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Abstract. Monitoring unused or dark IP addresses offers opportunities
to extract useful information about both on-going and new attack pat-
terns. In recent years, different techniques have been used to analyze
such traffic including sequential analysis where a change in traffic behav-
ior, for example change in mean, is used as an indication of malicious
activity. Change points themselves say little about detected change; fur-
ther data processing is necessary for the extraction of useful information
and to identify the exact cause of the detected change which is limited
due to the size and nature of observed traffic. In this paper, we address
the problem of analyzing a large volume of such traffic by correlating
change points identified in different traffic parameters. The significance
of the proposed technique is two-fold. Firstly, automatic extraction of in-
formation related to change points by correlating change points detected
across multiple traffic parameters. Secondly, validation of the detected
change point by the simultaneous presence of another change point in
a different parameter. Using a real network trace collected from unused
IP addresses, we demonstrate that the proposed technique enables us to
not only validate the change point but also extract useful information
about the causes of change points.

1 Introduction

Different techniques [1,2,3] have been proposed to monitor network traffic for
malicious content. One compelling technique is to monitor unused IP addresses
spaces [3,4,5,6] as this traffic has no reason to exist. Due to the absence of any
legitimate activity associated with such addresses, the traffic observed is a re-
sult of different abnormal activities like traffic from hosts infected by worms,
traffic generated by network probing tools or viruses, traffic from misconfigured
nodes and backscatter traffic from distributed denial of service attacks. This
provides an added advantage to network security researchers as the analysis is
not complicated or distracted by complex, hard to analyze, legitimate traffic.
While monitoring such addresses has been used for forensics [7,8,9,10,11,12] and
attack detection [13,14,15], the analysis of traffic is largely a manual process. In
this paper, we address this limitation of manual root cause identification and
validation by correlating change points among different network traffic param-
eters. We do this by monitoring multiple network traffic parameters in parallel
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and applying change detection techniques on each of the monitored parameter
separately.

Several characteristics can be used to define normal network behavior in-
cluding traffic dynamics such as the type of traffic, volume of traffic and delay
experienced by the network. One of the key observations in differentiating be-
tween normal and anomalous activity is the change in traffic dynamics. During
normal operations traffic dynamics usually remain constant or vary slowly over
time whereas during malicious activity they no longer remain relatively constant
[16,17]. Detection of malicious activities can thus be considered as a change de-
tection problem, detecting change in traffic parameter as quickly as possible
[16].

In change detection, there is a sequence of observations whose statistical
properties changes at some unknown point in time and the goal is to detect
these changes as soon as possible. Usually extraction of information related to
the change point is done by manual analysis which is not only time consuming
but also limited due to the nature and size of the collected data.

In this paper, correlation of change points among different traffic parameters
is used to automatically extract the information related to the anomaly. The
significance of the proposed technique is two-fold. Firstly, automatic extraction of
information related to change points by correlating change points detected across
multiple traffic parameters; and secondly, validation of detected change point by
the simultaneous presence of another change point in a different parameter.

The paper is organized as follows. Section 2 provides an overview of the
related work and details our contributions. A brief overview of the change detec-
tion technique is provided in Section 3. Section 4 provides detail of the proposed
change point correlation technique. Section 5 details the data being used in this
paper and explains the traffic parameter being considered. Experimental results
are provided in Section 6. Finally a conclusion and future directions are given
in Section 7.

2 Related Work

The idea to use change detection techniques for detecting different anomalous
behavior has existed for some time. Change detection has been used in analyz-
ing network traffic to identify different traffic anomalies including worm detec-
tion [18,19], denial of service and distributed denial of service attack detection
[20,21,22,23] , scan detection [17] and anomaly/fault detection [24,25,26]. Due
to its simplicity and effectiveness, change detection has also been used in the
analysis of unwanted traffic collected from unused IP addresses. In this regard
Bu et al. [27] proposed detecting a worm outbreak based on a change in the
inter-arrival time of packets sent by scanners. The authors have used a CUSUM
change detection algorithm on packet inter arrival times as the first step in de-
tecting a worm outbreak. The alarm from CUSUM algorithm is then analyzed in
a second stage where a maximum likelihood estimation (MLE) is used to confirm
the epidemic.



Limthong et al. [28] used the discrete wavelet transformation (DWT) tech-
nique to identify anomalies in unused IP addresses. The authors have analyzed
three different types of packets namely TCP SYN, TCP SYN/ACK and UDP
packets. The focus of the paper was to identify a suitable measurement interval
and to analyze different DWT levels. On the other hand no information about
detected anomalies is provided.

Ahmed et al. [14] used a nonparametric CUSUM change detection technique
to identify unusual behavior in darknet traffic. The authors proposed a sliding
window based memory management technique to identify changes in traffic be-
havior. The validity of the proposed technique had been tested using both a
synthetic data set and real network traces collected from an unused IP address
block. In this paper the authors have only validated their proposed technique us-
ing UDP traces collected from monitored data. In another study [15], the authors
have also proposed detection of “nested” anomalous activities i.e. the commence-
ment of a new session of anomalous activity whilst another anomalous activity
is occurring .

Although change detection has received considerable attention in recent years,
correlation between different change points has not been addressed. This might
be because most of the research in this area makes use of a single parameter.
However, multivariate and multichannel [29,30] change detection techniques have
been proposed in the literature, where multiple traffic parameters are considered
for detecting a change, the basic objective is to detect a change in any traffic
parameter to raise an alarm.

Ide et al. [31] have used change point correlation to compare multiple time
series from dynamic systems. The authors have used a singular spectrum trans-
formation (SST) technique to identify change points in the time series. The sim-
ilarity between different time series is obtained by visual inspection of change
point scores. The focus of our method proposed in this paper is different as it
correlates the change points identified in different traffic parameter time series
to validate and automatically extract useful information related to change points
identified in primary traffic parameter time series.

Use of change point correlation to identify problems in enterprise middle ware
systems was proposed by Agarwal et al. [32]. The authors have used change point
correlations (simultaneous occurrence of events in different time series in a given
window) to identify problems associated with middle ware architectures. The au-
thors have used the difference of means to identify changes in system time series.
In order to reduce false alarms the authors have used a pre-selected threshold to
identify a change along with pre-defined signatures for possible problems associ-
ated with the system. For the analysis of unsolicited traffic such as that observed
while monitoring large unused address spaces, the correct formulation of signa-
tures for various attacks is not possible. The lack of attack signatures, such as
for the zero day attacks, limits the use of the proposed technique in analyzing
such traffic. In addition, as mentioned by the authors, the effectiveness of the
proposed technique largely depends upon the window size over which the differ-
ence of mean is calculated. We argue that the use of a fixed size window has two



serious drawbacks, first it introduces a delay in detection and secondly the effect
of a huge change in parameter behavior will effect the detection of subsequent
behavioral changes at least for the duration of the window size. This makes it
unsuitable for analysis of malicious network traffic and was addressed by Ahmed
et al. [14].

The work most closely related to our work is of Kaplan et al. [33]. The au-
thors have used change point correlation to identify simultaneous activities from
multiple brain areas. The basic idea is to treat two change points in different pa-
rameters as correlated if thy appear close in time. Although our work is inspired
by this work, there is a significant difference between the two approaches both
in the change detection technique and data used. Firstly we used the change
detection technique presented in [15]. Secondly our objective is to automatically
extract information related to change points identified in traffic collected from
unused IP addresses, whereas Kaplan et al. [33] have applied this technique on
EEG data.

The focus of the technique proposed in this paper is to automatically extract
information related to a change point identified in traffic targeting unused IP
addresses. In our framework, information extraction is realized by a two stage
process: change point detection; and change point correlation. In the first stage
the change detection technique described in [15] is applied to the different time
series collected from the unused IP address block. In the second stage the corre-
lation among different change points is carried out to automatically extract the
information related to the detected change point.

The novelty of the proposed technique lies in its ability to automatically
extract information related to change points by correlating change points across
different traffic parameters. In addition the proposed correlation based technique
can also be used to validate change points. The effectiveness of the proposed
technique is validated using a 17 month real network trace collected from a
dedicated block of unused IP addresses.

3 Change Detection Technique

For change detection, a nonparametric CUSUM technique provided in [15] have
been used. In this section a brief overview of the change detection technique will
be provided, for a detailed explanation the interested reader is referred to [15].

Let Ny, N, ..., N, be the sequence of observations from the monitoring sys-
tem at fixed time instances t; ta......, t,. A malicious activity at time ¢;, will result
in the change in statistical properties of the observed traffic parameter. Let puy
be the mean traffic rate before and X, be the mean traffic rate after a new
anomalous activity, then the CUSUM score, S, , can be calculated by Equation
1

)

S, = max {O, Sk—1+ Np — pg — OZ-Xk} (1)

where « is a tuning parameter belonging to the interval (0,1) and is considered
to be an upper bound on the estimated post-change traffic rate Xj.



The choice of the tuning parameter, «, effects the performance of the al-
gorithm as selecting too small or too large an « value will increase the false
alarm rate. The a value can either be replaced with a constant value based on
experimentation or can be calculated dynamically using the Equation 2:
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(2)
where hy, is the detection threshold at time ¢; and 7" is the maximum time in
which the change should be detected.

The average number of packers at time ¢; can be estimated iteratively using
an exponential weighted moving average (EWMA) given in Equation 3:

Xk:(l_ﬁ)-)?k—l +6Nk (3)

where 0 < 8 < 1 is a smoothing factor which gives more weight to the current
observation.

The CUSUM score, Sk, given in Equation is then subject to a threshold test
h in order to detect a change, Sj value greater or equal than the threshold will
indicate a change in parameter properties. The threshold value h at time ¢ is
given in Equation 4:

hitert = o1, hi = 0.25.h3% (4)

where hzt‘”t and hZ"d are the threshold values for the start and the end of the
change point at time t; and oj_1 is the standard deviation of the data elements
in current window at time t; . In addition, to reduce the false alarm rate, an
additional counter 7 is used along with hz"d to mark the end of a change point,
the alarm is not canceled until timer 7 reaches a specified value, see Equation 5.

Alarm = if(Sy < h{"® AN Dt > 2, terminate, resume) (5)

4 Change Point Correlation

In analyzing traffic, including that collected by monitoring unused IP addresses,
the volume and nature of the observed traffic makes manual analysis of the traffic
related to a change point a difficult and time consuming task. This is mainly
because such traffic is usually unlabeled and largely malicious which makes every
single change point worthy of further investigation.

To overcome this limitation, information extraction related to a change point
can be specified as a problem of identifying the simultaneous occurrence of two or
more change points in different traffic parameters. The change points in multiple
parameters are considered as correlated if the time difference between them
does not exceed a time threshold. The simultaneous occurrence of these change
points in a given time window can then be used to automate the extraction of
information related to a change point.
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Fig. 1. Correlating change points in different traffic parameters.

Change points in different traffic parameters are considered to be correlated
only if they appear simultaneously within a certain time threshold. This is il-
lustrated in Figure 1 which shows three parameters namely A, B and C. The
horizontal axis is the observation period and vertical axis is the measured param-
eter value. For information extraction, the total number of traffic parameters are
divided in two categories namely primary and secondary parameters. For analy-
sis only one primary parameter is selected whereas there can be any number of
secondary parameters. The choice of the primary and the secondary parameter
is arbitrary and largely depends upon type of network traffic and required anal-
ysis. For example the number of packets can be a good candidate for a primary
parameter and number of unique sources and number of unique destination ports
can both be secondary parameters. In Figure 1, parameter A is a primary while
parameters B and C are the secondary parameters.

For change point correlation, each detected change point in the primary pa-
rameter is surrounded by a correlation time threshold window, represented by
the vertical strips in Figure 1. The change points in the secondary parameters
are considered to be correlated with the primary parameter if they fall within the
time threshold window. In the above figure the first change point in the primary
parameter A is correlated with the change point identified in secondary parame-
ter B, whereas no change point within the time threshold window was identified
in secondary parameter C. The close proximity of these change points can be
used to explain and characterize the change identified in primary parameter A.

As a single change point can cover more than one time interval, the time
threshold window can not be fixed and is calculated as a function of change



point duration. Let t5 and ¢, be the start and end of a change point then the
correlation time threshold window for this change point can be calculated as

ot =, —m M =t 4n (6)

where #5297 and #$7? is the start and end of correlation time threshold window
respectively and n is the correlation threshold allowance having value between 0
and m. The above equation will take n measurement points to the immediate left
and n measurement points to the immediate right of the change point identified

in primary parameter for correlation analysis.

4.1 Correlation Logic

One of the first questions that arises when correlating change points identified in
different network traffic parameters is how to deal with change points identified
in different secondary network traffic parameters, with a different change start
and end time when compared with ¢/t and t¢"?. Let f, and . be the time
instances at which the change starts and ends in the secondary parameter. Then
for the cases given in Equation 7, the change in the secondary parameter will

not cover the correlation time threshold window.

(F > 600 > £ > 6197 | (1579 > B > £ > 6107 || (650 > £ > 6517 > £,)(7)

Keeping in mind the above situations, the correlation logic needs to be en-
hanced in several ways when considering the duration and the significance of a
change point in a secondary parameter with respect to a change in the primary
parameter. For information extraction and validation of a change point in the
primary parameter it is expected that a change in a secondary parameter will be
consistent with the change in the primary parameter. This is given in Equation
8.

(fe > 579 > 31070 > £,) (8)

A simultaneous occurrence of change in both primary and secondary param-
eters, according to Equation 8, can be used as the key to evaluate these changes.
In addition, the significance of the change identified in a secondary parameter
can be considered as the magnitude of the change, in the primary parameter, ex-
plained by the secondary parameter. This requires that the corresponding change
in the primary parameter exceed a certain threshold to be considered significant
and can be specified as:

(Secondary Parameter)/(Primary Parameter) > X 9)

where X is the threshold of the proportion of the change specifying how much
of the change in the primary parameter can be explained by the change in a



specific secondary parameter. Since we aim to use correlation for information
extraction and validation of a change in the primary parameter, the choice of X
will have a significant effect on the correlation. Selecting a large X value means
only the secondary parameter which have a significant influence on the primary
parameter will be considered in correlation. On the other hand, selecting a small
X value will consider secondary parameters with little or no effect on the primary
parameter as being correlated, which might not be useful in identifying the cause
of a change in the primary parameter.

Although the duration and significance of the change in a secondary param-
eter gives higher confidence in the extracted information related to the change
in primary parameter, the changes in secondary parameters with cases in Equa-
tion 7 cannot be ignored. In such cases the change in the secondary parameter
is considered correlated with the change in the primary parameter only if the
change in the secondary parameter is significant.

Different values for X can be used to correlate changes in secondary and
primary parameters. A higher X value for changes in the secondary parameter
with a duration according to Equation 7, and lower value if the duration is
consistent with a change in the primary parameter (see Equation 8) can be used
for correlating changes identified in the primary and secondary parameters. We
use X = 0.3 where the change in the secondary parameter continues at least
for the duration of the change in the primary parameter and X = 0.5 where
the change in the secondary parameter is within the correlation time threshold
window but does not continue for the duration of the change in the primary
parameter.

4.2 Change Point Validation

The use of correlation among simultaneous changes in primary and secondary
network traffic parameters includes a sort of additional validation of a non-nested
(single) and nested change point identified in the primary parameter. These are
taken into account only if at least one of the secondary parameters changes
simultaneously within the given time threshold window.

In Figure 1 for change points 4 and 5, no change in the secondary parameter
was identified within the time threshold window. Therefore the changes 4 and 5
in the primary parameter A cannot be validated and hence can be treated as false
alarms. Validation of nested change points identified in the primary parameter
is confirmed either by the presence of a nested change, or identification of a new
change in at least one of the secondary parameters. This changed behavior in
secondary parameters is used to confirm the identification of a nested change
point in the primary parameter.

The occurrence of false change points, in the present context, does not effect
the analysis as the traffic is by definition unsolicited and is either opportunistic
or malicious. Every single packet appearing on the unused IP address blocks is
unsolicited and we aim to understand what caused it. . The simplified algorithm
of change point correlation is given in Figure 2



Algorithm: Change Point Correlation

1. for each parameter do

2 compute change points

3. end for

4. for each change point in primary parameter do

5. calculate 522" and ¢57¢ of the change point

6 correlation_ flag =0

7 for each secondary parameter (i) do

8 if ¢8> 67 and % < 3497 then

9. if (secondary parameter)/(primary parameter) > 0.3
10. change point correlated, correlation _flag =1
11. end if
12. else if (t5md > ¢L > 5197 or (t5nd > ¢! > t5iart)
13. if (secondary parameter)/(primary parameter) > 0.5
14. change point correlated, correlation_ flag =1
15. end if
16. end if
17. end for
18. end for
19. if correlation _flag ==1
20. change point validated
21. end if

Fig. 2. Change point correlation.

5 Experimentation

To evaluate the effectiveness of the proposed method, we performed experiments
on a real data set collected from a dedicated block of unused IP addresses. The
data was collected for a period of about 20 months between 27 November 2006
and 10th August 2008. The monitoring system consists of a single class C address
block. For experimentation, the size of the sliding window is set to 100 [14,15].
For correlation, the correlation time threshold allowance (n) is set to 1. Other
parameters such as change detection threshold (h;'*"*), change end threshold
(h§™d) and upper bound on mean () will be calculated dynamically.

In this experimentation we first categorized the packets based on their type
into either TCP, UDP or ICMP. Then for each category different traffic param-
eters, that have the potential to explain the detected change in the primary
parameter, have been extracted. Table 1 provides a summary of these param-
eters. Even though there are dependencies among these parameters, this does
not effect our analysis as we aim to use these parameters in order to understand
what causes a change in traffic behavior. Each of these parameters are measured



at a regular time interval. First change points were identified in the individual
traffic parameter time series using the technique described in Section 3. Change
point correlation was then used to validate and automatically extract the causes
of the change point in the primary parameter using the technique discussed in
Section 4. We now provide a discussion of the results.

]Parameter[ Type [ Description [
. A Thos
N;ft Primary Total number of packets o.f type pt received during k™" time
interval
Total number of unique source IP addresses sending packets of
k
d . o
St Secondary type pt during k*"time interval
Total number of unique destination ports receiving packets of
k
Pt Secondary type pt during k*"time interval
kaz Secondary Total number of unique glayloasis in packets of type pt during
k“"time interval
Total number of packets of type pt from busiest source address
k
Spt Secondary during k**time interval
Total number of packets of type pt received by busiest
k
dpt Secondary destination address during k*"time interval
Total number of packets of type pt received by busiest
k
Pt Secondary destination port during k*"time interval
Total number of packets of type pt received by well known
Ph d o ) A
pt Secondary destination ports, (0 to 1023), during k*"time interval
kor Total number of packets of type pt received by registered
By Secondary destination ports, (1024 to 49151), during k*"time interval
phd Secondar Total number of packets of type pt received by dynamic/private
pt Yl destination ports, (49152 to 65353), during k" time interval

Table 1. Network traffic parameters.

6 Analysis Results

To evaluate the proposed approach, we have tested it on 20 months of real data
collected from a dedicated unused IP address block, class C. The monitored ar-
chitecture is a passive monitoring, contains no active component and no response
is generated, of 256 unused IP addresses. Although the proposed technique has
been tested on TCP, UDP and ICMP traffic, we will focus our discussion on
UDP analysis. In the absence of any active component, due to the passive na-
ture of the monitoring system, UDP being connectionless protocol is well suited
for such an analysis.

Table 2 summarizes the change points identified in the measured traffic pa-
rameters for 20 months of the collected traffic. The total number of change points
detected in each parameter is given in the total column, this includes both nested
and non-nested change points. The nested column provides the number of nested
change points identified in each parameter. The last column lists the number of



correlated change points. As described in Section 4 for the primary parameter,
the total number of UDP packets per unit of time, the correlated column lists
the change points for which simultaneous change points were identified in at
least one of the secondary parameters. For secondary parameters the correlated
column gives the number of change points occurring simultaneously with the
primary parameter.

Parameter Number of Change Points

Total[Nested[ Correlated
N 45 | 12 45
Sk ap 22 5 14
Pr., 31 | 10 15
Yifdp 23 | 4 10
Sudp 31 6 19
s, 47 | 13 13
Phap 58 6 38

k,w

P 62 5 19
Prr 159 | 13 21
Pyt 48| 7 6

Table 2. Summary of the change points identified in UDP traffic.

The change points identified in the primary parameter are shown in Figure
3. In this figure the top graph shows the number of UDP packets, primary
parameter, observed on the Darknet and the bottom graph shows the change
points identified. The vertical axis in the bottom graph represents the outcome
of the change detection algorithm with values greater than 1 representing the
number of nested changes detected by the change detection algorithm presented
in Section 3.

Figure 4 shows the result of correlation of change points identified in primary
and some of the secondary parameters for the period of about 9 weeks from
27 November 2006 to 31 February 2007. In this graph only three secondary
parameters are shown due to the space limitations, but note that the analysis is
performed on all 9 secondary parameters for the period of about 20 months. In
this graph the horizontal axis represents time in days, left vertical axis represents
number of UDP packets and right vertical axis represents the outcome of change
detection algorithm (dotted lines). The correlation time window is shown by the
vertical gray portions.

In figure 4 , the first change point in primary parameter is correlated with
change point in pﬁdp, where k is 30/11/2006. It is also correlated with Pfj:,
not shown in the above figure. This helps in not only automatically extracting
useful information related to change point but also validates the change point
identified in the primary parameter. The observed change point was due to an
increase in the traffic on destination port 137, more than 75 % of the total UDP



traffic was targeted on this port. This port is used by NETBIOS name service
and also by Trojan Msinit. The source ports used by these sources were either
137 or 1024+n which confirms the existence of worm looking for unprotected
network shares.
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Fig. 3. Change points detected in primary parameter (UDP traffic).

The second change point was observed on 7/12/2006 which continued for
two days. This change point was correlated with two secondary parameters dﬁdp

and Pudp,

not shown in the above figure. According to the correlation algorithm
described in Section 4 the change point identified in dﬁdp is not significant (less
than 30%) and thus can be discarded. On the other hand the change point iden-
tified in P , is not only significant but also correlated with change in primary
parameter T his change point was due to an increase in the UDP traffic on four
destination ports 1030-1033 and 1434 collectively receiving more than 50% of
the total UDP traffic. During this change point no significant activity either by
specific source/destination address or on specific destination port was observed

which was confirmed by the lack of change point in these secondary parameters.

The first nested change point in Nfdp was observed from 12/12/2006 to
5/01/2007. Extracting useful information related to this change point using
current correlation algorithm is a difficult task due to the complex correlation
of change points observed in secondary parameters. During this period change
points in 6 secondary parameters were identified with no change continued for
the whole duration. Currently analysis of such complex correlation patterns is
not considered and is part of our future work.
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The second nested change point was observed from 11/01,/2007 to 17/01/2007.
During this period nested change was observed on the last day. This change point
was correlated with change points in pﬁ ap and Pf (’1;. Observe that correlated

nested change point was identified in both pﬁdp and Pl’f(’i;7 both observe nested
change point on 17/01/2007. The simultaneous occurrence of these nested change
points in secondary parameters, p* ap and Pf é;’ validates the nested change point
identified in primary parameter N, fjdp. This change was due to the increased MS
SQL slammer activity on port 1434 which received more than 60% of the total
UDP traffic. The nested change was also due to an increase in the traffic on
the same port. Even though the same destination port was targeted in both
changes, the simultaneous occurrence of nested changes in primary and sec-
ondary parameters alerts to the significant change in UDP traffic on port 1434
during pre-nested and nested changes, traffic on port 1434 is almost doubled
during nested change.

An interesting correlation was observed for change point identified in pri-
mary parameter on 12/03/2008 which continued for the next day. During this
period 8 out of 9 secondary parameters were observed to have correlated change
point with primary parameter. In addition nested change point was observed in
both Pf op and pk ap Whereas no nested change point was observed in the primary



parameter. This was due to the fact that the change detection algorithm only
identifies nested change if there is a significant increase in the parameter value.
Although there was significant increase in both Pf C’;;’ and pﬁdp, an increase in
the primary parameter was not observed. In fact the primary parameter was de-
creased from over 15000 UDP packets to just 1086 packets during that time. In
addition the change point in the other 4 secondary parameters was only for one
day and was not observed on the second day of the change in primary parameter.
During the analysis it was observed that the change on 12/03/2008 was due to
the increased activity on a single destination port 13276 on destination address
x.x.X.221 which was targeted by the large number of sources. This behavior was
not observed on the second day of the change which was confirmed by the lack
of change point in S¥, . Y sk, and PLy.

Although the proposed technique is limited to only simple correlations, our
analysis showed some encouraging results. Using the proposed technique we were
able to automatically extract and validate more than 60% of the change points,
including both non-nested and nested changes, identified in the primary param-
eter.

7 Conclusion and Future Directions

In this paper, we have proposed a technique for correlating change points among
different traffic parameters in order to automatically extract the information re-
lated to the anomalous event. The motivation behind our work was to to au-
tomate the extraction of information related to change points and to validate
the detected change points by correlating change points in primary and different
secondary traffic parameters. The applicability and usability of the proposed al-
gorithm is analyzed with the help of real network traces collected from dedicated
block of unused IP addresses. It is observed that the proposed technique is not
only helpful in automatically extracting information related to detected changes
but also can be used to validate the identified changes at the first place.

Even though the proposed technique is limited to only simple correlations,
the preliminary results are indeed encouraging. We believe that the algorithm
can be improved to detect and validate complex correlations and is part of our
future work. In addition we aim to use the proposed technique in automatically
generating signatures related to detected change points which can then be used
to detect similar behaviors in the future.
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