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Abstract—In this paper, cognitive load analysis via acoustic-
and CAN-Bus-based driver performance metrics is employed
to assess two different commercial speech dialog systems (SDS)
during in-vehicle use. Several metrics are proposed to measure
increases in stress, distraction and cognitive load and we compare
these measures with statistical analysis of the speech recognition
component of each SDS. It is found that care must be taken
when designing an SDS as it may increase cognitive load which
can be observed through increased speech response delay (SRD),
changes in speech production due to negative emotion towards
the SDS, and decreased driving performance on lateral control
tasks. From this study, guidelines are presented for designing
systems which are to be used in vehicular environments.

I. INTRODUCTION

The last 20 years have witnessed a dramatic increase in the
number of human-machine interface applications for in-vehicle
driver assistance, navigation and infotainment systems in order
to meet the demands of modern life. Although these exciting
developments bear the potential to help drivers travel more
safely and efficiently, an often overlooked factor is the effect
of such systems on drivers in terms of distraction and cognitive
load. It has been reported that almost 90% of all accidents
are caused by driver error [1]. Although not reported in full
detail, factors which contribute to these errors are related to
sleep deprivation, fatigue, distraction and inattention. If driver
errors are to be reduced by the use of engineering systems and
technology, each of these factors requires detailed study.

This study focuses on driver distraction and cognitive load;
in particular, speech dialog systems (SDS) are studied to assess
their effect on driver workload. The level of cognitive load is
assessed using both speech and driving performance metrics.
To indicate the delay in cognitive/auditory processing, we use
speech response delay (SRD) [2], whilst acoustic analysis is
used to measure changes in speech production which may
result from stress when interacting with SDS. The use of these
systems might also cause changes in driving performance;
therefore driver-vehicle interaction signals – particularly steer-
ing wheel angle (SWA) and speed from the CAN-Bus – are
used to assess the smoothness of lateral/longitudinal control
applied by the driver during interaction with the SDS. Driving
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performance metrics are based on standard deviation (STD),
sample entropy (SampEnt) and high-frequency signal energy.

In this paper, the experiment design and transcription proto-
cols are first explained in Section II with details of the instru-
mented vehicle UTDrive, the driving routes, and characteristics
of the speech dialog systems. In Section III, the metrics used
in cognitive load assessment are presented with discussion of
their reliability. This section also reports a comparison between
the speech- and driving-based performance metrics on a sub-
set of the UTDrive Corpus. Finally, in Section IV, guideline
recommendations and conclusions based on cognitive load
management strategies and their implications on SDS design
are made based on the results of this study.

II. EXPERIMENT DESIGN AND TRANSCRIPTION PROTOCOL

This study is based on the close-to-realistic data collection
procedure used in the UTDrive project [3]. The data collection
was performed using participants driving an instrumented
vehicle in real traffic conditions. Although the instrumentation
is visible to the subject which might shift behavior towards
“precautious, self-aware driving”, the risks in traffic and asso-
ciated consequences are real. Details of the corpus relevant to
the current study are given in the following sections.
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SESSION-BY-SESSION EXPERIMENT DESIGN.

Se
ss

io
n

1 Route 1 Neutral driving
Route 1 Secondary Tasks A
Route 2 Secondary Tasks A
Route 2 Neutral driving

Se
ss

io
n

2 Route 1 Secondary Tasks B
Route 1 Neutral driving
Route 2 Neutral driving
Route 2 Secondary Tasks B

Se
ss

io
n

3 Route 2 Secondary Tasks C
Route 1 Secondary Tasks C
Route 2 Neutral driving
Route 1 Neutral driving

A. Instrumented Vehicle UTDrive and Experiment Design

A Toyota RAV4 was equipped with several sensors and a
data acquisition unit to record 13 data streams. Sensors used
in this study include:

• Two CCD cameras for monitoring driver and road scene;
• Microphone array (5 mics) to record driver’s speech as

well as noise conditions in the vehicle; and
• CAN-Bus OBD II port for collecting vehicle dynamics:

speed, steering wheel angle, gas and brake driver inputs.
Data was collected in both residential and commercial traffic

areas including a mixture of collector-arterial roads with up to
4 lanes. Both routes were driven while performing secondary
tasks (shown in Table I), and without secondary tasks referred
to as neutral driving. Table I also shows the tasks assigned
to each road segment of each route. Each driver completed 3
ordered sessions as shown in Table II, resulting in 12 laps per
driver. Each session was separated by at least one week.

B. Speech Dialog Systems

In the cell-phone segments in Table I, participants called
stored telephone numbers to initiate spoken interaction with
one of two commercial SDS whilst driving. This task involved
both manual dialing and then responding to system prompts.
A Bluetooth interface to the cell phone enabled hands-free
interaction once the number was dialed.

Both SDS provide informational retrieval services, however
Speech Dialog System A (SDSA) provides information on a
much narrower scope than system B (SDSB). A comparison of
the general characteristics of the two dialog systems assessed
in this study is provided in Table III.

Characteristics of dialog interaction between humans and
SDS which are important for this study include [4]:

• Automatic Speech Recognition (ASR): needs to be robust
against the adverse effects of noise and stressed speech.
A poorly performing system can increase user frustration
which could also lead to decreased driving performance.
Neither of the tested SDS was designed specifically for
vehicular applications; therefore their recognition perfor-
mance will be lower than in their target environments.

• Grounding: the process of confirming with the user what
has been understood from previous communication(s).
Grounding is required in order to detect recognition and
other errors during the exchange prior to executing an
action (in these cases information retrieval).

• Barge-in: the phenomenon where users respond to the
SDS before the system prompt completes which is ad-
vantageous for experienced users to reduce transaction

times. When the communication channel is duplex (as in
hands-free environments), barge-in support requires echo
cancelation to remove the effects of system prompts. If
the SDS prompt cuts out whilst the user is speaking, the
system must also deal with a user’s tendency to stutter
and repeat responses.

The effect of some of these characteristics are studied in
Section III.

C. Multi-layer and Multi-modal Transcription Protocol

To assist this study, a multi-layered transcription protocol
was developed to provide information relating to speech
activity, driving maneuvers and other driving related tasks
for the assessment of driver performance. For audio-based
transcription, recordings were time labeled to indicate speech
dialog prompts, silence and driver responses. A sub-layer
of transcription for SRD analysis included the number of
responses to each prompt, driver’s emotion towards the SDS,
as well as instances of barge-in, hesitancy or passenger
assistance. Driver emotion was perceptually classified by a
human transcriber based on the characteristics described in
Table IV. Negative emotions were labelled based on any
variation from what is considered as desirable for “natural”
communication with a SDS – i.e. speaking in a neutral tone
in order to maximise ASR performance. All other responses
were regarded as non-negative in order to include speech
with no perceived emotion. In addition to the audio-based
transcription, video and CAN-Bus signals were used jointly
to label driving maneuvers such as lane-keeping on straight or
curved road segments. The two sets of transcriptions are used
to assess the auditory and driving performance in well-defined
scenarios in the following section.

III. COGNITIVE LOAD ANALYSIS

Cognitive load analysis in this study concerns the assess-
ment of human-machine interfaces in terms of perception
and processing burden placed on human subjects. The SDS
might induce unacceptable cognitive and auditory load for the
drivers or it may cause driver frustration if it is not designed
specifically for in-vehicle interaction. Excessive cognitive load
and frustration can both be considered as contributors to unsafe
driving behavior. By assessing the systems from a cognitive
load perspective, we aimed to obtain more in-depth informa-
tion on driver workload/distraction and produce guidelines to
design more effective in-car SDS. These two facets of the
problem are reflected in terms of the metric definitions in the
following sections. Auditory performance analysis is presented
in Section III-A, followed by driving performance assessment
using metrics indicating lateral control performance.

A. Analysis of Auditory Performance Metrics

The empirical distribution and means of the speech response
delay (i.e. the time between the system prompt ending and the
driver response starting) of the two SDS are shown in Fig. 1.
It should be noted that barge-in responses were not included
in this result as the SDS prompts typically cut out as soon
as the driver speaks; therefore it was difficult to establish
the true barge-in time as the prompt fails to complete. It
can be seen that the distribution and mean of SDSB differs
from those of the global population and SDSA. Using a
two-sample Kolmogorov-Smirnov tests, Table V shows the



TABLE III
GENERAL ATTRIBUTES OF THE TWO COMMERCIAL SPEECH DIALOG SYSTEMS.

SDSA SDSB
Information retrieval services on restricted domain. General information retrieval service on several domains.
Deferred explicit grounding performed after several responses. No grounding.
Error recovery handled by changing specific piece of information. No error recovery.
Barge-in supported. Barge-in supported, but not consistent.
System-directed dialogue. System-directed dialogue.
Prompts have simple but varied linguistic structure. Prompts follow same linguistic structure.
Robust against moving vehicle noise. Overly sensitive to moving vehicle noise leading to ‘false acceptances’.
Professionally recorded speech prompts. Professionally recorded speech prompts.
Initial system prompt = 16.5sec. Initial system prompt = 22.5sec.
Critical initial prompt length = 9sec. Critical initial prompt length = 17.5sec.

TABLE IV
CLASSIFICATION OF DRIVER EMOTION TOWARDS SDS.

Negative Non-Negative
Hesitancy / confusion Neutral

Frustration / anger Confident
Increased vocal effort Happy

Decreased speaking rate Humored
Altered pitch Disinterested
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Fig. 1. Empirical distributions and means of SRD for two dialog systems.

distribution for SDSB was significantly different to the global
and SDSA distributions (when p < 0.05). ANOVA test on
the sample means also confirmed a difference at the 5%
significance level (p = 0.0007). The observed distributions of
SRD could be affected by the number of response repetitions
or driver emotions towards the SDS, however further analysis
showed neither of these factors produce empirical distributions
significantly different from the global population.

Despite the fact that repeated responses and driver emotion
towards the SDS did not affect the response delay, during the
data collection it was noticeable that the ASR performance of
the two systems was different. Since the number of repeated
responses is a direct reflection of ASR performance and
negative driver emotion towards the SDS includes frustration
which could result from low ASR accuracy, these factors were
assessed to compare the two systems. General observation of
Figs. 2 and 3 shows a difference between the proportions of
each factor. Statistical tests were then performed on each factor
to test the hypothesis that the proportions were equal for both
systems (i.e. pSDSA = pSDSB) at the 5% significance level
(i.e. z = 1.96). Table VI summarizes these results.

TABLE V
TWO-SAMPLE KOLMOGOROV-SMIRNOV TESTS FOR SRD DISTRIBUTIONS.

Distribution 1 Distribution 2 p-score
Global SDSA 0.3933
Global SDSB 7.55e-4
SDSA SDSB 6.75e-6
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Fig. 2. Comparison of number of repeated utterances vs. initial responses.

Figure 2 shows the counts of initial and repeated responses
for both SDS however it is the proportions of initial to repeated
responses which are of interest. It can be seen that SDSA
required fewer repeated responses (compared to total number
of responses) than SDSB which had a ratio of initial to
repeated responses of almost 1:1. This observation is supported
by the first result in Table VI. The second and third rows
confirm that SDSB led to a greater proportion of negative
responses than SDSA as shown in Fig. 3.

Table VI also shows that System B exhibited a significantly
larger proportion of barge-in responses than System A. This
is attributed to two factors:

1) The long initial prompt of SDSB (22.5 sec) causes
drivers to respond as soon as they hear the option they
want. In this case it is vital for dialog systems to actively
listen for responses whilst long prompts are delivered.

2) From listening to the responses it was observed that
as drivers became increasingly frustrated, they tended
to respond as soon as the system informed them of a
misunderstanding.

Having established that SDSB induced more negative re-
sponses and that it required drivers to repeat themselves more
regularly, it was necessary to confirm that negative emotions
were more common as more repetitions were needed. Figure 4
shows a general increasing trend of proportions of negative
utterances with respect to repeat number (where 0 = initial
response). This trend is supported by correlation analysis
which showed some form of linear relationship between these
variables (correlation coefficient r = 0.3432 found to be
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Fig. 3. Comparison of negative and non-negative response proportions.

TABLE VI
SUMMARY OF STATISTICAL TESTS OF PROPORTIONS.

Description z-score Result
Repeated responses 9.31 prepSDSA < prepSDSB

Driver’s emotions towards 2.424 pnegSDSA < pnegSDSB
SDS (exc. hesitancy)

Driver’s emotions towards 2.052 pnegSDSA < pnegSDSB
SDS (inc. hesitancy)
Barge-in responses 15.33 pbargeSDSA < pbargeSDSB

significant at the 95% confidence level). Despite these findings,
it cannot be stated that a continual need for repeats causes
drivers to be more negative towards the SDS, as it is also
possible that negative emotions (i.e. stressed speech) cause
the ASR performance of the SDS to reduce.

The following paragraphs analyze how speech production
parameters are affected by the emotional state of the driver
towards the SDS and the number of repetitions to SDS
prompts. Using the same data as the above statistical analysis,
we extracted fundamental frequency (F0), short-term energy,
formant center frequencies, and average duration of voiced
speech segments. Figure 5 shows average fundamental fre-
quencies for negative and non-negative emotions as well as
F0 as a function of the repetition number. It can be seen that
negative emotions result in higher mean and variance of F0

distribution than non-negative emotions. In addition, there is
an increasing trend in F0 as the repetition number increases,
which reflects the greater proportions of negative responses
as shown in Fig. 4. The observed increase in fundamental
frequency for negative responses is consistent with previous
studies, where F0 increased when switching from neutral to
stressed speech production [5].

The short-term energy analysis showed a 2.6% increase
comparing negative to non-negative responses; further, 3rd
responses increased by 1.6% compared to initial responses and
responses after the 3rd increased by 1.8%. The joint increase
in F0 and short-term energy appears to confirm observations
made in [6], [7] regarding the monotonic relationship between
these two measures.

Formant frequencies were analyzed for voiced speech seg-
ments. Table VII presents the average formant frequencies in
negative and non-negative responses. The results demonstrate
noticeable differences between the two sets of emotions which
are particularly pronounced for F1, F3 and F4 taking into
account both mean and standard deviation. Shift in formant
frequencies between modalities of speech were observed pre-
viously [5]; these results further validate a change in speech
production as driver’s become frustrated with the SDS.
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and negative inputs. Vertical lines represent standard deviation intervals.

Finally, average duration of voiced speech segments was
analyzed (see Fig. 6). Again, the durations were increased
between negative and non-negative responses, and also showed
an expanding trend as drivers were required to respond
repeatedly to the same prompt. Increased duration was a
characteristic previously observed for Lombard effect where
speakers adjust their speech production in order to maintain
intelligible communication over noise [8]. From these results,
it appears that speakers believe their speech will become more
intelligible (and therefore more easily recognized by the SDS)
if they decrease their speaking rate.

The analysis in this section has demonstrated differences
between the two assessed SDS. These differences could be
attributed to the speech recognition accuracy of the two
systems which is reflected in the number of repeated utterances
required to complete a dialog. Low ASR performance can
lead users to become negative towards the system which
could further hinder the overall performance. The increased
proportion of negative attitudes could be correlated to the
observed lengthened speech response delay; further research
is required to verify this statement.

The statistical evaluation was confirmed through analysis of
speech production features which showed noticeable changes
between negative and non-negative emotions towards the SDS,
as well as elevated changes as drivers were required to repeat
their responses to the same prompt. These speech production



TABLE VII
AVERAGE FORMANT FREQUENCIES EXTRACTED FROM VOICED SPEECH

SEGMENTS. NUMBERS IN PARENTHESES REPRESENT STANDARD
DEVIATION.

Response
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F1

(Hz) 
F2

(Hz) 
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(Hz) 
F4

(Hz) 

Positive 109.3 
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3776
(287)

Negative 58.2 
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Fig. 6. Average duration of voiced speech segments. Vertical lines represent
standard deviation intervals.

measures also validate the choice of the labelling procedure
which was adopted in Section II-C to annotate the data.

B. Analysis of CAN-Bus-based Driver Performance Metrics

1) Metric Definitions: Segment 2 of both routes includes
interaction with the SDS as a secondary task (see Table I). This
segment comprises lane keeping and curve negotiation driving
tasks. Therefore we use maneuver-based driver performance
metrics which have proven to be good indicators of distraction.
For lane keeping, several driver performance metrics have
been suggested in the literature, mostly using steering wheel
angle to calculate a metric indicating the fluctuations or micro-
corrections in SWA. Amongst these metrics, a widely accepted
one is the sample entropy [9] and standard deviation. Reversal
rate of the steering wheel is also considered a reliable metric to
measure driver performance in the lane keeping task. Boer [10]
recently updated their previous work and suggested taking
high frequency terms into account. In a thorough analysis
in [11], it was also noted that the speed interval for which the
SWA-dependent metric is calculated is important since lower
speeds require more SWA input to achieve the same amount of
lateral movement when compared to higher speeds. For curve
negotiation, a constant input of some SWA is required using
the visual input of the road curvature as reference. A novice
or distracted driver will likely have fluctuating SWA inputs,
and a general trend is for speed to be reduced while taking
curves to balance the centrifugal force.

Although different in nature, lane keeping and curve ne-
gotiation can both be seen as regulatory control tasks from
the driver’s point of view. Therefore, we selected seven
metrics using available information and observations about

TABLE VIII
CAN-BUS-BASED FEATURE VECTOR DEFINITION.

Notation Definition
WDE SWA WD Detail Signal Energy for SWA
WDE Speed WD Detail Signal Energy for Speed

SampEnt SWA Sample Entropy of SWA
SampEnt Speed Sample Entropy of Speed

STD SWA Standard deviation of SWA
STD Speed Standard deviation of Speed
RSTD SWA Standard deviation of rate of change of SWA

driver performance/behavior including energies of high fre-
quency components Wavelet Decomposition (WD), sample
entropy, standard deviation and standard deviation of rate of
change (RSTD) – these are summarised in Table VIII. All
features are extracted for SWA and speed channels except
RSTD which only applies to SWA. The time window length is
taken as equal to the maneuver length and the effect of signal
length is eliminated in calculating the features.

For WD, Daubechies [12] wavelet kernel with 4th-order is
used and detail signal is taken at the 6th-level. Daubechies
wavelet is chosen over alternatives since it approximates well
the spikes and discontinuities regularly seen in CAN-Bus
signals. The level and order is adjusted to be able to extract
the high frequency content in the signal within the limitation
of human control; higher details are ignored since they might
be caused by other measurement disturbances.

Wavelet decomposition is performed using the integral:

[Wψf ](a, b) =
1√|a|

∞∫
−∞

ψ(
x− b

a
)f(x)dx. (1)

The wavelet function (ψ) is used to calculate the decomposi-
tion coefficient signals at all detail levels and a scaling function
is used to calculate the approximation signal. Daubechies
Wavelet at 4th-order (DB4) wavelet can be expressed as a
number sequence:

bk = (−1)kaN−1−k, (2)

where b is the wavelet number sequence:

b = {0.1830127,−0.3169873, 1.1830127,−0.6830127} ,
(3)

and a are the scaling coefficients.
Sample entropy is used to quantify regularity and complex-

ity of the signal and is a perfect match for measuring regularity
of the SWA signal; it has long been used in bio-signals such
as EEG, ECG and EMG to measure regularity. The SampEnt
is calculated as per the work described in [13]. The standard
deviation is calculated in statistical canonical form.

2) Analysis: The metrics explained in the previous section
give an indication of irregularity in control which can be
caused by increased cognitive load. Therefore, they are suit-
able to test the hypothesis that SDSB causes more frustration,
negative emotions and possibly distraction compared to SDSA.
In order to achieve this, all metrics are calculated over the
maneuver. The same metrics are calculated for the same route
segment, maneuver and driver using the CAN-Bus data from
neutral driving to construct the baseline. A comparison rate is
calculated using:

ComparsionRate =
Mdistracted −Mbaseline

Mbaseline
(4)



TABLE IX
INCREASE IN DRIVER PERFORMANCE COMPARED TO NEUTRAL DRIVING.

SDSA SDSB Rel. Increase
(SDSB vs. SDSA)

WDE SWA 1.83 4.48 2.4
Speed 0.36 0.59 1.6

SampEnt SWA 0.11 2.60 23.6
Speed 0.11 0.25 2.3

STD SWA 0.25 0.50 2.0
Speed 0.48 1.92 4.0

R-STD SWA 1.73 0.35 0.2

so that the relative change for each metric (M) according to
baseline driving can be measured independent of the driver.
After obtaining comparison rates for 14 subjects (7 female, 7
male) over 100 maneuver segments, the average change caused
by each system for each metric was calculated. The results
shown in Table IX support the initial hypothesis that SDSB
causes more distractions since most metrics show relative
increases from SDSA to SDSB (from 1.6x to 23x). In other
words, SDSB caused more irregularity compared to SDSA in
steering angle and speed control on a lane keeping task.

From Table IX it can be observed that SDSA also caused
increased in the irregularity of lateral control applied by the
driver, since the numbers represent the comparison rate using
the baseline as reference. However, SDSB has caused a larger
irregularity which can be seen in all metrics except RSTD. The
exception can be explained by the fact that SDSA caused quick
but small corrections to SWA while SDSB engaged drivers’
attention more, causing them to drift in the lane with larger
errors – this is actually more dangerous driver behavior. If the
driver allows the lateral control error to accumulate larger than
a certain threshold it might occupy the adjacent lanes setting
the conditions for an imminent accident.

IV. DISCUSSION AND CONCLUSIONS

In this study, speech- and driving-based performance met-
rics were used to assess 2 speech dialog systems. It was
observed that dialog systems with sub-standard ASR per-
formance caused driver emotion towards these systems to
be proportionally more negative, a phenomenon which was
elevated as they were required to repeat their responses.
Speech response delay was shown to be greater in a system
which causes greater negative reactions, and could therefore
be an indicator of distraction related to these emotions.

Analysis of speech production measures such as funda-
mental and formant frequencies, and voiced speech durations
showed trends which were consistent with previous research
comparing these measures in neutral and stressed speaking
styles. This acoustic analysis verified the data annotation pro-
cess, and showed how speakers vary their speech production
when exposed to misrecognition errors.

CAN-Bus-based driving performance metrics related to
steering wheel angle and speed irregularities confirmed the
hypothesis that a system which causes drivers to become more
frustrated, also causes them to become more distracted while
engaging in dialog with the SDS.

The analysis here clearly showed that only developing SDS
with technical requirements is not enough. For SDS to be
beneficial to the driver, it would be desirable for the SDS
to use dynamically-estimated cognitive load level from CAN-

Bus, speech response delays and acoustic-based metrics to
adapt itself for a safer driving experience.

As there was no other data available to further analyze why
Systems A and B perform differently, we can only hypothesize
that certain characteristics of the SDS cause different human
behaviors. Possible hypotheses which will be tested in future
research on SDS for in-car systems are:

• Considerably long dialog prompts put extra strain on
the driver to remember the options so they can respond
appropriately at the end (i.e. they are unaware of support
for barge-in). Any SDS where a list of options is provided
rather than an either/or decision could induce greater
cognitive load and also increase SRD.

• Drivers quickly learn when a system performs unsatisfac-
torily in hands-free mode, so they focus more on the road,
rather than on dialog prompts. This could cause artificial
delays to be included in the total response delay.

• Other features, such as background music, may confuse
drivers as to when they are supposed to respond to the
prompts, again producing an artificial delay.

• Systems which do not direct the dialog may cause drivers
to concentrate more on the prompt, using considerable
cognitive resources and increased driver distraction.

In our future studies we will be focusing on the effect of
these systems on different age groups, and also native/non-
native speakers of English.
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