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Abstract – Modern Engineering Asset Management 

(EAM) requires the accurate assessment of current and the 

prediction of future asset health condition. Appropriate 

mathematical models that are capable of estimating times 

to failures and the probability of failures in the future are 

essential in EAM. In most real-life situations, the lifetime of 

an engineering asset is influenced and/or indicated by 

different factors that are termed as covariates. Hazard 

prediction with covariates is an elemental notion in the 

reliability theory to estimate the tendency of an engineering 

asset failing instantaneously beyond the current time 

assumed that it has already survived up to the current time. 

A number of statistical covariate-based hazard models have 

been developed. However, none of them has explicitly 

incorporated both external and internal covariates into one 

model. This paper introduces a novel covariate-based 

hazard model to address this concern. This model is named 

as Explicit Hazard Model (EHM). Both the semi-

parametric and non-parametric forms of this model are 

presented in the paper. The major purpose of this paper is 

to illustrate the theoretical development of EHM. Due to 

page limitation, a case study with the reliability field data is 

presented in the applications part of this study. 

 

I.  INTRODUCTION 

Prognostics and asset life prediction is one of the major 

research problems in Engineering Asset Management (EAM). 

The development of mathematical models that are capable of 

predicting the times to failures (or survival times) of 

engineering assets and the probability of failures in future time 

has become an essential scientific research problem in EAM. 

Hazard prediction is a significant approach to forecast the 

probability of failures and evaluate the reliability and safety of 

systems. Hazard is commonly used in reliability and survival 

analysis because it has an intuitive explanation, which appeals 

to engineers and researchers in the field of EAM [1]. The 

notion of the hazard is appealing and imperative for reliability 

engineers since an engineering asset is aging (or degrading) 

with time, and its conditional probability of failure is increasing 

with time. 

The fundamental notion in hazard analysis is the failure 

times of an engineering asset and its covariates. These 

covariates change stochastically and may influence and/or 

indicate the failure time. Literature shows that a number of 

statistical models have been developed to estimate the hazards 

of engineering assets with covariates in both the reliability and 

biomedical fields. Most of these covariate-based hazard models 

(also termed as hazard models with covariates) have been 

developed based on the proportional hazard model which was 

developed by Cox in 1972 for the biomedical field [2]. The 

proportional hazard model was quickly and widely adopted in 

various fields including biomedical, reliability, and economics, 

due to its generality and flexibility. However, due to the 

prominence of this model, most other covariate-based hazard 

models have not attracted much attention in the field of 

reliability. In addition, attempts to develop an alternative 

covariate-based hazard model, to some extent, have been 

stifled. 

In traditional reliability models, the lifetime of engineering 

assets is estimated in terms of the probability distribution of the 

times to failures of population, which reflects the average 

behavior of the population’s reliability characteristics. 

However, a dynamic multivariate model such as a covariate-

based hazard model is capable of estimating individual system 

reliability under dynamic operational and environmental 

conditions. In most real-life situations and industry 

applications, the lifetime of an engineering asset is influenced 

and/or indicated by different factors, which are termed as 

covariates. Operating environment factors (e.g. ambient 

temperature and pressure, humidity, dust, rate of working load, 

and skill of operator) can influence the hazard of an 

engineering asset. Furthermore, certain diagnostic factors (e.g. 

vibration of fitted rotating machinery and the level of metal 

particles in engine oil analysis) can be associated with the 

hazard of an engineering asset. Operating environment factors 

are usually termed as external covariates and diagnostic 

factors are often termed as internal covariates. 

External covariates may accelerate or decelerate the failure 

time of an engineering asset. Some covariate-based hazard 

models (e.g. the proportional hazard model) are originally 

developed based on the influences (acceleration and 

deceleration effects) of external covariates on the hazard of an 

engineering asset/individual. The proportional hazard model 

with external covariates is broadly applied and verified to 

estimate the hazard and reliability of engineering assets in 

EAM [3-8]. However, this model with internal covariates is 

applied in the reliability field, too [9-14]. Nevertheless, care 

must be exercised in differentiating internal covariates from 

external covariates. It is noticeable that internal covariates must 

be handled differently from external covariates in any hazard 

models with covariates since such covariates may only carry 

information about the failure time. 

Both external and internal covariates can be included in a 

covariate-based hazard model to predict the hazard of an 

engineering asset. In this paper, a new covariate-based hazard 

model, named as Explicit Hazard Model (EHM), is developed 

to address this issue. The major purpose of this paper is to 

present the theoretical development of this covariate-based 

hazard model. The verification and application of EHM is 

explained in [15]. The remainder of this paper is organized as 

follows. Section II provides the overview of existing covariate-

based hazard models in both the reliability and biomedical 

fields. Section III aims to identify the different types of 

covariates in the reliability field. Section IV and its subsections 

describe the development of both the semi-parametric and non-
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parametric EHM. Additionally, likelihood functions of both the 

semi-parametric and non-parametric EHM are presented in the 

sections. The calculation of the residual life in EHM is briefly 

introduced in Section V. Section VI provides the conclusions. 

 

II. OVERVIEW OF EXISTING COVARIATE-BASED 

HAZARD MODELS 

A number of covariate-based hazard models have been 

developed and applied to calculate the hazards of engineering 

assets. Gorjian et al. [16] reviews covariate-based hazard 

models and provides comments on their merits and limitations. 

The basic theory of these models is to build the baseline hazard 

(or underlying hazard) using historical failure time data and the 

covariate function using covariate data. With this in mind, it is 

found that all of these models are derived from Cox’s 

proportional hazard model. Only a few of them have been 

applied to estimate the hazard of engineering assets in the 

reliability field. The proportional hazard model [2] is the only 

model that has been widely applied in the reliability area to 

investigate the multiplicative effect of covariates (or 

explanatory variables) associated with an engineering asset on 

its life span. 

Kay [17] develops the stratified proportional hazard model 

which is the simplest and most useful extension of the 

proportional hazard model. Anderson and Senthilselvan [18] 

extends Cox’s proportional hazard model into the two-step 

regression model to allow for changing covariate effects in 

time. Additive hazard model is developed to investigate the 

additive effect of covariates on the baseline hazard [19]. To 

enhance modeling capability about covariates, the mixed model 

considers the hazard of an engineering asset/individual, which 

contains both a multiplicative and an additive component [20]. 

The accelerated failure time model is one of the most common 

approaches that estimate the hazard of an engineering 

asset/individual under stress conditions [21, 22]. 

The extended hazard regression model that includes both the 

proportional hazard model and accelerated failure time model 

is developed by Etezadi-Amoli [23]. The proportional intensity 

model was introduced by Cox in 1972 [2]. McCullough [24] 

generalizes the idea of constant odds ratio to more than two 

samples by means of a regression model which is termed as the 

proportional odds model [24]. Logistic and log-logistic 

regression models are two specific cases of the proportional 

odds model [25]. Sun et al. [26] proposes a novel covariate-

based hazard model (i.e. proportional covariate model) to deal 

with internal covariates. Aalen [27] introduces a linear 

regression model to assess additive time-dependent covariate 

effects in possibly right-censored survival data. 

Literature review depicts that some of covariate-based 

hazard models are appropriate to conduct with external 

covariates and some with internal covariates. However, all of 

these approaches neglect the existence of both external and 

internal covariates in the hazard of engineering assets. In order 

to have an effective asset life prediction, this concern is 

required to be thoroughly addressed. 

III. COVARIATE CONCEPTS 

Covariate is a significant element of covariate-based hazard 

models. Understanding the concept of covariates and 

distinguishing between different types of covariates are 

necessary in these models. In reliability and survival analysis, 

the factors which influence and/or indicate the hazard of an 

engineering asset/individual have been termed as covariates. 

Covariates can be classified into two major groups: 

1. External covariates: This type of covariates as the 

stress factor may accelerate or decelerate the failure 

time of an engineering asset/individual. External 

covariates in reliability analysis are the so-called 

operating environment factors. Ambient temperature 

and pressure, humidity, dust, maintenance effects, age, 

rate of utilization, rate of working load, and skill of 

operator are some examples of external covariates in 

the reliability field. External covariates can be 

classified into time-independent and time-dependent 

covariates. 

Fixed covariates are the only type of time-independent 

external covariates [22]. Design modification of an 

engineering asset and base location for a vehicle such 

as smooth terrain, rough terrain are examples of fixed 

covariates in reliability analysis [9].  Time-dependent 

external covariates are divided into defined and 

ancillary covariates [22]. A stress factor under control 

of the experimenter in a laboratory experiment and the 

age of an engineering asset are typical examples of 

defined covariates in the reliability area. Dust and 

contaminations in the air as well as humidity can be 

common examples of ancillary covariates. 

2. Internal covariates: Internal covariates are observed 

and measured only as long as an engineering asset is 

operational or an individual survives. These observed 

values as failure indicators may contain information 

about the failure time of an engineering 

asset/individual. This type of covariate measures the 

current status of an engineering asset rather than acting 

as a causal predictor. Internal temperature and pressure 

generated by an engine, vibration of fitted rotating 

machinery, the level of metal particles in engine oil 

analysis, the thickness of a brake pad, and the wear in a 

component are examples of internal covariates in the 

reliability field. 

Generally, internal covariates in the reliability field can 

be classified into direct and indirect covariates [28]. 

The thickness of a brake pad and the wear in a 

component are general examples of direct internal 

covariates [28]. Internal temperature and pressure 

generated by an engine, vibration of fitted rotating 

machinery, and the level of metal particles in engine oil 

analysis are examples of indirect internal covariates. 

It is noticeable that if the values of internal covariates reach 

the pre-specified covariate threshold, the covariates can have 

effects of both external and internal covariates. However, what 

the threshold should be and how it should be specified has not 



 

been made clear. Expert knowledge information can be used to 

identify this covariate threshold. 

 

IV. THE EXPLICIT HAZARD MODEL – MODEL 

DEVELOPMENT 

Hazard models with covariates have been well studied in 

the biomedical field. Due to two separate groups of populations 

which are termed as control and treatment populations in 

clinical trials, selecting and formulating of influenced 

covariates for these types of models is not a difficult task in the 

field. On the other hand, this issue is an important concern in 

the reliability field since the control sample is not available. 

Furthermore, due to complexity of engineering assets and 

engineering systems, the study and analysis of clinical trial data 

is easier than industrial reliability data. As it mentioned in the 

earlier section, both external and internal covariates can be 

incorporated into a covariate-based hazard model to more 

effectively predict the hazard and reliability of an engineering 

asset. In fact, the presence and reality of both external and 

internal covariates in life span of engineering assets cannot be 

ignored. 

In industrial applications, multiple failure mechanisms may 

be recognized by certain diagnostic factors (internal 

covariates). However, multiple failure mechanisms may not be 

identified by these certain diagnostic factors alone, as some 

failures occur due to random shocks (e.g. loads and stress 

factors) caused by the environment in which the engineering 

assets operate. Moreover, some of failures happened as a result 

of latent degradation processes. Hence, in addition to 

diagnostic factors (internal covariates), the operating 

environment factors (external covariates) should be considered 

in a covariate-based hazard model in order to have more 

effective prediction results for the hazard and reliability of an 

engineering asset. 

In this study, an original covariate-based hazard model is 

developed to explicitly model both the external and internal 

covariates associated with the hazard of an engineering asset. 

This model accepts the existence of the two covariates to 

efficiently predict the hazard and reliability of an engineering 

asset so as to prevent costly failures and to reduce the 

frequency of unnecessary maintenance and repair. This model 

allows the external covariate to be considered as a stress factor 

and the internal covariate as a failure indicator for updating the 

current status of an engineering asset. This model, which is 

termed as Explicit Hazard Model (EHM) can be presented in 

two different forms: semi-parametric and non-parametric. 

Section A describes the semi-parametric EHM and its 

parameter estimation function is discussed in Section B. 

Section C explains the non-parametric EHM, and its parameter 

estimation function is explained in Section D. 
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are vectors of internal and external 

covariates, respectively. 1
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are vectors of regression 

coefficients. 

The relationship between the hazard and the underlying 

hazard in the presence of both external and internal covariates 

in EHM are illustrated in Figure 1. The figure shows that the 

underlying hazard in EHM is changing by the time scale and 

the factor of internal covariates, hence the major difference 

between EHM and the proportional hazard model. 
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Figure 1: Influences of internal and external covariates in 

EHM 

 

From a mathematical point of view, Equation (1) can be 

changed to the proportional hazard model for 0)(
1

tz


. 

However, from an engineering point of view, internal 

covariates are observed values as long as an engineering asset 

is operational. Therefore, the existence of internal covariates 

should be considered for an engineering asset on its life span. 

 

  A. THE SEMI-PARAMETRIC EXPLICIT HAZARD 

MODEL 

The semi-parametric EHM involves a specified function 

(i.e. Weibull distribution) in the form of the baseline hazard. In 

other words, the form of degradation paths or distribution of 

degradation measure is specified in the model. Alike other 

semi-parametric statistical models, this model incorporate a 

parametric modelling of the relationship between the hazard 

and specified covariates. The Weibull distribution is commonly 

applied in semi-parametric models for good reasons [5]. The 

hazard of the Weibull distribution is [29]: 
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Where, 0 and 0 are shape and scale parameters of 

the Weibull distribution, respectively. 
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 , the semi-parametric EHM can be 

expressed as: 
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If t  denotes the lifetime of an engineering asset 

with t0 , the related reliability function of the semi-

parametric EHM is given by: 
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Suppose S has a unit negative exponential distribution, 

therefore the reliability function is: 
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The value of S can be calculated by substituting the 

estimated values ,ˆ ,ˆ ,ˆ
1
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and 2
̂
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of the parameters 

, , ,
1
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
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into the preceding equation, provided that the 

values of )(
1
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2
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are known for all t . In other words, 

this assumption may only hold with continuous time samples of 

the covariates. A likelihood function is applied to estimate 

these parameters. Section B describes parameter estimation 

procedures for the above equation. 

In real-life situations the values of )(
1
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and )(

2
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numerous cases (e.g. discrete time samples such as an oil 

analysis sample) are not known for all  . To address this 

concern where the values of internal and external covariates are 

unknown for all  , an approach to spawn an approximate 

sample path for   0)(),( 
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is necessitated. There are 

various approaches for this approximation in both the semi-

parametric and non-parametric statistical models. Kalbfleisch 

and Prentice [22] suggests the step-function as a way to 

perform this approximation. Spline approximation is one way 

to carry out this in the non-parametric statistical models [30]. 

This paper provides an approximate sample path that should be 

substituted for )(
1
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
and )(

2
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by the right continuous jump 

process [10, 31]. 
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Using Equation (5) and the integrating by parts, S can be 

expressed as: 
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If t
n
 

0
0 and the sample mean is used as an 

estimate of the population mean, then the residual (or fitting 

error), S , which shows the deviation of the sample from the 

observable sample mean can be approximated by the right 

continuous jump process: 
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thus the three integrals in the previous equation are solved by 

using the Reimann-Stieltjes integral as follows (Equations (8), 

(9), and (10)): 
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If 1


n
t  , by removing the lower limit of the three 

Reimann-Stieltjes integrals in Equations (8), (9), and (10) and 

then substituting the results into Equation (7), then with some 

arrangement 
*S can be described as: 
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The value of 
*S can be estimated by replacing the values of 

internal and external covariates as well as the estimated values 

,ˆ ,ˆ ,ˆ
1



and
2
̂


. A likelihood function is applied to estimate 

these parameters. The following section describes parameter 

estimation procedures for Equation (12). 

 

B. PARAMETER ESTIMATION OF THE SEMI-

PARAMETRIC EHM 

Generally, the likelihood function is one way of statistical 

inference in covariate-based hazard models. A likelihood 

function is the joint density of the observed values considered 

as a function of the unknown parameters. The Expectation-

Maximization (EM) algorithm is another practical tool for 

estimating the unknown parameters at a variety of incomplete 

data problems (e.g. missing covariate data) in covariate-based 

hazard models. 

In order to estimate the parameters of the semi-parametric 

EHM, it is required to have the historical failure time data, 

external and internal covariates data. Suppose that a random 

sample of r items yields n  distinct failure times and 

nr  censoring (or suspended) times. Therefore, the likelihood 

function of the semi-parametric EHM is given by: 
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Where F
 indexes the set of failure times and C

 indexes 

the set of censoring (suspended) times, i
t is the failure time of 

the 
thi item, and j

t is either the observed failure time or the 

suspended (censoring) time of the 
thj item. 

If   





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and 

it has a unit negative exponential distribution, 

))(),(;(ln))(),(;(
2121 iiiiii

tztzthtztzth


 , and n  is the total 

number of failure times available, therefore the log-likelihood 

function of the semi-parametric EHM is defined as: 
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All parameters can be estimated by maximizing the log-

likelihood function using a global optimization approach. 

Equation (14) is applied where the values of )(
1
z


and 

)(
2
z


are known for all . Otherwise the approximate sample 

path by the right continuous jump process for 

  0)(),( 
11

tzz 


is required. If
** SS

j
 , as a result the log-

likelihood function can be expressed as: 
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C. THE NON-PARAMETRIC EXPLICIT HAZARD 

MODEL 

In reality, ideal industrial historical failure data are 

generally not available; therefore, fitting a specific distribution 

to lifetime data is a violated assumption. To avoid making 

assumptions about the distribution of lifetime data in EHM 

which often is difficult to test, non-parametric EHM is devised. 

The non-parametric EHM involves an unspecified function in 

the form of an arbitrary baseline hazard. In other words, the 

form of degradation paths or distribution of degradation 

measure is unspecified in this model. Similar to other non-

parametric statistical models, the key advantage of this model 

compared to the semi-parametric EHM is to provide a decent 

relative efficiency for the estimation of regression coefficients 

without having to make assumptions about baseline hazard. 

Here, the generic form of EHM in Equation (1) is to be 

expressed as the non-parametric EHM. The baseline hazard of 

this model is a function of time and internal covariates; hence, 

an approximation of the baseline hazard is required. This 

approximation is performed by a transformation function of the 

baseline hazard which is suggested by Etezadi-Amoli and 

Ciampi [32]. Shyur et al. [33] modifies this transformation 

function for external time-dependent covariates. In this study, 

we follow their assumptions to build a transformation function 

to approximate the baseline hazard of the non-parametric 

EHM. 

In general, splines are an evolution of classical parametric 

inference, and bridge the gap between parametric and non-

parametric techniques [34]. In fact, a spline function is a 

natural choice for approximating the covariate transformation. 

A n degree spline function is a piecewise polynomial of 

degree n with pieces joining at defined points, which are called 

knots [35]. The degrees of polynomial pieces (e.g. linear, 

quadratic, and cubic) as well as the number and position of the 

knots may vary in different situations. To represent and 

approximate the baseline hazard of the non-parametric EHM, a 

quadratic spline function, proposed by Etezadi-Amoli and 

Ciampi [32], is utilized. In this study a quadratic spline 

function is selected since it requires fewer parameters than a 

cubic spline and in several cases may provide a reasonably 

smooth and accurate fit to data [36]. In addition, a quadratic 

spline with one knot can fit to data almost as well as a quadratic 

spline with two knots and a cubic spline with one knot [37]. 

Luxhoj and Shyur [35] asserts that one knot spline is found to 

be sufficient to approximate the baseline hazard. A quadratic 

spline with m knots is given by: 
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Suppose a monotone transformation from the baseline time 

scale u to the observed time scale t is a function of internal 

covariates history up to time t , then u can be defined as: 
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For convenience, the derivative of the transformation 

function  dtdu  is considered as a function of the internal 

covariate )(
1

tz


. Therefore, it is assumed that 

))(exp(
11

tzdtdu


 correspond to the relative rate where the 

baseline time at the baseline hazard is being compared to the 

actual time as a function of the history of the internal 

covariates, )(t , up to that time. It is essential 

that ))(exp(
11

tzdtdu


 must be a nonnegative function. This 

transformation function can be expressed as: 
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The transformation function in Equation (18) can be 

rewritten by a quadratic spline function in Equation (16). The 

non-parametric EHM can be described as: 

  

  ))(exp()),(())(),(;(
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  (19) 

 

By knowing the hazard equation, the corresponding 

cumulative or reliability function of the non-parametric EHM is 

given by: 
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D. PARAMETER ESTIMATION OF THE NON-

PARAMETRIC EHM 

In order to estimate the parameters in Equation (19), the 

partial (or marginal) likelihood function is applied. Cox [38], 

Oakes [14], Kalbfleisch and Prentice [39] describe the concepts 

of the partial (or marginal) likelihood in a very clear manner. If 

the number of items in the risk set is equal to l , and )(
j

tR is 

the risk set of the items which have not failed and have not 

been censored just prior to the observed failure at time j
t . 

Thus, the partial likelihood of the non-parametric EHM is 

given by: 
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Where, the failures of n items occur at 

time j
t ),...,2,1( kj  , nk  , and k

ttt  ...
21 be 

uncensored times to failure of k items and let there be 

kn  censored failure times. The log partial likelihood 

function is: 
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It is clear that the hazard must always be greater or equal 

zero. In other words, the baseline hazard must be nonnegative. 

Therefore, care must be exercised in representing the baseline 

hazard. Kooperberg et al. [40] suggests one way of doing that. 

If ))((ln))((
101

tzthtzt


 , this assumption can be used in the 

approximation of the non-parametric EHM to ensure the 

baseline hazard is always positive. Therefore, the log partial 

likelihood function of the non-parametric EHM is expressed as: 
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All parameters can be estimated by maximizing this log 

partial likelihood function using a global optimization 

approach. 

 

V. CALCULATION OF REMAINING USEFUL LIFE  

The mean residual life function is the expected Remaining 

Useful Life (RUL), tT  , given that an engineering 

asset/individual has survived to time t [41, 42]. The expected 

residual life function )(tr  is defined as: 
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As it can be seen in Equation (24), both of internal and 

external covariates   utuzuz )(ˆ),(ˆ 
21


 need to be 

predicted first in order to estimate RUL. There are different 

statistical approaches to predict these covariates [13]. 

 

VI. CONCLUSIONS 

Hazard assessment and prediction of engineering assets is 

one of essential scientific research problems in EAM. Due to 

the demands for reducing catastrophic failures, minimizing the 

frequency of unnecessary maintenance and logistic cost, as well 

as maximizing system availability and reliability, hazard notion 

becomes a crystal ball in asset life prediction. In order to 



 

predict the hazards of engineering assets, a number of 

covariate-based hazard models have been developed. These 

models are more effective than traditional reliability models in 

the real-life situations and industry applications, where an 

engineering asset operates under dynamic operational and 

environmental conditions. 

Literature review shows that amongst a variety of covariate-

based hazard models, only a few have been applied in the 

reliability field. These models consider either external 

covariates or internal covariates, but not both explicitly. In this 

study a new covariate-based hazard model, which termed as 

EHM, is developed to explicitly include both external and 

internal covariates associated with the hazard of an engineering 

asset. This model proposes a new approach to effectively 

predict the hazard and reliability of an engineering asset 

utilizing three different sources of data (i.e. historical failure 

data, internal and external covariates data). EHM is presented 

in two forms: semi-parametric and non-parametric. This paper 

focuses on the theoretical development of the semi-parametric 

and non-parametric EHM. The likelihood functions for each of 

these models are also derived. Due to page constraint, the 

related case study is presented in the second part of this work 

[15]. In the future work, both the semi-parametric and non-

parametric EHM will be verified using more case studies. 
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