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Abstract   

 

The human lens comprises two distinct regions in which the refractive index changes at different 

rates.  The outer 1.09 mm contains a rapidly increasing refractive index gradient, which becomes 

steeper with age.  The inner region contains a shallow gradient which flattens with age due to 

formation of a central plateau, of RI = 1.418, which reaches a maximum size of 7.0 x 3.05 mm 

around age 60.  Formation of the plateau can be attributed to compression of fibre cells generated 

in prenatal life.  γ-crystallin, present in prenatal but not in postnatal fibre cells, may play a role in 

limiting nuclear cell compression. 
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Introduction 

The lens grows throughout life, slowing with increasing age.  As it does, mature fibre 

cells are compressed into the central or nuclear region, losing water and organelles in the 

process.  Since there is no breakdown of proteins, their concentration in the cell, and hence the 

refractive index, increases.  This process results in the generation of a refractive index gradient, 

essential for reducing spherical aberration. 

Early studies by Pierscionek and Augusteyn,1 using the elegant laser ray tracing 

technique developed by Campbell and Hughes,2 and modified by Pierscionek, Chan, Ennis, 

Smith and Augusteyn3 indicated that the shape of the refractive index gradient (GRIN) varies 

with species.  They showed that rat and fish lenses have a steep and continuous gradient ranging 

from about 1.39 at the periphery to as high as 1.55 in the centre.  More recently, Garner, Smith, 

Yao and Augusteyn,4 using a magnetic resonance imaging (MRI) technique developed by 

Moffatt and Pope5,6 and described in detail by Moffat, Atchison and Pope,7 as well as laser ray 

tracing, noted the same shaped gradient in the Black Oreo Dory.  Coupled with the spherical 

shape, such lenses provide an animal with the high power required for very close vision.  

However, this is at the cost of flexibility since these lenses are extremely hard.  By contrast, 

mammalian lenses were found to have a relatively shallow gradient with a maximum refractive 

index (RI) under 1.45.1 Combined with elliptical surfaces, these lenses have a lower power.  

They are softer and their shape can be altered to provide different focal lengths in species 

capable of accommodation. 

In most lenses studied, the refractive index at the centre increases with age.  However, 

the human lens is different.  Even though growth and compression continue throughout life,8 the 

RI does not increase beyond about 1.415 and appears to plateau in the centre of the lens.1 A

similar conclusion can be reached from the distribution of protein determined by Fagerholm, 

Philipson and Lindstrom,9 using microdensitometry and from the Raman microspectroscopic 

observations of Siebinga, Vrensen, de Mul and Greve10.
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The shape of the RI gradient and the presence of a plateau region in old human lenses 

were confirmed in a recent study by Jones, Atchison, Meder and and Pope,11 using MRI.  They 

noted that with increasing age, the refractive index profile became flatter in the centre of the lens 

while at the periphery it became steeper.  No attempt was made to examine the size of the 

plateau or the rate at which it developed. 

In the current communication, the MRI data from 20 lenses, aged from 7-82 years, were 

used to examine the development of the RI plateau.  The analyses indicate that a plateau of 

constant RI gradually develops with age and reaches a maximum width around age 60.   
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Materials and Methods 

Refractive index gradients along both axial (sagittal) and equatorial directions in the lens 

were obtained from the magnetic resonance imaging study on 20 human lenses, aged 7-82 years, 

described previously by Jones et al.11 

Each point in the RI profile data was subjected to one round of smoothing, by averaging 

it with the point before and the point after, and then the incremental changes in RI were 

calculated in order to determine the gradient in refractive index (GRIN) for both the equatorial 

and sagittal axes.  Regression analysis was used to determine the slope of the refractive index 

gradient in the outer 1 mm and in the central region.  In a few cases, this was not possible 

because of large scatter in the RI values, possibly due to localised artefacts or interference in the 

raw MR images from which the values were obtained.  The sections of the central regions in 

which the RI gradient was below 0.0001/mm and for which the SD of the average RI was less 

than 0.2%, were considered to represent the plateau region in the lens.   

Protein concentrations were calculated using the refractive increments of the crystallins12 

and their proportions in different parts of the lens.13 
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Results 

Typical RI profiles, from 7, 55 and 82 year old lenses, are presented in Figure 1.  

Inspection of these reveals, as noted by Jones et al,11 that the RI gradient at the outside of the 

lens becomes steeper with age and the RI profile in the central region becomes flatter.  It would 

appear that the flattening of the profile is due to the outward spread of the RI maximum (1.418 ±

0.0075).   

In order to characterize these age-dependent changes, the refractive index gradient was 

calculated for each lens as a function of position along the sagittal and equatorial directions.  

Typical plots, for the 7 yo and 82 yo lenses shown in Fig 1, are presented in Figure 2 and 3 

respectively.  The plots reveal that, particularly for the older lenses, the refractive index profiles 

consist of two regions where the RI changes at different rates, rapidly in the outer parts of the 

lens and slowly in the centre.  

Figure 4 plots the rates of change of the refractive index gradient (i.e. the slopes of plots 

such as Figures 2 and 3) in the outer 1mm of the lenses as a function of lens age.  The slope of 

the RI gradient in the outer equatorial region has a value of around 0.08/mm2 for both sides of 

the lens at all ages (Figure 4a). For the sagittal axis, the anterior slope was greater than that of 

the posterior slope and both increased with age from around 0.1/mm2 and 0.09/mm2at age 7, (for 

the anterior and posterior slopes, respectively), to around 0.13/mm2 and 0.11/mm2 at age 82 

(Figure 4b).  

The RI gradient changes much more slowly in the middle of the lens but the changes are 

more complex.  In the 7 yo lenses, the RI gradient changes at 0.005/mm2 (R2 = 0.90) along both 

the equatorial and sagittal directions.  However, in the older lenses, the shape of the RI profile 

changes due to the formation of a short section in the centre where the slope becomes zero, i.e. a 

plateau in the refractive index.  

A schematic representation of the changes in RI gradient through a typical lens is shown 

in Figure 5.  The points comprising the plateau and the corresponding line of best fit are shown 
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in blue in Figures 2 and 3.  In the 7 yo old lens (Figure 2), the plateau is difficult to see, 

especially along the equatorial direction, but it becomes obvious in older lenses.  The width of 

the plateau increases with age so that, in the 82 yo lens, it appears to occupy the whole of the 

central region (Figure 3).   

Under ideal conditions, in plots of refractive index gradient such as Figures 2 and 3, a 

plateau region should have both a slope and an intercept of zero.  Therefore, linear regression 

was used to identify regions in the central profile where the change in GRIN slope was less than 

0.001/mm2 and/or the extrapolated incremental intercept was 0.0 ± 0.001.  The estimated plateau 

widths in the sagittal and equatorial axis are presented in Figure 6.  The data suggest that the 

sagittal plateau appears earlier and develops more quickly than that in the equatorial axis.  Both 

plateaus appear to have reached their maximum widths, 3.05 ± .09 and 7.0 ± 0.03 mm, by about 

age 60. 
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Discussion 

Our calculations from the MRI data of Jones et al11 indicate that there are two distinct regions in 

the lens, which appear to change independently with age, an outer region of rapidly changing RI 

gradient and a central region of very slow change.  The identification of these two regions is 

consistent with the recent report that human lens growth is biphasic, with most of the central or 

nuclear region being generated prenatally in a self-limiting process, and the outer tissue 

generated postnatally through linear growth.8

The outer region contains a steep gradient of refractive index, which along the sagittal 

axis gradually becomes steeper with increasing age, more noticeably in the anterior of the lens.  

There appears to be no age-related change along the equatorial direction.  By contrast, the RI in 

the central region changes very slowly along both axes and the gradient gradually decreases with 

age due to the formation of a central plateau at a refractive index of 1.418.  In the youngest 

lenses examined (7 year old) the plateau is very small but it is clearly evident in older lenses and, 

with increasing age, there is a gradual increase in its width in both sagittal and equatorial 

directions until about age 60.  Thereafter, no further increases were observed even though the 

lens continues to increase in size. 

The maximum dimensions of the constant RI region (7.0 x 3.05 mm) are very similar to 

the dimensions of the hydrodissected nucleus (7x3 mm)14 and to the location of the diffusion 

barrier (7.2x2.8 mm from the centre)15 The small differences can probably be attributed to 

differences in the hydration state of the lenses as a result of storage.16 In addition, it would 

appear that the plateau boundary is close to the location of the first zone of discontinuity in >40 

yo lenses.  According to Koretz, Cook and Kuszak,17 the inner edge of Zone 1 in the anterior 

cortex of a fully accommodated lens, in vivo, lies at 1.094 ± .085 mm from the sulcus.  This 

corresponds to 63% of the anterior sagittal thickness and may be compared with the 60% of total 

sagittal thickness occupied by the plateau region.   
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These similarities lead to the conclusion that the plateau region arises from the lens 

material laid down in prenatal life, i.e. the combined foetal and embryonic nuclei.  These were 

generated during the prenatal asymptotic growth mode.  The tissue on the outside, containing 

most of the refractive index gradient, is generated postnatally in the linear growth mode, which 

continues throughout the rest of life.8 The observations of Taylor, Al-Ghoul, Lane, Davis, 

Kuszak, and Costello,18 that the cells in the foetal and embryonic nuclei were larger and more 

rounded than those in the juvenile and adult nuclei and cortex, are consistent with the conclusion 

that the two sets of tissue are produced through different growth modes and have different 

properties. 

Lyophilization of old whole human lenses yields an intact nucleus, weighing 30-33 mg 

while the remaining tissue disintegrates.19 This observation implies that the inner and outer 

regions of the lens have different properties and are not strongly connected.  The splitting of the 

two regions probably occurs in the area containing the diffusion barrier.  It may be calculated, 

using the RI increments determined by Pierscionek, Smith and Augusteyn,12 that the constant RI 

tissue in >60 yo lenses contains around 31 mg of protein.  This is very close to the observed 

weights of the lyophillized nuclei and also corresponds closely to the mass of protein produced 

during the prenatal logarithmic growth phase (Augusteyn, unpublished).  These observations add 

further support to the suggestion that the plateau region in the lens corresponds to a distinct 

structural entity produced from cells laid down during a prenatal growth phase, which is different 

from that generating the refractive index gradient in postnatal life.  

With continued postnatal lens growth, the prenatal cells are packed into the centre of the 

lens and compressed until they reach the constant maximum RI of 1.418.  Our data indicate that 

maximum compression is reached first in the centre and then spreads outwards.  Thus, it would 

be expected that fibre cell sizes would vary with position in the lens.  According to Al-Ghoul et 

al,20 embryonic and foetal fibre cells are compressed by an average of about 30% in old (59-81 

years) lenses when compared with 15-25 yo lenses.  Much of this compression is already evident 
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in lenses aged 36-46 years where both primary and secondary fibre cells average around 79% of 

their size in 15-25 yo lenses.  However, significant compression has taken place prior to birth 

(Augusteyn, unpublished) suggesting that the above estimates may be low.   

The changes in protein concentration are also consistent with substantial fibre cell 

compression.  The RI at the outside corresponds to a protein concentration of 17% (w/v).  At the 

intersection of the fast and slow RI change regions in the 7 yo lens, it is around 24% and in the 

centre of the oldest lenses, it is 38%.  Since there is no protein turnover in the mature fibre cells, 

these concentrations suggest that fibre cells are compressed to around 60 % of their original 

volume.  However, it should be noted that the outer region of the lens contains immature fibre 

cells, which may not yet have produced their full, final complement of proteins.  

The extent of compression may be determined, in part, by the properties and proportions 

of the proteins in the cells, in particular, the β- and γ-crystallins.  Interactions between γ-

crystallins are attractive so that they are capable of self- association.21 This decreases their 

requirement for interaction with water, through reductions in their hydration shells and 

osmolality.  However, the interactions between the β-crystallins are repulsive.  These 

observations suggest that γ-crystallin promotes the loss of water from a lens cell while β-

crystallin promotes water retention.  In the human lens, α-crystallin represents a constant 

proportion of the lens proteins at all stages of life.  β- and γ-crystallins make up most of the 

remainder but their relative amounts vary with age.  γ-crystallin synthesis takes place only in the 

prenatal lens where it represents a constant proportion of the total proteins.13 Its synthesis ceases 

at, or immediately after birth so that only the nuclear region of the human lens contains γ-

crystallins.  Thus, it might be envisaged that the loss of water from the prenatal tissues is driven 

by the concentration of γ-crystallin present.  It is interesting to note that rodent lenses, which 

have higher γ-crystallin contents and in which the protein is synthesized throughout life, lose 

much more water resulting in higher refractive index levels and harder tissues.  On the other 
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hand, bird and reptile lenses, which contain no γ-crystallin, do not appear to compress at all (RC 

Augusteyn, unpublished). 

The RI profiles and the incremental plots contain a number of small bumps, many of 

which appear to be present in most lenses, examined.  A small central dip probably represents 

the sulcus.  However, the noise in the data prevented unequivocal assignment of their locations. 

The data used in this study were acquired at a magnetic field strength of 4.7 Tesla.  It would be 

of great interest to examine these features, as well as lenses from other species, using higher field 

MRI systems capable of improved resolution and signal to noise (S/N) ratio.  
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Legends to figures 

 

Figure 1 Refractive index profiles in 7 (•), 27 (•) and 82 (•) yo human lenses along a) the 

equatorial direction and b) the sagittal axis.  The posterior sagittal edge is on the left. 

Figure 2. Refractive index gradient as a function of position for the 7 yo lens, shown in Fig 1, 

along a) the equatorial and b) the sagittal axis.  The central plateau region is indicated with solid 

circles (•) and the line of best fit (           ). 

 

Figure 3. Refractive index gradient as a function of position for the 82 yo lens, shown in Fig 1, 

along a) the equatorial and b) the sagittal axis.  The central plateau region is indicated with solid 

circles (•) and the line of best fit (           ). 

 

Figure 4. Slope of the refractive index gradient, as a function of age, in the outer 1 mm of a) the 

equatorial direction (2 possible values for each lens) and b) the (•), anterior (•) and posterior 

sagittal axes. 

Figure 5. Diagrammatic representation of the incremental RI changes across the equatorial 

direction, showing the outer 0-1.0 mm with slope ~ 0.07/mm2 ( ) and the emerging plateau 

with zero slope (            ). 

 

Figure 6. Changes in the width of the putative plateau region (•), as a function of age, in the 

centre of a) the equatorial and b) the sagittal axis.  The dimensions of the whole lens (•) are 

included in each figure for comparison. 
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