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Abstract

Most forms of tissue healing depend critically on revascularisation.  In soft tissues and in 

vitro, mechanical stimuli have been shown to promote vessel-forming activity.  However, in 

bone defects, increased interfragmentary motion impairs vascular regeneration.  Because 

these effects seem contradictory, we aimed to determine whether a range of mechanical 

stimuli exists in which angiogenesis is favoured.  A series of cyclic strain magnitudes were 

applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed 

by human microvascular endothelial cells measured at 24 hours.  Network lengths were 

reduced at all strain levels, compared to unstretched controls.  However, the levels of pro-

angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were 

unchanged by strain, and vascular endothelial growth factor was uniformly elevated in 

stretched conditions.  By repeating the assay with the addition of conditioned media from 

mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to 

increase network lengths, but not to alter the negative effect of cyclic stretching.  Together, 

these results demonstrate that directly applied periodic strains can inhibit endothelial 

organisation in vitro, and suggest that this may be due to physical disruption rather than 

biochemical modulation.  Most importantly, the results indicate that the straining of 

endothelial cells and their assembly into vascular-like structures must be studied 

simultaneously to adequately characterise the mechanical influence on vessel formation.
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Introduction

Revascularisation is a critical process in most forms of tissue regeneration.  In ovine bone 

healing, excessive interfragmentary movement inhibits or delays revascularisation, and results 

in the impaired restoration of the tissue’s mechanical properties (Claes et al., 2002; Lienau et 

al., 2005; Lienau et al., 2006).  Conversely, increased blood flow and tissue stretching have 

been shown to stimulate angiogenesis (Brown and Hudlicka, 2003; Ichioka et al., 1997; 

Pietramaggiori et al., 2007), and rigid stabilisation diminishes the vascular response in 

fracture healing (Sarmiento et al., 1984).  Therefore the mechanism and threshold of 

mechanical impairment during bone healing remain uncertain.  Possible explanations include 

alterations in paracrine signalling on the one hand, and the physical disruption of newly 

formed vessels by excessive local stresses on the other hand (Carter et al., 1998; Rhinelander, 

1974).

In vitro studies have shown that the formation of vessel-like structures by endothelial cells 

can be stimulated by prior mechanical conditioning (Morrow et al., 2007; Von Offenberg 

Sweeney et al., 2005).  Additionally, angiogenic activity is enhanced by conditioned media

from other cells cultured under strain (Kasper et al., 2007; Zheng et al., 2001).  However, 

studies of the direct effects of stress or strain on vessel formation are scarce.  No enhancement 

of endothelial sprouting is reported when cyclic strain is applied directly in gel-based assays; 

rather, a change in “vessel” morphology and/or orientation is observed (Joung et al., 2006; 

Matsumoto et al., 2007).  In contrast, cyclic stretching of a confluent endothelial cell layer

resulted in a strain-dependent contraction of the monolayer into a reticulated network (Shukla 

et al., 2004). While this suggests that increasing strain may enhance vessel formation, the 

mechanism of network formation differs fundamentally from those of routinely used 

angiogenesis / vasculogenesis assays (in which “vessel-like” structures either sprout from 
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clusters or assemble from separated cells in relatively low-density cultures), making direct 

comparison difficult.  To date, such a quantitative assessment of vessel-like network 

formation across a range of applied cyclic strain levels has not been made in a standard assay.

To address this issue, we used a commercially available mechanical strain system for cell 

cultures to apply a periodic stretch to the well-established “tube formation” assay (Kubota et 

al., 1988). Pro-angiogenic responses were quantified by the length of tube-like networks 

formed by endothelial cells on Matrigel.  As an initial test for a mechano-regulation 

mechanism for the results, vascular endothelial growth factor (VEGF) and matrix 

metalloproteases-2 and -9 (MMP-2 and MMP-9 – gelatinases) – all of which may stimulate 

and/or regulate angiogenic behaviour in vitro (Fang et al., 2000; Ferrara and Davis-Smyth, 

1997; Jadhav et al., 2004; Schnaper et al., 1993; Zheng et al., 2001) – were quantified in the 

conditioned media from these cultures.  Finally, because mesenchymal stem cells (MSCs) are 

able to enhance angiogenesis by mechanically regulated paracrine signalling (Kasper et al., 

2007), we further investigated whether this could compensate for the negative effects of strain 

on the endothelial response.

Materials and Methods

Cell Culture

Immortalised human microvascular endothelial cells (HMEC-1) were kindly donated by Prof. 

G. Schönfelder (Institut für Klinische Pharmakologie und Toxikologie, Charité –

Universitätsmedizin Berlin, Germany) and cultured in MCDB 131 (Gibco, Invitrogen, 

Karlsruhe, Germany) with 5% foetal bovine serum (FBS; Biochrom AG, Berlin, Germany), 

2mM L-Glutamine (Biochrom) and 100IE/ml penicillin + 100μg/ml streptomycin 
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(Biochrom).  During routine culture, 1μg/ml hydrocortisone (Sigma-Aldrich Chemie GmbH, 

Munich, Germany) was added, but was omitted in assays.

MSCs were isolated from bone marrow aspirates from patients (with informed consent) and

characterised as reported previously (Kasper et al., 2007).  Investigations using these cells 

were approved by the Ethics Commission of the Charité–Universitätsmedizin Berlin 

(application number EA1-072-08).  The MSCs were cultivated in either RPMI-1640 

(Invitrogen, Karlsruhe, Germany) with 5mM HEPES (Sigma-Aldrich, Steinheim Germany),

2mM L-glutamine (Biochrom) and 50μM beta-mercaptoethanol (Sigma-Aldrich, Munich, 

Germany) or Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, Karlsruhe, Germany), 

both supplemented with 10% FBS and penicillin/streptomycin as above.

“Tube Formation” Assay with Cyclic Stretch

Each well of collagen-I-coated Bioflex 6-well culture plates (Flexcell, Dunn Labortechnik 

GmbH, Asbach, Germany) was coated with 500μl ice-cold Matrigel (BD Biosciences, 

Heidelberg, Germany), diluted to 8mg/ml with complete culture medium (to reduce 

viscosity).  The solution was allowed to gel for 1 hour at 37°C.  HMEC-1 cells were delivered 

onto the gels at 2×105/well (208 cells/mm2) and allowed to attach for one hour before

commencing the stretching regime.

Cyclic stretching was applied using the Flexercell Tension Plus FX-4000T system (Flexcell 

International Corp., Hillsborough, NC, USA) with 25mm BioFlex Loading Stations

(Flexcell).  Nominal strains ranging from 2.5–20% were employed at a frequency of 1Hz.  A 

further set of experiments at 2.5% nominal strain used UniFlex plates (collagen-coated; 

Flexcell) to apply a uniaxial strain to the cultures; due to the uneven surfaces of the UniFlex 

membranes, 600µl of Matrigel solution was used for coatings.  Experiments contained 
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duplicate strained and unstrained samples, with additional cell-free controls.  Each strain level 

was tested in three separate experiments.

After 24 hours of stretching, endothelial networks were photographed in five fields per well

with a 5× objective magnification.  The lengths (in pixels) of cords of interconnecting cells 

were measured using ImageJ (version 1.39u, 2007, W.S. Rasband, U.S. National Institutes of 

Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/) and totalled for each condition 

(+/– strain).

Analysis of Conditioned Media

At the conclusion of each experiment, a sample of conditioned medium (CM) was collected 

from each well and stored at –80°C and subsequently assayed for MMPs involved in

angiogenesis.  CM samples from each strain level, and corresponding controls, were assayed 

for MMP-2 and MMP-9 using gelatin zymography.  10% Novex gels (Invitrogen) were used 

according to manufacturer’s instructions, with 15μl CM per lane.  The resulting band densities 

were measured using ImageJ.  A subset of CM samples were also assayed for cell viability 

using an LDH assay (LDH-Cytotoxicity Assay Kit II, BioCat, Heidelberg, Germany), 

according to the manufacturer’s instructions.

An enzyme-linked immunosorbent assay (ELISA) was carried out to probe conditioned media 

from each experiment for VEGF.  The assay was conducted on 200μl samples according to 

the manufacturer’s instructions (Quantikine® Human VEGF Immunoassay, R&D Systems, 

Minneapolis, USA).
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Supplementation with Conditioned Media from Mesenchymal Stem Cells

MSCs (passage 5, 81-year-old male patient) were cultured for three days under identical

conditions to the “tube formation” assays, i.e. in Matrigel-coated BioFlex wells, with and 

without a nominal strain of 2.5%.  Two millilitres of the conditioned medium (DMEM-based) 

from each sample was added to endothelial cells, seeded in 1ml of the routine MCDB 131-

based medium.  Controls with both types of non-conditioned medium were also tested.  The 

“tube formation” assays then proceeded as described above.

Further, to allow comparison with previously published results (Kasper et al., 2007), 

conditioned media from MSCs in loaded and unloaded fibrin constructs were also tested in 

the same way.  The MSCs were obtained from a 52-year-old female and used at passage 3.  

One million cells were suspended in each 700μl fibrin construct (fibrinogen and thrombin-S 

solutions (TISSUCOL-Kit 2,0 Immuno, Baxter, Unterschleißheim, Germany) both diluted 1/4 

with culture medium) and the resulting gels sandwiched between bone spongiosa chips of 

15mm diameter.  These were placed in a purpose-built bioreactor (Matziolis et al., 2006) with 

25ml culture medium (RPMI-1640-based) and subjected to a 1Hz cyclic load, corresponding 

to a 20% compression of the gel, for 3 days.  Unloaded controls were cultured in otherwise 

identical conditions.  The conditioned media were aliquoted and stored at –80°C before use in 

the “tube formation” assay as described above.

Validation of Strain Levels on Coated Plates

Digital image correlation was used to quantify local strains across the BioFlex membranes

(Bieler et al., 2009; Boerboom et al., 2008).  After Matrigel coating, a fine paint speckle 

pattern was applied to both gels and uncoated membranes using an airbrush.  Each whole well 

was then digitally photographed over a range of nominal strains from 0–20%.  The paint spots 
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were digitally correlated between relaxed and stretched images using Vic-2D software 

(version 4.4.1, 2006, Correlated Solutions, Inc., Columbia, SC, USA), to calculate strain 

levels across the flat region of the loading post.  The tensions were characterised as first 

principal strains, averaged over the surface.

Statistics

Statistical evaluations used SPSS (version 12.0, SPSS Inc., USA).  In each experiment, 

differences between network lengths over ten fields were tested using the Mann-Whitney U-

test, with significance judged as p ≤ 0.05.  To compare results between different strain levels, 

total network lengths for strained samples were normalised to unstretched controls and 

analysed by Mann-Whitney U-tests and the Kruskal-Wallis test.  Measured strain magnitudes 

(first principal strains) with and without gel coatings were tested for linear correlation against 

the corresponding nominal strain levels.  Zymography results were tested for significant 

differences in each of the four bands (MMP-2 and -9, active and pro- forms) using paired 

Student’s t-tests. Wilcoxon tests were used to compare data pooled across all strain levels, 

(conditioned media compared to corresponding cell-free control media, and media from 

stretched versus unstretched samples).

Results

Strain Level Validation

Digital image correlation confirmed that all strains were transmitted through the gels, with 

excellent correlation between strains on Matrigel-coated and uncoated membranes (R2 = 1.00, 

comparing average first principal strains).  While the measured strains consistently exceeded 

the nominal magnitudes, these also showed a highly linear correlation (R2 = 1.00, on both 
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uncoated and coated membranes).  When tested after 24 hours’ stretching at 20% nominal 

strain, the correlation was somewhat lower for the coated membranes (R2 = 0.88 vs. set point; 

R2 = 0.95 vs. uncoated), predominantly due to the poorer transmission of strain levels above 

10% (both R2 = 1.00 when higher strains excluded).

Endothelial Network Formation Under Cyclic Strain

In all experiments, the application of cyclic strains at 1Hz resulted in a significantly lower 

HMEC-1 network length (p < 0.03; Figure 1), except for one instance at 10% stretch (p = 

0.08).  The inhibition tended towards a lesser severity at 2.5%, with all other strain levels 

comparable (variability with strain level: p = 0.09).  The suppression of network formation 

was equivalent for uniaxial and biaxial strain conditions (p = 0.10).  No preferential 

alignment of the cells or networks could be observed under either uniaxial or biaxial strain.

Conditioned Medium Analyses

Gelatin zymography (Figure 2a) revealed no significant differences in MMP-9 levels (for 

either pro- or active forms) between conditioned media (CM) from any of the HMEC-1 

cultures (stretched or unstretched) and their corresponding cell-free controls (p > 0.09); this

indicated that the predominant source of this protease was the serum in the culture medium 

and/or the Matrigel.  Levels of both MMP-2 forms were significantly higher in CM from cell-

containing cultures (mean ratio of CM : cell-free controls ± SD: 1.1±0.2 (pro), 1.2±0.3

(active);  p ≤ 0.03); however, no significant differences were detected between the various 

strain levels and unstretched cultures (p ≥ 0.17).

The ELISA showed a trend of increased levels of VEGF in the media from strained HMEC-1 

cultures (p > 0.09).  The concentration did not vary significantly between strain levels (p = 

0.58); when compared between pooled strained vs. unstrained conditions, a significant 
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elevation was detected (mean ratio of stretched : static  = 1.2 ± 0.1, p < 0.01; Figure 2b).  No

VEGF was detected in media from Matrigel-coated wells without cells.

Furthermore, an LDH-based cytotoxicity assay on conditioned media indicated no differences 

in cell death between strained and unstrained cultures at any strain level (data not shown).

Network Formation with Conditioned Medium from MSCs

Under all stretched and static conditions, CM from MSCs cultured on Matrigel enhanced 

network formation by the endothelial cells (p < 0.01), as shown in Figure 3(a).  This

stimulation occurred despite the inhibitory effect of the (fresh) DMEM-based medium (p = 

0.04; data not shown).  Additionally, loading enhanced the pro-angiogenic stimulus from 

MSCs cultured in fibrin constructs (p = 0.01, Figure 3(b)).  Despite these marked paracrine 

stimuli, endothelial cultures supplemented with CM from either strained or unstrained MSCs 

still showed significantly diminished network formation under cyclic stretching (p < 0.01).  

Stretching of MSC cultures on Matrigel had no significant paracrine effect on HMEC-1 

network length (p ≥ 0.39).

Discussion

Previous research has shown that angiogenesis can be stimulated by a certain measure of 

mechanical stimulation (Brown and Hudlicka, 2003; Ichioka et al., 1997; Sarmiento et al., 

1984), but also that increased strain inhibits or delays this process during fracture healing

(Claes et al., 2002; Lienau et al., 2005; Lienau et al., 2006).  To address this apparent 

discrepancy, we examined endothelial structuring under direct mechanical strain.

By applying a cyclic stretch directly to Matrigel-based “tube formation” assays, we have 

demonstrated that a broad range of mechanical strains are able to reduce endothelial network
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formation in vitro.  This result contrasts with that of Shukla et al. (2004), who report an 

increasing degree of network formation with cyclic strain levels.  However, it must be noted 

that, in this previous study, the networks formed by contraction from a confluent cell layer, 

whereas in Matrigel-based “tube formation” assays, they form by co-alignment and assembly 

from a relatively sparse cell population.  In a confluent culture, small, stretch-induced 

ruptures in the cell layer or underlying extracellular matrix would progressively expand under 

inter-cellular (or applied) tension, promoting the contraction of cells into a reticular network

(Vernon and Sage, 1995).  On the other hand, disruption of the more limited adhesions within 

cord-like assemblies of initially separated cells could result in collapse of the structures under 

cell-generated tension.  Likewise, increased contractile force generation within endothelial 

cells promotes network formation from a confluent network (Hoang et al., 2004), but inhibits 

it when the cells are seeded at sub-confluent density (Mavria et al., 2006).  Alternatively, 

continuous cyclic strain may inhibit the formation of the required attachments.

The inhibition of network formation in the current study was not consistent with the slightly 

elevated VEGF levels in CM from strained HMEC-1 cultures, by which findings from earlier

studies (Salani et al., 2000; Yahata et al., 2003; Zheng et al., 2001) would lead us to expect 

enhanced “tube formation” on Matrigel.

MMP-2 and MMP-9 levels were also unchanged by stretching, despite the inhibition of 

network formation and previous work showing their contributions to “tube formation” on 

Matrigel (Jadhav et al., 2004; Schnaper et al., 1993) and their mechanical regulation in 

endothelial cells (Haseneen et al., 2003; Magid et al., 2003; Milkiewicz et al., 2007; Shukla et 

al., 2004; von Offenberg Sweeney et al., 2004; Wang et al., 2003).  Furthermore, MMP-2 up-

regulation has been shown to mediate the pro-angiogenic effect of pre-straining endothelial 

cells (Von Offenberg Sweeney et al., 2005).  However, in none of the previous studies 
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showing mechanical regulation of MMPs were the endothelial cells cultivated on Matrigel, on 

which Schnaper et al. (1993) found that HUVECs down-regulated their MMP-2 expression.  

The cited studies also measured responses in confluent cultures, which would perhaps better 

correspond to the conditions in intact vessels than the tissues into which new capillaries

sprout.  The levels in the serum and Matrigel may also have masked the differences in the 

cell-derived proteases.

Because the strain over the BioFlex / UniFlex membranes is not uniform (Bieler et al., 2009; 

Shukla et al., 2004; Vande Geest et al., 2004), not all cells in the culture will be subjected to 

identical conditions.  The soluble factors measured therefore represent the average of a range 

of responses, which may mask subtle changes.  However, any paracrine regulation would be a 

response to these concentrations, to which all cells are exposed.  The strain level validation 

data also suggest that the gel may have partially separated from the membrane after being 

subject to maximal cyclic stretching, resulting in a reduced ability to transmit the higher 

levels of strain in full; of the studies conducted, though, this would have only potentially 

reduced strains over time in experiments conducted at the maximum strain level of 20%.

In agreement with previous reports (Ghajar et al., 2006; Gruber et al., 2005; Kasper et al., 

2007), a paracrine enhancement of network assembly by CM from MSCs was confirmed.  

Interestingly, stretching of MSCs cultured on Matrigel did not alter this enhancement, 

whereas MSCs within a fibrin gel construct required mechanical stimulation (cyclic 

compression) to achieve this endothelial response, as previously reported (Kasper et al., 

2007).  This discrepancy may relate to the considerable difference in mechanical conditions 

between these two cases, and also, the different extracellular matrices present.  It may, 

however, also indicate a change in the cells’ ability to transduce the strain on Matrigel, e.g. 

due to differences in cell adhesion and its downstream signalling (Hirayama and Sumpio, 
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2007).  This may also account for the lack of preferential alignment observed under uniaxial 

strain.  Despite the stimulatory effects, none of the conditioned media prevented a significant 

reduction in network formation by stretching of the HMEC-1 cultures.

Taken together, these data demonstrate that, even in otherwise permissive or favourable 

conditions, the applied strain interfered with the formation and/or maintenance of the 

endothelial networks, suggesting a physical disruption of the process, rather than a 

biochemical regulation.  Indeed, earlier reports (Morrow et al., 2007; Shukla et al., 2004; Von 

Offenberg Sweeney et al., 2005) demonstrate that the biochemical response to strain can 

enhance “tube formation”.  This concept of a physical disruption is consistent with the

primarily mechanical nature of endothelial organisation on Matrigel, as evidenced by the 

dependence on cell-generated lines of traction in the soft matrix guiding migration and 

alignment (Vernon et al., 1992; Vernon and Sage, 1995), rather than transcriptional or 

translational changes (Zimrin et al., 1995).  It is plausible that a biaxial strain might therefore 

over-saturate the inter-cellular tension in the matrix, although this would lead us to expect an 

enhancement in network formation parallel to an applied uniaxial strain, which was not 

apparent. In either configuration, though, the requirement for decoupling between the 

cytoskeleton and matrix for the cellular reorganisation (Deroanne et al., 2001) and the 

observation of tubular structures tethered only at their ends (Maciag et al., 1982) also suggests 

that the cells may be particularly susceptible to the disruption of adhesions during network

formation.  It is, however, possible that the “tube formation” assay thus presents an artificial 

sensitivity to such disruption.  Assays using more natural, three-dimensional matrices will 

enable any such Matrigel-specific effects to be clarified, and provide further insights into both 

the mechanisms of mechano-regulation and the range of conditions in which angiogenesis is 

favoured.
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The results suggest that the cause of impaired revascularisation in early stages of fracture 

healing seems to be a physical disruption of endothelial structure assembly, e.g. due to 

breakage of cell–matrix and/or cell–cell adhesions, rather than a phenotypic modulation.  

When compared to previously reported positive effects of pre-treatment with periodic 

stretching (Morrow et al., 2007; Von Offenberg Sweeney et al., 2005), the present data 

suggest that the characterisation of mechanical effects on angiogenic activity must address the 

stimulation and “vessel” formation simultaneously, rather than as isolated events, to avoid 

misinterpretation.

The positive effect of mechanically loaded MSCs seems to be opposed by a negative effect of 

strain on endothelial cell assembly.  The former is a paracrine effect (Kasper et al., 2007),

while the latter is rather a direct mechanical disruption.  Thus, in a clinical setting, the 

window of mechanical stability that allows a positive paracrine stimulus while not leading to 

disruption of the newly organising tissue must be controlled.
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Figure Legends

Figure 1 Effect of cyclic stretching on endothelial cell network formation on Matrigel.  (a–c) 

Representative micrographs of “tube formation” assays after 24 hours (original magnification 

5×) under (a) static conditions and cyclic stretching: (b) 5% equibiaxial and (c) 2.5% uniaxial.  

The line in (c) indicates the direction of applied strain; no preferential alignment of cell 

networks was observed.  Scale bar: 250μm.  (d) Total network length measured in 10 fields

over duplicate wells, normalised to static controls.  The plot summarises results from three 

independent experiments per strain condition. * p < 0.05 (stretched vs. static).  No significant 

differences were detected between the different strain levels (p = 0.09) or between biaxial and 

uniaxial conditions (p = 0.10).

Figure 2 Conditioned medium analyses.  (a) Representative gelatin zymogram.  Zymography 

showed no significant differences in MMP-9 levels between any of the samples tested (p > 

0.09); slight, but significant, increases in both pro- and active forms of MMP-2 were detected 

in CM from cell-containing cultures, compared to cell-free controls (p ≤ 0.03), but no 

differences were detected between CM from any stretched and unstretched cultures  (p ≥ 

0.17).  (b) VEGF levels determined by ELISA, with concentrations in CM from stretched 

samples expressed relative to corresponding unstretched controls.  No significant differences 

were detected between stretched and unstretched samples (p > 0.09), or between the different 

strain levels (p = 0.58).  However, the apparent trend of elevated VEGF levels in CM from 

stretched cultures was significant when data were pooled (i.e. comparing unstretched to 

stretched, irrespective of strain magnitude: p < 0.01).

Figure 3 Endothelial network formation under cyclic strain, supplemented with CM from 

mesenchymal stem cell (MSC) cultures.  MSCs were cultured for 3 days under static and

mechanically stimulated (1Hz) conditions: (a) on Matrigel ± 2.5% stretching in the FlexerCell 
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system, and (b) in 3D fibrin constructs ± approx. 20% compressive strain in a purpose-built 

bioreactor.  HMEC-1 “tube formation” assays were then supplemented with either

conditioned media from each of these samples, or the regular culture medium, MCDB131, 

and subjected to 24h of stretched (2.5%) or static conditions.  Results are reported as total 

length of HMEC-1 networks, measured in 10 fields over duplicate wells for each 

combination.  * p < 0.02, comparing HMEC-1 +/– strain; # p < 0.01 comparing added media 

for identical HMEC-1 strain conditions (○ and ◊ represent outliers).
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