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Abstract 1 

The identification of attractors is one of the key tasks in studies of neurobiological 2 

coordination from a dynamical systems perspective, with  a considerable body of 3 

literature resulting from this task. However, with regards to typical movement 4 

models investigated, the overwhelming majority of actions studied previously 5 

belong to the class of continuous, rhythmical movements. In contrast, very few 6 

studies have investigated coordination of discrete movements, particularly multi-7 

articular discrete movements. In the present study we investigated phase transition 8 

behavior in a basketball throwing task where participants were instructed to shoot 9 

at the basket from different distances. Adopting the ubiquitous scaling paradigm, 10 

throwing distance was manipulated as a candidate control parameter. Using a 11 

cluster analysis approach, clear phase transitions between different movement 12 

patterns were observed in performance of only two of eight participants. The 13 

remaining participants used a single movement pattern and varied it according to 14 

throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in 15 

movement models involving many biomechanical degrees of freedom in 16 

degenerate systems, greater movement variation across individuals is available for 17 

exploitation. This observation stands in contrast to movement variation typically 18 

observed in studies using more constrained bi-manual movement models. This 19 

degenerate system behavior provides new insights and poses fresh challenges to 20 

the dynamical systems theoretical approach, requiring further research beyond 21 

traditionally-studied movement models. 22 
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degeneracy; movement variability; multi-articular actions; constraints; phase 24 

transitions  25 

26 



3 

Introduction 1 

To function effectively within their ecological niche, neurobiological systems 2 

need to constantly adapt their movements to changes in energy flows and flexibly 3 

recruit the numerous structural degrees of freedom at their disposal. As such, a 4 

key issue in motor control is the study of how degenerate neurobiological systems 5 

(re)organize movements (e.g. Kelso, 1995; Newell & Corcos, 1993). Degeneracy 6 

describes the ability of elements that are structurally different to perform the same 7 

function or yield the same output (Edelman & Gally, 2001). An important 8 

research endeavor is to understand the role of movement variability and has led to 9 

its reconceptualization in dynamical systems theory (DST) as having a more 10 

functional role rather than the traditional interpretation as a source of system error 11 

(Button, MacLeod, Sanders, & Coleman, 2003; Müller & Sternad, 2004; Riley & 12 

Turvey, 2002). However, empirical study within DST has been limited largely to 13 

the study of continuous actions as movement models (Kelso & Schöner, 1988) 14 

even though theoretical treatments of discrete coordination dynamics are readily 15 

available in the literature (Jirsa & Kelso, 2005; Schöner, 1990). 16 

One notable exception on reaching and grasping was conducted by Kelso, 17 

Buchanan, and Murata (1994), in which participants were instructed to rotate a 18 

handle to a specific position, with initial handle orientation systematically varied. 19 

Results indicated a two-pattern regime used by participants with supination and 20 

pronation of the forearm prior to making contact with the handle depending on 21 

orientation of the handle. Participants also exhibited a hysteresis region, where the 22 

movement pattern depended on the previous orientation angle (see also Mutsaarts, 23 

Steenbergen, & Meulenbroek, 2004 for a similar example). Another insightful 24 

experiment by Sorensen, Ingvaldsen and Whiting  (2001) investigated 25 

performance of a table tennis task under the dynamical systems theoretical 26 

paradigm. As a candidate control parameter, the authors varied ball delivery point 27 

to participants continuously from left to right, right to left, and randomly, thus 28 

varying spatial location characteristics of ball flight. Stroke type (backhand vs. 29 

forehand) and distance between the bat and the edge of the table were considered 30 

as collective variables. Results revealed characteristics of phase-transition 31 

behavior including hysteresis and critical fluctuations (Sorensen, et al., 2001). 32 

Although both studies provided support for the tenets of dynamical systems 33 
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theory, “studies of phase transitions in the context of discrete movements […] 1 

have been few and far between” (Sternad, 2008; Wimmers, Savelsbergh, Beek, & 2 

Hopkins, 1998, p.245). 3 

Whilst the relationship between continuous and discrete movement has recently 4 

undergone more detailed scrutiny (Sternad & Hogan, 2007), the nature of the 5 

relationship remains unclear and it is currently not apparent at whether both types 6 

of movements are generated by the same processes (Kennerley, Diedrichsen, 7 

Hazeltine, Semjen, & Ivry, 2002; Miall & Ivry, 2004; Schaal, Sternad, Osu, & 8 

Kawato, 2004; Sternad & Schaal, 1999; Torre & Delignieres, 2008; Wei, 9 

Wertman, & Sternad, 2003). However, recent evidence suggests that discrete and 10 

rhythmical movements exhibit differences on the level of movement organization 11 

as well as in the central nervous system (Huys, Jirsa, Studenka, Rheaume, & 12 

Zelaznik, 2008; Huys, Studenka, Zelaznik, & Jirsa, 2008; Sternad, 2008). This 13 

lack of clarity can be acknowledged as a gap in the DST literature on 14 

neurobiological system function, challenging its scope. A key question is whether 15 

DST can be applied beyond the study of continuous rhythmical movement models 16 

to investigations of discrete actions (Summers, 1998).   17 

An additional problem to consider pertains to the level of constraint imposed by 18 

many laboratory tasks, which Newell and colleagues have argued is too narrow in 19 

existing research. In many experiments, the task outcomes are broadly equivalent 20 

to an actual movement pattern. That is, the task outcome already prescribes to 21 

some extent the underlying movement pattern (Hong & Newell, 2006). This 22 

relationship is exemplified by the  most popular experimental paradigm in the 23 

dynamical systems theoretical framework, which involves phase coupling of 24 

rhythmical finger movements or limb segments (see for example Carson, 1995; 25 

Haken, Kelso, & Bunz, 1985; Kelso, Buchanan, & Wallace, 1991; Kelso & Jeka, 26 

1992; Kelso, Scholz, & Schöner, 1986; Kostrubiec, Tallet, & Zanone, 2006; 27 

Schmidt, Carello, & Turvey, 1990; Turvey, 1990; Zanone & Kelso, 1992). In 28 

contrast, in most mundane movements in life, like picking up a cup, the task goal 29 

and associated movement patterns are much more loosely coupled and there are 30 

several ways to achieve the task involving different segments. As a general 31 

behavioral strategy, the potential role of structurally different system components 32 

in task performance provides a robust mechanism against system failure and is 33 

common to biological systems as noted by Edelman (1987). To distinguish this 34 
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concept from the notion of redundancy, this system characteristic has been termed 1 

“degeneracy” (Edelman, 1987; Sporns & Edelman, 1993). Typically, preferred 2 

movement models  in most studies of dynamical movement systems have seldom 3 

provided the opportunity to study the emergence of behavior in degenerate 4 

systems, which has limited the scope of this theory of motor control. The narrow 5 

range of preferred movement models may have potentially introduced a result bias 6 

and may have underemphasized the role of degenerate behavior in tasks outside 7 

the laboratory. 8 

Related to this issue, most actions investigated thus far have required the 9 

involvement of relatively few biomechanical degrees of freedom, for example 10 

only the joints of the index finger (Obhi, 2004; Walter, 1998). Using low 11 

dimensional tasks, the possible number of movement solutions that might emerge 12 

are limited already a priori, which potentially introduces a false restriction on the 13 

way that movement behavior can typically unfold (Fink, Kelso, Jirsa, & de 14 

Guzman, 2000). This task bias leads to some difficulties in generalizing 15 

experimental outcomes for developing a comprehensive theory of neurobiological 16 

coordination and control (Heise & Cornwell, 1997; Hong & Newell, 2006; Sames, 17 

2000; Walter, 1998). When experimental task constraints provide opportunities 18 

for neurobiological systems to use more degrees of freedom in task resolution, it 19 

might be assumed that they will make use of these additional, available degrees of 20 

freedom to support functional behavior (for examples see Bernardin, Isableu, 21 

Fourcade, & Bardy, 2005; Buchanan & Horak, 2001; Chow, Davids, Button, & 22 

Koh, 2007; Chow, Davids, Button, & Koh, 2008; Fink, et al., 2000; Hatzitaki & 23 

Konstadakos, 2007; Ko, Challis, Stitt, & Newell, 2003; Robertson & Miall, 1997; 24 

Vereijken, van Emmerik, Whiting, & Newell, 1992). For example, using a 25 

dynamical system paradigm, it has been shown how additional degrees of freedom 26 

may be used by actors to stabilize previously unstable movements (Fink, et al., 27 

2000).Broadening the types of movement models studied may lead to 28 

observations of more complex behavioral outcomes than the simple bimodal state 29 

(i.e. ‘in-phase’ or ‘anti-phase’ patterns of behavior) often observed in the study of 30 

many continuous, rhythmical movement tasks (see Chen, Liu, Mayer-Kress, & 31 

Newell, 2005; Chow, Davids, Button, & Rein, 2008; Limerick, Shemmell, Barry, 32 

Carson, & Abernethy, 2001 for examples).  33 
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In summary, by limiting selected experimental models to a specific subset, such as 1 

rhythmical, continuous movements, previous DST research on neurobiological 2 

coordination and control has only been able to study movements requiring a 3 

limited number of biomechanical degrees of freedom. This limitation has reduced 4 

the generality of applying results to the study of more complex movement 5 

patterns. In response to these issues, the present study investigated whether the 6 

application of the traditional scaling procedure leads to comparable results when 7 

applied to the study of a throwing movement. , For this purpose the basketball 8 

hook shot was chosen as a movement model, because it involves whole body 9 

movements and requires many active biomechanical degrees of freedom during 10 

movement execution. The descriptor ‘hook shot’ in itself does not prescribe an 11 

exact movement but rather a whole family of movements, thus providing a 12 

degenerate movement model. This degeneracy allows the actor to adapt the 13 

underlying movement according to specific task constraints (see Martin, 1992 for 14 

explanations of variants). In such a task, a candidate control parameter for the 15 

scaling procedure exists in ‘throwing distance’, as previous research has indicated 16 

(e.g. Liu & Burton, 1999; Rein, Button, Davids, & Summers, in press; Southard, 17 

1998, 2002). 18 

Thus, when starting from a specific throwing distance, with increasing or 19 

decreasing distance to target, it seems reasonable to assume that transitions 20 

between functional movement patterns might occur. This candidate control 21 

parameter thus merges the spatial requirements, acting as a precision constraint, as 22 

well as force requirements. In the simplest case this manipulation might lead to a 23 

bimodal patterning where a movement pattern used at smaller distances becomes 24 

unstable and a transition to a different movement pattern might occur in order to 25 

achieve the task goal (Southard, 2002). Due to the degenerate nature of the hook 26 

shot is seems reasonable to assume that actors can exploit this characteristic and 27 

assemble individual solutions to the task. Further, as the hook shot allows for 28 

involvement of the whole body, actors can exploit system degrees of freedom in a 29 

more individual fashion. It was expected that system degeneracy would yield 30 

individual attractor regimes where attractors may be stabilized or destabilized 31 

through activation or suppression of biomechanical degrees of freedom. Based on 32 

these theoretical insights, movement patterning was expected to be much more 33 
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variable compared to previous observations of classical rhythmical bimanual 1 

movements. 2 

Method 3 

Participants 4 

Eight males (Age=27±5, Height=175cm±16, Weight=81kg±14) participated in the 5 

study. Participants JA, NI, and CA were skilled, semi-professional basketball 6 

players playing for a New Zealand national franchise in the national league. 7 

Participants DU, KE, RY, and BR were intermediate level players who had at 8 

least played at club level, whereas participant SH was a novice who had no prior 9 

experience in playing basketball. All participants used their dominant right hand 10 

for throwing and had not experienced any injuries in the six months preceding the 11 

study. Participants provided informed consent prior to the study and all 12 

experimental procedures were approved by the ethics committee of the institution 13 

conducting the research. 14 

Apparatus 15 

A mobile basket fixed at a conventional height of 3.05m with a Plexiglas 16 

backboard and a standard sized basketball (Size 7, FIBA approved) was used for 17 

all trials. Sampling frequency was set at 100 Hz during three-dimensional motion 18 

capture (Motion analysis corp. Santa Rosa, CA) using 12 digital-cameras. A DV-19 

camera was synchronized with the motion analysis system to enable visual 20 

determination of the instant of ball release. Participants were prepared with 21 

passive reflective markers (5mm diameter) at the left (l) and right (r) acromion, 22 

C7, sternum, lateral epicondyles humerus (l/r), radial styloid (r/l) and ulnar (r/l), 23 

back of the right hand, spina illica anterior superior (r/l), spina illica posterior 24 

superior (r/l), sacrum, lateral and medial epicondyles femoris (r/l), lateral and 25 

medial malleolus (r/l), heel and toe marker (r/l) in order to identify anatomical 26 

landmarks. In addition one marker each was placed on the tibia (r/l), on the lateral 27 

part of the femur (r/l) and the humerus (r/l) and on the distal, dorsal part of the 28 

forearm. 29 
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Procedure 1 

Participants attempted to score baskets without rebounding the ball from the 2 

backboard using a hook shot technique. In order not to significantly bias emergent 3 

movement patterning, limited throwing technique instructions were provided by 4 

an experimenter to participants in the form of: “a shot performed with the 5 

dominant right hand whilst being airborne”. Participants were also asked to place 6 

their body between the basket and the throwing arm as if to prevent a potential 7 

defender from interfering with the throw. If the participants felt the need to adapt 8 

the movement to the specific distance in a certain way they were allowed to adopt 9 

the necessary changes as they desired. Participants started the movement with 10 

their backs facing towards the basket and performed one ball bounce before 11 

shooting. This routine was intended to simulate a typical game situation.  12 

The throwing distance to the basket was varied from 2m to 9m in increments of 13 

1m after each trial block comprising ten shots, resulting in a total of 160 shots per 14 

participant. This range was chosen after initial pilot work in which shots from 15 

typical distances between 2m-4m and shots from up to 9m away  put sufficient 16 

pressure on the actors to trigger noticeable changes in movement patterns (i.e. 17 

phase transitions)(see also Rein, et al., accepted). During the ‘increasing distance 18 

condition’ (INC) the distance was scaled progressively from 2m to 9m, whereas 19 

during the ‘decreasing distance condition’ (DEC), distance was decreased from 20 

9m to 2m, where the throwing distance resembled a candidate control parameter 21 

(Kelso & Schöner, 1988; Schöner, Haken, & Kelso, 1986). Before data collection 22 

began, participants performed a self-selected warm-up regime for 15 minutes with 23 

instructions to perform a range of different shooting techniques. When ready for 24 

testing, participants were prepared with the markers and the particular throwing 25 

instructions were given after which they performed 10 shots each from 2m, 5m, 26 

and 7m to familiarize themselves with the procedure. All participants performed 27 

the same protocol starting with the INC condition followed by the DEC condition. 28 

In between shots, up to 30s recovery time was provided to help prevent any 29 

fatigue effects. For participants BR (1 trial), DU(1 trials), and KE (11 trials) some 30 

trials could not be analyzed because of marker occlusion during recording. In 31 

total, 1267 hook shots were analyzed. Performance outcomes were recorded on a 32 

seven-point nominal scale by an additional experimenter (see Table 1). 33 

 34 
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Data reduction and analysis 1 

The positions of the reflective markers were reconstructed and three-dimensional 2 

coordinates were obtained using Evart 4.6 software (Motion Analysis 3 

Corporation, Santa Rosa, CA). After visual inspection of frequency spectra of the 4 

displacement data, a 2nd order zero-lag Butterworth filter set at a cut-off 5 

frequency of 10Hz was applied. From the position of markers, the hip joint centre 6 

was estimated using the procedure by Bell, Pedersen and Brand (1990), and 7 

position of the shoulder joint by using the procedure by Rab, Petuskey and Bagley 8 

(2002). Subsequently a 13-segment rigid body model was established using 9 

Visual3D software (C-Motion, Inc.). Joint angles were calculated using the Euler 10 

convention, but only angles in the primary joint plane of motion were used for 11 

further analysis, except for the right shoulder joint, assumed to be the main 12 

contributor to throwing performance, for which all three Euler angles were 13 

maintained. Shoulder joint kinematics of the left shoulder were estimated through 14 

the included angle between the upper arm and the trunk for ease of calculation.  15 

Movement trials were trimmed from the instance of minimum knee joint flexion 16 

before jump-off to the instance of ball release as determined from the DV-camera 17 

recording. The right wrist joint flexion angle, the right shoulder joint flexion, 18 

abduction, and rotation angles, the included angle of the left shoulder joint, right 19 

and left elbow joint flexion angles, right and left hip joint flexion, right and left 20 

knee joint flexion, and the left ankle flexion angle were used for analysis (13 input 21 

angles). Typical trial lengths were between 15 and 25 frames. In order to avoid 22 

skewing the time-series data, movement trials were normalized according to mean 23 

trial lengths which resulted in different lengths of normalized times series 24 

between participants. Data analysis followed a single-participant approach 25 

(Button, Davids, & Schöllhorn, 2006) which ensured that different trial lengths 26 

between participants did not affect further analysis. 27 

Typically, experimental analysis from a dynamical systems perspective involves 28 

the identification of a system attractor. However, currently no such attractor for a 29 

whole body movement has been reported in the neurobiological literature. 30 

Therefore, in the present study we resorted to a different approach to identify 31 

phase transition behavior in a basketball hook shot. Following previous work it 32 

can be assumed that an attractor can be derived from movement pattern 33 

kinematics. A transition between global movement patterns should be readily 34 
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identifiable through the whole body kinematics of the actors and accordingly 1 

should be marked by significant changes in the movement patterns. Previously it 2 

has been shown that movement patterning can be identified through a cluster 3 

analysis approach. For example using a cluster analysis approach it is possible to 4 

identify different walking (Kienast, Bachmann, Steinwender, Zwick, & Saraph, 5 

1999; Schöllhorn, Nigg, Stefanshyn, & Liu, 2002) or kicking patterns (see Chow, 6 

Davids, Button, & Rein, 2008). Further, in previous work, Rein et al. (in press) 7 

showed that a cluster analysis applied to the study of bi-manual anti-phase 8 

movement identified the same attractor dynamics as a traditional approach using 9 

elative phase measures  10 

Therefore, it seemed reasonable to assume that a cluster analysis approach 11 

would be able to identify attractor dynamics in more complex movements, as 12 

previously  shown in a pilot study of  javelin throwing (Schöllhorn, 1993) and 13 

golf (Lames, 1992). However, as cluster analysis always groups objects into 14 

clusters, further criteria are necessary to unambiguously identify transitions 15 

between attractors. Thus, the mere statement that a cluster analysis separated 16 

movement trials into different clusters does not warrant a claim for the existence 17 

of different attractors. As has been shown in studies of bi-manual coordination, 18 

attractor dynamics follow an abrupt change during a transition  19 

(see Kelso, 1994; Kelso & Schöner, 1988).  20 

Accordingly, cluster analysis should identify well separated clusters 21 

indicated, for example, by high levels of connectivity depicted in a dendrogram 22 

and inspection of actual joint kinematics should indicate substantial differences 23 

between subsequent patterns. 24 

Further, as phase transitions are marked by critical fluctuations and hysteresis 25 

effects, these characteristics should also be identified in order to justify the 26 

existence of phase transitions. In general, hysteresis effects merely highlight the 27 

extent to which the current state of a system is dependent on its previous states. In 28 

relation to phase transitions though, hysteresis serves as one of the key indicators. 29 

In relation to the present application of cluster analysis, hysteresis can be 30 

identified by inspection of the cluster distribution against varying control 31 

parameter values. For example when the transition between movement patterns, as 32 

identified through the cluster analysis, shows a dependency on the direction of the 33 

control parameter, this observation can be taken as sufficient indication for 34 



11 

hysteresis behavior (see Rein, et al., in press for an example). To enable 1 

identification of critical fluctuations, the cluster analysis approach must be 2 

augmented.  3 

In order to achieve this aim we propose a procedure which generalizes 4 

previous approaches (Sidaway, Heise, & Schoenfelder-Zohdi, 1995). First, 5 

movement trials are separated into groups according to each control parameter 6 

value. In the present case movements were grouped according to throwing 7 

distance and the direction of distance change. Afterwards the median differences 8 

between all trials for this bin were calculated. This value yields a dissimilarity 9 

score for each distance by condition bin. Measurement of the median was chosen 10 

since it is more robust against inflation from outliers. When critical fluctuations 11 

are present, movement patterning should show greater variation. Accordingly 12 

differences between instances of movement execution for a given value of the 13 

control parameter should exhibit a sharp increase. Therefore, when plotting 14 

median dissimilarity scores against a particular control parameter value, a 15 

pronounced peak should be visible in the plot (see Kelso, et al., 1986, p. 281, 16 

Figure 2 for an example). Conceptually, this procedure mimics the traditional 17 

approach using the standard deviation of the relative phase.  18 

Accordingly, if peak behavior of median scores occurs in the vicinity of 19 

cluster switching areas, this may be interpreted as an occurrence of critical 20 

fluctuations. Mathematically, this is a similar approach to that used by Chen, Liu, 21 

Kress & Newell (2005) in the derivation of the Cauchy criterion, used for their 22 

analysis of the acquisition of movement coordination in a pedalo-paddling task. 23 

The measurement takes into account all biomechanical degrees of freedom at the 24 

same time, and in the present case  this involves all 13 input joint angles over the 25 

course of the whole movement. Taken together data analysis procedures 26 

comprised the following three stages for the identification of attractors: I.) The 27 

presence of different movement clusters as identified through the cluster analysis, 28 

II.) The presence of critical fluctuations identified through a rise in median 29 

dissimilarity score, and III.), The occurrence of hysteresis which warrants 30 

identifying different movement patterns as belonging to different attractors. A 31 

limitation of this approach is that no determined attractor can be derived and only 32 

indirect evidence can be obtained to justify claims of phase transition behaviors. 33 
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Identification of a great number of movement clusters does not necessarily imply 1 

a suppression of biomechanical degrees of freedom, only that the movement 2 

represented by each cluster showed distinct differences.  A switch (not necessarily 3 

a phase transition) between movement clusters was defined when three criteria 4 

were met: (i.) the majority (i.e., at least 60%) of trials from an initial cluster 5 

changed at a specific distance. (ii.) the initial cluster had to provide the majority of 6 

trials in the preceding distance and (iii.) the new cluster had to provide the 7 

majority of trials at the subsequent distance. This approach ensured that a switch 8 

between stable movement patterns occurred. Following the recommendations of 9 

Toro, Nester and Farren (2007), differences between clusters were subsequently 10 

investigated using angle-angle plots (see Rein, et al., in press for further 11 

examples) to r justify the identification of phase transitions. To facilitate 12 

comparisons between movement clusters, angle-angle plots of right shoulder-right 13 

elbow, left shoulder-left elbow, and left hip – left knee are presented. However, 14 

since angle-angle plots are only two-dimensional representations of movements it 15 

should be noted that this presentation does not always necessarily lead to clearly 16 

visible separations between clusters since the actual clustering was determined 17 

using the full 12-dimensional input space. All statistical analyses were performed 18 

using the R software (R Development Core Team, 2006).  Specifically the pvclust 19 

(Suzuki & Shimodaira, 2006), scaleboot (Shimodaira, 2006) and fpc (Henning, 20 

2006) packages were used for the cluster validation procedures. All remaining 21 

calculations were performed using custom software written in MATLAB 7.1 (The 22 

MathWorks, Inc.). Significance levels for all statistical analysis were set at p < 23 

0.05.  24 

Results 25 

Performance scores 26 

In Figure 1 the rating of participants according to their mean performance scores 27 

is shown. Two of the three expert players (NI and JA) were also the two best 28 

performers during the experiment whereas participant CA was the second least 29 

successful thrower. Surprisingly, participant SH, the novice performer with no 30 

prior experience in using the basketball hook shot or in playing basketball, 31 
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achieved an intermediate performance in comparison to the remaining 1 

participants.  2 

Figure 1 around here 3 

(See Supplementary Figure 1 for individual performance scores across throwing 4 

distances and condition). 5 

Friedman Rank-Sum tests for throwing distance attained almost conventional 6 

levels of statistical significance, χ2
7 = 13.3, p < 0.07 when averaged over 7 

participants and blocking for condition. Further, distance effects were significant 8 

when averaging over conditions and blocking for participants  χ2
7 = 31.15, p < 9 

0.01. Post-hoc analysis showed significant effects between distances 3-5m, 3-7m, 10 

5-6m, and 5-8m, which all indicated deteriorating performance with increasing 11 

distance. Comparisons between participants showed a significant effect when 12 

averaging over conditions and blocking for distance χ2
7 = 635.65, p < 0.01. Post-13 

hoc analysis indicated significant effects between CA-JA, CA-NI, JA-KE, JA-RY, 14 

KE-NI. Condition effects were statistically significant when blocking for 15 

participants χ2
1 = 4.5, p < 0.05 which indicated that they performed better during 16 

DEC compared to INC. 17 

Movement patterning 18 

The number of movement pattern clusters was determined according to the 19 

bootstrapping values and the results of the Hubert-Γ scores (see Rein, et al., 20 

accepted for details). Table 2 displays the summary of results of the bootstrapping 21 

procedure together with the number of trials contained in each cluster for all 22 

participants. Since p-values could be established only if the cluster nodes 23 

contained more than one item, clusters which consisted only of a single trial were 24 

marked NA. The range of determined clusters for each participant varied between 25 

two and six clusters. Movement clusters were numbered according to their first 26 

individual occurrence for each participant. Therefore,  clusters per se could be 27 

readily compared across participants as the cluster analysis was undertaken on a 28 

participant basis. Thus, for example the first  movement cluster represents 29 

different movements for each individual participant. 30 

Insert Table 2 here 31 
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(Please compare Supplementary Figures for detailed dendrograms from each 1 

participant). Initial analysis suggested the presence of three global strategies used 2 

by the participants: 1.) Phase transitional behavior, 2.) Switching behavior only, 3 

3.)  No switches between clusters. To compress the presentation of the results, 4 

data from one representative participant for each category will be presented except 5 

for phase transition behavior, where results from both participants will be 6 

presented as these were the main focus of the current investigation. 7 

1) Phase transition behavior 8 

Cluster analysis indicated a two-cluster solution for participant SH. The majority 9 

of trials were contained in the 2nd cluster (131 trials, see Table 1). For Participant 10 

CA a six-cluster solution was obtained. The sixth movement cluster of Participant 11 

CA exhibited a very small p-value (see Table 1). However, the next branch 12 

underneath that particular node contained only one main cluster and a singular 13 

trial with a p-value of 99 for the former which indicated strong validity for this 14 

particular node. Because further separation was rejected by the Hubert-Γ scores, 15 

this inferior solution was nevertheless chosen for consistency. The distribution of 16 

trials across movement clusters was highly skewed with cluster 6 containing 109 17 

out of 159 trials. Further, the fifth cluster showed a p-value of only 56 which 18 

indicated a low level of stability of this cluster. 19 

Movement kinematics 20 

Insert Figure 2 around here 21 

Investigation of the angle-angle plots for the right elbow joint and the right 22 

shoulder joint abduction angles indicated some clear differences between the two 23 

movement clusters (see Figure 2.a). The main differences in the right arm between 24 

the clusters stemmed from the range of motion in the shoulder joint and the 25 

absolute values of the elbow joint. Within the 2nd movement cluster, the right 26 

elbow was almost completely extended whilst carrying out an abduction-elevation 27 

movement at the shoulder joint. In contrast, for the 3rd cluster the movement 28 

started from a higher position and mainly followed a shoulder elevation – elbow 29 

extension pattern. Kinematics in the left arm showed variations across trials with 30 

no clear separation between the two clusters (see Figure 2.b). The left elbow was 31 

mostly extended, with much smaller movements in the shoulder joint compared to 32 
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the right arm. The appearance of the plots was distinctively different between the 1 

two movement clusters with the 2nd movement cluster exhibiting greater variation 2 

across trials. It is also in the movements of the left arm that the singular trial 3 

exhibited the greatest differences with respect to remaining trials. Kinematics of 4 

the left leg exhibited great stability across all trials and displayed considerable 5 

overlap between trials. The general movement pattern was characterized by a 6 

synchronous extension in hip and knee joints. 7 

Insert Figure 3 around here 8 

Movement kinematics for participant CA are shown in Figure 3. Inspection of the 9 

movement kinematics showed differences in the coordination of the right 10 

shoulder-arm complex (compare Figure 3.a). Focusing on the main movement 11 

clusters (2nd, 3rd, and 5th), two qualitatively different strategies can be identified. 12 

Movements for the 2nd and the 5th cluster are characterized by parallel shoulder 13 

abduction-elevation and elbow extension. In contrast, for the 3rd cluster, segment 14 

movements stemmed from the shoulder joint with the elbow being held almost at 15 

a constant extended position.  The 2nd and the 5th clusters varied due to different 16 

ranges of motion in the shoulder. Angles for the 5th cluster indicated a more 17 

elevated final posture compared to the 2nd cluster.  A similar distinction between 18 

movement patterns was visible in the kinematics for the left shoulder-arm 19 

complex (compare Figure 3.b). The 1st, 2nd, 4th, and 5th movement clusters started 20 

from similar postures but diverged at ball release. Again, the 3rd cluster was 21 

distinctly different from the remaining clusters exhibiting small ranges of 22 

movement in the shoulder, paired with a flexion movement in the elbow joint. 23 

Shoulder abduction angles indicated for the 3rd cluster a more adducted posture 24 

compared to the remaining cluster where the arm segment was elevated during the 25 

movement. Figure 3.c indicates only small differences in the lower limb 26 

kinematics of the left leg with some variations between the movement clusters. 27 

The kinematics of movement in the 3rd cluster showed greater ranges of motion in 28 

the left knee joint, with greater flexion at the beginning of the movement and 29 

similar extension angles at the end of the movement.  30 

Cluster distribution 31 

In Figure 4 the occurrence and the distribution of the individual clusters are 32 

shown for participants SH and CA. Fluctuation scores are overlaid onto the 33 



16 

distance panels. Inspecting the color distributions within the clusters reveals clear 1 

differences between the two participants. 2 

Insert Figure 4 around here 3 

For participant SH the distribution of movement clusters indicated that the 2nd 4 

movement cluster was used throughout the INC condition and down to the 4m 5 

distance during the DEC condition. , Subsequently two more movements 6 

belonging to the 2nd cluster were used after which a transition to the 3rd movement 7 

cluster occurred. This patterning clearly indicates a hysteresis effect  where the 8 

participant used different patterns at the beginning and the end of the experiment. 9 

During the switch from the 2nd to the 3rd cluster median dissimilarity scores 10 

increased and remained elevated, especially when compared to those values at 2-11 

4m during the INC condition. Interestingly, in both conditions the fluctuation 12 

scores decreased at 6m, framed with increasing values at 5m. 13 

For participant CA a different distribution for the movement clusters was 14 

observed. The 1st, 2nd, 4th, and 5th movement clusters were used from 2m to 6m 15 

during the INC condition. However, none of the movement clusters were 16 

stabilized indicated by constant switching between them (see Figure 4). At 7m, a 17 

switch to the 3rd movement cluster occurred which was maintained for almost all 18 

of the remaining trials. The distribution of the dissimilarity scores showed 19 

increasing values prior to switching to the 3rd movement cluster, with 20 

subsequently decreased values. A second, smaller peak was visible at 4m where, 21 

for some trials, the 4th and the 5th movement clusters were used. Similar to 22 

Participant SH, Participant CA concluded the experiment with a different 23 

movement pattern compared to the beginning of the experiment, which indicated 24 

hysteresis behavior. Interestingly, the 3rd movement pattern which was used for 25 

most of the experiment had been used by the participant at 3m distance but was 26 

initially not maintained. 27 

Taken together, data from both participants fulfilled all the requirements with 28 

regards to the identification of phase transition behavior. Both used two different 29 

movement patterns. Both also showed increasing fluctuation measurements during 30 

pattern switching and hysteresis behavior. Thus, the results of the cluster analysis 31 

and the inspection of the movement kinematics provided strong support for a 32 

bimodal adaptation scheme for the two participants. 33 
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2) Switching behavior only  1 

In the following only the kinematics from a single representative participant (BR) 2 

for this group will be discussed. Although in general the kinematics showed 3 

considerable variation across participants, the general scheme seemed to apply 4 

across individuals and was characterized by a single movement pattern which was 5 

scaled according to distance. Detailed kinematics and discussion for each 6 

individual participant can be found in the supplementary information for this 7 

article. For Participant BR six different movement clusters were identified. For 8 

cluster 5 the bootstrapping p-value was only p = 0.67. However, the next branch 9 

underneath this cluster node contained two main clusters with p-values of 93 and 10 

97 indicating high stability of these clusters. This specific partition was also 11 

supported by the Hubert-Г scores.  12 

Movement kinematics 13 

Angle-angle plots for the arm segment showed considerable overlap between the 14 

different movement clusters (see Figure 5.a). The main differences between 15 

movement clusters, as indicated from the plot for the right arm segment, relate to 16 

the final posture at the point of ball release. Nevertheless, comparing across 17 

clusters the movement patterns appeared to present scaled variants of each other 18 

and were characterized by parallel shoulder abduction-elevation and elbow 19 

extension. Inspection of the angle-angle plots of the non-dominant arm segment 20 

suggested the presence of some more pronounced differences (see Figure 5.b). 21 

Elbow joint extension movements featured strongly in the 1st movement cluster, 22 

whereas during the 2nd and 3rd movement clusters the elbow joint first flexed and 23 

then extended during the end of the movement. Thus, although the differences 24 

stemmed mainly from the final postures, the movement patterns did not appear as 25 

simple scaled versions of each other. Across movement clusters, the shoulder was 26 

slightly elevated at the beginning of the movement followed by an adduction 27 

movement. The left leg kinematics exhibited much smaller variations across 28 

movement clusters following a hip-knee extension pattern (see Figure 5.c). 29 

Insert Figure 5 around here 30 

 31 
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Cluster distribution 1 

Insert Figure 6 around here 2 

In Figure 6 the movement cluster distribution for all five participants are shown. 3 

In general all participants showed movement cluster switching in relation to 4 

throwing distance where movement clusters followed an ordered sequence 5 

dependent on throwing distance. Except for a few singular trials, movement 6 

clusters were distributed around specific distances. Inspecting the color coding 7 

across participant indicated some clear differences with regards to the adaptation 8 

of the individual movement patterns.  9 

Specific to all five participants is the occurrence of hysteresis effects. Apart from 10 

participant BR, none of the participants terminated the experiment with the same 11 

movement pattern they used at the beginning of the experiment. Investigating 12 

cluster sequences to establish the first stable occurrence of a specific movement 13 

cluster until a switch to another movement cluster occurred showed that, in 14 

general, once participants used a particular movement cluster, they persisted with 15 

it for a longer period of time. They reverted back to a previous or a new pattern at 16 

a later distance compared to the distance at which the movement cluster was 17 

initiated. To exemplify, participant BR used the 3rd movement cluster at 9m (INC) 18 

but did not switch back to the second movement cluster before 7m (DEC). The 19 

same is true for almost all instances of movement clusters across participants. 20 

Investigation of the fluctuation measurements did not indicate any pronounced 21 

differences between subsequent throwing distances. Only the absolute levels of 22 

fluctuations between participants varied and a Kruskal-Wallis test indicated 23 

significant differences between participants, χ2
4 = 55, p < 0.01. Post-hoc multiple 24 

comparison testing indicated significant differences between participant BR and 25 

participants KE, and NI and between participant DU and participants JA, KE, NI, 26 

and BR. Participant BR showed a greater level of fluctuations compared to the 27 

others and participant DU showed the smallest fluctuations across participants. 28 

Comparing Spearman rank-statistics did not indicate a significant correlation 29 

between performance scores and level of fluctuations, ρ = 0.2, p = 0.78. 30 

In summary, the results from the inspection of the kinematics as well as from the 31 

cluster distribution and fluctuation measures provided no support for phase 32 

transition behavior in these participants. Results rather indicated that participants 33 
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used a single movement pattern and varied it according to throwing distance or, 1 

related to attractor dynamics, the presence of only a single attractor. 2 

3) No change - Participant RY  3 

For Participant RY, the cluster analysis identified mainly a single movement 4 

pattern (1st cluster) which was maintained over all distances with some isolated 5 

trials from the 3rd to 5th movement clusters. 6 

Movement kinematics 7 

Insert Figure 7 around here 8 

Angle-angle plots of the dominant segment (compare Figure 7.a) indicated great 9 

similarity across the main clusters and the movement pattern was characterized by 10 

an extended elbow combined with a shoulder abduction-elevation movement. 11 

Four trials which were clearly different from the remaining trials were grouped 12 

into the 4th movement cluster. This movement pattern was characterized by 13 

parallel shoulder abduction-elevation and elbow extension. The 1st and 2nd 14 

movement clusters  did not exhibited any clear differences based on the 15 

movements of the throwing arm. Inspection of the kinematics of the non-throwing 16 

arm, however, showed clearly visible differences (compare Figure 7.b) stemming 17 

mainly from the movement in the left elbow joint with somewhat greater shoulder 18 

joint movements for the 2nd movement cluster. Qualitatively, regarding the shape 19 

of the mean curves, the two movement patterns showed some similarity but were 20 

nevertheless well separated from each other. The plots of the lower leg kinematics 21 

(see Figure 9.c) showed considerable overlap between all movement clusters with 22 

some greater variation for the 1st movement cluster compared to the 2nd movement 23 

cluster,  as well as some slight differences for the starting points. 24 

Cluster distribution 25 

Insert Figure 8 around here 26 

Movement cluster distributions indicated some relation between movement 27 

patterning and throwing distance, where the 2nd movement cluster was used 28 

mainly at greater distances and stabilized only at 9m throwing distance in both 29 

conditions (Figure 8). Accordingly hysteresis effects could not be identified for 30 

participant RY. Median dissimilarity scores showed an increasing trend during the 31 
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increasing condition with a peak plateau in the vicinity of the main distribution of 1 

cluster 1 trials. During the DEC condition, increased fluctuations from 7m to 6m 2 

were noticeable followed by increasing values from 4m downwards probably due 3 

to the increasing usage of the 4th movement cluster. 4 

Discussion 5 

The present experiment investigated effects of altering throwing distance on 6 

coordination and control of a basketball hook shot movement. Previous research 7 

has shown that throwing distance serves as a candidate control parameter (Liu & 8 

Burton, 1999; Southard, 2002) and it was expected that this methodology would 9 

elicit phase-transitions between different attractors based on a bi-model attractor 10 

layout. The results provided only partial support for this hypothesis as only two 11 

out of eight participants exhibited the expected characteristics typically associated 12 

with phase-transition behavior. The remaining participants used only a single 13 

attractor and varied the movement pattern according to throwing distance or in the 14 

case of participant RY varied the movement pattern only minimally. With regards 15 

to the expected inter-individual variability due to the degenerate nature of the task, 16 

the results provided support in favor of this view as movement kinematics 17 

displayed considerable variations across participants. 18 

For the two participants exhibiting phase-transition behavior (CA & SH) 19 

investigation of angle-angle plots clearly indicated qualitatively different 20 

movements, as exemplified by the movement kinematics in both shoulder-arm 21 

segments. However, the timing of transitions was distinctly different between the 22 

two participants. For participant CA the transition occurred during the increasing 23 

distance condition at 7m. Thus, the 2nd pattern was used for most of the trials. 24 

Comparing this with the findings from the classical finger-flexion-extension task 25 

(Haken, et al., 1985), the former movement pattern would equate to the anti-phase 26 

pattern which loses stability for increasing values of the control parameter ( 27 

frequency ≈ throwing distance). In contrast, for participant SH the transition 28 

occurred during the decreasing condition at 4m distance.  The latter movement 29 

pattern exhibited increased values of fluctuation indicating less stability compared 30 

to the initial pattern. In both cases, however, the movement patterns used for most 31 

of the trials were characterized by an extended elbow – shoulder abduction-32 

elevation movement. The remaining trials were performed with a movement 33 
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pattern exhibiting parallel shoulder-elevation and elbow extension much more 1 

similar to patterns in a normal jump shot (Elliot, 1992). Again mapping the 2 

findings from participant SH to in-phase – anti-phase patterns the movement 3 

pattern distribution would equate to a jump from an in-phase to anti-phase mode. 4 

The question arises: how was the participant able to stabilize this less stable 5 

pattern and why did he not continue with the initial more stable strategy? With 6 

regards to the former question the increased fluctuation scores suggest that SH 7 

activated additional degrees of freedom which served to stabilize the movement. 8 

For the remaining 6 participants the different adaptation strategies appeared to 9 

resemble more of a pattern scaling approach, where a single movement pattern 10 

was adjusted over different throwing distances. Unexpected was the observation 11 

of hysteresis behavior in these participants sinceit is typically more associated 12 

with switching between different attractors or global movement patterns (Kelso, et 13 

al., 1994; Mutsaarts, et al., 2004; Sorensen, et al., 2001; Wimmers, et al., 1998). 14 

In contrast, in the present study hysteresis effects were visible in the adaptation of 15 

a single movement pattern. As performance was overall better during the 16 

decreasing distances, some short-term learning effects might have influenced the 17 

different distributions between the increasing and decreasing condition. Adopting 18 

a single-attractor interpretation, the pattern-scaling activity can be interpreted as 19 

the continual shifting of a single attractor in response to the changing distance 20 

constraints similar to the cooperative regime found in learning studies with bi-21 

manual movement models (Zanone & Kelso, 1992, 1997). Recently,  Kostrubiec 22 

et al. (e.g., 2006; Zanone & Kostrubiec, 2004) have proposed that such a short-23 

term shifting process enables actors to adapt to immediate changes in task 24 

constraints. From this view, the present results indicate that this scaling process 25 

depends on the previous state of the system. Potential sources of information for 26 

this effect may exist in peripheral nervous system structures like muscle spindles 27 

(Mel'nichouk, et al., 2007) and/or rapid cortical reorganization in the central 28 

nervous system (Classen, Liepert, Wise, Hallet, & Cohen, 1998; Muellbacher, 29 

Ziemann, Boroojerdi, Cohen, & Hallett, 2001). 30 

However, this is possibility requires further experimental analysis.  31 

Regarding the lack of phase transition behavior observed for these participants, 32 

the results of the present study support to some extent data reported by Sorensen 33 

et al. (2001), Limerick et al. (2001), and Buchanan et al. (1997), where different 34 
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strategies between participants were observed. Interestingly, Limerick et al. 1 

(2001) proposed that “anthropometric variability“(p.560) might have contributed 2 

to the observed differences in their study. In the present case however, a purely 3 

anthropometric explanation seems somewhat implausible since participants SH 4 

and CA (HeightSH = 168, WeightSH = 63, HeightCA = 188, WeightCA = 90) marked 5 

two extremes in the studied sample despite using similar bi-modal strategies. It 6 

seems likely that interactions between neuro-muscular and task constraints 7 

contributed to inter-individual differences observed, with system degeneracy 8 

providing a platform for individual differences in satisfying task requirements 9 

(Bardy, Marin, Stoffregen, & Bootsma, 1999; de Rugy, et al., 2008; States & 10 

Wright, 2001). As participants CA and SH both showed intermediate 11 

performances within this sample and only CA showed significant lower 12 

performance scores, no direct relation between phase transition behavior and 13 

throwing performance could be established. The same is true for the groups 14 

exhibiting no phase transitions, as participants with very low to high performance 15 

scores were included. Interestingly, in the present study different participants 16 

stabilized different movement patterns which showed some similarity to those 17 

patterns observed in participants CA and SH. For example, participant RY used 18 

the shoulder elevation – elbow extension pattern, whereas participant BR used the 19 

shoulder abduction-elevation with extended elbow movement pattern. 20 

Unexpected results  were observed in that the non-throwing arm often showed 21 

greater variations compared to the throwing arm. It is possible that the movements 22 

of the non-throwing arm were used to stabilize the kinematics of the throwing arm 23 

similar to a dampening mechanism (Haaland, Prestopnik, Knight, & Lee, 2004; 24 

Ko, et al., 2003). Through this mechanism, perturbations may have been 25 

redistributed across movement components in order to ensure task-achievement 26 

(Robertson & Miall, 1997; Saltzman & Kelso, 1987). This possible explanation r 27 

indicates that, in multi-articular movements, the distinction into a primary 28 

movement, throwing of the ball, and subsidiary movements, such as movements 29 

of the non-throwing arm, should not be considered in isolation, but that each may 30 

be involved in specific aspects of the task (Haaland, et al., 2004). Recently, Wang 31 

and Sainburg (2007) proposed a model of motor lateralization where the non-32 

dominant limb system is not viewed as inferior to the dominant system but rather 33 

is occupied with a different aspect of movement control, with overall movement 34 
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control being distributed across the whole system (Sainburg, 2002). The authors 1 

proposed that the dominant controller is responsible for the dynamic features of 2 

the movement, like generating joint torques whereas the non-dominant limb 3 

system supports the achievement of a desired steady-state posture. Thus, applied 4 

to the present study, the dominant arm may have responsible for accelerating the 5 

ball in the throw, whereas the non-dominant arm may have  stabilized the desired 6 

general movement. This explanation could also explain the greater variations in 7 

the non-dominant arm across participants, as here individual biomechanical 8 

factors might have played a greater role. In contrast, the demand to accelerate the 9 

ball according to throwing distance might impose tighter physical constraints 10 

yielding more similar movements across participants. Clearly further work is 11 

needed to establish more support for these ideas, but it is worth noting that this 12 

explanation fits well with the neurobiological characteristic of degeneracy. 13 

Indeed, the results observed in this study provided strong support for the 14 

occurrence of functionally degenerate behavior in multi-articular movements 15 

across participants (Hong & Newell, 2006). The range of observed movements 16 

displayed much greater variation in movement patterning than typically noted in 17 

studies of bi-manual finger coordination. It appears that when several movement 18 

patterns are available, performers are able to individually exploit degenerate 19 

degrees of freedom leading to richer movement dynamics (Hatzitaki & 20 

Konstadakos, 2007; Lee, Corcos, Shemmell, Leurgans, & Hasan, 2008; Robertson 21 

& Miall, 1997; Scholz & McMillian, 1995). The latter is a hall-mark characteristic 22 

of dynamical neurobiological systems performing in complex performance 23 

environments. Further, availability of many active biomechanical degrees of 24 

freedom provides greater possibilities with regards to movement variability for 25 

chosen degenerate movement solutions. 26 

Finally, for discrete, multi-articular actions, intentional dynamics seem to play a 27 

much greater role in movement organization compared to relatively constrained, 28 

continuous movements.  Based on findings from Huys et al. (2008), proposed key 29 

differences between discrete and rhythmical movements lies in the necessity for 30 

an external timer keeper (see Schöner, 1990 for a similar argument). As shown by 31 

Schöner and Kelso (e.g., Schöner & Kelso, 1988) intentions are able to modify the 32 

stability properties of attractors and it can hypothesized that, under a discrete 33 

regime, where intentions form an integral part of the movement, they can be 34 
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further used to modify the stability of movement patterns. Together, with the 1 

available greater number of biomechanical degrees of freedom, actors are 2 

structurally afforded the opportunity to modify attractor dynamics in a much more 3 

individualized manner. In attempting to maximize performance effectiveness, 4 

individuals use feedback regarding their current and previous attempts to explore 5 

the tolerance for variability both within- and between-trials. The complementary 6 

strategies of between-trial and within-trial error correction shown in this throwing 7 

task, typical of functional human behavior, likely represent a well coordinated 8 

union of higher and lower levels of cortical control (Ranganathan & Newell, 9 

2008). Intentional dynamics may have also contributed to the proposed counter-10 

intuitive switch from in-phase to anti-phase patterning in participant SH.  11 

Conclusion 12 

Using a scaling methodology ubiquitous to investigations from a dynamical 13 

systems perspective, data from this study provided evidence for phase transition 14 

behavior in only two out of eight participants in a multi-articular throwing action. 15 

In both cases participants switched between two qualitatively different movement 16 

patterns which were identified and validated through a novel cluster analysis 17 

approach. In the remaining participants no such clear transitions were found and 18 

movement pattern adaptations appeared to follow a continual pattern-scaling 19 

activity. The present study provided evidence for distinct differences between 20 

traditional (continuous) movement models utilized in studies from a dynamical 21 

systems perspective and multi-articular, degenerate actions. The results indicated 22 

great variations in selected movement patterns between participants, which 23 

highlighted the degenerate features of the chosen movement model. Further, the 24 

present study showed that hysteresis behavior is present even without phase 25 

transitions, an unexpected finding that warrants further research. Taken together, 26 

more research using discrete degenerate actions seem necessary in order to study 27 

the dynamical systems perspective on movement coordination and control beyond 28 

its present scope. 29 

 30 
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Figure Headers 1 

Figure 1: Performance scores. 2 

Figure 2: Angle-angle plots for all movement clusters of participant SH. (a) Angle-angle plot of 3 

right shoulder joint abduction angles against right elbow joint flexion angles. (b) Angle-angle plot 4 

of left included shoulder joint angle against left elbow joint flexion angle. (c) Angle-angle plot of 5 

left knee joint flexion angle against left hip join flexion angle. * indicates the beginning of the 6 

movement. 7 

Figure 3: Angle-angle plots for all movement clusters of participant CA. (a) Angle-angle plot of 8 

right shoulder joint abduction angles against right elbow joint flexion angles. (b) Angle-angle plot 9 

of left included shoulder joint angle against left elbow joint flexion angle. (c) Angle-angle plot of 10 

left knee joint flexion angle against left hip join flexion angle. * indicates the beginning of the 11 

movement. 12 

Figure 4: Distribution of movement clusters of participants SH and CA. Movement clusters are 13 

color coded based on their occurrence during the experiment. Actual movement clusters vary 14 

between participants. Panels represent throwing distances in the order used during the experiment. 15 

Bottom small ticks indicate individual trials in their actual sequence. (●) indicates fluctuations 16 

scores (coordinates are shown on the right ordinate)  17 

Figure 5: Angle-angle plots for all movement clusters of participant BR. (a) Angle-angle plot of 18 

right shoulder joint abduction angles against right elbow joint flexion angles. (b) Angle-angle plot 19 

of left included shoulder joint angle against left elbow joint flexion angle. (c) Angle-angle plot of 20 

left knee joint flexion angle against left hip join flexion angle. o indicates the beginning of the 21 

movement. 22 

Figure 6: Distribution of movement clusters of participants BR, DU, JA, KE, and NI. Movement 23 

clusters are color coded based on their occurrence during the experiment. Actual movement 24 

clusters vary between participants. Panels represent throwing distances in the order used during the 25 

experiment. Bottom small ticks indicate individual trials in their actual sequence. (●) indicates 26 

fluctuations scores (coordinates are shown on the right ordinate) 27 

Figure 7: Angle-angle plots for all movement clusters of participant RY. (a) Angle-angle plot of 28 

right shoulder joint abduction angles against right elbow joint flexion angles. (b) Angle-angle plot 29 

of left included shoulder joint angle against left elbow joint flexion angle. (c) Angle-angle plot of 30 

left knee joint flexion angle against left hip join flexion angle. o indicates the beginning of the 31 

movement. 32 

Figure 8: Distribution of movement clusters of participant RY. Movement clusters are color coded 33 

based on their occurrence during the experiment. Panels represent throwing distances in the order 34 

used during the experiment. Bottom small ticks indicate individual trials in their actual sequence. 35 

(●) indicates fluctuations scores (coordinates are shown on the right ordinate)  36 

37 



30 

Table Headers 1 

Table 1: Performance scores (adapted from XY) 2 

Table 2: Results of multi-scale bootstrapping procedure (p-values) for each cluster for each 3 

participant and number (no.) of trials contained in each cluster. 4 

5 
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Figure 4 1 
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Figure 6 1 
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Figure 8 1 
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Table 1 1 

Score Characteristics 

1 Airball, Ball misses completely by at least 2m 

2 Airball less than 2m 

3 Ball hits backboard first no score 

4 Ball hits backboard first score 

5 Ball hits outside of rim score or no score 

6 Ball hits inside of rim score or no score 

7 Ball passes cleanly through the basket with touching the rim 

 2 

3 



40 

Table 2 1 

 2 

Subject 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

p no. p no. p no. p no. p no. p no. 

BR NA 1 94 48 92 4 96 23 67 5 79 78 

CA 98 4 56 19 93 18 78 9 NA 1 82 109 

DU 98 56 95 4 95 43 87 43 79 13   

JA 94 40 81 25 56 41 92 54     

KE 99 119 96 8 NA 1 90 13 96 7 NA 1 

NI 98 12 98 66 94 5 100 76 NA 1   

RY 99 29 99 125 NA 1 NA 1 100 4   

SH NA 1 93 131 100 28       

 3 




