is 
also appreciated. Discussion is 
quite comprehensive. 

96 
Ideas on different aspects such 
as alignment (6 options), 
foundation, slope works etc 
have been presented with 
respect to various construction 
methods. Use of shallow 
foundation or mini-piles have 
been considered in lieu of large 
dia. Bored piles. 

 
94 

 
 
A has quoted several past 
projects to demonstrate their 
ability and experience in 
achieving cost-effectiveness 
solution. Project A, D, C and D 
have been used as examples. 
 
 

86 

Sub-criteria 

2. Response to the Brief. 
(c) Appreciation of Project 

Constraints & Special 
Requirements. 

 
 
 
 
 
 
 
 
(d) Presentation of 
Innovative Ideas 

3. Approach to Cost-
effectiveness 
(a) Examples & Discussion 
of Past Projects to 
demonstrate the consultant’ 
will & Ability to produce 
Cost-effective Solution 
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Contractor D 

D claimed that by their 
management ability and 
existing knowledge and past 
experience, a cost-effective 
solution could be derived. 
Various approach w.r.t. 
technical and management 
aspects were described. A 
specific section for 
geotechnical engineering was 
provided. 

60 

 
 
Technical Approach would 
involve the following aspects: 
-Traffic 
-Highway/Highways structure; 
-Geotechnical 
-drainage- 
-Waterworks 

80 
Program for 4 phases were 
provided. Brief discussion was 
provided. Description of the 
program is quite comprehensive. 

94 
 
General discussion of 
arrangement of contract 
management and site 
supervision was provided. 
 

 
80 

Contractor C 

 
C claimed that they would 
make use of their background 
knowledge of Hong Kong 
practice, SAR’s requirement 
and regulation and highway 
experience to achieve cost-
effectiveness solution. 
However, the description in 
geotechnical aspect is 
considered too general. 

62 

 
 
Technical Approach would 
involve the following aspects: 
-Traffic 
-Highway/Highways structure; 
-Geotechnical 
-drainage- 
-Waterworks 

81 
Program for 4 phases (Review, 
Design, Tender and 
Construction) were provided. 
Brief discussion was provided. 

60 
 

General discussion on 
responsibility of supervision in 
chief  
(contract admin.) and resident 
site staff (work supervision). 
 

81 

Contractor B 

 
 

B claimed that by their project 
management and technical 
ability, a cost-effective solution 
could be derived. Various 
engineering aspects such as 
programming and form of 
contract have been specially 
described with respect to cost-
effectiveness. 

80 

 
 

Technical Approach would 
involve the following aspects: 
-Traffic 
-Highway/Highways structure; 
-Geotechnical 
-drainage- 
-Waterworks 

80 
Programs for 4 phases (Review, 
Design, Tender and 
Construction) were provided. 
Brief discussion was provided. 

80 
 
Discussion on contract 
management, site Supervision 
with respect to various aspects 
has been provided quite in 
detail. 
  

94 

Contractor A 

 
 
 
A has elaborated approaches on 
different aspects to achieve cost-
effectiveness, For example, use 
of alternative foundation and 
rock support method has been 
discussed. 
 
 

83 

 
 
Technical Approach would 
involve the following aspects: 
-Traffic 
-Highway/Highways structure; 
-Geotechnical 
-drainage- 
-Waterworks 

82 
Program for 4 phases (Review, 
Design, Tender and 
Construction) were provided. 
Brief discussion was provided. 

81 
 

General discussion on 
responsibility of construction 
management, site safety and 
supervision was provided. 
 

84 

Sub-criteria 

3. Approach to Cost-
effectiveness 
 (b) Approach to achieve 
Cost-effectiveness on this 
project. 

4. Methodology & Work 
Program. 
(a) Technical Approach. 
 
 
 
 
 
 
(b) Work Program. 
 
 
 
 
 
(c) Arrangement for 
Contractor  Management 
and Site Supervision. 
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Contractor D  

Staff organisation charts were 
provided. Description of the key 
posts is considered adequate. 
 
 

92 
Key Staff 
-staff A (PD) over 27 yrs.. exp. 
in civil engineering projects. 
-Staff B (TD) 20 yrs.. 
experience 
-Staff C (PM) 15 yrs.. 
experience 
Geotechnical: 
Team Leader: MICE, MHKIE, 
15 yrs. exp. 
GE: RPE(G),15 yrs. and 7 yrs. 
exp. 
Eng. Geologist: 20 and 21 yrs. 
exp. 
Hazard Assessor: 15 yrs.. exp. 

80 
Input: PD (12%); PM (12%), 
Geotechnical Team Leaders 
(30%); others 
(30%+40%+25%+5%+20%) 

80 
CV of 47 nos. professional were 
submitted. 
-Professionals input: 285.5 man 
weeks 
-Technical input: 156 man 
weeks 

96 
 

Contractor C 

Staff organisation charts were 
provided. It was mainly divided 
into two groups viz. Project 
management and project 
coordination.  

96 
Key Staff 
-staff A (PD) over 20 yrs. exp. 
in civil engineering projects. 
-Staff B (QA manager) 10 yrs. 
exp. 
-Staff C (PM) 10 yrs. experience 
Geotechnical: 
Team Leader: RPE (G), 24 yrs. 
exp. 
GE: RPE(G), 19 yrs., RPE(G), 
17 yrs. exp. and MHKIE,10 yrs. 
exp. 
Eng. Geologist: 10 yrs. exp. 

97 
Input: PD (6.3 man weeks); PM 
(1.20 man weeks), Geotechnical 
Team Leaders (47 man weeks); 
others (23 man weeks) 
 

80 
 
CV of 40 nos. professional were 
submitted. 
-Professionals input: 252.1 man 
weeks 
-Technical input: 168 man 
weeks 

97 
 

Contractor B 

Staff organisation charts were 
provided. Description of 
responsibility of key posts is 
considered adequate. 
 

98 
Key Staff 
-staff A (PD) over 27 yrs. 
experience in civil & highway  
engineering projects. 
-Staff B (PM) 18 yrs. experience 
 
Geotechnical: 
Team Leader: RPE (G), 22 yrs. 
exp. 
GE: MHKIE (Geo) 22 yrs. and 
RPE(G) 20 yrs. exp. 
Eng. Geologist: 11 yrs. exp. 

80 
 
nput: PD (3.2 man weeks); PM 
(12 man weeks), Geotechnical 
Team Leaders (0.86 man 
weeks); others (10.55 man 
weeks) 
 

60 
CV of 32 nos. professional were 
submitted. 
-Professionals input: 144.11 
man weeks 
-Technical input: 49.1 man 
weeks 

 
60 

 

Contractor A 

Staff organisation charts were 
provided. Organisation charts 
and description are considered 
adequate. 
 

96 
Key Staff 
-staff A (PD) over 25 yrs. 
experience in civil engineering 
projects. 
-Staff B (PM) 15 yrs. experience 
-Staff C (PC) 15 yrs. experience 
Geotechnical: 
Team Leader: RPE (G), 24 yrs. 
exp. 
GE: 16 yrs. and 7 yrs. exp. 
Eng. Geologist: 10 yrs. exp. 
Hazard Assessor: 10 yrs.. exp. 

84 
 
Input: PD (3 man weeks); PM 
(20 man weeks), Geotechnical 
Team Leaders (3 man weeks); 
others (14 man weeks) 
 

86 
 

CV of 31 nos. professional were 
submitted. 
-Professionals input: 172 man 
weeks 
-Technical input: 160 man 
weeks 
Based on TDD’s memo of 19 
Aug. 1999. 

82 

Sub-criteria 

5. Staffing 
(a) Project Team 
Organisation Structure 
 
 
 
(b) Relevant Experience & 
qualifications of key staff. 
 
 
 
 
 
 
 
     
 
 
 
 
(c) Responsibility & Degree of 
Involvement of Key Staff 
     
 
 
 
 
(d) Adequacy of Professional 
& Technical Manpower Input 
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