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Abstract

Phase-type distributions represent the time to absorption for a finite state Markov

chain in continuous time, generalising the exponential distribution and providing a

flexible and useful modelling tool. We present a new reversible jump Markov chain

Monte Carlo scheme for performing a fully Bayesian analysis of the popular Cox-

ian subclass of phase-type models; the convenient Coxian representation involves

fewer parameters than a more general phase-type model. The key novelty of our

approach is that we model covariate dependence in the mean whilst using the Cox-

ian phase-type model as a very general residual distribution. Such incorporation

of covariates into the model has not previously been attempted in the Bayesian

literature. A further novelty is that we also propose a reversible jump scheme for

investigating structural changes to the model brought about by the introduction of

Erlang phases. Our approach addresses more questions of inference than previous

Bayesian treatments of this model and is automatic in nature. We analyse an ex-

ample dataset comprising lengths of hospital stays of a sample of patients collected

from two Australian hospitals to produce a model for a patient’s expected length
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of stay which incorporates the effects of several covariates. This leads to interesting

conclusions about what contributes to length of hospital stay with implications for

hospital planning. We compare our results with an alternative classical analysis of

these data.

Key words: Coxian Phase-type model, Phase-type distribution, Reversible jump

Markov chain Monte Carlo, Bayesian analysis, Erlang distribution, Covariate

Effects

1 Introduction1

Phase-type models generalise the exponential distribution and are charac-2

terised by an underlying finite Markov chain that has one absorbing state.3

This underlying Markov process passes through a number of transient states,4

or phases, until eventually being absorbed. Therefore, the phase-type model5

is the distribution of the time until absorption for a finite Markov process.6

This is useful in many application areas: phase-type models have been used7

to analyse hospital length of stay (LoS) data using maximum likelihood-based8

approaches ([11], [12], [13], [22] and [32]), they have been successfully used in9

risk analysis ([1], [2]) and queueing theory ([7]), and they can be fitted using10

the EM algorithm ([3]). There are several subclasses of phase-type distribu-11

tions; in this paper we focus on Bayesian inference for the highly versatile12

and popular Coxian subclass of phase-type models. In the Bayesian litera-13
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ture, phase-type models have been much less well explored. Bayesian Markov14

chain Monte Carlo techniques for general phase-type models are explored in15

[8], but this is limited to the fixed dimension case. A reversible jump Markov16

chain Monte Carlo (RJMCMC) approach which allows the number of transient17

phases in the model to vary is taken in [4] and [5]. However, in [4] and [5] an18

alternative mixture representation of the Coxian phase-type model, in terms19

of a mixed generalised Erlang distribution, is used rather than the matrix ex-20

ponential formulation used in this paper. Although these two representations21

are mathematically equivalent, in [4] and [5] a number of latent variables were22

introduced, which had to be imputed in the RJMCMC scheme. The introduc-23

tion of latent variables is not necessary here as we use the matrix exponential24

formulation, which has advantages when seeking reasonable acceptance rates25

for dimension-changing proposals in RJMCMC algorithms as there are fewer26

terms involved in the likelihood. It has also been previously noted that there27

is potential for unreliability when mixture type models are fitted using RJM-28

CMC (see [21], for example).29

In this paper we present a novel Bayesian approach in which the Coxian phase-30

type model is used as a very general residual distribution. The incorporation31

of a covariate dependent mean into the model has not previously been at-32

tempted in the Bayesian literature. In the case of regression models, the use33

of phase-type distributions allows the error structure of the standard gener-34

alised linear model, which is usually a gamma or inverse Gaussian distribution35

for positive continuous data, to be more flexible to accommodate, for exam-36

ple, long tailedness and a mode near zero simultaneously. This makes these37

distributions particulary suited to hospital length of stay (LoS) modelling ap-38

plications, such as the one we consider in this paper, where the data typically39
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exhibit these features. In this context, phase-type modelling should result in40

more efficient estimation of the covariate dependence than one would obtain41

by using a standard exponential family distribution. The phases may or may42

not have an interpretation in the context of the application, but our focus here43

is on the estimation of the covariate dependence. The aim is to identify factors44

leading to increased LoS, which in turn leads to bed occupancy problems, thus45

having implications for efficient health-care facility and budget planning. This46

is an active research area and various other techniques have been applied to47

this problem, examples include the use of classical queuing theory to represent48

patient flow through various phases of treatment or centers of care (see [14],49

for example) and the use of a stochastic compartmental modelling approach50

(see, for instance [30]). Refer to [23] for a useful overview of the directions51

that research in this area has taken.52

In our novel approach we develop an RJMCMC ([17]) analysis of data mod-53

elled by a Coxian phase-type distribution. The well-known paper [26] describes54

how RJMCMC can be used for mixture model analysis and [27] adapts these55

ideas to the hidden Markov model setting. Our Coxian model differs from the56

standard Markovian model in that it has additional constraints that must be57

taken into consideration in the construction of an appropriate RJMCMC algo-58

rithm. The difficulties associated with designing an RJMCMC scheme which59

will adequately explore the posterior are well-known, but we have been able to60

construct a sampler for this model which traverses the target distribution well.61

Our modelling of covariate dependency will also be useful in other applica-62

tions. Another contribution of this paper is to devise an RJMCMC scheme for63

exploring the inclusion into the phase-type model of an Erlang component,64

where specific structure leads to a more peaked mode. Using an RJMCMC65
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scheme we can automatically select the number of transient phases as well as66

their associated rate parameters, and estimate the covariate dependence (the67

number of covariates is fixed in our scheme, but this could also be estimated68

if desired). However, we still have the capability of exploring the important69

model features mentioned above. We demonstrate our new RJMCMC ap-70

proach with an application to modelling the effects of several covariates on71

the length of stay of patients in two Australian hospitals.72

In Section 2 we describe the Coxian subclass of phase-type distributions and73

in Section 3 we describe our Bayesian formulation of the model. In Section74

4 we present our RJMCMC methodology. In Section 5 we demonstrate the75

technique through analysing the hospital LoS data, which leads to conclu-76

sions about the effect of several factors on increasing length of stay. Section 677

explores the introduction of Erlang components into the model via RJMCMC78

and Section 7 concludes the paper.79

2 Coxian Phase-Type Distributions80

A phase-type distribution describes a Markov process, {X(t); t ≥ 0}, say,81

where the system moves through some or all of K transient states, or phases,82

before moving to a single absorbing state K +1. See [25] for a full description.83

The phases are governed by the transition probabilities84

P (X(t + δt) = j + 1|X(t) = j) = λjδt + o(δt), j = 1, . . . , K − 1

P (X(t + δt) = K + 1|X(t) = j) = µjδt + o(δt), j = 1, . . . , K.

Here δt represents a small time increment. The {λj} are the transition rates85

between the transient states and the {µj} describe the transition from any of86
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the transient phases to the absorbing state.87

In the Coxian phase-type model (see [10]) the system starts in the first phase88

and then moves through the transient phases sequentially before eventually89

being absorbed from any one of them. See Figure 1a for an illustration.90

The probability density function of the time spent moving through the tran-91

sient states before absorption is f(t) = p exp{Qt}q, where the infinitesimal92

generator Q is given by93

Q =




−(λ1 + µ1) λ1 0 . . . 0 0

0 −(λ2 + µ2) λ2 . . . 0 0

...
...

...
...

...

0 0 0 . . . −(λK−1 + µK−1) λK−1

0 0 0 . . . 0 −µK




,

and the vectors p and q take the forms p = (1 0 . . . 0) and q = (µ1 µ2 . . . µK)T .94

Here exp{·} represents the matrix exponential function and we compute this95

using Matlab.96

The marginal distribution [π1(t) . . . πK(t)] = p exp{Qt}, describes the proba-97

bility, πj(t), that the system is in state j, where j ∈ [1 : K], at time point t.98

The survivor function can be derived from this if it is of interest. The Coxian99

subclass describes any phase-type distribution with a generator matrix Q that100

has real eigenvalues and includes the exponential and Erlang distributions.101

Reference [19] describes two algorithms for computing a Coxian representa-102
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tion from a more general phase-type distribution with a generator matrix that103

has real eigenvalues.104

We can introduce covariate dependency into the model so that the mean105

absorption time is given by the log-linear regression exp{a + bTX}, where106

X = (X1, · · · , Xc) are the covariate values and b = (b1, · · · , bc) are their co-107

efficients. The expectation of time spent in the system is given by E(T ) =108

(−1)pQ−1(1 1 . . . 1)T ([25]). Therefore, to incorporate the desired depen-109

dency, we scale the transition rate matrix appropriately as exp{−bT X}Q,110

with the intercept term a given by exp(a) = (−1) p Q−1(1 1 . . . 1)T . In [11]111

covariates are also incorporated in this way in a classical approach, but this112

has not been done in previous Bayesian analyses of these distributions.113

3 Bayesian Model Formulation for a phase-type Model with an114

Unknown number of Phases115

Given observations comprising absorption times t1, ..., tn from a phase-type116

distribution with K transient states, and putting θK = (λ,µ,b), the likeli-117

hood is given by p(t|θK , K) =
∏n

i=1 p exp{Qti}q. The transition rates for the118

transient and the absorbing states are given Gamma prior distributions inde-119

pendent of K: λj ∼ Ga(αj, βj) and µj ∼ Ga(γj, δj), where Ga(·, ·) corresponds120

to the Gamma probability density function and {αj}, {βj}, {γj}, and {δj} are121

hyperparameters. The number of phases K and the covariates b must be as-122

signed prior distributions that are appropriate for the application at hand (we123

specify these in the context of our application later). Our posterior distribution124

has the form125
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p(θK , K|t)∝ p(t|θK , K)p(θK |K)p(K)p(b) (1)

=
n∏

i=1

p exp
(

exp(−bT X)Qti
)
q

K−1∏

j=1

1

Γ(αj)

1

βj
αj

λ
αj−1
j exp(−λj

βj

)

×
K∏

j=1

1

Γ(γj)

1

δj
γj

µ
γj−1
j exp(−µj

δj

)× p(K)× p(b).

4 Reversible Jump Markov Chain Monte Carlo Approach126

RJMCMC techniques (see [17]) allow us to fully explore the available param-127

eter space by moving or jumping between models with a varying number of128

phases. We devised a RJMCMC scheme for this Coxian model, something for129

which we found no guidance in the literature, which enables transdimensional130

moves to occur with good acceptance rates. At each iteration of our algorithm131

we randomly choose, with equal probability, one of the following three move132

types: perform a fixed dimension parameter update, split a phase in two or133

combine two existing phases into one, the birth of a new phase or the death134

of an existing phase.135

4.1 Metropolis-Hastings Fixed Dimension Parameter Update Move136

We follow standard methods in the literature for updating the rate parameters137

and the regression parameters via Metropolis-Hastings.138

4.2 Dimension Changing Reversible Jump Moves139

We denote the current number of phases in the model by K, and the proposed140

number by K∗, where K∗ is restricted to be equal to K − 1 or K + 1. We141
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assume that the maximum potential number of phases is fixed at K = Kmax,142

say.We propose a change of the model parameters from θK to θK∗ through a143

bijective mapping from the parameter space (θK , u, v) to (θK∗ , u∗, v∗), where144

u, v, u∗ and v∗ are auxiliary variables introduced so that dimensionality is the145

same in the current and proposed parameter spaces. These moves are accepted146

with probability min(R, 1) where R is given by147

p(t|θK∗ , K∗)p(θK∗)p(K∗)
p(t|θK , K)p(θK)p(K)

×JK∗,K p(u∗, v∗|K∗, K, θK∗)

JK,K∗ p(u, v|K, K∗,θK)
×

∣∣∣∣∣
∂(θK∗ , u∗, v∗)
∂(θK , u, v)

∣∣∣∣∣ . (2)

The first term in (2) is the ratio of the likelihood times prior (see (1)) for the148

proposed and current parameter values, and the second is the ratio of proposal149

probabilities. We denote the probability of moving from K to K∗ phases by150

JK,K∗ . The third term is the Jacobian for the transformation.151

We denote by µ and λ the rate parameters associated with the phase of in-152

terest in the model of lower dimension, and by µa,µb, λa and λb the rates153

associated with the two phases of interest in the model of higher dimension.154

It can be challenging to define a suitable mapping, particularly in the case of155

practically driven applications, as it is often difficult to obtain good mixing156

across model dimensions. To obtain reasonable acceptance rates for proposed157

transdimensional jumps, one requires an appropriately centered proposal dis-158

tribution with well tuned parameters. However, it is not generally obvious159

how best to achieve this ([9] makes some suggestions in this regard). Here,160

we take the approach of constructing our proposal distributions so that the161

proposed parameters are not too distant from the current parameters, and162

we take a matching approach to the construction of our mapping between di-163

mension spaces. We ensure that probability of absorption and the mean time164
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in the phase(s) are matched in the current and proposed dimension spaces165

corresponding to equations (3) and (4), given below.166

µ

µ + λ
=

µa

µa + λa

+

(
λa

µa + λa

× µb

µb + λb

)
(3)

1

µ + λ
=

1

µa + λa

+
1

µb + λb

. (4)

Split and Combine Moves167

The design of our split and combine moves does not allow splits or combines of168

the final phase. In all other cases we assume equal probabilities of splitting or169

combining. Figure 1b illustrates these move types graphically. In the combine170

move we have (µa, λa, µb, λb) → (u, v, µ, λ). We put u = µa and v = λa, then171

solving (3) and (4) gives us172

µ =
µaµb + µaλb + λaµb

µa + λa + µb + λb

λ =
λaλb

µa + λa + µb + λb

.

In this case, the Jacobian is given by173

(µa + λa)
2λa

(µa + λa + µb + λb)3
.

Our corresponding split move involves the reverse transition (see Figure 1b).174

In the higher dimension space, we set µa and λa to be equal to the simu-175

lated auxiliary variables u and v, respectively, where u ∼ NT (2µ, σ2) and176

v ∼ NT (2λ, σ2) . Here NT (·, ·) denotes the Normal density function truncated177

at zero with mean µ and suitable tuned variance σ2. We simulate from the178

truncated distribution since we cannot have negative values for the rate pa-179

rameters. By solving (3) and (4) we obtain180
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µb =
µa

2λ + µaλaλ− λaµµa − λ2
aµ

λa(−µa − λa + µ + λ)

λb =− (µa + λa)
2λ

λa(−µa − λa + µ + λ)
.

If either of µb or λb is negative when calculated the proposal is rejected. The181

Jacobian for the split move is the reciprocal of the corresponding expression182

for the combine move. The acceptance ratio for each of the above moves is183

then given by substituting the appropriate values into (2). These acceptance184

ratios are reciprocals of one another.185
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Fig. 1. Diagrammatic representations of (a) the Coxian phase-type model, (b) the

effects of our RJMCMC split and merge moves and (c) the effects of our RJMCMC

birth and death moves.
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Birth and Death Moves186

These moves are only applied to the final phase in the current model in a given187

iteration and bring about the birth of a new final phase or the death of the188

existing final phase with equal probability (provided that 1 < K < Kmax).189

The death move makes the transition (µa, λa, µb) → (u, v, µ); see Figure 1c.190

Putting u = µa and v = λa and solving (3) and (4), we obtain191

µ =
(µa + λa)µb

(µb + µa + λa)
.

The Jacobian for the death move is given by192

(µa + λa)
2

(µb + µa + λa)2
.

In the reverse birth move, we generate u and v from the Normal distribution193

truncated at 0 with mean µ and variance σ2 and set µa = u ∼ NT (µ, σ2) and194

λa = v ∼ NT (µ, σ2). Again, σ2 is chosen to give reasonable rates of acceptance195

for the move. To satisfy (3) and (4), we take µb to be196

µb =
(u + v)µ

u + v − µ
.

If this results in a negative µb, we reject the proposal. The Jacobian for the197

death move is the reciprocal of that for the corresponding reverse birth move198

described above. We can obtain the acceptance ratio for the birth and the199

death moves by substituting the appropriate quantities into (2) and these are200

of course reciprocals of each other.201
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5 Application: Modelling Length of Stay in Hospital202

The identification of factors that are likely to increase a patient’s LoS is a203

key goal for hospital planners. By addressing issues that lead to a longer LoS,204

health care costs can be reduced. LoS data are characteristically highly right-205

skewed making it difficult to fit them with other distributions. See [11] for206

a discussion of some of the difficulties associated with modelling LoS data.207

Phase-type distributions provide the flexibility that is required to capture the208

distributional characteristics of this type of data. The phases may only be209

artifacts of the modelling, but could have a physical interpretation in relation210

to the context. However, our focus here is on the estimation and interpretation211

of the covariate effects.212

We applied our method to a dataset previously analysed using classical maxi-213

mum likelihood techniques ([11]), with our results complementing this analy-214

sis. The dataset comprises the lengths of hospital stay of 1901 patients all of215

whom were at least 18 years of age. These data were collected from two hospi-216

tals in S.E. Queensland, Australia, between October 2002 and January 2003.217

Patients were recruited from a range of specialities, but only those whose ad-218

missions were considered uncomplicated contributed to the data.The observed219

lengths of stay ranged from 0.44 to 170.9 days. The sample mean length of220

stay was 7.25 days. Information on ten covariates widely believed to be of221

relevance to length of hospital stay was also available for each patient and was222

included in our model. Details of the covariate information are given in the223

Appendix. (Note that this dataset is a part of a larger dataset collected in a224

prospective study and that [15] and [16] provide further details of the method225

of collection.)226
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For each patient we also have a predicted length of stay based on the patient’s227

admission category for an uncomplicated admission. This was obtained from228

the Australian Institute of Health and Welfare. The logarithm of the predicted229

length of stay, x0, was incorporated into our model as an offset variable. In230

this way we are modelling a patient’s excess length of stay relative to the231

prediction and exp{a+bT X} as E(T/x0) where T is the actual length of stay.232

We assigned the covariate coefficients b uniform priors over the range -10 to233

10. We assumed that the maximum potential number of phases in the model234

was fixed at Kmax = 10 and we chose a uniform prior distribution over 1 to235

10 for K. The hyperparameters chosen for the Gamma priors over the rate236

parameters were also chosen to be uninformative.237

We performed 100 000 iterations of our RJMCMC algorithm and we discarded238

the first 50 000 of these iterations to allow for a burn-in period. The algorithm239

was tuned so that acceptance rates for fixed dimension updates of the param-240

eters µ, λ and b were between 30% and 35%. The overall rate of acceptance241

for the dimension changing moves was around 7% which although low, is rea-242

sonably good for RJMCMC. The trace plot for the number of phases, K, over243

all iterations post burn-in, is given in Figure 2a. The most likely number of244

phases was six, having posterior probability of 0.27, followed by the seven-245

phase model which had posterior probability of 0.25 (see Figure 2b for the246

posterior distribution for K). To further examine convergence, we ran our al-247

gorithm from two different starting points and thinned the observations to 1248

in 250. We then plotted the posterior probability that the number of phases249

was six at each iteration point. This plot is shown in Figure 2c. This, together250

with the trace plot, suggests that the scheme has converged. The posterior es-251

timate of the number of phases as six is in agreement with the classical analysis252
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[11]. Figure 3 displays the posterior distributions of the parameter estimates253

from the six-phase fit. Since our main aim is to model the effects of covariates254

on the mean LoS, the actual parameterisation of the Coxian distribution be-255

comes irrelevant, as long as the residual variation is adequately described. In256

[5] the authors noted that it was necessary to impose an identifiability con-257

straint in their RJMCMC analysis of the mixture representation of Coxian258

model in order to obtain identifiability of the rate parameter estimates; such259

constraints could possibly be considered in our scenario if the rate parameters260

were of particular interest in the application. However, it is worth noting that261

in our results the posterior distributions for the rate parameters appear to be262

unimodal suggesting that identifiability was not a significant problem in our263

implementation.264
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Fig. 2. These plots show the results of 50,000 iterations (after burn-in) of our RJM-

CMC sampler for the hospital length of stay data. (a) Trace plot of the number of

phases (K) in the model at each iteration. (b) The posterior distribution of the num-

ber of phases (K). (c) Plot of the estimated posterior probability that the number

of phases in the model is six at each iteration of two different runs of the RJMCMC

algorithm.
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Fig. 3. Posterior distributions of (a) the µ’s, (b) the λ’s and (c) the b’s (after burn-in)

from the six phase model fitted in the RJMCMC analysis of the hospital length of

stay data.
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The estimates of the covariate coefficients b are of primary interest in the ap-265

plication and the posterior distributions for these are reasonably symmetrical.266

These can be used to estimate the effect that each of the covariates has on267

increasing the length of the patient’s stay beyond the initial prediction made268

upon admission. Since the posterior distributions for the parameters exhibit269

some skewness we used the posterior medians as parameter estimates. The270

posterior medians (posterior standard deviations in brackets) of the intercept271

parameter and covariate coefficients are given by272

a =−1.10(0.04)

b= [0.32(0.03) 0.01(0.07) 0.22(0.12) 0.18(0.04) 0.28(0.05)

0.16(0.09) 0.64(0.08) 0.39(0.08) 0.98(0.08) 0.35(0.04)].

Our posterior estimates for the covariate coefficients showed some similarity273

with the maximum likelihood estimates in [11]. Based on our results, we can274

see that contraction of a health care acquired infection (covariate 9) would be275

expected to bring about the greatest increase in length of stay, while faecal276

incontinence (covariate 7) was estimated to be the second most influential277

factor and sex the least influential.278

Inference about the effect of health care acquired infection is useful to hos-279

pital planners, as health care acquired infections (HAIs) are widely believed280

to place a substantial economic burden upon the health system. Moreover, a281

recent study ([18]) has suggested that HAIs could be prevented in some cases.282

However, [16] has highlighted that despite this consideration there have been283

few published studies on the actual impact that the implementation of infec-284

tion control programs might have in reducing the costs associated with HAIs.285

To estimate what the economic benefits might be, we must first estimate the286

effect of HAIs in real terms. Our estimated coefficient for the HAI covariate287
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was 0.98, with a 95% credible interval of 0.79 to 1.15 for that estimate. Based288

on our sample of patients, we would estimate that the contraction of an HAI289

would lead to an increased stay of 13.25 days on average, with 95% credible290

interval for this estimate of 7.89 days to 15.34 days.291

Our estimate of the effect of the pressure ulcer covariate (covariate 6) is also292

worthy of comment since, as [15] points out, many previous studies have sug-293

gested that the development of pressure ulcers in hospital has a fairly sig-294

nificant effect on lengthening stay. This effect has been estimated as ranging295

from a 7 to a 50 day increase in stay for affected patients (references cited in296

[15]). However, the authors of [15] suggest that this effect has been overesti-297

mated, as they found that the occurrence of pressure ulcers would lead to an298

estimated median increase in stay of only 4.31 days (with a 95% confidence299

interval of 1.85 to 6.78 for this estimate.) Our results estimate the coefficient300

for the pressure ulcer covariate to be 0.16, with a 95% credible interval given301

by 0.02 to 0.36. This corresponds to an expected increase in LoS of 1.83 days302

on average, with a 95% credible interval for this estimate of 0.20 to 2.61 days.303

Therefore, our results also support the view that pressure ulcers may not have304

as much of a role in increasing LoS as has previously been suggested.305

The similarities between our conclusions and those from more classical stud-306

ies lends support to the ability of our RJMCMC-based sampling scheme to307

obtain useful model estimates in practical applications. With our method the308

inference is performed directly, in contrast to the two-tier classical approach309

([11]) of model identification and subsequent maximum likelihood parameter310

estimation. It is also worth noting that we reached this solution from start-311

ing values that were easily obtained from a simple generalised linear model312

fit, rather than multiple iterative searches with different starting values to313
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determine the maximum likelihood solution.314

6 Reversible Jump Scheme for Initial Erlang Phases315

In other analyses of data similar to those here, it has been found that an316

adequate model for the data corresponded to having several of the initial values317

of µ equal to zero with the associated phases having equal values of λ. This318

introduces an initial Erlang component leading to a simpler model involving319

fewer parameters. To explore the effect this might have on our analysis, we320

conceived a move type which we call the birth of an Erlang phase, the reverse321

move being the death of an Erlang phase. The essence of this change is to322

set the current rate parameter µ1 to be equal to zero. If µ1 is already zero,323

then the move is carried out on µ2 and so on. In this way we have developed324

an RJMCMC scheme that searches over competing distributional structures.325

We describe these moves in specific terms in the following sections. As before,326

the acceptance ratio for these moves is obtained by the substitution of the327

relevant values into (2).328

6.1 Birth and Death of the First Erlang Phase329

If µ1 is currently nonzero, we choose our transformed parameters to satisfy330

equation (5) corresponding to matching the mean length of time in the first331

phase before and after it becomes an Erlang phase.332

1

µ1 + λ1

=
1

λa

. (5)

The birth of the Erlang component involves the transition (µ1, λ1) → (u, λa).333
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Figure 4a provides an illustration of this move type. Choosing λa to satisfy334

(5) gives335

λa = µ1 + λ1

u =
λ1

µ1 + λ1

.

The Jacobian for this move is given by336

1

µ1 + λ1

.

The death of the Erlang phase (see Figure 4a), involves the opposite transi-337

tion (u, λa) → (µ1, λ1). We generate our auxiliary variable u from a uniform338

proposal distribution u ∼ Un(0, 1), where Un(·, ·) represents the uniform dis-339

tribution. Then we put µ1 = uλa and λ1 = (1− u)λa. This choice for µ1 and340

λ1 satisfies (5). The Jacobian is equal to λa (the inverse of the Jacobian for341

the reverse move).342
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Fig. 4. Diagrammatic representations of (a) the Erlang birth and death moves when

jumping between a general phase model and a one Erlang phase model, and (b) the

general Erlang birth and death moves that are performed when there is at least one

Erlang phase present in the model.
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6.2 Birth and Death of Erlang Phases in General343

When one or more of the initial µ’s have already been set to zero, birth of344

another Erlang component must take into account the equal eigenvalue con-345

straint in the Erlang part of the model. This change will involve two com-346

ponents: the rate parameters for the rth phase (the one we are considering347

for incorporation into the Erlang distributed part of the model) and the rate348

parameter for the existing Erlang phase or phases. We denote the latter by349

λE; refer to Figure 4b for an illustration with r = 3. We construct our general350

Erlang birth/death moves so that the mean time in the phases is matched351

before and after the transformation corresponding to equation (6) below.352

r − 1

λE

+
1

µr + λr

=
r

λa

(6)

The general birth of an Erlang move increases the number of Erlang phases353

from r − 1 to r and involves the transition (λE, µr, λr) → (λa, u, v). We put354

u = µr and v = λr. Then from (6) we obtain355

λa =
rλE(µr + λr)

(r − 1)(µr + λr) + λE

.

The Jacobian for this move is given by the following expression356

r(r − 1)(µr + λr)
2

((r − 1)(µr + λr) + λE)2
.

The death move involves the reverse transition (λa, u, v) → (λE, µr, λr). Here357

we put λr = v and µr = u, where u ∼ NT (0, σ2) and v ∼ NT (λa, σ
2). We tune358

σ2 to give satisfactory acceptance rates for the move and solve (6) to obtain359
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λE =
(r − 1)λa(µr + λr)

r(µr + λr)− λa

.

The Jacobian for this move is the inverse of the reverse general birth move.360

We continue to use uninformative Gamma priors for the parameters µ and λ361

in this scheme. However, when some phases in the model currently correspond362

to an Erlang distribution, the shape and scale parameters of the corresponding363

Gamma prior are multiplied by the current number of Erlang phases in the364

model to give the prior distribution for the Erlang rate parameter. This prior365

was also used in [20].366

6.3 Results from Applying Erlang Birth and Death Moves to the Hospital367

Length of Stay Data368

We ran our Erlang birth/death algorithm using the six phase posterior esti-369

mates from our initial RJMCMC analysis as a starting point. We performed370

10, 000 iterations and discarded the first half of these. We found that the371

most likely number of Erlang phases was two, having posterior probability of372

0.94. The resulting posterior medians (posterior standard deviations given in373

brackets) of the intercept parameter and covariate coefficients were as follows.374

a =−1.44(0.04)

b= [0.37(0.03) 0.01(0.01) 0.37(0.12) 0.17(0.04) 0.28(0.05)

0.15(0.099) 0.63(0.08) 0.40(0.08) 0.96(0.08) 0.37(0.04)].

The regression coefficient posterior medians and standard deviations are very375

similar for the two models except that the coefficient for x3 has changed from376

0.22 to 0.37 and is more statistically significant. This model is simpler and we377
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have only used nine parameters to describe the phase-type model and ten to378

describe the regression part of the model for a dataset of nearly 2000 observa-379

tions. We have not reported the posterior distributions of the rate parameters380

as they may be subject to some lack of identifiably, but we note that they381

have unimodal distributions possibly indicating satisfactory identifiability.382

7 Conclusions383

Our extension of the reversible jump method to Coxian phase-type modelling384

with covariate dependent mean provides a fully formal Bayesian method for385

fitting such distributions to data and extends previous Bayesian analyses of386

this type of model. Our application to hospital LoS data has demonstrated387

that our approach can be used to provide valuable statistical inference for real388

world problems. In particular, posterior distributions for the number of phases389

and the regression parameters are produced, and we have also indicated that390

suitable starting values for the RJMCMC algorithm can be easily obtained.391

These advantages make this Bayesian approach attractive in practice.392

We have also devised an RJMCMC method for automatically exploring the393

structure of the phase-type model to investigate the inclusion of an initial394

Erlang component which, in our case study, gave an improved and simpler395

structure for the model. Such modelling can be extended.396

The phase-type distributions can be interpreted as providing a flexible and par-397

tially parametric extension to standard exponential family models, in particu-398

lar the gamma density family, while still maintaining a quadratic mean/variance399

relationship. Hence in the regression context such models should provide for400
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more robust estimation of regression coefficients. An alternative flexible ap-401

proach might be provided by fitting a normal mixture to the logarithm of the402

times, but this needs to be investigated. However, such an approach would403

not provide the structure of the phase-type model where such a structure may404

have a useful interpretation (e.g. hospital LoS) and it is doubtful whether it405

could simultaneously capture the mode near zero and the longtailedness of the406

data.407

In our modelling we have not included the case where the covariates are also408

selected using the RJMCMC scheme. This would be straightforward to imple-409

ment, but it would be best to exercise caution in applications as there could410

be confounding between the selection of the number of phases and the covari-411

ates. This requires investigation. Other extensions of this theory include the412

exploration of cases where we have repeated measures observed on each sub-413

ject; this could be achieved through the use of a frailty term. If we wished to414

identify the rate parameters then the approach of [5] could straightforwardly415

be incorporated into our analysis.416

Phase-type models are useful in any application where the data exhibit long417

tails, and there are many research fields in which this type of data arises in ad-418

dition to the applications we have already mentioned. For example, phase-type419

models have been used in web site performance optimisation ([31]), wireless420

communication system control ([29]), line transect sampling ([28]), gene find-421

ing ([24]) and ion channel modelling ([6]).422
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APPENDIX: Covariate Information Used in

Modelling the Hospital Length of Stay Data

Covariate Description Range

x0 predicted length of stay in days 1-72

x1 log of age 2.9-4.61

x2 sex (male/female) binary 0/1

x3 discharge destination (death/survive) binary 0/1

x4 admission type (emergency/non-emergency) binary 0/1

x5 anti-coagulant therapy during admission binary 0/1

x6 pressure ulcer during admission binary 0/1

x7 faecal incontinence during admission binary 0/1

x8 gastro-intestinal bleeding during admission binary 0/1

x9 health care acquired infection binary 0/1

x10 surgical procedure binary 0/1
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