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Abstract 

We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used 

the bootstrap method to determine uncertainties associated with the estimated vertex radii of 

curvature and asphericities of five different models. Three existing models were investigated 

including one that uses two separate conics for the anterior and posterior surfaces, and two 

whole lens models based on a modulated hyperbolic cosine function and on a generalized conic 

function. Two new models were proposed including one that uses two interdependent conics 

and a polynomial based whole lens model. The models were used to describe the in-vitro shape 
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for a data set of twenty human lenses with ages 7 to 82 years. The two-conic-surface model (7 

mm zone diameter) and the interdependent surfaces model had significantly lower merit 

functions than the other three models for the data set, indicating that most likely they can 

describe human lens shape over a wide age range better than the other models (although with 

the two-surfaces-conic model being unable to describe the lens equatorial region). Considerable 

differences were found between some models regarding estimates of radii of curvature and 

surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens 

model had the best precision in determining the radii of curvature and surface asphericities 

across the five considered models. Most models found significant increase in anterior, but not 

posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but 

with the asphericities usually being positive and not significantly related to age. As the 

interdependent surfaces model had lower merit function than three whole lens models, there is 

further scope to develop an accurate model of the complete shape of human lenses of all ages. 

The results highlight the continued difficulty in selecting an appropriate model for the 

crystalline lens shape. 
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1. Introduction 

  

If we are to better understand the optical properties of the human crystalline lens, we must be 

able to model it accurately. Its two critical properties are shape and internal distribution of the 

gradient refractive index. In this paper, we explore different ways we can describe the lens 

shape mathematically and apply this to a set of real lens measurements. A summary of previous 

in-vivo and in-vitro investigations of changes in the surface parameters as a function of age is 

provided in Table 1 (Brown, 1974; Smith, Pierscionek, & Atchison, 1991; Pierscionek, 1993; 

Pierscionek, 1995; Glasser & Campbell, 1999; Dubbelman & Van der Heijde, 2001; Koretz, 

Cook, & Kaufman, 2001; Koretz, Cook, & Kaufman 2002; Koretz, Strenk, Strenk, & 

Semmlow, 2004; Manns, Fernandez, Zipper, Sandadi, Hamaoui, Ho, & Parel, 2004; Schachar, 

2004; Strenk, Strenk, Semmlow, & DeMarco, 2004; Dubbelman, Van der Heijde, & Weeber, 

2005; Jones, Atchison, Meder, & Pope, 2005; Rosales, Dubbelman, Marcos, & van der Heijde, 

2006; Rosen, Denham, Fernandez, Borja, Ho, Manns, Parel, & Augusteyn, 2006; Urs, Manns, 

Ho, Borja, Amelinckx, Smith, Jain, Augusteyn, & Parel, 2009). It includes regression equations 

in which surfaces have been fitted as conics (see equation (1)). Where no age dependence was 

found, mean values are shown. 

In-vivo investigations of lens surface shape have involved phakometry, Scheimpflug 

photography, and magnetic resonance imaging (MRI). While the first two types of studies are 

subject to optical distortions that must be taken into account, MRI is free of optical distortions 

and can provide reliable information on lens shape provided that proper precautions are taken 

(Atchison, Jones, Schmid, Pritchard, Pope, Strugnell, & Riley, 2004). However, resolution is 

limited by pixel size and by eye movements during measurement. The studies show that the 

vertex radii of curvature of unaccommodated lens surfaces decrease with age, but at a greater 

rate for anterior than for the posterior surfaces (Brown, 1974; Dubbelman & Van der Heijde, 
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2001; Koretz et al., 2001). There is a wide range of estimates of surface asphericity Q when 

surfaces are modeled as conics (Brown, 1974; Dubbelman & Van der Heijde, 2001; Koretz et 

al., 2001). 

For the in-vivo studies, the radii of curvature decrease with accommodation, but more so for 

the anterior than for the posterior surface (Brown, 1974; Koretz et al., 2002; Dubbelman et al., 

2005; Rosales et al., 2006). Dubbelman et al. (Dubbelman et al., 2005) found changes in 

anterior surface asphericity as a function of accommodation without any age dependence, but 

did not determine posterior surface changes in asphericity because of poor reliability.  

In-vitro investigations of surface shape have involved photography, corneal topographers, 

shadow photogrammetry and MRI. Except for the study of Pierscionek (Pierscionek, 1993; 

Pierscionek, 1995) the studies in Table 1 involved unstretched lenses. These lenses were 

expected to be near the maximum state of accommodation as changes in lens power with age 

and differences in power between unstretched and fully stretched lenses approximately match 

the decline in accommomodation amplitude with age (Fisher, 1973; Glasser & Campbell, 1998; 

Jones et al., 2005). There are much wider ranges of radii of curvature and asphericities in these 

studies than those occurring for the in-vivo lens studies. Only a few of the in-vitro studies found 

significant age trends, mainly with the surfaces flattening with increase in age (Glasser & 

Campbell, 1999; Rosen et al., 2006) although one study found slight steepening of the anterior 

surface (Schachar, 2004)(Fig. 1a). Although not shown in Table 1, stretching lenses decreases 

the power of lenses young enough to be capable of changing shape (Glasser & Campbell, 1998) 

and hence increases the radii of curvature of surfaces. Two studies have reported asphericities 

of unstretched lenses, finding very different mean values, but with no age dependence (Manns 

et al., 2004; Rosen et al., 2006)(Fig. 1b).  

While there is general agreement on trends, at least for the in-vivo investigations, different 

studies often gave very different numerical values for radii of curvature and asphericities. These 
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differences may be real and occur because of limited sample sizes taken from a population with 

large variations in values. However, the differences may not be real but arise from other sources 

such as inadequate modeling. Lens surfaces are not likely to be exact conics, and so the type of 

equation used to describe the surface shape and the amount of surface used will affect curve 

fitting. 

Differences between various studies can also arise from measurement error, for which there 

may be many sources. Not one of the above studies provided a detailed error analysis of their 

procedures and corresponding measurement uncertainties on individual values.  Both inter-

subject variation effects on small samples and data analysis procedures (e.g., area of lens used) 

could have more influence on surface asphericity than on radius of curvature. 

We have access to the digitized edges of 20 in-vitro lenses from a nuclear magnetic 

resonance imaging (MRI) study of lens shape and refractive index distribution (Jones et al., 

2005) achieving a pixel size of 0.08 mm in-vitro. The ages of these lenses ranged from 7 to 82 

years of age. Because they are in-vitro, they were in accommodated states. 

As mentioned above, MRI edge profiles are not distorted by any intervening optics as in the 

case of techniques such as Scheimpflug photography. The main sources of error in MRI 

imaging are the geometric linearity of the imaging process (which is determined by the 

homogeneity of the static magnetic field and the linearity of the magnetic field gradients used 

for spatial resolution), and the error in identifying the lens edge, which may be slightly fuzzy 

because of low contrast, low signal-to-noise ratio, and the finite size of the sampling voxels. We 

use a statistical bootstrap technique to estimate the uncertainties arising from these errors. 

Using the lens data, we explore lens shape by two approaches. The first approach is to 

describe the two lens surfaces by separate equations. These may be independent or dependent, 

with the former having been used in previous studies. The second approach is to describe lens 

shape by single equations. 
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 We present a number of equations. Whichever is the best equation depends upon 

application. Accuracy of fit is an important criterion, but if two or more similar equations have 

similar accuracy, other criteria must be considered. If we want to estimate lens power, we 

choose an equation that readily provides vertex radii of curvature. If we want to estimate the 

aberration contribution, we need an equation that also provides a surface asphericity or allows 

conventional ray tracing. Another criterion is to primarily give a good overall anatomical shape 

and give the optics secondary importance. 
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2. Crystalline lens shape modeling 

 

2.1 Initial analysis of surface data 

 

We used edge co-ordinates obtained by Jones et al. (Jones et al., 2005) from MRI derived 

two-dimensional refractive index maps for a set of 20 lenses. Lenses were removed within 

24hrs post-mortem after which the lenses were stored in AAH with an indicator to monitor 

lactate and the medium was changed regularly to ensure the lenses remained in good 

condition. MRI measurements were performed between 2 and 5 days post-mortem. The use 

of the refractive index maps (rather than the raw grey scale MR images) eliminated image 

shading (e.g., due to static and RF field inhomogeneities), facilitating the use of a simple 

thresholding method (written in MATLAB) for determining the lens edges(Jones et al., 

2005). The surfaces were uniformly sampled in the Y-direction at about 80 points. We used a 

simple routine to eliminate tilt. The assembly of surface points was least-squares fitted to a 

straight line. If a lens is correctly orientated (and symmetric about the optical axis), the slope 

of the line is zero. The computed slope angle was taken as the angle of tilt and the lens edges 

rotated appropriately. 

 

2.2 Merit function and bootstrapping 

 

We optimized surface fits by minimizing the sum of squares of the distances between each 

data point and the curve, measured along the normal to the curve (orthogonal least squares) 

(Ahn, Rauh, & Warnecke, 2001) The optimization used to estimate the merit function, MF = 

SSEOrt (sum of squared errors), is the Conjugate Direction method. (Press, Flannery, Teukolsky, 

& Vetterling, 1989) To evaluate the statistical performance of the estimated radii of curvature 
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and asphericities, a non-parametric bootstrap method was used (Efron & Tibshirani, 1993; 

Zoubir & Iskander, 2004). In the method the residuals, that are normal to the surface between 

the given estimated lens shape and the original data, were first calculated. The residuals were 

then detrended (Efron & Tibshirani, 1993; Zoubir & Iskander, 2004). A set of bootstrapped 

residuals was then generated by resampling with replacement from the original set of residuals, 

assumed to be independent and identically distributed, by putting a probability mass function 

1/N, N being the sample length, at each observation.  A new lens shape was then created by 

adding the resampled residuals to the originally estimated lens shape function. The 

orthogonality of the residuals to the lens shape function was maintained. A number of B = 100 

bootstrap replications was chosen as this is a sufficient number to calculate standard errors 

(Tibshirani, 1988). The bootstrap procedure simply simulates multiple acquisitions of the 

original lens data. 

 

2.3 Lens shape in terms of two independent conic equations (two-conic-surface model) 

 

The most commonly used shape for describing lens (and corneal) shapes is the conic, 

described in the Y-Z section by the equation 

02)1( 22  RZZQY         (1) 

where Y is the radial distance from the surface vertex along the vertex plane, Z is the surface 

sagitta, R is the vertex radius of curvature, and Q is the conic asphericity. An alternate form of 

expressing the conic is 

22

2

)1( YQRR

Y
Z


         (1a) 

The radius of curvature TR at point ),( ZY  is given by 

  22/322 RQYRRT            (1b) 
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The simple equations (1) and (1a) provide vertex radii of curvature and asphericity, and predict 

power and aberrations. As an example, the more negative or less positive the asphericity, the 

more negative or less positive is the spherical aberration.  

However, conics are not ideal for two reasons. Firstly, Q is often more negative than −1 

(Table 1), in which case the lens surface cannot smoothly join at the equator. Secondly, because 

the real surfaces are not exact conics the estimates of R and Q depend on the diameter over 

which the data are fitted. 

 In a preliminary study to estimate the influence of zone diameter, we fitted equation (1) 

to each surface of the 20 in-vitro lenses over central zones of 3, 4, 5, 6, 7 and 8 mm diameter. In 

general, the merit functions increased with increase in zone diameter, indicating fitting was 

becoming poorer (Fig. 2). However, the uncertainties for the radii and asphericities for the 

smaller zone diameter were high, indicating that the parameters were sensitive to edge 

digitization noise. At zone diameters of 6 mm and higher, the mean ratio of uncertainty to 

radius reduced to less than 10% (Fig. 3).  To balance the best merit function, favored by small 

zones, and uncertainties, smaller at larger zones, we compromised at a 7 mm zone diameter 

where the uncertainties in radius have settled to less than 5%. Fig. 4 shows the fits for one lens 

and Table 2 shows the merit functions, radii of curvature and asphericities of the lenses. 

We investigated fitting the 20 lenses to either two connected equations or to single equations 

that fit the whole lens, rather than just a central zone. In all cases, we have a predicted vertex 

radius R, but obtaining an asphericity Q is not always possible. In all cases, we compare the 

predicted radii of curvature with those from the 7 mm zone values shown in Table 2.  
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2.4. Lens shape in terms of two interdependent equations 

  

We can improve the fit by modifying the conic. In optical design, a spherical or conic surface 

is often modified, in order to change its aberrations, by adding “figuring” terms of the form

n
nYf 2 , for ,4,2n  to equation (1a) where nf are the figuring coefficients. However, for 

describing the whole lens shape, modifying equation (1) by adding figuring terms is not the best 

approach because at the equator slopes must be zero. This cannot occur with a figured form of 

equation (1a), unless there is an infinite number of figuring coefficients. A better approach is as 

follows. First, we express equation (1) in the form 

22 )1(2 ZQRZY           (2) 

Second, we add extra figuring higher order terms for Z to give        

 5
3

4
2

3
1

22 )1(2 ZZZZQRZY            (3) 

With more figuring coefficients the fit accuracy improves. Of practical importance is the 

convergence of the process, that is, how many figuring coefficients we need to make a suitably 

accurate fit. This depends upon how well the actual lens surface resembles a conic. The better 

the fit, the fewer terms will be required. For the present, we will stop at the 5Z term. At the 

anterior and posterior surfaces we have  

5
13

4
12

3
11

2
11

2 )1(2 ZZZZQZRY             (4a) 

5
23

4
22

3
21

2
22

2 )()()())(1()(2 ZdZdZdZdQZdRY     (4b) 

where the subscripts 1 and 2 denote the anterior and posterior surfaces, respectively, and d is the 

lens thickness. We must satisfy two conditions. First, the surfaces must have the same value of 

Y at the equator. Setting (Z, Y) at the equator to (a, ) we have 

5
13

4
12

3
11

2
11

2 )1(2 aaaaQaR          (5a) 

5
23

4
22

3
21

2
22

2 )()()())(1()(2 adadadadQadR     (5b) 
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Second, we need a smooth joint at the equator. Differentiating equations (4) and setting 

0dZdY when Z = a, gives 

4
13

3
12

2
1111 543)1(220 aaaaQR          (6a) 

4
23

3
22

2
2122 )(5)(4)(3))(1(220 adadadadQR     (6b) 

However, satisfying the two conditions does not ensure complete smoothness of the join. This 

can be done only by requiring all derivative orders to be the same for both surfaces at the 

equatorial joint. Although the first derivative must be zero, the higher derivates may have non-

zero values. If we consider the second derivative d2Y/dZ2, from equations (4a and 4b) we have 

3
13

2
12111

222 20126)1(22)( ZZZQdZYdYdZdY    

3
23

2
22212

222 )(20)(12)(6)1(22)( ZdZdZdQdZYdYdZdY     

At the equator 0dZdY , Z = a and Y =  and these equations reduce to  

3
13

2
12111

22 1063)1( aaaQdZYd            (7a) 

3
23

2
22212

22 )(10)(6)(3)1( adadadQdZYd           (7b) 

These two second order differentials must be equal, so now we have 

3
23

2
22212

3
13

2
12111

)(10)(6)(3)1(

1063)1(

adadadQ

aaaQ








                      (8) 

We have ten unknowns and only four equations. To solve the problem, we first find values for 

the two pairs of R and Q, by least squares fitting, over the central 7 mm of the surface.  This 

will leave us with six unknowns and four equations. For the moment, neglecting the values of 

v13 and v23, we have four equations and four unknowns and we can separate the four equations 

into two independent pairs. For the anterior surface, equations (5a) and (6a) are 

2
11

24
12

3
11 )1(2 aQaRaa           (9a) 

aQRaa )1(2243 11
3

12
2

11          (9b) 

For the posterior surface, the equivalent equations are, from equations (5b) and (6b) 
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2
22

24
22

3
21 ))(1()(2)()( adQadRadad       (10a) 

))(1(22)(4)(3 22
3

22
2

21 adQRadad         (10b) 

Solutions to these equations give only four figuring coefficients (two per surface), which limits 

the potential accuracy of fit. Initially we introduced a third figuring coefficient and then 

neglected it, because at the time, there did not appear to be a way of finding its value. To find 

the two values of third figuring coefficients (one for each surface), we introduce the 

optimization procedure (described earlier) which refines the values of R, Q, v1 and v2. The merit 

function for the optimization procedure includes adherence to equations (8), (9) and (10). Table 

3 gives the results of the first lens shown in Table 2. 

 

2.5. Whole lens shape in terms of a single equation 

 

To the best of our knowledge there have been only two publications presenting single 

equations for describing the whole lens surface, those of Kasprzak (Kasprzak, 2000) and 

Kasprzak and Iskander. (Kasprzak & Iskander, 2006) Recently, Urs et al. proposed a one curve 

lens model simultaneously describing halves of anterior and posterior surfaces but this model is 

not considered here as it is essentially a polynomial approximation to the model of Kasprzak 

(Kasprzak, 2000).  

 

2.5.1. Modulated hyperbolic cosine whole lens model 

 

The whole lens equation has the form (Kasprzak, 2000) 

() = A() + P() – d/2             (11) 

where () is the distance from the lens centre in the direction  and has anterior and posterior 

contributions given by 
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A() = (aA/2){cosh[(− )bA] – 1}{1 – tanh[m(sA − )] }+ d/2                   (11a) 

P() = (aP/2){cosh[bP] – 1}{tanh[m(sP − )] + 1}+ d/2                     (11b) 

The parameters include d the lens thickness, m a dampening factor so that Eq.s (11a) and (11b) 

dominate at the anterior and posterior surfaces, respectively, and aA and aP, bA and bP, and sA 

and sP. The function has eight independent variables: d, m, aA, aP, bA, bP, sA and sP. Equation 

(11) is effectively two equations, one for the anterior and one for the posterior surface, that are 

combined by the damping factor m. 

The anterior and posterior radii of curvature are given by Kasprzak's Eq. 8: 

RA = (d/2)2/(d/2 − aAbA
2),   RP = (d/2)2/( d/2 − aPbP

2)   (12) 

Kasprzak did not give an equation for the asphericity Q in terms of the above parameters and 

it appears that no exact equation is possible. All that can be done is an approximation by 

matching the conic with the hyperbolic cosine function. As Kasprzak did not suggest a method 

of finding the values of the above eight parameters from a set of digitized lens edge data, we 

have resorted to optimization.  The results for lens 1 are given in Table 4. 

 

2.5.2. Generalized conic whole lens model 

 

Kasprzak and Iskander (Kasprzak & Iskander, 2006) offered the generalized conic equation 

(their Eq. 10) 

0)(22),( 424222224  YCBAZCYAZAZZYF        (13a)   

which we have simplified to 

0),( 4
3

22
2

2
1

4  YcZYcZcZZYF       (13b)  

They gave the following for the anterior vertex radius of curvature (their Eqs. (5) and (8)) 

])(2[1 2CBAR           (14a) 

and in terms of the c coefficients, we have 
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2/31 ccR            (14b) 

They did not give an equation for the asphericity Q, but we derived one in Appendix 1 as 

14 33
132  RcccQ                    (14c) 

They also did not provide any solutions for the posterior surface, but the corresponding values 

of R and Q can be found by turning the lens around and reanalyzing the data. This equation can 

be solved using linear least squares. However, we used this method to find an initial solution 

and then used the optimization procedure for orthogonal least squares described earlier. The 

results for lens 1 are given in Table 5. Two merit functions are determined, one with the lens 

reversed to obtain the posterior surface parameters.  These are generally similar and we have 

used their average in the Table and in further analysis of the lenses. 

 

2.5.3. Another solution: polynomial based whole lens 

 

We start with the premise that to a first approximation, in two dimensions the lens has a 

similar shape to the ellipse  

1)( 2222  bYaaZ         (15) 

where a and b are semi-diameters along the Z and Y directions, respectively. We assume that we  

can make this ellipse asymmetric by a non-linear stretch in the Z direction with the 

transformation 

2ZZZ   

so that equation (15) becomes 

1)( 22222  bYaaZZ          (16) 

If we allow a similar stretch in the vertical direction, we have 

1)()( 222222  bYYaaZZ         (17) 
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We expand the brackets, dropping the odd power of Y because the lens model is  symmetrical 

about the optical (Z) axis, to give 

0)/()/2()/1(

)/()/2(])21([)/2(
423222

423222





YbYbYb

ZaZaZaaZa




 

Because this model is simple, we take a more general solution by allowing the coefficients to be 

independent, rather than connected as above. We can express the final result in the more general 

form 

0),( 4
4

3
3

2
21

4
0

2  ZZZZYYZYF     `  (18)  

where we have divided through by the coefficient of 2Y . Equations for the vertex radii of 

curvature and asphericity of the anterior surface are 

2/1R              (19a) 

12
102  Q                (19b)  

To find corresponding values of the posterior surface, the v coefficients are first altered using 







4

,)1(
n

kn

kn
nk

nk
k dC  4,3,2,1k        (20) 

where k
n C  is the combination symbol and the vertex radii of curvature and asphericity of the 

posterior surface are obtained as for the anterior surface, but with v' coefficients from Eq. (20) 

replacing the v coefficients in Eq. (19). As with the preceding Kasprzak and Iskander equation, 

the v coefficients can be found by a linear least squares solution. But once again, this was 

regarded as an initial solution and an optimization process was used to determine final values in 

an orthogonal least squares sense.  The results for lens 1 are given in Table 6. 

 

2.6. Further generalisation 

The above models can be generalised by assuming that the lenses are not aligned with the 

optical axis. In such a case, three additional parameters in terms of the lateral shift (x,y) and the 
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rotation angle of the lens surface are included in each model (Kasprzak & Iskander, 2006). Such 

a generalised representation would avoid the lens tilt correcting procedure described in section 

2.1 and could also lead to a better fit to the data. However, at the same time, the additional three 

parameters could lead to a less stable optimisation procedure making it prone to stop at local 

minima. Hence, in our work we have invoked the principle of parsimony and pre-corrected the 

lens tilt to limit the number of parameters to be estimated in each of the models. 
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3. Group results 

 

The five models of lens shape were used to analyze the 20 in-vitro lenses, referred to earlier, 

with comparisons between the methods and assessment of change in shape with age. 

 

3.1. Comparison of methods 

 

Figures 5−9 show the merit functions, vertex radii of curvature and surface asphericities as a 

function of lens number. For each parameter, the lenses were arranged according to the order in 

Table 1 (in order of increasing age).  

For the merit function (Fig. 5), generally the interdependent surfaces model has the lowest 

values (mean 0.0019 mm2, standard deviation 0.0007 mm2), followed closely by the two conic 

surfaces model (0.00220.0014 mm2), and then by the modulated hyperbolic cosine whole lens 

model (0.00310.0017 mm2), our polynomial based whole lens model (0.00360.0015 mm2) 

and the generalized conic whole lens model (0.00380.0017 mm2). The interdependent surfaces 

model and the two conic surfaces model are significantly superior to the other models and the 

modulated hyperbolic cosine whole lens model is significantly better than the generalized conic 

whole lens model (paired t-tests, p ≤ 0.001) at least for this data set.  

As expected, the patterns for the two conic surfaces and the interdependent surfaces models 

are similar because the second model is an extension of the first model. Both sets are based 

upon conics. The patterns for the modulated hyperbolic cosine and generalized conic whole lens 

models are also similar despite obvious functional differences between the models. 

Fig. 6 shows the anterior surface vertex radii of curvature. There are considerable differences 

between the different models, with the modulated hyperbolic cosine whole lens model showing 

the most extreme variations, with some particular high values (off-scale in the figure). 
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Considerable differences between models are also features of the posterior vertex radii of 

curvature and of the surface asphericities in Figs. 7−9. Fig. 7 shows the anterior surface 

asphericities; the most extreme asphericities are provided by the interdependent surface model. 

Fig. 8 shows the posterior surface vertex radii of curvature; the different models give similar 

results apart from a few large differences. Fig. 9 shows the posterior surface asphericities. 

 

3.2. Age trends 

  

Table 7 shows the trends of the radii of curvature and asphericity with age according to the 

models. For the anterior radius of curvature, four out of five models show increase with age, 

consistent with most of the literature and with two of three previous literature results (Fig. 1a). 

If the three extreme results beyond 20 mm are removed for the modulated hyperbolic cosine 

whole lens model, it shows a significant increase with age also, although at about twice the rate 

of the other models. 

The anterior asphericities for most lenses are positive with all methods (means are +2 to +7 

across the age range and significantly different from zero). The generalized conic whole lens 

model and the polynomial based whole lens model show age dependence. The two papers in the 

literature have mean values of +3 and −1, with the first being accompanied by age dependence 

(Manns et al., 2004; Rosen et al., 2006). 

For the posterior radius of curvature, only the interdependent surfaces model shows 

significant age dependence with lenses becoming flatter with increasing age; the regressions for 

the other models show a similar trend with probabilities of the slopes being significantly 

different from zero ranging from 0.12 to 0.50. Two of the three papers in the literature find no 

age dependence, with Glasser and Campbell (1999) finding a small quadratic dependence and 

Manns et al (2004) finding an increase in radius of curvature with age (Fig. 1a).  
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For the posterior surface asphericity, there is no age dependence. The means range from −0.2 

to +1.5, and only the generalized conic whole lens model has a mean significantly different 

from zero. The two papers in the literature have mean values of −2 and −1, with no age 

dependence (Fig. 1b).  
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4. Discussion and conclusions 

 

To describe surface shapes of human lenses, in most previous studies the front and back 

surfaces have been fitted separately with conics across particular diameters of the surfaces and 

no account has been taken of uncertainty in measurements. We found that the resulting vertex 

radii and asphericities depended upon the diameter of the central zone fitted, indicating that the 

central region of the lens is not well described by conics. As a result, the size of the diameter of 

the zone fitted affect the results, putting some doubt on the reliability of previously published 

conic fittings. We could only conclude that the lens surface would be better fitted by more 

complex models able to describe the shape of the whole lens rather than only some optically 

relevant zone. To explore this issue, we fitted the lens with four additional models and 

compared the goodness of fit. The models included two recently proposed models by Kasprzak 

(Kasprzak, 2000) and by Kasprzak and Iskander (Kasprzak & Iskander, 2006), and two new 

models. The latter include a model in which there is interdependence between the two surfaces 

and a whole lens model based on a polynomial. While using these models we included 

estimates of uncertainty fit using the bootstrap. The quality of the fit, particularly in the regions 

near the equator, was aided by procedures in which fits were made along normals to the surface 

rather than parallel to the optical axis of the lenses.  

For the set of in-vitro lens data to which we had access (Jones et al., 2005), the two conic 

surfaces model (7 mm zone diameter) and the interdependent surfaces model had considerably 

and significantly lower merit functions than the other three models, indicating that most likely 

they can describe human lens shape better than the other models (although with the two conic 

surfaces model not being able to describe the lens equatorial region). On the other hand, 

bootstrap analysis showed that the hyperbolic cosine model of Kasprzak and the new 

polynomial based whole lens model are characterized with the best precision in determining the 
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crystalline lens parameters. The trade-off between minimizing the unknown bias and the 

estimated merit function highlights the difficulty in determining the best parametric model for 

the crystalline lens shape.  

Considerable differences were found between some models regarding estimates of radii of 

curvature and surface asphericities. As the interdependent surfaces model gave the lowest merit 

functions, it seems that there is still scope for finding a single equation that fits the whole 

human lens well. 

Some variation between models was found when assessing age related changes for in-vitro 

lenses. Most models showed increase in anterior surface radius of curvature with age, which is 

in line with two of four papers in the literature (Fig. 1a), with another paper failing to show a 

change and one showing a significant decrease – this latter paper is distinct in the small inter-

lens variation compared with other in-vitro studies (Schachar, 2004). All but one model show 

no change in posterior radius of curvature with age, which again is in line with two of four 

papers in the literature (Fig. 1a). The models show a wide range of estimates of asphericity and 

dependences with age, with surprising the model with the lowest merit function (the 

interdependent surfaces model) showing the greatest fluctuations. Two out of four models show 

the anterior surface asphericity becoming more positive with age (and with asphericity 

generally being positive), while no models show age dependence for the posterior surface 

asphericity and with only one model finding it significantly different from zero. Two previous 

studies of in-vitro surface asphericity gave significant means, three of which were slightly 

negative (Fig. 1b) (Manns et al., 2004; Rosen et al., 2006). 

We considered the effect that the different lens models would have on the determination of 

surface power. To do this, we used refractive indices for the aqueous/vitreous and the lens 

surface of 1.336 and 1.371, respectively (Jones et al., 2005). The average power is 9.4D, and 

is in line with our previous estimate that the majority of lens power resides in the gradient 
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index (Jones et al., 2005). All models predict significant decreases in surface power with 

increasing age (linear regression, p < 0.01), varying from 2.4 D to 5.0 D. 

By giving us measures of the uncertainties in parameters, the bootstrapping procedure has 

shown that the asphericity is much more sensitive to noise in the original data than is the vertex 

radius of curvature. The accuracies of the models cannot be inferred from the real data, unless 

some kind of an artificial lens with known geometry was imaged using MRI. The use of 

simulated data could indicate the robustness of a given model when the data is generated under 

a different model. However, such analysis would obviously be limited to the few considered 

models. In the case when the true model is unknown, the bootstrap analysis of the precision 

seems to be more appropriate. 

It would be good to apply these methods to the data for in-vivo methods, but it is probably 

not reasonable to do this as yet because of the shortcomings of methods in which the lens is 

imaged by the cornea, such as the Scheimpflug method, or by the limited resolution of 

magnetic resonance imaging. 

As mentioned earlier, the lenses are presumably in shapes similar to those near the limit of 

their accommodative ranges. In the unaccommodated state, the lens of the young eye 

contributes negative spherical aberration (Artal, Guirao, Berrio, & Williams, 2001) and this 

increases as the eye accommodates eg (Atchison, Collins, Wildsoet, Christensen, & 

Waterworth, 1995; Cheng, Barnett, Vilupuru, Marsack, Kasthurirangan, Applegate, & 

Roorda, 2004; Singh, Atchison, Kasthurirangan, & Guo, 2009). However here we have found 

some models indicating positive asphericity which would tend to give positive spherical 

aberration to the lens. The most likely reason for why the lenses do not contribute positive 

spherical aberration is the dominance of the gradient index of the lenses, not only for power 

but also for aberration. Smith & Atchison (2001) have provided some theoretical evidence 
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that the gradient index distribution can simultaneously give positive power and negative 

spherical aberration. 
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Figure captions 

  

Fig. 1. Linear fits of a) vertex radii of curvature and b) surface asphericity as a function of age 

from recent in-vitro studies. Where regressions are not significant, means are shown. B) 

includes full data for the Manns et al. study (Manns et al., 2004). 

 

Fig. 2. Mean merit functions for the set of lenses, as a function of zone diameter. Error bars 

indicate standard deviations. 

 

Fig. 3. Mean absolute ratio of uncertainty of radius of curvature to the radius of curvature, as a 

function of zone diameter. Error bars indicate standard deviations. 

 

Fig. 4. Cross-section digitized points for a 7 year old lens (the first lens in Table 2) with best 

fitting conics out to 7 mm diameter for anterior and posterior surfaces, 

 

Fig. 5. Merit functions for the five lens models and the set of 20 lenses. The lens numbers match 

those of Table 2.  

 

Fig. 6. Anterior surface vertex radii of curvature for the five lens models and the set of 20 

lenses. The lens numbers match those of Table 2. 

 

Fig. 7. Anterior surface asphericity Q for four lens models and the set of 20 lenses. The lens 

numbers match those of Table 2. 
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Fig. 8. Posterior surface vertex radii of curvature for the five lens models and the set of 20 

lenses. The lens numbers match those of Table 2. 

 

Fig. 9. Posterior surface asphericity Q for four lens models and the set of 20 lenses. The lens 

numbers match those of Table 2. 
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Appendix 1. Estimates of radius R and asphericity Q for generalized conic whole lens 

model  

 

We will express Eq. (13b)  

0)(),( 4224  fYZeYdZZYF          (A1)  

as a power series in Y  and compare it with the equivalent power series form of Eq. (1), which is 

)()1)(/1)(8/1()/1)(2/1()( 6432 YOYQRYRYZ       (A2) 

where )( 6YO indicates terms in Y of the sixth order and higher.  

Solving for 2Z in Eq. (A1) we have  

42222 4)()(2 fYeYdeYdZ          (A3) 

and 

42222 4)()(2 fYeYdeYdZ          (A4) 

for the posterior and anterior surfaces, respectively. This can be written as 
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Expanding the 2)(   expression using the binomial expansion gives 
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  (A6) 

The next step is to similarly expand the 2/1)( expression to give 

)](/2)[(]1)(/4)2/1(1)[(2 624262422 YOdfYeYdYOdfYeYdZ     (A7) 

Dividing both sides by 2 and taking the square root gives 

222 /)/(1 YdfYdedZ           (A8) 

Once again we expand the square rooted expression to get                
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432422 )/()2/1()/()]()/)(2/1(1[)/( YdfeYdfYOYdeYdfZ    (A9) 

On comparing coefficients of the Y orders in Eqs. (A2) and (A9), we have 

1)/(4

2/)/(

33 


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fdR
           (A10,14b,14c) 



 28  

 
          Anterior surface            Posterior surface Comment 
 R  (mm) Q R  (mm) Q  
In-vivo – relaxed eyes      
Brown (1974) – Scheimpflug photography +16.82 − 0.104x (100) −2.042 + 0.0225x 

(100) 
−8.719 + 0.015x 
(100) 

+0.855 + 0.0020x 
(100) 

Regression fits determined by Smith et al. (1991). 
Radii of curvature used to determine Q using Eqn. 
(1b)  

Koretz et al. (2001) – Scheimpflug 
photography 

+11.16 − 0.020x (100) −1 (100) −8.27 + 0.0203x 
(100) 

−1 (100) Polynomial fit; parabola (Q -1) chosen as higher 
order terms not significant 

Dubbelman & van der Heijde (2001) – 
Sch’pflug photography 

+12.9 − 0.057x  
(102) 

−5 (90) 
 

−6.2 + 0.012x (65) −4 (41) 
 

 

Koretz et al. (2004) – Scheimpflug 
photography 

+13.95 − 0.076x  (65)  −6.07  (57)   

Koretz et al. (2004) – MRI +13.48 − 0.081x  (25)  −5.63  (25)  Different subjects from those used for 
Scheimpflug photography 

In-vivo – accommodated eyes      
Koretz et al. (2002) – Scheimpflug 
photography 

R/D: −0.60 + 0.009x 
(100) 

 R/D: +0.25 − 0.003x 
(100) 

 Changes in R per diopter of accommodation 
stimulus 

Dubbelman et al. (2005) – Scheimpflug 
photography 

R/D: −0.61 
(65) 

Q/D: −0.5 (37) R/D: +0.13  
(37) 

 Changes in R or Q per diopter of accommodation 
stimulus. Q changes not analyzed for posterior 
surface 

In-vitro - unstretched lenses       
Data of Pierscionek – presented by Smith 
et al. (1991) 

+9.6  (11) +5.3 − 0.03x (11) −8.0 (11) +2.1 (11) Whole surfaces fitted to oblate ellipsoids (Q > 0), 
so asphericities in particular should be treated with 
caution  

Pierscionek (1993, 1995) – photography +7.41 (7) −1 (7) −4.42 (7) −1 (7) Polynomial fit; parabola (Q -1) chosen as higher 
order terms not significant 

Glasser & Campbell (1999) –photography  +4.32 + 0.068x  (13) −1 −3.143 − 0.0536x 
+0.0004173x2 (19) 

−1 Anterior surface results for < 65 years. About 40% 
of surfaces fitted to paraboloids. Decapsulating 
lenses increases absolute R 

Schachar (2004) –  corneal topography +10.00.5 (30)  −6.80.9 (30)  Age relationship not explored. Results shown for 
1.0 mm from vertex 

Manns et al. (2004) – corneal topography +10.151.39 (24)  −2.66 + 0.077x 
(24) 

−2.313 – 0.050x (18) −1.71.8 (18) Lenses attached to most of eye. Lenses aged 46 – 
93 years. 

Data of Jones et al. (2005) – MRI 
photography 

+11.64.8(20)  −7.22.1(20)  Original analysis done with curvatures showed 
significant flattening of surfaces with age 

Rosen et al. (2006)1 - 
shadowphotogrammetry 

+7.5 + 0.046x (37) −0.81.7 (37) −5.5 (37) −1.1  1.5 (37) Resolution 0.12 m /pixel. Asphericities 
determined over diameters of 8 (anterior) and 3-
3.5 mm (posterior) 

Urs et al.  (2009) - shadowphotogrammetry     27 lenses aged 6-82 years. 10th order polynomial 
fits to the 10th order. Some terms changed 
significantly with age. R and Q not estimated. 

 
Table 1. Radii of curvature (R) and conic asphericities (Q) of lenses from in-vivo and in-vitro studies and from two model eyes. In R 
and Q columns, regressions are shown on age in years, except that means are given if there is no significant age dependence. 
Numbers of eyes used to determine parameters are in brackets. 
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Lens  Age  

(years) 

MF anterior 

(mm2) 

R anterior 

(mm) 

Q anterior MF posterior 

(mm2) 

R posterior 

(mm) 

Q posterior 

1 7 0.00061 6.191±0.106 +0.921±0.226 0.00073 −4.849±0.064 +0.296±0.104 

2 7 0.00160 5.989±0.174 +1.044±0.365 0.00165 −5.567±0.121 +0.683±0.231 

3 20 0.00161 8.505±0.213 +4.247±0.463 0.00168 −5.136±0.152 −1.625±0.370 

4 20 0.00182 6.509±0.290 −1.168±0.760 0.00332 −5.992±0.305 −0.052±0.738 

5 27 0.00210 9.577±0.393 +5.539±1.138 0.00346 −5.932±0.320 +0.330±0.768 

6 27 0.00265 8.560±0.273 +4.366±0.612 0.00290 −5.347±0.191 +0.351±0.366 

7 35 0.00151 10.816±0.417 +5.024±1.409 0.00145 −5.561±0.207 −0.462±0.473 

8 35 0.00244 10.272±0.362 +7.646±0.997 0.00406 −11.196±0.706 +8.749±2.088 

9 40 0.00248 15.921±0.966 +12.655±4.736 0.00101 −6.555±0.240 −0.175±0.625 

10 40 0.00150 15.057±0.665 +12.832±3.470 0.00086 −6.015±0.150 −1.108±0.419 

11 50 0.00118 9.222±0.278 +2.220±0.947 0.00128 −6.211±0.173 +0.440±0.464 

12 50 0.00119 10.208±0.505 +3.441±1.907 0.00284 −5.235±0.234 −1.044±0.552 

13 51 0.00675 8.841±0.684 +1.837±2.360 0.00274 −6.780±0.286 +0.990±0.721 

14 55 0.00112 9.323±0.465 −5.540±2.181 0.00212 −7.152±0.305 −0.329±0.921 

15 55 0.00136 13.332±0.503 +13.221±1.580 0.00277 −12.723±0.553 +11.138±1.840

16 63 0.00190 6.898±0.696 −3.519±2.586 0.00314 −9.743±0.349 +6.376±0.807 

17 63 0.00323 9.062±0.866 −2.310±3.509 0.00643 −8.946±1.174 +4.173±3.612 

18 72 0.00136 11.429±0.622 +2.321±2.683 0.00130 −5.576±0.200 −2.395±0.566 

19 82 0.00153 11.147±0.980 −11.064±5.251 0.00520 −8.099±0.340 +4.196±0.700 

20 82 0.00150 15.057±0.665 +12.832±3.470 0.00086 −6.015±0.150 −1.108±0.419 

Table 2. Age, merit function MF, vertex radius of curvature R, surface asphericity Q and 

uncertainties (standard deviations) of R and Q for both surfaces of each of 20 lenses using the two 

independent equations approach 
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Parameter Anterior surface Posterior surface 

R (mm) +6.263 ± 0.261 −4.759 ± 0.161 

Q +0.718 ± 1.396 +0.054 ± 0.757 

v1 (mm-1) −0.529621± 1.39084947 −0.102213± 0.71157277 

v2 (mm-2) +0.191767± 0.58659049 +0.078712± 0.27960906 

v3 (mm-3) −0.040665± 0.08826684 −0.029001± 0.03834987 

a (mm) 2.284 

d (mm) 4.994 

(mm) 4.004 

MF (mm2) 0.00065 

Table 3. Parameters and merit function for Lens 1 derived using the interdependent surfaces model. 

 

Parameter Anterior surface Posterior surface

a 0.965 0.977 

b 1.186 1.061 

s 1.808 1.669 

R (mm) 5.431±0.055 −4.454±0.014 

m  3.706 

d (mm) 5.014 

MF (mm2) 0.00076 

Table 4. Parameters and merit function for Lens 1 derived using the modulated hyperbolic cosine 

whole lens model. 
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 Anterior surface Posterior surface

c1 (mm2) −23.758694 −24.286047 

c2  +0.927992 +0.646926 

c3  +0.088096 +0.210240 

R (mm) +7.91±0.391 −5.32±0.056 

Q  +4.169±0.65 +0.571±0.0536 

MF(mm2) 0.00190 0.00161 

mean MF (mm2) 0.00176 

Table 5. Parameters and merit function for Lens 1 derived using the generalised conic whole lens 

model. 

 Anterior surface Posterior surface 

v0 (mm-2) −0.00011 ± 0.00019 −0.0350 ± 0.0185   

v1 (mm) −11.8147 ± 0.025 −7.647 ± 0.754 

v2  +0.9167 ± 0.0221 −1.530 ± 1.748 

v3 (mm-1) +0.7345 ±0.0606 +1.605 ± 0.1689 

v4 (mm-2) −0.0895 ± 0.0054 −0.0895 ± 0.0054 

R (mm) 5.904 ± 0.078 −3.806 ± 0.063 

Q −0.091 ± 0.143 −2.579 ± 0.117 

MF (mm2)                                0.00084  

Table 6. Parameters and merit function for Lens 1 derived using the polynomial based whole lens 

model. 
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Model anterior surface  

vertex radius of 

curvature (mm) 

anterior surface 

asphericity 

posterior surface  

vertex radius of 

curvature (mm) 

posterior surface 

asphericity 

two conic surfaces +7.27 + 0.064age +3.36.5 −6.92.2 +1.53.6  n.s. 

Interdependent surfaces +7.08 + 0.085age +5.912.1 −5.11 − 0.033age −0.23.1  n.s. 

Modulated hyperbolic 

cosine whole lens 

+14.3 16.2 - −6.52.0 - 

Generalized conic  

whole lens 

+6.83 + 0.075age +1.68 + 0.085age −6.70.8  +0.90.7 

Polynomial based  

whole lens 

+5.76 + 0.076age  −0.31 + 0.087age −6.51.8 +0.33.0 n.s. 

Table 7. Vertex radii of curvature and asphericities of lenses as a function of age (years) from the 

different models. Where linear regression slopes are not significantly different from zero (p > 0.05), 

means and standard deviations are given. The term n.s. denotes not significantly different from 

zero.  
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