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Abstract—The relationship between multiple cameras view-
ing the same scene may be discovered automatically by finding
corresponding points in the two views and then solving for
the camera geometry. In camera networks with sparsely
placed cameras, low resolution cameras or in scenes with few
distinguishable features it may be difficult to find a sufficient
number of reliable correspondences from which to compute
geometry. This paper presents a method for extracting a larger
number of correspondences from an initial set of putative
correspondences without any knowledge of the scene or camera
geometry. The method may be used to increase the number
of correspondences and make geometry computations possible
in cases where existing methods have produced insufficient
correspondences.

Keywords-local image features; uncalibrated method; epipo-
lar geometry; dense matching;

I. INTRODUCTION

Finding correspondences between two views of a scene
is an essential part of solving many computer vision prob-
lems. When the two viewpoints are widely separated and
the camera geometry is not known, wide baseline match-
ing techniques are used to locate correspondences. These
correspondences can then be used to compute the scene
geometry, which in turn allows more detailed scene analysis.
In difficult cases, even the state of the art wide baseline
matching techniques cannot produce sufficient correspon-
dences to compute a reliable estimate of the scene geometry.
This paper presents a method for acquiring a dense set of
correspondences in parts of the scene when wide baseline
matching has provided only a few reliable correspondences
and no knowledge of the camera geometry is available. The
extra correspondences acquired using this method can make
computing scene geometry possible.

The technique presented in this paper may be useful in
networks of sparsely placed cameras, cameras that produce
low resolution images and scenes containing few features
in the commonly viewed region. These conditions are often
present in surveillance camera networks, for example.

In wide baseline scenarios two views of the same scene
may appear very different. Structures in each view may
be subject to projective transformations, occlusion and may
present with different intensity and colour due to differences
in camera exposure and color balance settings. If the camera
geometry is not known, finding correspondences can be a
difficult task. The problem has been addressed by locating

and extracting interesting local features from each view
of a scene, computing a description of each feature and
then matching the features between views based on their
descriptions. A thorough review of feature extractors was
recently published in [1]. The performance of various feature
extractors and descriptors has been evaluated in [2], [3], [4].

In order to successfully match features across uncalibrated
wide baseline views, the features must have the following
properties:

• Features need to be distinct. A feature must be unique
and contain sufficient information to distinguish it from
other features.

• Features need to be extracted in a repeatable fashion
despite the variations in appearance.

• The local image region around the feature must be
normalised prior to computing a description in order
to compensate for the appearance variations between
views. Alternatively the description method must be
invariant to a change in viewpoint.

• Feature descriptors must be robust enough to deal
with slight variations in feature appearance, but distinct
enough to allow discerning between different features.

One implication of the above requirements is that only a
fraction of all the features in a scene are sufficiently unique
and contain sufficient information to be matched correctly.

If a sufficient number reliable correspondences can be
found between a pair of images, then it is possible to
compute the epipolar geometry of the cameras using a robust
estimation technique such as RANSAC and its derivatives
[5], [6]. The epipolar geometry can be used to constrain
the matching problem by matching a feature from one view
only to the features in close proximity to the corresponding
epipolar line in the other view. This reduces the search space
and the ambiguity between features that are not unique,
allowing more matches to be found.

It may not be possible to find a sufficient number of
accurate correspondences to compute the epipolar geometry
of a pair of views. In the rest of this paper, a method is devel-
oped to take advantage of a few putative correspondences to
extract additional correspondences without any knowledge
of the scene and camera geometry. It is then shown that this
method is useful in recovering epipolar geometry in difficult
scenarios.
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II. AFFINE FEATURE GUIDED DENSE CORRESPONDENCE
EXTRACTION

A large amount of information is required for each feature
to be successfully matched in a difficult scenario. It seems
likely that each feature then contains in itself numerous
smaller scale features. These smaller features do not provide
sufficient information to be matched on their own, but could
possibly still be exploited to establish correspondences.
Given a pair of matched features, matching smaller features
within the corresponding image regions should theoretically
be simpler, since the search space is confined to the feature
regions. The question of how additional correspondences can
be extracted given a matched pair of features is addressed
in this section.

A corresponding pair of affine covariant features provides
not only a corresponding pair of point coordinates, but also
an affine normalisation transform for each feature [7], [8].
The search for small scale correspondences can be greatly
simplified by making use of the normalisation transforms, at
least in a local area around each feature. Ideally, this normal-
isation maps the local image regions around the two features
to a common coordinate frame. In practice there is usually
some inconsistency between the normalisation transforms,
since they were computed independently from the different
images. Furthermore, images can only be perfectly aligned
by a linear transform if the image is of a flat plane. In order
to perform dense matching between the normalised image
regions, the regions must first be aligned more accurately in
order to remove any inconsistencies. An alignment algorithm
for this purpose is treated in Section II-A.

The aligned patches do not correspond pixel for pixel
since the images they were formed from my differ to a great
extent and the structure surfaces they were imaged from may
not be simply planar. Section II-B presents a method for
reliably extracting small scale correspondences from aligned
image patches that accounts for these problems.

In summary, the following procedure for extracting addi-
tional correspondences from a matched pair of features is
proposed and discussed in this section:

1) Accurately align the pair of matched image regions.
2) Select candidate points in the aligned image regions

to match.
3) Align selected points across the two image regions.
4) Project new correspondences back to original images.

A. Accurate Patch Alignment

Affine covariant feature extractors operate on the assump-
tion that corresponding small local image regions in different
views are approximately related by an affine transform [7].
This assumption will also be used here. Affine covariant
feature extractors such as MSER [9], Hessian Affine and
Harris Affine [8], [10] provide an affine normalisation trans-
form for each feature. These normalisation transforms can

be used as a good initial estimate for a transform that aligns
two corresponding image regions to a common coordinate
frame.

Each local feature provides the following transform in
projective 2 space (P2):

Hn =
[
kRA T
0> 1

]
, (1)

where k is a scalar corresponding to the scale of the feature,
R is a rotation matrix, A is an anisotropic scaling matrix
with determinant equal to 1 and T is a translation vector
that maps the feature centre to the origin. The transform
Hn maps an ellipse circumscribing the feature to an unit
circle entered at the origin.

Applying the normalisation transforms of a pair of cor-
responding features to their local image regions produces a
pair of approximately aligned images. As mentioned previ-
ously, the alignment will not be perfect because the normal-
isation transforms were computed independently from very
different image. Typical alignment errors will be discussed
in terms of the transform components in Equation 1.

If the image region is symmetric to a significant degree
then it is likely that the selected orientation of the two
regions do not correspond. The robustness of the SIFT
descriptor makes it possible to match features despite such
an error. It is therefore possible that there is gross error in
terms of region rotation.

The anisotropic scaling component of the affine trans-
forms can be expected to be reasonably accurate. Larger
regions may suffer from projective transformation that can-
not be fully accounted for by anisotropic scaling, however
this effect is usually negligible. Image regions that contain
more than one plane cannot be aligned perfectly using only
a linear transformation of P2 and hence will suffer from
varying degrees of error on each plane.

The translation component of the affine transforms (or
the feature location) can also be expected to be reasonably
accurate. The most significant source of translation error is
non planar regions of the image.

The image intensity can be significantly different due to
different camera exposure settings and lighting conditions.
Due to the local extent of the image region, a linear mapping
of intensity is often sufficient to compensate.

The following alignment algorithm is proposed to align
two corresponding regions with the above characteristics:

1) Prepare the template image patch.
2) Prepare the initial transform relating the target image

to the template image.
3) Find an initial estimate for the rotation component of

the transform.
4) Apply the inverse compositional image alignment al-

gorithm to find a precise estimate of the transform.
5) Check that the results of alignment are reasonable.
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Each step will be discussed in detail below and the process
is illustrated in Figure 1.

Figure 1. An example of the patch registration process. Line 1: original
corresponding image regions; Line 2: patches after applying the feature
normalisation transforms (steps 1 and 2); Line 3: patches after finding
orientation (step 3); Line 4: patches after full affine alignment (step 4).

1) Template Preparation: Preparing the template image
consists of selecting which of the regions to use as template
and then normalising the template image. The choice of
which feature to use as template is made based on the ratio of
the eigenvalues q of the matrix A in the normalisation trans-
form. The feature with q closest to 1 is chosen as template,
since this feature’s normalisation transform results in the
least amount of deformation. The normalisation transform
for the template region is then computed as,

Ht =
[
αktAt Tt

0> 1

]
, (2)

with the constant α chosen such that the smallest eigenvalue
of αktAt is 1. This prevents sub-sampling and aliasing of
the source region. The rotation component Rt is ignored
since it will be treated as unreliable in the following stages of
the algorithm. A template image patch P

′

t is then produced
by transforming the original template image It according to
P

′

t (Htx) = It (x). This places the normalised feature at

the coordinate origin of the template patch. The template
patch is only computed at a fixed number of samples in the
coordinate range x ∈ αk [[−1, 1], [−1, 1]]> (the local extent
of the feature). An intensity transform for the template is
computed from the minimum and maximum intensities of
P

′

t and used to generate the final template image patch Pt:

l = min
(
P

′

t

)
, (3)

h = max
(
P

′

t

)
, (4)

at =
255
h− l

, (5)

bt = −atl, (6)

Pt = f
(
at, bt, P

′

t

)
= atP

′

t + bt. (7)

2) Initialise Transform: The initial transform mapping
the registration image to the template image patch is com-
puted as,

Hr =
[
αkrAr Tr

0> 1

]
, (8)

where α is the same as in step 1 and Rr is once again
ignored since it will be determined in the next step. The
intensity transform is also initialised with the template
patch’s intensity transform parameters, ar = at, br = bt.

3) Initial Rotation Estimate: The rotation components
of the feature normalisation transforms may have been
estimated incorrectly by the feature extractor and should
not be relied upon. An initial estimate for the rotation
angle is obtained using the following method: The mean
squared error between the template and the transformed
target image is computed for rotation angles at regular
intervals for a full rotation (20 intervals were used in the
experimental implementation of this algorithm). A parabola
is then fit to the minimum point in the error vector. The angle
corresponding to the parabola apex is used as the initial
rotation angle estimate.

4) Image Alignment: This step consists of applying the
inverse compositional image alignment algorithm to simulta-
neously refine the parameters of the coordinate transform Hr

and intensity transform parameters ar and br. The details of
the inverse compositional algorithm will not be repeated here
in full, refer to [11] for a detailed discussion on the topic.
Only the part of the algorithm pertaining to the intensity
transform parameters will be explained below.

The goal is to align the intensities of the template im-
age patch Pt and the corresponding target image patch
Pr (Htx) = arIr (x) + br computed over the same range
of coordinates as Pt. Assuming the spatial alignment is not
grossly inaccurate, if a linear transform is applied to the
intensity values of the template patch, the error between this
patch and the registration patch is defined as follows,

e =
∑
∀x

[
a

′

rPt (x) + b
′

r − Pr (x)
]2

, (9)
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where a
′

r and b
′

r are the inverse compositional parameter
updates associated with ar and br. To find the values of a

′

r

and b
′

r that minimise this linear error function, set the partial
derivatives to zero and solve for the parameters. The result
is,[

a
′

r

b
′

r

]
=
∑
∀x

[
P 2

t (x) Pt (x)
Pt (x) N

]−1∑
∀x

[
Pt (x)Pr (x)

Pr (x)

]
, (10)

where N is the number of pixels in the patch Pt. The matrix∑
∀x

[
P 2

t (x) Pt (x)
Pt (x) N

]−1

can be precomputed at the start of the alignment algorithm.
At each iteration the intensity transform parameters are
updated as follows,

ar(i+1) =
ar(i)

a′
r

(11)

br(i+1) =
br(i) − b

′

r

a′
r

(12)

5) Check Results: The inverse compositional alignment
is not guaranteed to succeed, though it is likely to succeed
in the majority of cases (even when aligning image regions
that do not correspond to the same structure). In order to
eliminate correspondence where alignment has failed, the
final mean squared error is evaluated against a threshold
and the transform’s smallest eigenvalue is checked to be
within reasonable bounds. Since the purpose of these checks
are only to detect gross error, they need only be set at
the extremes of reasonable values. A mean squared error
threshold of 60 and a minimum eigenvalue of threshold of
0.005 were selected for the experimental implementation.

After registration, purely planar regions should be aligned
nearly perfectly, with only projective deformation and image
noise having a minor effect. Regions that are not entirely
planar will suffer from parallax errors.

B. Dense Correspondence Extraction

It is desired to find matching points between pairs of
aligned patches and to project these to the original images. It
can not be assumed that each pixel in one patch corresponds
to the same pixel in the other patch, however it can be
assumed that the alignment error is on the order of a few
pixels. In order to find exact point matches, small subregions
around the points must be aligned.

The aperture problem plays a significant role when at-
tempting to align small images. If a transform is to be
computed that maps a region from one image to a cor-
responding region from another image, then the region
must provide enough information to determine the transform
unambiguously. Because only point correspondences are of
interest and because the images are already reasonably well
aligned, it is sufficient to only use a translation transfor-
mation to align points instead of an affine transformation.

This simplifies the problem and reduces the amount of
information required in the image, since a translation has
only two degrees of freedom.

Finding points that can be aligned is easily done by
finding corner structures in the image. A corner is defined as
the junction of two lines or as a line with locally maximum
curvature. Such a structure provides at least two edge
structures (or regions of high gradient) that are not parallel.
Each edge contributes one constraint towards accounting for
the two degrees of freedom in a translation. Many methods
exist for efficiently locating corner structures in an image.
The experimental implementation locates corners by finding
the local maxima of the determinant of Hessian operator at
a single scale [12]. The objective is not to match corners
as is done in wide baseline matching, but to select regions
that can be accurately aligned. For this reason, corners are
only extracted from one of the images in the pair of aligned
image patches.

Ideally the smallest region possible would be used to align
a selected point across images in order to limit interference
from surrounding structures. Using a small number of pixels
for image alignment can however result in poor error esti-
mates (due to a small number of samples) and hence poor
update estimates. The image alignment process can become
unstable as a result. The amount of noise or distortion in the
images will also affect the stability. Images containing more
noise will require larger sample areas to be stably aligned.
This limits the minimum size of image regions that can be
aligned. The experimental implementation aligns patches as
small as 9 × 9 pixels. This also coincides with the support
region for the determinant of Hessian corner extractor.

The following procedure is proposed for finding and accu-
rately aligning correspondences in aligned feature patches:

1) Extract an image region around each feature at the
maximum common resolution.

2) Extract corner locations using the determinant of Hes-
sian operator (at one scale only and in one image
only).

3) Accurately align corner points by aligning progres-
sively smaller sub-images.

4) Project detected corners back to the original images.
Each step will be discussed in detail below and the process

is illustrated in Figure 2.
1) Extract Image Patches: First the normalised patches

for each feature are extracted at the same resolution as the
source image using normalisation transform H1 and H2.
The larger of the two images patches is then filtered with a
Gaussian filtering to prevent aliasing and then down-sampled
so that it is the same resolution (and size) as the other image
patch.

2) Extract Corners: A set of corners c is extracted by
computing the determinant of Hessian function in one of
the patches and finding the local maxima of the function.
The scale parameter of the determinant of Hessian operator
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Figure 2. An example of the point registration process. Line 1: correspond-
ing image patches after alignment (step 1); Line 2: corner points detected
in image 1, indicated as black and white crosses (step 2); Line 3 to 5:
progressively smaller aligned subregions around one of the points (step 3).
Note the decreasing alignment error.

is set to 1 since only fine scale features are desired. Corners
are not detected in both images since corner alignment will
be performed using inverse compositional image alignment
and not corner matching across images.

3) Align Corners: Small image patches around each
corner are aligned by aligning progressively smaller patches,
starting with a patch half the size of the normalised image
patch. Only the translation component of the transform is
modified during this step. This allows finer registration since
it requires less image information (only two degrees of
freedom) and is less prone to the aperture problem. It is
considered sufficient to only modify the translation because
previous alignment steps have already produced fairly well

aligned image regions and because only the location of these
fine scale points is required, not their full affine shape.
This step usually requires few iterations of the registration
algorithm. The template image in this step is arbitrarily
chosen to be image 1. The resulting translation transform
mapping the point in image 2 to image 1 is named Tr.

4) Project Back: After alignment, each corner point is
projected back to the original image coordinate frame.

c1i = H−1
1 ci (13)

c2i = H−1
2 T−1

r ci (14)

Figure 2 shows this process applied to an image region
containing two different planes. Initially the alignment can-
not be accurate for both planes and hence points on each
plane are not correctly aligned. By aligning progressively
smaller regions, points of interest on both planes may be
aligned with great precision.

Figure 3 shows a comparison of attempting to compute
the epipolar geometry from only correspondences generated
using MSER and SIFT [13] and computing the geometry
from a set of correspondences derived by applying the
dense matching technique to the initial set of MSER cor-
respondences. Because of the nearly planar scene geometry,
there is a high likelihood of selecting a degenerate solution
using only MSER features and RANSAC epipolar geometry
computation. The result can be seen in Figure 3(a-c). The
additional highly accurate correspondences provided by the
dense matching technique results in the correct solution to
the epipolar geometry with a large number of inliers (Figure
3(d-e)).

III. ALGORITHM EVALUATION

Experiments were performed in order to establish whether
the dense correspondence extraction algorithm presented in
this paper can be of benefit in scenarios where the epipo-
lar geometry cannot be recovered by conventional feature
extraction and matching.

A. Experimental Setup

Test data sets were acquired using two cameras viewing
a scene from different angles. Each set consists of images
taken from a fixed camera configuration. See the following
section for a description of the various camera arrangements
and scenes used. Images captured at the maximum resolution
provided by the cameras were used to compute the ground
truth epipolar geometry and down-sampled versions of the
images were used to perform tests. Each experiment applies
various feature extractors in different combinations to a
pair of images to find correspondences and to compute the
epipolar geometry. The results of the various combinations
of extractors is then compared. The focus will be on the
difference in performance of extractors that make use of the
dense correspondence extraction algorithm and those that do
not.
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(a) (b) (c) (d) (e)
Figure 3. Comparison of the results of computing epipolar geometry using MSER alone and MSER combined with dense matching technique. Images
sourced from http://www.robots.ox.ac.uk/∼vgg/data1.html. Column (a) shows MSER features, (b) inlier correspondences after computing epipolar geometry
from the set of MSER correspondences without dense matching, (c) the corresponding epipolar lines (note: degenerate), (d) inlier correspondences after
computing epipolar geometry from the set of dense correspondences, (e) the corresponding epipolar lines.

(1) (2) (3) (4)
Figure 4. Example images from each dataset.
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1) Test Data: Test data were acquired using pairs of
digital cameras arranged to view a scene from widely
separated views. Each set consisted of images taken from
a pair of cameras in fixed position. The contents of the
scene were altered for each pair of test images. Images were
captured at maximum resolution (4.1 and 10 million pixel
cameras were used) to allow ground truth computation. Test
images were generated by scaling the images to 640× 480
resolution. Scale factors were recorded for relating the test
image geometry back to ground truth geometry.

The scenes were constructed such that they contained
sufficient information for computing the epipolar geometry
of the cameras, but in such a way that it might be difficult
to extract this information automatically from low resolution
images. Each scene contained features on 2 or more planes
(scenes were not degenerate) visible from both cameras.

2) Feature Extraction and Matching: The following fea-
ture extractors were used:

• Harris Affine using the Harris & Stephens operator for
point extraction [14], the Laplacian function and scale-
space clustering for scale selection [15] and the second
moment matrix for affine shape estimation [8] (labeled
HaA).

• Hessian Affine using the determinate of the Hessian
function for point extraction [12], the Laplacian func-
tion and scale-space clustering for scale selection [15]
and the Hessian matrix for affine shape estimation [16]
(labeled HeA).

• MSER [9].

Features were matched by computing a SIFT descriptor
[13] for each feature and matching using one-to-one nearest
neighbour matching with a threshold applied to the matching
score. Matches with a second nearest neighbour within
a threshold of the nearest neighbour were eliminated to
prevent ambiguous matches.

3) Computing Ground Truth: Computing the ground truth
epipolar geometry for a given dataset was performed using
the following procedure:

1) Extract and match features across all high resolution
image pairs using all feature extractors to be used in
the experiments.

2) Compute an initial estimate of the epipolar geometry
using RANSAC.

3) Match features again, this time using the initial geom-
etry estimate to constrain matching.

4) Apply the dense correspondence extraction algorithm.
Because the matches are at this stage verified by means
of the epipolar constraint, dense matching will produce
a large number of highly accurate correspondences and
few outliers.

5) Compute a more accurate estimate of the epipolar
geometry using RANSAC.

6) The set of inlier correspondences and the epipoles are

scaled to match the resolution of the test images and
are kept for use in error estimation during test trials.

4) Test Procedure: The procedure for each test trial
consists of attempting to compute the epipolar geometry of
a scene using a particular combination of feature extractors.
The resulting geometry estimate is compared to the ground
truth of the data set to determine the error in the estimate.
A generous threshold is applied to the error to determine
if a given estimate is sufficiently accurate to allow further
geometry guided analysis of the scene. The computation may
also fail as a result of insufficient correct correspondences.
The number of trials that result in sufficiently accurate
estimates are counted and compared across the different
feature extractor combinations.

Two methods were used to measure the error in epipolar
geometry estimates. The first method compares the epipoles
of the estimate with those of the ground truth using a
normalised distance:

ee =
|pe1 − p̂e1|
|pe1|

+
|pe2 − p̂e2|
|pe2|

. (15)

Here pe indicates a ground truth epipole, p̂e indicates an
epipole estimated during a test trial and | · | indicates the
Euclidean norm such that |x| = (x1/x3)

2 + (x2/x3)
2.

The second error metric is the Sampson distance [6] of
the ground truth inlier correspondences evaluated using the
estimated fundamental matrix:

es =
∑

i

(
x

′>
i F̂xi

)2

(
F̂xi

)2

1
+
(
F̂xi

)2

2
+
(
F̂>x′

i

)2

1
+
(
F̂>x′

i

)2

2

. (16)

Here each {xi,x
′

i} is a corresponding pair of points from the
set of ground truth correspondences, F̂ is the trial estimate
of the fundamental matrix and (v)2j is the square of the j-th
entry of the vector v.

A trial is considered successful if both error metrics are
sufficiently low (ee < 1.0 and es < 100). The number
of successful trials for a particular combination of feature
extractors gives an indication of how likely it is that the
camera geometry can be recovered using these extractors on
an unknown scene.

The following combinations of feature extractors were
tested:
• Each extractor listed in Section III-A2 applied individ-

ually.
• All extractors combined.
• Each individual extractor combined with the dense

correspondence extraction algorithm.
• All extractors combined with the dense correspondence

extraction algorithm.

B. Results

Test results are presented in Table I. The table lists
the number of trials for which the epipolar geometry was
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Set details Without dense matching With dense matching
Set No. No. Frames HaA HeA MSER All HaA HeA MSER All

1 39 0 4 16 15 4 12 22 27
2 20 0 0 3 5 2 3 7 8
3 45 3 7 19 27 6 26 33 32
4 41 6 8 15 25 14 25 29 32

total % 190 4.7% 11.1% 30% 44.2% 15.3% 36.8% 56.3% 59.5%

Table I
TEST RESULTS: NUMBER OF SUCCESSFUL ATTEMPTS TO COMPUTE THE EPIPOLAR GEOMETRY USING VARIOUS COMBINATIONS OF FEATURE

EXTRACTORS.

computed with sufficiently low error. Each column (except
the first two) lists the results for an extractor combination.
The first four extractor combinations do not make use of
dense correspondence extraction and the last four do. It
can be seen that making use of the dense correspondence
extraction technique makes it possible to compute the epipo-
lar geometry in many more cases as only using currently
available feature extractors.

IV. CONCLUSION

The uncalibrated dense correspondence extraction method
described in this paper is useful for extracting large numbers
of small scale correspondences when only an initial set of
correspondences is available. In difficult cases where it is not
possible to automatically compute the epipolar geometry of a
set of cameras due to insufficient accurate correspondences,
using this technique can provide the additional correspon-
dences required to succeed.
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