

QUT Digital Repository:
http://eprints.qut.edu.au/

Fidge, Colin J. and Corney, Diane (2009) Integrating hardware and software
information flow analyses. In: ACM SIGPLAN/SIGBED 2009 Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES 2009), 19-20
June 2009, Trinity College, Dublin.

 © Copyright 2009 Association for Computing Machinery

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10893897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Integrating Hardware and Software Information Flow Analyses

Colin J. Fidge Diane Corney
Faculty of Science and Technology, Queensland University of Technology, Australia

{c.fidge,d.corney}@qut.edu.au

Abstract
Security-critical communications devices must be evaluated to the
highest possible standards before they can be deployed. This pro-
cess includes tracing potential information flow through the de-
vice’s electronic circuitry, for each of the device’s operating modes.
Increasingly, however, security functionality is being entrusted to
embedded software running on microprocessors within such de-
vices, so new strategies are needed for integrating information
flow analyses of embedded program code with hardware analyses.
Here we show how standard compiler principles can augment high-
integrity security evaluations to allow seamless tracing of informa-
tion flow through both the hardware and software of embedded sys-
tems. This is done by unifying input/output statements in embed-
ded program execution paths with the hardware pins they access,
and by associating significant software states with corresponding
operating modes of the surrounding electronic circuitry.

Categories and Subject Descriptors D.4.6 [Security and pro-
tection]: Information flow controls; C.3 [Special-purpose and
application-based systems]: Real-time and embedded systems;
F.3.2 [Semantics of programming languages]: Program analysis

General Terms Security, Verification

1. Introduction
Security-critical communications devices are used to protect data
confidentiality in many government, military and industrial appli-
cations. In particular, domain separation devices aim to control the
flow of information between classified and unclassified networks.
Common examples of such devices are data diodes (which enforce
unidirectional information flow), encryption devices (which allow
classified data to be sent over insecure communications links),
trusted filters (which constrict information flow), and keyboard-
video-mouse switches (which allow a single workstation to access
both high-security and low-security computers).

Before they can be deployed, such devices must be evaluated
to a high degree of rigour [22]. This is usually the job of an
experienced information security evaluator, skilled in electronic
engineering, who tests the device and studies its design to identify
security weaknesses. This process includes tracing all potential
information flow pathways through the device, to detect unintended
communications channels. Unintended information flow may occur
due to design errors, or unanticipated behaviours when individual
electronic components within the device fail or are deliberately
attacked [5].

Increasingly, however, security functionality is now being en-
trusted to microprocessor-based embedded software, both to save
costs and to provide greater flexibility. Consequently, previous
hardware-oriented security evaluation procedures are no longer ad-
equate, and new techniques are needed to integrate software analy-
ses into information security evaluations of electronic devices.

Traditionally the process of evaluating information flow through
electronic circuitry has involved laboriously tracing component
connectivity through the device’s schematic diagram [4]. To save
effort, software tools can automate much of this tedious task [13],
although the overall assessment still relies on the security evalua-
tor’s skill at interpreting the results. However, the entire procedure
is stymied when embedded microprocessors are encountered. Such
components typically have dozens of pins interconnecting them to
their surrounding circuitry, and the only way to determine how in-
formation may flow through a microprocessor is to study the pro-
gram code running on it. Whereas component connectivity is self-
evident in circuitry schematics, information flow between program
statements is not immediately obvious by mere inspection of the
source code, making the job even harder.

Although security analysis of application-level software, to un-
cover program design flaws, has been well-explored in the aca-
demic literature [19, 17], little attention has been paid to embedded
software. In particular, embedded programs interact directly with
hardware components in their surrounding circuitry, thus creating
potential information-flow pathways that traditional software anal-
ysis techniques [21] do not consider.

Here we present a high-integrity security evaluation process for
tracing potential information flow through both hardware and em-
bedded software. It integrates existing topological circuitry analy-
sis principles [18] with standard program slicing technology [9],
to allow seamless tracing of information flow through electronic
devices. To make this possible, our strategy: unifies instances of in-
put/output statements appearing in software execution paths with
the hardware pins they access; associates software path conditions
with the hardware operating modes within which such program
states may occur; and takes into account changes to information
flow due to program constructs that redirect (read or write) or trans-
form (downgrade or upgrade) classified data.

2. Related and Previous Work
To combine hardware and software information flow analyses we
build on existing techniques and tools from both fields.

2.1 Hardware Information Flow Analysis
Techniques for checking electronic circuitry diagrams for design
errors are well established [4], but little has been published on hard-
ware information flow analysis. Consideration has been given to
the impact of deliberately-induced hardware faults on overall de-
vice security [5] and on cryptographic protocol strength [7], but
this work does not address information flow directly. Also relevant
is research into security models of embedded microprocessors [11],
but our concern is with the software running on such microproces-
sors, rather than the microprocessors themselves.

Previous theoretical work on information flow through elec-
tronic circuitry schematics modelled circuits as directed graphs,
with individual electronic components as vertices [18]. How each

1

electronic component connects its input pins to its outputs is then
defined for each of the device’s operating (or fault) modes. This
model supports an end-to-end reachability analysis to identify
modes in which a high-security source component (i.e., one receiv-
ing or generating classified data) may lead to a low-security sink
component (i.e., one connected to a publicly-accessible device).

Tool support is essential to help a security evaluator perform
this task for complex electronic devices. Topological analysis tools
that check whether an idealised electronic circuit is consistent with
a given one [12] can be used for this purpose, since topological
reachability is related to potential information flow.

Foremost among such tools is SIFA (Secure Information Flow
Analyser), an open-source software tool1 for performing mode-
specific reachability analyses of electronic circuits [13]. SIFA
traces component connectivity and presents the user with a list
of those paths through the circuit that connect selected data sources
and sinks in particular modes. The security evaluator can then in-
spect each such path to determine whether or not it poses a security
risk. Block diagrams can be entered into SIFA manually, or it can
directly import circuitry schematics written in the VHDL hardware
design language. Our research aims to be compatible with this tool.

2.2 Software Information Flow Analysis
Security analysis of application-level software, to identify program
design vulnerabilities, has been well-explored [17], using either
type theory [19], program semantics [10] or program logic [6].
However, little work has been done specific to embedded software.

Research into security analysis of portable Java bytecode pro-
grams [2] is relevant to our work, but the symbolic execution ap-
proach used there differs considerably from the static analyses per-
formed by tools like SIFA. Also relevant is recent research into au-
tomated model checking of embedded microprocessor code [20],
but that work aims to help debug embedded programs, rather than
tracing information flow through them. Most relevant of all to our
work is research into the security of programs that interact with
their environment via input/output statements [16], but again the
type inference theory developed there does not (directly) alert us to
potentially dangerous information flows.

Instead, therefore, we revisited basic compilation principles in
our work. Control flow graphs [1, §9.4] and program dependence
graphs [8] are fundamental concepts for ‘slicing’ program code into
potential execution and information flow pathways, respectively.
As explained below, we make use of both kinds of graph.

3. An Integrated Methodology
In this section we describe our integrated hardware-software
information-flow evaluation methodology. The process is illus-
trated via a detailed example in Sections 4 and 5.

3.1 Background and Assumptions
We assume that a given communications device is to be evaluated
for information security using a process like that outlined in inter-
national security standards [22]. Such standards require devices to
be examined from a variety of perspectives, but for our purposes
we are interested in (overt) information flow only.

Our specific concern is communications devices intended for
high-integrity situations such as government and military installa-
tions. The device itself is assumed to reside in a secure facility,
i.e., inside a high-security domain, but some of its outputs are sent
outside the facility, i.e., to a low-security domain. Adversaries are
assumed to be located in the low-security domain and want to learn
the value of classified data items in the high-security domain. The

1 http://sifa.sourceforge.net/

device is thus required to provide domain separation, meaning that
only unclassified data may reach the low-security domain.

3.2 Problem Statement
Given a hardware schematic and software source code for a
security-critical communications device, our goal is to help a se-
curity evaluator identify illegal information flow pathways from
high-security data sources to low-security data sinks.

The current hardware-oriented evaluation process, using an
analysis tool such as SIFA, involves several steps [13]. Firstly the
device’s block diagram or circuitry schematic is entered into the
tool, which converts it into a directed graph representation. The
security evaluator then defines the set of operating (or fault) modes
of interest, based on the device’s intended functionality. Next the
evaluator defines how each kind of component within the device
connects its inputs to its outputs in different modes. To perform the
analysis the evaluator highlights ‘source’ and ‘sink’ components
of interest and the tool automatically finds all paths that connect
sources to sinks, and the mode(s) in which information flows along
them. Finally, the security evaluator studies the paths generated to
determine whether or not they are acceptable, in the context of the
device’s intended domain-separation properties.

This process works well when the circuit is composed solely
of simple electronic components like logic gates, switches and flip
flops. If a microprocessor is embedded in the circuitry, however,
the security evaluator is faced with the problem of trying to de-
termine how information flows through this complex component,
which inevitably requires an understanding of the way the micro-
processor’s software works. Furthermore, significant states of the
software need to be related to corresponding modes of the hard-
ware. Our goal, therefore, is to devise a practical way of using com-
piler technology to fill this gap in the security evaluation process.

3.3 Identifying Information Flow Through Electronic
Circuitry

For our purposes we assume the existence of a tool such as
SIFA [13], capable of performing mode-specific reachability anal-
yses of electronic circuits modelled as directed graphs [14].

A hardware circuit can be represented as a graph with its ver-
tices P being the set of all physical pins (connectors) on the printed
circuit board [14]. Distinct hardware components are represented
by the subset of pins on their periphery. Then the ‘inter-component’
PCB tracks connecting electronic components can be modelled as
a set W ⊆ P × P of pin-to-pin wires.2

To define the way information flows through each electronic
component we need to associate each potential ‘intra-component’
connection through it with the set of modes in which informa-
tion may flow along this pathway. Assuming that the set of op-
erating modes identified for all electronic components is M ,
then intra-component connectivity can be modelled as a function
C ⊆ M → P(P × P) which maps each mode to the set of intra-
component connections it enables, for all components.3

Given a circuit modelled in this way, SIFA performs a reacha-
bility analysis between a selected high-security source pin h and a
low-security sink pin !, presenting the resulting set of paths to the
security evaluator for inspection. In effect, the reachability analysis

2 Let S × T be the cross product of sets S and T , i.e., the set of ordered
pairs ‘s "→ t’ for all elements s ∈ S and t ∈ T .
3 Let P S denote the powerset of set S, i.e., the set of all subsets, and
X → Y denote the set of total functions from domain X to range Y .

2

returns the following set of paths.4

{p : iseq P | first(p) = h ∧ last(p) = ! ∧
∀i, j : dom p •

i + 1 = j ⇒ p(i) '→ p(j) ∈ W ∨
∃m : M • p(i) '→ p(j) ∈ C(m)}

Thus, the analysis returns each end-to-end path p that begins at
source pin h, ends at sink pin !, and for each step of which there
is either a connection through inter-component circuit W , or a
mode m in which an intra-component connection C(m) is enabled.

Hardware operating modes may be assumed to be global,
i.e., common to all components, or local, i.e., specific to each
component, supporting top-down or bottom-up analyses, respec-
tively [18]. SIFA assigns no semantics to modes—mode ‘m’ in
one component is not necessarily related to an identically-named
mode ‘m’ in another component—and it thus performs bottom-up
analyses. However, we can easily interpret its analysis results as
global, if desired, by considering only the subset of paths found in
which all components share a common mode.

In this context, our challenge is thus to devise a way of popu-
lating intra-component connectivity function C with the pin-to-pin
microprocessor connections enabled by the program code execut-
ing on a microprocessor chip in different operating modes.

3.4 Embedded Program Assumptions and Notations
Embedded programs are usually written in the C programming
language or directly in assembly code. Here we merely assume that
the program is written in a generic imperative language:

• var v • S — Declaration of a variable v whose scope is the
following (compound) statement S;

• v ← E — Assignment of the value of expression E to (type-
compatible) variable v;

• S1 ; S2 — Sequential composition of statements S1 and S2;
• if B then S1 else S2 fi — Choice between statements S1 and S2

depending on the value of Boolean guard expression B;
• while B do S od — Pre-tested iterative execution of state-

ment S as long as Boolean guard expression B is true; and
• repeat S until B — Post-tested iterative execution of state-

ment S until Boolean expression B becomes true.

To support expression of run-time paths through program code we
also allow the following auxiliary statement to represent evaluation
of ‘guards’ in conditional or iterative statements:

• assert B — Boolean expression B evaluates to ‘true’.

Since we are interested in embedded code, we also need in-
put and output statements for reading from and writing to hard-
ware components. In practice a variety of processor- and compiler-
dependent statements are used for reading and writing digital data,
and for sampling or setting binary control signals. Furthermore,
these statements differ depending on whether they are potentially
blocking (synchronous) or non-blocking (asynchronous).

For simplicity here we assume that embedded programs can
directly write values to, and read values from, physical pins on the
microprocessor chip. We assume the existence of a special software
variable ‘pin x’ that gives access to hardware pin number x. Inputs
and outputs are then represented as special-case assignments:

4 Let ‘iseq S’ be an injective sequence formed from items in set S, i.e., a
sequence containing no repeated items. For such a sequence s, let first(s)
be its first element, last(s) be its last element, s(n) be its nth element, and
‘dom s’ be its domain, i.e., its set of indices.

• v ← pin x — Read a value from microprocessor pin x into
(type-compatible) software variable v; and

• pin x ← E — Write the value of expression E to microproces-
sor pin x.

We also allow terms of the form ‘pin x’ to appear in expressions,
under the assumption that the current value on, or accessible via,
this hardware pin is sampled whenever the expression is evaluated.

3.5 Extracting Hardware Component Connectivity From
Embedded Software

In essence our goal is to extract information flow paths from an em-
bedded program’s source code. Control flow graphs and program
dependence graphs are the traditional way of ‘slicing’ programs
into separate paths [9], and both are needed in our approach.

In a control flow graph [1, §9.4] the vertices are atomic program
statements. For our purposes these are assignments and Boolean
‘guards’ used in if, while and repeat statements. Vertices are con-
nected by an edge in a CFG if the two statements/guards may be
executed/evaluated consecutively at run time. Tracing a path from
one vertex to another thus produces a possible execution path.

However, not all such paths are feasible at run time. To exclude
infeasible paths we can calculate a path condition which charac-
terises the initial states, if any, from which the path will be fol-
lowed. A path condition is the conjunction of the Boolean guards
appearing in the path, with appropriate substitutions to take account
of assignments to variables appearing in the guards, conjoined with
the condition required to reach the beginning of the path from the
program’s entry point.

Another important way of slicing programs, especially when
considering information flow, is to construct a program dependence
graph [8]. PDGs are derived from CFGs but have two main kinds
of edge. A control flow edge links Boolean guards in conditional
and iterative statements to those statements whose execution relies
on the condition. A data flow edge connects assignments to imme-
diately following uses of the target variable.

Both kinds of edge are essential for analysing information flow.
Data flow edges handle the obvious case of data being explicitly
transferred between program variables. More subtly, control flow
edges model implicit information flow due to the value of a vari-
able controlling execution of an assignment statement. An oft-cited
security-related example of this is the following program, where h
is a variable containing classified data and ! is a variable visible to
the low-security domain, both of type natural number.

! ← 0 ;
while h > 0 do

h ← h− 1 ;
! ← ! + 1

od

This program transfers the value of h to ! even though there is no
assignment statement involving both variables. The corresponding
program dependence graph reveals that information does indeed
flow between these two variables by virtue of the control flow
edge connecting guard ‘h > 0’ to assignment ‘! ← ! + 1’ whose
execution the guard controls. In general, information may flow
between any two statements in a PDG connected by a sequence
of control and/or data flow edges.

For our purposes we are interested in finding paths from high-
security data sources to low-security data sinks, via an embedded
microprocessor’s software. The starting point for each of our paths
is thus: an input statement that reads classified data from one of
the microprocessor’s pins; a statement that retrieves classified data
from read-only memory within the microprocessor; a statement
that creates new classified data, such as passwords or encryption

3

keys; or a statement that exposes previously-hidden classified data,
usually via a call to a decryption function (sometimes referred to as
a security class upgrader).

The ending point for a path of interest is usually an output state-
ment that writes data to one of the microprocessor’s pins. (Strictly
speaking we are interested only in pins that may ultimately lead to
the low-security domain but, given that it may not be immediately
obvious which pins do this, especially if they feed into another mi-
croprocessor or even back into the same microprocessor, the safest
approach is to explore all execution paths ending at output state-
ments.) Furthermore, it’s helpful to flag paths that we are confident
downgrade high-security data [15], e.g., by encrypting it or by fil-
tering out classified data fields.

To do this, the main steps in our approach for identifying poten-
tial information flow paths through embedded software are to:

1. extract all CFG execution paths that connect high-security data
source statements to data sink statements in the program,

2. exclude those execution paths which have no end-to-end infor-
mation flow according to the PDG, to reduce false positives,
and

3. calculate the CFG path conditions for the remaining paths, to
precisely characterise the states in which they may be executed,
so that we can relate the software paths to corresponding hard-
ware modes.

Each path remaining after this process is completed then becomes a
pin-to-pin link through the microprocessor, before the entire circuit
is subjected to topological analysis.

The second step eliminates execution paths that don’t transfer
information. For instance, if we are interested in potential infor-
mation flow from microprocessor pin t to pin u then the execution
path through program fragment ‘v ← pin t ; pin u ← v’ would be
retained because it transfers data directly between these two pins.
However, the path through code fragment ‘v ← pin t ; pin u ← w’
would be excluded because no information flows between the pins,
even though the two statements are always executed consecutively.
(This effect could also be achieved using program representations
that integrate both CFG and PDG features, such as Gated Static
Single Assignment form [3], but we have found it convenient dur-
ing experimentation to keep the two kinds of graph separate.)

Although program dependence graphs are normally considered
superior to control flow graphs for performing information flow
analyses within program code, we favour CFG-derived execution
paths because they can reveal important facts about information
flow outside the program. Normally, PDGs ignore statements that
don’t contribute to end-to-end information flow within the program.
For instance, assume we are interested in information flow from
variable x to variable z in the code fragment ‘y ← x ; a ← x ;
z ← y’. Using a CFG we would extract an execution path contain-
ing all three statements, because they all occur consecutively when
the program is executed. However, the path between the first and
third statements in a PDG bypasses the middle statement because
it does not contribute to information flow between x and z [21].

While this may appear to be advantageous for our purposes—
because it would reduce the security evaluator’s workload by elim-
inating irrelevant statements—we have found that the situation for
evaluating embedded program code is different because of the pos-
sibility that paths contain input/output statements other than those
at the endpoints. Such statements create information flow relation-
ships between the program and the electronic circuitry surrounding
the microprocessor. As the example in Section 4.2 demonstrates,
making the security evaluator aware of an output statement in the
middle of an execution path, even though it does not contribute to
information flow through the software, can help reveal the presence

of significant security problems associated with the flow of infor-
mation ‘around’ the program.

3.6 Linking Software States to Hardware Modes
Having identified the software execution paths that (may) allow
information flow between microprocessor pins, and the software
states from which they can be executed, the final requirement for
integrating this knowledge into the hardware model is to associate
the software states with corresponding hardware modes. Unfortu-
nately, this is not a straightforward process because there is unlikely
to be a simple mapping between those hardware modes identified
as important by the security evaluator and the path conditions ex-
tracted automatically during analysis of the embedded program.

The combined CFG-PDG analysis process outlined in Sec-
tion 3.5 produces a path condition for each potential information
flow path through the microprocessor. Next we need to ensure that
the information security evaluator can always identify correspond-
ing hardware modes in which this software path may be followed.

Software states are characterised by predicates (Boolean-valued
expressions) over the program’s variables and constants and, in our
case, values on hardware pins. Predicates form a lattice, ordered by
logical implication, with ‘true’ at the top and ‘false’ at the bottom.
However, previous work on hardware information flow analysis
assumed that hardware modes were mutually exclusive, with the
device or component residing in only one mode at a time [18]. This
rigid structure means that it isn’t always possible to neatly match a
given software state with a single hardware mode.

Therefore, we instead decided to treat the security evaluator’s
set of modes M as also forming a lattice, in this case ordered by
mode inclusion, with ‘any’ at the top and ‘none’ at the bottom.
This strategy means that we can always find a mode that embraces
all software states characterised by any given execution path con-
dition. In the worst case we can use the top of the mode lattice, but
choosing the lowest possible element will produce the most precise
result when the end-to-end reachability analysis is performed.

Recall from Section 3.3 that each mode m ∈ M is assumed to
be characterised by the set C(m) of intra-component connections
it enables. We therefore also need to ensure that the mode lattice
obeys the following simple well-formedness conditions.

1. Modes form a lattice ordered by inclusion ‘≤’, with a distin-
guished top element ‘Any’ and bottom element ‘None’, such
that

∀m, n : M • n ≤ m ⇒ C(n) ⊆ C(m) .
In other words, any mode m in the lattice enables at least all
information flow allowed by any inferior mode n.

2. The bottom element does not enable any information flow, i.e.,

C(None) = {} .

These constraints ensure that a composite mode high in the lattice
subsumes all information flow allowed by its constituent modes
lower in the lattice.

Importantly, a mode high in the lattice may introduce connec-
tions not allowed by any of its inferior modes. Superior modes are
thus not merely a choice between their inferiors—they may model
behaviours not possible by any one of the inferior modes alone.
This lets a higher mode model situations where the device changes
from one of the lower modes to another. The previous ‘flat’ model
of modes made it impossible to analyse ‘inter-mode’ information
flow, e.g., where classified data is stored in memory in one mode
and retrieved in a subsequent one. Our hierarchical model allows
composite modes high in the lattice to represent behaviours that
straddle distinct modes lower in the lattice.

As long as the security evaluator can provide a mapping from
each software path condition to a hardware mode, or modes, in a

4

Micro-
processor

chip

Data/ack
synchron-

isation

Ack signal
generator

Encryption device

High-security
data input

Low-security
data output

Low-security
data input

Encryption on/off
toggle switch

Acknowledgments
on/off toggle switch

a b

c d e f

g

i

j

k

m n

p

q

r s

control signal path

 data path

Figure 1. Block diagram for the encryption device.

lattice that obeys these well-formedness constraints then the cor-
responding microprocessor software execution paths can be inte-
grated easily into the overall reachability analysis, like any other
kind of intra-component connectivity, and we can use SIFA’s exist-
ing reachability analysis mechanism without change (Section 5).

4. Case Study
In this section we present a small, but complete, example to illus-
trate the methodology outlined above.

Assume that an information security evaluator has been given
the job of analysing an encryption device, designed to downgrade
data being sent from a secure facility to a publicly-accessible net-
work. The device’s physical design is shown in Figure 1. Classified
data enters via the high-security input on the left and exits via the
low-security output on the right. The device also has an input from
the low-security domain, used to receive acknowledgements that
data packets sent to the low-security domain have been received
successfully at the far end.

The device has two switches on its front panel. One switch
allows the operator to choose whether encryption is turned on or
off, because plaintext transmission is needed during establishment
of the communications link, to allow configuration data to be sent to
the receiving site. (An obvious procedural concern is the risk of the
operator forgetting to switch the device to encryption mode after
the link has been established—achieving absolute security is both
a technological and procedural problem.) The second switch allows
the operator to decide whether acknowledgement packets should be
processed or not. If this switch is in the ‘on’ position the device will
retransmit failed packets, but if the acknowledgement switch is in
the ‘off’ position no retransmissions are performed, and any data
received on the low-security input is ignored.

There are three main components within the device. On the left
is a microprocessor which performs the buffering, encryption and
retransmission tasks. At the top right is a simple timing circuit used
to synchronise data packet outputs and subsequent acknowledge-
ment packet inputs. It sends a timing signal to another circuit, at the
bottom right, which processes acknowledgement packets received
from the low-security domain. When a positive acknowledgement
packet is received the acknowledgement circuit signals this event
to the microprocessor. However, if the acknowledgement toggle

AckOff

AckOff-EncOff

AckOn

AckOff-EncOnAckOn-EncOffAckOn-EncOn

None

Any

EncOn EncOff

Figure 2. Operating mode lattice for the encryption device.

switch is off the circuit permanently signals that a successful ac-
knowledgement has occurred, irrespective of the packets received
from the low-security input.

Thus, part of the overall device’s functionality is implemented
in hardware and part in software, so only a combined analysis
of both can tell us about information flow from the high-security
domain to the low-security one.

Based on a study of the detailed circuitry schematics, the secu-
rity evaluator must also identify the operating modes relevant to this
device. In this simple example the modes are obvious and are de-
fined by the positions of the ‘encryption’ and ‘acknowledgements’
toggle switches on the device’s front panel. A complete global
mode lattice for all combinations of these switches is shown in Fig-
ure 2. (This is not to suggest that security evaluators are obliged to
draw such a lattice, but they need to recognise that any non-disjoint
modes they identify are related by subsumption.)

In the context of the significant modes identified, the security
evaluator then needs to define intra-component connectivity for the
device’s hardware components by studying their detailed circuitry
schematics. Here we assume this analysis shows that the synchro-
nisation circuit in Figure 1 connects pin d to pin e in all modes (ex-
cluding the lattice’s bottom), since this is necessary for data packets
exiting the microprocessor to be forwarded to the low-security out-
put port. The circuit also allows information flow from pin d to

5

var buffer•
1. while true do
2. buffer ← pin b;
3. if pin j then
4. pin c ← encrypt(buffer)

else
5. pin c ← buffer

fi;
6. sleep(T);
7. while not pin m do
8. pin c ← buffer ;
9. sleep(T)

od
od

Figure 3. An insecure program for the encryption device’s micro-
processor.

pin g in all modes, because the passage of a data packet through
the circuit affects the timing signal.

We also assume that the acknowledgement signal circuit allows
information to flow from pin r to pin n only in Figure 2’s ‘AckOn’
modes, because the information contained within packets received
from the low-security domain is forwarded to the microprocessor
only when the acknowledgement switch is in the ‘on’ position.
Similarly, the timing signal received on pin i influences the timing
of the signal sent to pin n in these modes. Arguably, the circuit
also allows information flow from pin p to pin n in ‘AckOn’ modes
only, since a negative acknowledgement signal can be sent along
the n–m path only when the acknowledgement switch is ‘on’. (A
continuous series of positive acknowledgements sent along this
path does not reveal the position of the switch.)

The challenge now is find out how the microprocessor ex-
changes information between its input and output pins. To do this
we need to examine its software.

4.1 An Obviously Insecure Program
As an initial example, assume that the program loaded into the
microprocessor is the one in Figure 3. This program contains an
obvious design flaw which can be revealed using our technique.

The program is poll-driven and consists of an infinite loop
(line 1), each iteration of which processes one data packet from
the high-security domain, forwarding the result to the low-security
domain. It reads data from the high-security input (line 2), and then
samples the signal generated by the encryption toggle switch to de-
cide how to process it (line 3). If the signal is high (‘true’) it calls
an encryption function to encipher the data before forwarding it to
the low-security domain (line 4). Otherwise it forwards the data
without change (line 5). After the data has been sent the program
waits for an appropriate length of time T until the acknowledge-
ment packet can be expected (line 6). The program then samples
the signal generated by the acknowledgement circuit (line 7). If the
signal is low (‘false’) we assume that the packet was not received
successfully, so the data is retransmitted (line 8), and the program
waits for another acknowledgement (line 9), until a successful one
is received. (The program assumes the acknowledgement circuit
generates ‘high’ when the acknowledgement switch is off.)

Unfortunately, this program contains a serious security flaw. To
reveal it our evaluation begins by parsing the program to produce its
control flow graph (Figure 4). From this we want to extract all paths
from high-security sources to low-security sinks. From Figure 1 we
can see that the main source of high-security data for the program is
pin b, and the only output that may lead to the low-security domain
is pin c.

0. entry

1. true ?

2. buffer ! pin_b

3. pin_j ?

4. pin_c ! encrypt(buffer) 5. pin_c ! buffer

6. sleep(T)

7. not pin_m ?false

false

true

true

8. pin_c ! buffer

9. sleep(T)

true

Figure 4. Control flow graph for the program in Figure 3.

We also produce the program dependence graph (Figure 5) so
that we can tell which CFG paths involve end-to-end information
flow. In Figure 5 we have distinguished two types of data depen-
dence. As well as the usual explicit flow of information between
two statements, we have highlighted ‘downgraded’ data depen-
dences as those where the data transferred between pins is en-
crypted along the way. In this case the data flowing between pins b
and c via the execution path beginning at statement 2 and ending at
statement 4 is encrypted. Information flow along such paths is nor-
mally not a concern during security evaluations, provided we have
faith in the strength of the encryption algorithm.

From Figure 4 we can extract a number of paths that link a
statement that reads from pin b to one that writes to pin c. For
instance, a short path is the following one from statement 2 to
statement 5.

2. buffer ← pin b
3. assert ¬pin j
5. pin c ← buffer

The PDG in Figure 5 confirms that there is information flow be-
tween these statements, because statement 2 assigns to variable
buffer, statement 5 accesses it, and there are no intervening assign-
ments to the variable in the CFG [21].

Then a conventional CFG analysis tells us that the execution
path condition is merely the predicate ‘¬pin j’. To relate this soft-
ware condition to hardware modes we note that the signal on pin j
can be low only when the device’s encryption toggle switch is off.
Thus, this path may be followed when the device is in any of the
three ‘EncOff ’ modes in Figure 2. When the b–c path is added to
the circuitry diagram it is therefore labelled with all of these modes.

The overall reachability analysis will then show that there is a
direct information flow path through the encryption device, con-

6

0. entry

1. true ?

2. buffer ! pin_b

3. pin_j ?
4. pin_c ! encrypt(buffer)

5. pin_c ! buffer
6. sleep(T)

7. not pin_m ?

control dependency

data dependency

true

false

true

true
8. pin_c ! buffer

9. sleep(T)

true

true

true

true

downgraded data dependency

Figure 5. Program dependence graph for the program in Figure 3.

necting the high-security domain to the low-security domain, via
pins a, b, c, d, e and f in all of the ‘EncOff ’ modes. However, this
is not a security concern—it merely tells us that data flows freely
through the device when it is not required to encrypt, as expected.

Of far greater concern is the following CFG-derived execution
path, from statement 2 to statement 8.

2. buffer ← pin b
3. assert pin j
4. pin c ← encrypt(buffer)
6. sleep(T)
7. assert ¬pin m
8. pin c ← buffer

Again the PDG confirms that there is a direct data dependence be-
tween the statements at this path’s endpoints. However, the path
condition is ‘pin j ∧ ¬pin m’. Pin j is high when the encryption
toggle switch is on, and pin m can be low only when the acknowl-
edgement switch is on, because this switch setting allows negative
acknowledgements from the low-security domain to be processed,
so the only corresponding mode in the lattice is ‘AckOn-EncOn’.
The combined hardware-software topological analysis will thus re-
port that data may flow, without change, from pin a to pin f when
the encryption device is meant to be encrypting data!

This discovery will alert the information security evaluator to
the flaw in the program because there should not be any non-
downgraded information flow from pin a to pin f when the de-
vice is in this mode. A closer study of the program in Figure 3
shows that the underlying problem is that when it retransmits an
unacknowledged packet (line 8) it fails to check whether or not the
retransmitted data is meant to be encrypted.

4.2 A Subtly Insecure Program
As another example, consider the program shown in Figure 6 exe-
cuting in the same hardware environment. Like its predecessor this
program is also flawed, but in a more subtle way.

Figure 6 shows that this program avoids the previous problem
by checking to see whether or not data should be encrypted (line 3)
every time it is sent to the low-security domain (lines 4 and 5).
At first glance this would appear to solve the problem. Indeed,
this program may run for a long time without any security issues
arising. Nevertheless, it contains a flaw in the way it interacts with
its hardware environment, which can be revealed by our approach.

var buffer •
1. while true do
2. buffer ← pin b;

repeat
3. if pin j then
4. pin c ← encrypt(buffer)

else
5. pin c ← buffer

fi;
6. sleep(T)
7. until pin m

od

Figure 6. Another insecure program for the encryption device’s
microprocessor.

The program’s control flow graph is shown in Figure 7 and its
program dependence graph in Figure 8. Once again our process
begins by extracting execution paths from the CFG that link high-
security inputs (line 2 in Figure 6) to low-security outputs (lines 4
and 5).

For instance, the following short CFG-derived execution path
from statement 2 to statement 5,

2. buffer ← pin b
3. assert ¬pin j
5. pin c ← buffer

allows direct information flow from the high-security input to the
low-security output according to the PDG, but does so only under
path condition ‘¬pin j’, which the security evaluator would recog-
nise means that the device is in one of the ‘EncOff ’ modes, in which
case this behaviour is acceptable.

Similarly, the following execution path from statement 2 to
statement 4,

2. buffer ← pin b
3. assert pin j
4. pin c ← encrypt(buffer)

occurs only when path condition ‘pin j’ is true, which means that
the device must be in one of the ‘EncOn’ modes, and the PDG
confirms that there is only downgraded information flow through
the device in this case. Again, this is an expected behaviour.

7

0. entry

1. true ?

2. buffer ! pin_b

3. pin_j ?

4. pin_c ! encrypt(buffer) 5. pin_c ! buffer

6. sleep(T)

7. pin_m ? false

false

true

true

true

Figure 7. Control flow graph for the program in Figure 6.

However, a more interesting situation arises when we follow the
loops around the control flow graph in Figure 7 to produce longer
paths. In effect, this process involves unrolling the repeat loop in
Figure 6. As in traditional test-case path coverage, this process is
finite—we need only unroll loops enough times to ensure that all
distinct control flow sequences through the loop body are gener-
ated. One such path begins at statement 2 and leads to statement 5,
via statement 4.

2. buffer ← pin b
3. assert pin j
4. pin c ← encrypt(buffer)
6. sleep(T)
7. assert ¬pin m
3. assert ¬pin j
5. pin c ← buffer

The condition required to follow this execution path is ‘pin j1 ∧
¬pin m ∧ ¬pin j2’, where the subscripts are used to distinguish
different signal samples read from pin j. It’s important when
analysing embedded code to recognise that consecutive inputs from
the same microprocessor pin may return different data values. Un-
like variables controlled by the program, signals on hardware pins
can change value without the program doing anything. Therefore,
although the path condition says that the value on pin j must be
both high and low, this is not contradictory—it merely means that
the hardware environment is assumed to have changed the control
signal on this pin between samples.

Given this software path condition, the security evaluator is
now obliged to find a corresponding hardware mode in which this
situation may arise. We know that pin m can be low only when
a negative acknowledgement has been received (or a timeout has
occurred), so this tells us that the acknowledgements toggle switch
must be in the ‘on’ position. However, there is no single hardware
state in which pin j can be both low and high simultaneously. This
means that this path occurs during a period when the value on this
pin changes, i.e., when someone has moved the device’s encryption
toggle switch from ‘on’ to ‘off’. Using the lattice in Figure 2 we can
see that the only mode (apart from the lattice’s top) consistent with

this path condition is AckOn. Interestingly, neither of the inferior
modes AckOn-EncOn and AckOn-EncOff can accommodate this
path condition on their own.

Thus, when the potential b–c connection is added to the AckOn
mode, the automated reachability analysis will report that there
may be direct information flow through the encryption device, from
pin a to pin f , when the acknowledgements switch is on, but
without a guarantee that the encryption switch is off!

Faced with this undesirably liberal form of information flow,
the security evaluator will inspect the hardware-software path gen-
erated to determine the problem’s cause. In this case it is due to
the fact that when a data packet is received it is always stored in
unencrypted form (line 2 in Figure 6), even if the encryption tog-
gle switch is on. Therefore, although the packet is forwarded to
the low-security domain in encrypted form on the first occasion
(line 4), this particular path shows that the packet may be retrans-
mitted without encryption (line 5), if a negative acknowledgement
is received and the encryption switch has subsequently been turned
to the ‘off’ position. Thus data stored in the device, intended to
be forwarded in encrypted form only, can be released to the low-
security domain without encryption.

Importantly, this discovery would not have been made by using
program dependence graphs alone. Conventional PDG analysis
would assume that the assignments in the program code to pin c are
unimportant, since no part of the program subsequently reads from
this ‘variable’. It is for this reason that we use control flow graph
execution paths, which retain all statements executed. In embedded
programs outputs to the hardware environment may have major
significance for information flow outside the program.

4.3 A Secure Program
Finally, for completeness, Figure 9 presents a secure program for
the encryption device’s microprocessor. In this case the data is
stored in the buffer in encrypted form if the encryption switch is
on (line 4). Thus, if retransmission becomes necessary the data
will always be resent (line 5) in a form that reflects the state of
the encryption toggle switch when the data was first received from
the high-security domain.

5. Implementation
Based on the principles outlined above we have implemented an
embedded program parser that extracts information flow paths and
associated path conditions for use in information security evalu-
ations of communications devices. The embedded program is as-
sumed to be written in Custom Computer Services’ C dialect for
Programmable Integrated Circuit microcontrollers.5

The tool itself is implemented in Microsoft C". Given an embed-
ded C program it “inlines” function calls and unrolls loops enough
times to expose all distinct control flow paths through the loop’s
body. It then constructs the control flow graph, converts the code
to static single assignment form (including φ functions), and con-
structs the program dependence graph. During this process, any
input-output pairs that are connected via data and/or control edges
in the PDG are noted.

For every input in such a pair, all of the possible paths from
the program’s entry point to the input are then calculated, using the
CFG. (The full path from the program’s entry point is needed in
order to calculate the path condition [21].) Next all possible paths
between each input-output pair are calculated. By combining the
paths from the entry point to the relevant input-output pair, a set of
all paths from the start of the program to every output, via an input,
is produced. The path condition is then calculated for each path.

5 http://www.ccsinfo.com/

8

0. entry

1. true ?

2. buffer ! pin_b

3. pin_j ? 4. pin_c ! encrypt(buffer)

5. pin_c ! buffer
6. sleep(T)

7. not pin_m ?

control dependency

data dependency

true

false

true
true

true
true

true

true

downgraded data

dependency

Figure 8. Program dependence graph for the program in Figure 6.

var buffer •
1. while true do
2. buffer ← pin b;
3. if pin j then
4. buffer ← encrypt(buffer)

fi;
repeat

5. pin c ← buffer;
6. sleep(T)
7. until pin m

od

Figure 9. A secure program for the encryption device’s micropro-
cessor.

For instance, given an embedded C version of the program from
Figure 6, the tool generated 15 distinct paths and path conditions,
including those discussed in Section 4.2. (This many paths cannot
be seen by mere inspection of Figure 6. The tool represents the
program in an intermediate language form, to support planned ex-
tensions for modelling asynchronous interrupts, whose information
flow effects are describable at a low level only [20]. Also, some
generated paths are prefixes of longer paths that contain multiple
output statements.)

Armed with this information, it is then a straightforward ex-
ercise to enter these paths as intra-processor connections in a
SIFA [13] model of the entire encryption device. Furthermore,
since SIFA allows free-form text to identify hardware modes,
we can efficiently enter sets of modes from the lattice (Figure 2)
through appropriate naming conventions. For this example we used
‘Any mode’ to denote all modes except None, ‘M modes’ plural to
denote mode M and all of its non-None inferiors, and ‘M mode’
singular to denote mode M only. We also explicitly annotated paths
that downgrade data.

The resulting SIFA model and analysis results are shown in
Figure 10, assuming that the microprocessor is running the program
from Figure 6. The tool successfully identifies the information
flow channel through the device and the three hardware modes
in which the embedded software may allow data to pass. These
include the EncOff modes, and downgraded data flow in the EncOn
modes, both of which are expected behaviours of the device. More
importantly, the analysis reveals the undesired information flow
allowed when the device is in AckOn mode, without requiring that
the encryption switch is off.

Of course, this outcome is obvious for this small example.
However, when dealing with circuit diagrams containing dozens

of components, and embedded programs of hundreds of lines, such
automated support is invaluable for information security evaluators.

6. Conclusion
Analysing information flow through security-critical electronic de-
vices is a challenging task, and their growing reliance on embedded
software makes the job even harder. Here we have shown how tra-
ditional program compiler technology can be integrated with hard-
ware analysis techniques to produce a seamless information flow
evaluation methodology for embedded systems.

Future work will focus on ways of handling other programming
constructs peculiar to embedded code. In particular, since embed-
ded programs are usually weakly-typed, to allow bit- and byte-level
manipulation of integers and other ‘atomic’ values, we are currently
adapting analysis techniques for arrays to the problem of tracing in-
formation flow through compound data structures.

Acknowledgments
This research was funded by the Defence Signals Directorate and
the Australian Research Council via ARC Linkage-Projects Grant
LP0347620. We wish to thank Brian Palm, Vicky Briant and Peter
Young for their ongoing support for this research, and the anony-
mous reviewers for their helpful comments.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, California, USA, 1986.

[2] M. Avvenuti, C. Bernardeschi, and N. De Francesco. Java bytecode
verification for secure information flow. ACM SIGPLAN Notices,
38(12):20–27, December 2003.

[3] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The program
dependence web: A representation supporting control-, data-, and
demand-driven interpretation of imperative languages. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’90), New York, USA, June 20–22, 1990,
pages 257–271. ACM, 1990.

[4] K. Banks. Tips for checking schematics. Embedded Systems,
16(6):36–38, June 2003.

[5] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan.
The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, February 2006.

[6] D. Clark, C. Hankin, and S. Hunt. Information flow for ALGOL-like
languages. Computer Languages, 28(1):3–28, April 2002.

9

Figure 10. Automated analysis results for the encryption device, using paths from the program in Figure 6.

[7] A. W. Dent and J. Malone-Lee. The physically observable security of
signature schemes. In N. P. Smart, editor, Cryptography and Coding—
Tenth IMA International Conference, volume 3796 of Lecture Notes
in Computer Science, pages 220–232, Cirencester, United Kingdom,
19–21 December 2005. Springer-Verlag, Berlin.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program
Dependence Graph and its use in optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319–349, July 1987.

[9] S. Horwitz and T. Reps. The use of program dependence graphs in
software engineering. In Proceedings of the Fourteenth International
Conference on Software Engineering (ICSE’92), pages 392–411,
Melbourne, Australia, 11–15 May 1992. ACM Press, New York.

[10] R. Joshi and K. R. M. Leino. A semantic approach to secure
information flow. Science of Computer Programming, 37(1–3):113–
138, May 2000.

[11] V. Lotz, V. Kessler, and G. H. Walter. A formal security model
for microprocessor hardware. IEEE Transactions on Software
Engineering, 26(8):702–712, August 2000.

[12] A. Mahalingam, B. P. Butz, and M. Duarte. An intelligent
circuit analysis module to analyze student queries in the Universal
Virtual Laboratory. In W. Oakes, D. Voltmer, and C. Yokomoto,
editors, Proceedings of the 35th ASEE/IEEE Frontiers in Education
Conference (FIE’05), pages F4E–1–F4E–6, Indianapolis, USA, 19–
22 October 2005. Institute of Electrical and Electronics Engineers,
New Jersey, USA.

[13] T. McComb and L. P. Wildman. SIFA: A tool for evaluation of
high-grade security devices. In C. Boyd and J. Nieto, editors,
Proceedings of the Tenth Australasian Conference on Information
Security and Privacy (ACISP 2005), volume 3574 of Lecture Notes
in Computer Science, pages 230–241, Brisbane, Australia, 4–6 July
2005. Springer-Verlag, Berlin.

[14] T. McComb and L. P. Wildman. Verifying abstract information
flow properties in fault tolerant security devices. In Z. Liu and

J. He, editors, Proceedings of the Eighth International Conference
on Formal Engineering Methods (ICFEM 2006), volume 4260 of
Lecture Notes in Computer Science, pages 621–638, Macao, China,
1–3 November 2006. Springer-Verlag, Berlin.

[15] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust
declassification and qualified robustness. Journal of Computer
Security, 14(2):157–196, 2006.

[16] K. R. O’Neill, M. R. Clarkson, and S. Chong. Information-flow
security for interactive programs. In Proceedings of the 19th
IEEE Computer Security Foundations Workshop (CSFW’06), pages
190–201, Venice, Italy, 5–7 July 2006. IEEE Computer Society,
Washington, DC, USA.

[17] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A survey of static
analysis methods for identifying security vulnerabilities in software
systems. IBM Systems Journal, 46(2):265–288, 2007.

[18] A. J. Rae and C. J. Fidge. Information flow analysis for fail-secure
devices. The Computer Journal, 48(1):17–26, January 2005.

[19] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications,
21(1):1–15, January 2003.

[20] B. Schlich, M. Rohrbach, M. Weber, and S. Kowalewski. Model
checking software for microcontrollers. Technical Report AIB-2006-
11, Department of Computer Science, RWTH Aachen University,
Germany, 2006.

[21] G. Snelting, T. Robschink, and J. Krinke. Efficient path conditions in
dependence graphs for software safety analysis. ACM Transactions
on Software Engineering and Methodology, 15(5):410–457, October
2006.

[22] The Common Criteria Project Sponsoring Organisations. Common
Criteria for Information Technology Security Evaluation. Interna-
tional Organization for Standardization, Geneva, August 1999.

10

