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Abstract

This paper improves implementation techniques of El-
liptic Curve Cryptography. We introduce new for-
mulae and algorithms for the group law on Jacobi
quartic, Jacobi intersection, Edwards, and Hessian
curves. The proposed formulae and algorithms can
save time in suitable point representations. To sup-
port our claims, a cost comparison is made with
classic scalar multiplication algorithms using previ-
ous and current operation counts. Most notably, the
best speeds are obtained from Jacobi quartic curves
which provide the fastest timings for most scalar mul-
tiplication strategies benefiting from the proposed1

2M + 5S + 1D point doubling and 7M + 3S + 1D
point addition algorithms. Furthermore, the new ad-
dition algorithm provides an efficient way to protect
against side channel attacks which are based on sim-
ple power analysis (SPA).

Keywords: Efficient elliptic curve arithmetic,
unified addition, side channel attack.

1 Introduction

From the advent of elliptic curve cryptosystems, in-
dependently by Miller (1986) and Koblitz (1987) to
date, the arithmetic of elliptic curves has drawn wide
attention from cryptographic researchers. It is well
known that the Weierstrass model provides a general
parametrization of elliptic curves. In other words, an
elliptic curve over a field K (excluding char(K) =
2, 3) is the set of points (x, y) satisfying the equation

y2 = x3 + ax + b

for some a, b ∈ K where 4a3 + 27b2 6= 0 together
with the point at infinity O. These points exhibit a
group structure under an explicitly defined additive
group law. In other words, two points P = (x1, y1)
and Q = (x2, y2) can be added to form a third point
R = P+Q = (x3, y3) on the same curve. The negative
of the point P is (x1,−y1). The identity element is
the point at infinity O. From this we can define a
scalar multiple S of a point P as

S = [k]P = P + P + . . . + P
︸ ︷︷ ︸

k times

.
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castle and Willy Susilo, University of Wollongong, Ed. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.
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M: Field multiplication, S: Field squaring, D: Field multipli-

cation by a curve constant.

Computing k when only P and S are known is be-
lieved to be intractable for carefully selected parame-
ters. This forms the basis of the elliptic curve discrete
logarithm problem, which is used to provide crypto-
graphic security.

One of the main challenges in elliptic curve cryp-
tography is to perform scalar multiplication efficiently
under different environmental constraints (such as re-
sistance to side channel attacks, bandwidth efficiency,
memory limitations). In this paper, we restrict atten-
tion to the optimization of point addition and point
doubling which are vital for the overall performance of
double-and-add type scalar multiplication algorithms.

Elliptic curves can be represented in several differ-
ent ways. To obtain faster group operations, some
other elliptic curve representations have also been
considered in the last two decades. In this context,
we present a short outline of previous work on which
our paper is built.

- Chudnovsky & Chudnovsky (1986) developed the
first inversion-free algorithms and reported the
operation counts for performing arithmetic on
Weierstrass, Jacobi quartic, Jacobi intersection,
and Hessian curves.

- Cohen et al. (1998) provided efficient strategies
for scalar multiplication on Weierstrass curves.
Doche et al. (2006) introduced fast doubling
and tripling algorithms on Weierstrass curves for
two special families. The doubling algorithm in
(Doche et al. 2006) was improved by Bernstein
et al. (2007) for S < M.

- In chronological order, Joye & Quisquater
(2001), Liardet & Smart (2001), Brier & Joye
(2002), Billet & Joye (2003) showed ways of per-
forming scalar multiplication with resistance to
side channel attacks using Hessian, Jacobi inter-
section, Weierstrass and Jacobi quartic forms, re-
spectively.

- Duquesne (2007) proposed a faster algorithm
for computing point addition on Jacobi quartic
curves based on the formulae in (Billet & Joye
2003) by using an alternative coordinate system.
In (Bernstein & Lange 2007b) and (Bernstein &
Lange 2007a) a better operation count for S < M
was proposed. Some of the optimizations in this
paper benefit from similar ideas.

- Bernstein & Lange (2007c) introduced Edwards
curves for providing fast arithmetic and efficient
countermeasures to side channel attacks. Later,
Bernstein & Lange (2007d) proposed the inverted
Edwards coordinates which improve timings for
Edwards curves and provided the fastest unified
addition of that time. Bernstein & Lange (2007b)



have built a database of explicit formulae that
are reported in the literature together with their
own optimizations.

For security considerations, the selected curves
should have a small cofactor, typically equal to or less
than 4. It is possible to find cryptographically inter-
esting curves which satisfy the security criterion and
which can be parameterized by one of the curve mod-
els mentioned above. See (Liardet & Smart 2001),
(Billet & Joye 2003), and (Bernstein & Lange 2007c)
for sample curves.

In this work, we aim to speedup the group oper-
ations for these curves with a final aim of improving
the best timings for various scalar multiplication al-
gorithms. We extend the literature by introducing
new addition and doubling formulae for various curve
models. An extensive speed comparison is given in
the appendix. From the comparison tables it can be
observed that most of our optimizations achieve the
removal of field multiplications and/or field squarings
in comparison to the current literature. In addition,
we provide S-M tradeoffs for the doubling operations.

For a quick reference, we present a snapshot of
some of the latest operation counts. We explain these
results in detail with necessary pointers to the litera-
ture in Section 2. In what follows we will frequently
use the terms unified addition, readdition, and mixed
addition. Unified addition means that addition for-
mulae remain valid when two input points are same,
see (Cohen et al. 2005, Section 29.1.2). Readdition
means that a point addition has already taken place
and some of the previously computed data is cached,
see (Cohen et al. 1998) or (Bernstein & Lange 2007c,
p.40). Mixed addition means that one of the addends
is given in affine coordinates, see (Cohen et al. 1998).

Jacobi quartic Addition Doubling

Literature record 8M+3S+1D 3M+4S
This work 7M+3S+1D 2M+5S+1D

Jacobi intersection Addition Doubling

Literature record 13M+2S+1D 3M+4S
This work 11M+1S+2D 2M+5S+1D

Edwards Addition Doubling

Literature record 9M+1S+1D 3M+4S
This work 11M -

Hessian Addition Doubling

Literature record 12M 3M+6S
This work 6M+6S 3M+6S

The paper is organized as follows. We provide new
formulae and better operation counts for various el-
liptic curve forms in Section 2. A naming of differ-
ent systems are pointed in Section 3 The exceptional
cases are considered in Section 4. We make compar-
isons of various systems and draw our conclusions in
Section 5.

2 Improvements

In the rest of this paper, we assume K is finite, is of
large size, and char(K) 6= 2, 3. For any elliptic curve
over K we restrict our attention to the K-rational
points. Not all of these assumptions are always nec-
essary. However, they make our investigation easier.
We omit the operation counts for affine coordinates
since known formulae for this representation require
field inversions which are very costly in most imple-
mentations compared to field multiplications. We also
omit the cost of additions, subtractions, and multipli-
cation by very small constants (e.g. 2, 4, etc.). How-
ever, they can be properly counted from the provided
algorithms if they are not negligible.

Some of the derivations in this section are aided
by the use of (Monagan & Pearce 2006) simplifica-
tion algorithms for rational expressions. We also use
computer aid with Maple v.112 computer algebra sys-
tem. We obtain curve definitions and affine versions
of various formulae from (Bernstein & Lange 2007b).
We borrow the notation M, S, and D from (Bernstein
& Lange 2007c).

2.1 Jacobi quartic form

The uses of these curves in cryptology are explained
by Chudnovsky & Chudnovsky (1986) and Billet &
Joye (2003). A Jacobi quartic form elliptic curve over
K is defined by y2 = x4 +2ax2 +1 where a ∈ K with
a2 6= 1. Birational maps between Weierstrass and
Jacobi quartic curves can be found in (Billet & Joye
2003), (Bernstein & Lange 2007b), and (Bernstein &
Lange 2007a).

Our main focus in this work is the group law.
Therefore we are interested in explicit formulae which
add two points. We use the common notation

(x3, y3) = (x1, y1) + (x2, y2)

which is used in many textbooks. Here (x1, y1) and
(x2, y2) are the addends and (x3, y3) is the sum.

The explicit formulae for the group law on Ja-
cobi quartic form elliptic curves date back to (Jacobi
1829). Even earlier, a formula for computing x3 (see
below in (1)) appears in one of Euler’s works from the
18th century, (Euler 1761). A formula for computing
y3 can be found in (McKean & Moll 1927, p.111).
We will proceed with working on the affine version of
the unified addition formulae in (Billet & Joye 2003)
given by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1y2 + y1x2

1− x2

1
x2

2

,

y3 =
(y1y2 + 2ax1x2)(x2

1
x2

2
+ 1) + 2x1x2(x2

1
+ x2

2
)

(1 − x2

1
x2

2
)2

.

(1)

The identity element is the point (0, 1). The neg-
ative of a point (x, y) is (−x, y). In this section, we
will update the numerator of y3. If the numerator is
designated t then we have

t = (y1y2 + 2ax1x2)(x
2

1
x2

2
+ 1) + 2x1x2(x2

1
+ x2

2
)

= (y1y2 + 2ax1x2)(x
2

1x2

2 + 1) + 2x1x2(x2

1 + x2

2) +

x2

1
y2

2
+ 2x1y1x2y2 + y2

1
x2

2
− (x1y2 + y1x2)

2.

Using the curve equation y2 = x4 + 2ax2 + 1, we
replace y2

1 with x4
1+2ax2

1+1 and y2
2 with x4

2+2ax2
2+1.

This yields

t = (y1y2 + 2ax1x2)(x
2

1
x2

2
+ 1) + 2x1x2(x2

1
+ x2

2
) +

x2

1
(x4

2
+ 2ax2

2
+ 1) + 2x1y1x2y2 +

x2

2
(x4

1
+ 2ax2

1
+ 1)− (x1y2 + y1x2)

2.

We obtain the new formula for y3 by organizing the
terms. The new unified addition formulae are given
by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1y2 + y1x2

1− x2

1
x2

2

,

y3 =

(
x1x2 + 1

1− x2

1
x2

2

)2
(
(x2

1
+ 1)(x2

2
+ 1) +

y1y2 + (2a − 2) x1x2

)
− x2

3
− 1.

(2)

2http://www.maplesoft.com



A projective weighted coordinate systems is used
in (Chudnovsky & Chudnovsky 1986) and in (Bil-
let & Joye 2003) for the elimination of field inver-
sions. In this system, each point is represented
by the triplet (X : Y : Z) which satisfies the equation
Y 2 = X4 + 2aX2Z2 + Z4 and corresponds to the
affine point (X/Z, Y/Z2) with Z 6= 0. The identity
element is represented by (0: 1: 1). The negative of
(X : Y : Z) is (−X : Y : Z). The new point addition (2)
in projective weighted coordinates then becomes

(X3:Y3:Z3) = (X1: Y1:Z1) + (X2:Y2: Z2)

where

X3 = X1Z1Y2 + Y1X2Z2,

Z3 = Z2

1
Z2

2
−X2

1
X2

2
,

Y3 = (X1X2 + Z1Z2)2((X2

1 + Z2

1 )(X2

2 + Z2

2 ) +

Y1Y2 + (2a − 2)X1Z1X2Z2) −X2

3
− Z2

3
.

(3)

Rather than using the projective weighted coor-
dinates, we use a redundant representation of points
for efficiency purposes. This representation is based
on the work of Duquesne (2007) which is extended in
(Bernstein & Lange 2007a).

We represent a point with Z 6= 0 with
the sextuplet (X : Y : Z: X2: Z2: XZ) and incorpo-
rate this representation with the new point addi-
tion formulae (3). Now, (X1: Y1: Z1: U1: V1: W1) and
(X2: Y2: Z2: U2: V2: W2) with U1 = X2

1 , V1 = Z2
1 ,

W1 = X1Z1, U2 = X2
2 , V2 = Z2

2 , W2 = X2Z2 can
be added with the algorithm

A← U1U2, B ← V1V2, C ←W1W2, D← Y1Y2,

X3 ← (W1 + Y1)(W2 + Y2)− C −D, Z3 ← B −A,

U3 ← X2

3
, V3 ← Z2

3
, F ← A + B + 2 C,

G← (U1 + V1)(U2 + V2) + kC + D, H ← U3 + V3,

Y3 ← FG−H, W3 ← ((X3 + Z3)2 −H)/2

where k = 2(a − 1). The new unified addition costs
7M + 3S + 1D in the modified coordinates. Assum-
ing that (X2: Y2: Z2: U2: V2: W2) is cached, a readdi-
tion costs 7M + 3S + 1D. A 6M + 3S + 1D mixed
addition can be derived by setting Z2 = 1. We use the
name “modified Jacobi quartic v.2b” to refer to this
coordinate system. Modified Jacobi quartic v.2b uses
the new addition formulae and a 3M + 4S doubling
algorithm proposed by Hisil et al. (2007).

To evaluate the new addition formulae, a simi-
lar algorithm for a less redundant version of modi-
fied Jacobi quartic v.2b which represents points with
the quintuplet (X : Y : Z: U : V ), is also very efficient
in practice. This point representation is proposed in
(Hisil et al. 2007). In this system the new unified ad-
dition costs 7M+4S+1D (by computing W1 = ((X1+
Z1)

2−U1−V1)/2 and W2 = ((X2 +Z2)
2−U2−V2)/2

on the fly, and not computing W3). Following this
and assuming that (X2: Y2: Z2: U2: V2) is cached, the
readdition costs 7M+3S+1D with the extra caching
of W2. A 6M + 3S + 1D mixed addition can then be
derived by setting Z2 = 1. We use the name “modi-
fied Jacobi quartic v.2a” to refer to this system. This
system also uses 3M + 4S doubling algorithm in (Hi-
sil et al. 2007). A comparison of our results with the
literature is given as follows.

Jacobi quartic Addition

(Billet & Joye 2003), (ǫ = 1) 10M+3S+1D
(Duquesne 2007), (ǫ = 1) 9M+2S+1D

(Bernstein & Lange 2007b) 8M+3S+1D
This work (modified v.2a) 7M+4S+1D
This work (modified v.2b) 7M+3S+1D

It is convenient here to note that the 3M + 4S
doubling algorithm in (Hisil et al. 2007) can be easily
derived from the new affine addition formulae (2) as
follows. We symbolically input the same points to the
new addition formulae and obtain

(x3, y3) = [2](x1, y1)

where

x3 =
2x1y1

1− x4

1

,

y3 =

(
x2

1
+ 1

1− x4

1

)2

(x4

1
+ 2ax2

1
+ 1 + y2

1
)− x2

3
− 1.

(4)

We then replace x4
1 + 2ax2

1 + 1 with y2
1 using the

curve equation. This yields

(x3, y3) = [2](x1, y1)

where

x3 =
2x1y1

1− x4

1

y3 = 2

(
y1(x2

1
+ 1)

1− x4

1

)2

− x2

3
− 1

(5)

The point doubling formulae (5) in projective
weighted coordinates are given by

(X3:Y3:Z3) = [2](X1:Y1:Z1)

where

X3 = 2X1Y1Z1,

Z3 = Z4

1 −X4

1 ,

Y3 = 2(Y1(X2

1
+ Z2

1
))2 −X2

3
− Z2

3
.

(6)

These formulae are advantageous when used with
both versions of the modified coordinates. The point
doubling algorithm for (6) is given by

A← U1 + V1, X3 ← 2Y1W1, Z3 ← A(V1 − U1),

U3 ← X2

3
, V3 ← Z2

3
, B ← U3 + V3,

W3 ← ((X3 + Z3)2 − B)/2, Y3 ← 2(Y1A)2 − B.

Doubling costs 3M + 4S in both versions of the
modified coordinates. See the works (Hisil et al. 2007)
and (Bernstein & Lange 2007b).

Building on similar ideas, it is possible to derive
the following doubling formulae

(x3, y3) = [2](x1, y1)

where

x3 =
2x1y1

1− x4

1

,

y3 = 2

(
y2

1

1− x4

1

)2

− ax2

3
− 1.

(7)

The new doubling formulae in projective weighted
coordinates are given by

(X3:Y3:Z3) = [2](X1:Y1:Z1)

where

X3 = 2X1Y1Z1,

Z3 = Z4

1 −X4

1 ,

Y3 = 2Y 4

1
− aX2

3
− Z2

3
.

(8)



These formulae are again advantageous when
used with both versions of the modified coordinates.
We reproduce both versions of the modified coor-
dinates with the names “modified Jacobi quartic
v.3a” and “modified Jacobi quartic v3.b” to em-
phasize the use of the new doubling formulae to-
gether with the new addition formulae (3). A point
(X1: Y1: Z1: U1: V1: W1) can be doubled with the algo-
rithm

X3 ← 2Y1W1, Z3 ← (V1 − U1)(V1 + U1), U3 ← X2

3
,

V3 ← Z2

3
, W3 ← ((X3 + Z3)2 − U3 − V3)/2,

Y3 ← 2Y 4

1
− aU3 − V3.

Doubling costs 2M + 5S + 1D in both versions of
the modified coordinates. A comparison of our results
with the literature is given as follows. The operation
counts from the first three entries are from (Bernstein
& Lange 2007b).

Jacobi quartic Doubling

Bernstein/Lange “dbl-2007-bl” 1M+9S+1D
Hisil/Carter/Dawson “dbl-2007-hcd” 2M+6S+2D

Feng/Wu “dbl-2007-fw-4” 8S+3D
(Hisil et al. 2007) 3M+4S

This work 2M+5S+1D

For further comparison, see modified Jacobi quar-
tic v.2a, modified Jacobi quartic v2.b, modified Ja-
cobi quartic v.3a, and modified Jacobi quartic v3.b
in the appendix.

2.2 Jacobi intersection form

The uses of these curves in cryptology are explained
by Chudnovsky & Chudnovsky (1986) and Liardet &
Smart (2001). The explicit formulae for the group
law date back to (Jacobi 1829). A Jacobi intersection
form elliptic curve over K is defined by

{

s2 + c2 = 1
as2 + d2 = 1

where a ∈ K with a(1 − a) 6= 0. Birational maps be-
tween Weierstrass and Jacobi intersection curves can
be found in (Liardet & Smart 2001), (Bernstein &
Lange 2007b), and (Bernstein & Lange 2007a). Fol-
lowing the notation of (Chudnovsky & Chudnovsky
1986), the affine version of the unified addition for-
mulae are given by

(s3, c3, d3) = (s1, c1, d1) + (s2, c2, d2)

where

s3 =
s1c2d2 + c1d1s2

c2
2

+ d2

1
s2

2

,

c3 =
c1c2 − s1d1s2d2

c2
2

+ d2

1
s2

2

,

d3 =
d1d2 − as1c1s2c2

c2
2

+ d2

1
s2

2

.

(9)

The identity element is the point (0, 1, 1). The
negative of a point (s, c, d) is (−s, c, d). Chudnovsky
& Chudnovsky (1986) use projective homogenous co-
ordinates to eliminate field inversions. In this sys-
tem, each point is represented by the quadruplet
(S: C: D: T ) which satisfies the equations S2 + C2 =
T 2 and aS2 + D2 = T 2 simultaneously and corre-
sponds to the affine point (S/T, C/T, D/T ) with T 6=
0. The identity element is represented by (0: 1: 1: 1).
The negative of (S: C: D: T ) is (−S: C: D: T ). The

point addition (9) in projective homogenous coordi-
nates is given by

(S3:C3: D3:T3) = (S1:C1:D1:T1) + (S2: C2:D2: T2)

where

S3 = S1T1C2D2 + C1D1S2T2,

C3 = C1T1C2T2 − S1D1S2D2,

D3 = D1T1D2T2 − aS1C1S2C2,

T3 = D2

1S2

2 + T 2

1 C2

2 .

(10)

To eliminate several field multiplications, we
modify the homogenous projective coordinates
where each point is represented by the sextu-
plet, (S: C: D: T : SC: DT ). The points represented
by (S1: C1: D1: T1: U1: V1) and (S2: C2: D2: T2: U2: V2)
with U1 = S1C1, V1 = D1T1, U2 = S2C2, V2 = D2T2
can be added with the algorithm

E ← S1D2, F ← C1T2, G← D1S2, H ← T1C2,

J ← U1V2, K ← V1U2, S3 ← (H + F )(E + G)− J −K,

C3 ← (H + E)(F −G)− J + K,

D3 ← (V1 − aU1)(U2 + V2) + aJ −K,

T3 ← (H + G)2 − 2K, U3 ← S3C3, V3 ← D3T3.

The unified point addition costs 11M + 1S +
2D in the modified coordinates. Assuming that
(S2: C2: D2: T2: U2: V2) is cached, the readdition costs
11M + 1S + 2D. A 10M + 1S + 2D mixed addition
is easily derived by setting T2 = 1. We use the name
“modified Jacobi intersection” to refer to this system.

A similar algorithm can be used for projective ho-
mogenous coordinates. The unified addition costs
13M + 1S + 2D computing U1 = S1C1, V1 = D1T1,
U2 = S2C2, V2 = D2T2 on the fly, and not com-
puting U3 and V3. Following this and assuming
that (S2: C2: D2: T2) is cached, the readdition costs
11M+ 1S + 2D with the extra caching of U2 and V2.
A 10M + 1S + 2D mixed addition is then derived by
setting T2 = 1. We use the name “Jacobi intersection
v.2” to refer to this system which uses the new addi-
tion algorithm. A comparison of our results with the
literature is given as follows.

Jacobi intersection Addition

(Chudnovsky & Chudnovsky 1986) 14M+2S+1D
(Liardet & Smart 2001) 13M+2S+1D
This work (projective) 13M+1S+2D
This work (modified) 11M+1S+2D

Efficient doubling formulae for the modified Jacobi
intersection coordinates can be derived starting from
the unified addition formulae (10). We symbolically
input the same points into the original addition for-
mulae and obtain

(s3, c3, d3) = [2](s1, c1, d1)

where

s3 =
2s1c1d1

c2
1

+ s2

1
d2

1

,

c3 =
c2
1
− s2

1
d2

1

c2
1

+ s2

1
d2

1

,

d3 =
d2

1
− as2

1
c2
1

c2
1

+ s2

1
d2

1

.

(11)

Using the defining equations, s2+c2 = 1 and as2+
d2 = 1, we replace c2

1 with c2
1(as2

1 + d2
1) (only for the

denominators) and s2
1d

2
1 with (1− c2

1)d
2
1. This yields

s3 = (2s1c1d1)/(c21(as2

1 + d2

1) + (1 − c21)d
2

1),

c3 = (c2
1
(as2

1
+ d2

1
)− (1 − c2

1
)d2

1
)/(c2

1
(as2

1
+ d2

1
) + (1 − c2

1
)d2

1
),

d3 = (d2

1
− as2

1
c2
1
)/(c2

1
(as2

1
+ d2

1
) + (1− c2

1
)d2

1
).



These substitutions give an intermediate formula
for c3 where

s3 = (2s1c1d1)/(d2

1
+ as2

1
c2
1
),

c3 = (as2

1
c2
1

+ 2c2
1
d2

1
− d2

1
)/(d2

1
+ as2

1
c2
1
),

d3 = (d2

1
− as2

1
c2
1
)/(d2

1
+ as2

1
c2
1
).

Finally, we replace 2c2
1d

2
1 with 2c2

1(s
2
1 + c2

1 − as2
1)

in c3.

s3 = (2s1c1d1)/(as2

1
c2
1

+ d2

1
),

c3 = (as2

1c21 + 2c21(s
2

1 + c21 − as2

1)− d2

1)/(as2

1c21 + d2

1),

d3 = (d2

1
− as2

1
c2
1
)/(as2

1
c2
1

+ d2

1
).

The new following doubling formulae are given by

(s3, c3, d3) = [2](s1, c1, d1)

where

s3 =
2s1c1d1

d2

1
+ as2

1
c2
1

,

c3 =
−d2

1
− as2

1
c2
1

+ 2(s2

1
c2
1

+ c4
1
)

d2

1
+ as2

1
c2
1

,

d3 =
d2

1
− as2

1
c2
1

d2

1
+ as2

1
c2
1

.

(12)

The new doubling formulae (12) in projective ho-
mogenous coordinates are given by

(S3: C3:D3: T3) = [2](S1: C1:D1:T1)

where

S3 = 2S1C1D1T1,

C3 = −D2

1
T 2

1
− aS2

1
C2

1
+ 2(S2

1
C2

1
+ C4

1
),

D3 = D2

1
T 2

1
− aS2

1
C2

1
,

T3 = D2

1
T 2

1
+ aS2

1
C2

1
.

(13)

Now, (S1: C1: D1: T1: U1: V1) can be doubled with
the algorithm

E ← V 2

1
, F ← U2

1
, G← aF, T3 ← E + G,

D3 ← E −G, C3 ← 2(F + C4

1
)− T3,

S3 ← (U1 + V1)2 −E − F, U3 ← S3C3, V3 ← D3T3.

It is easy to see that point doubling costs 2M +
5S+1D both on projective homogenous and modified
projective homogenous coordinates. A comparison of
our results with the literature is given as follows.

Jacobi intersection Doubling

(Liardet & Smart 2001) 4M+3S
(Bernstein & Lange 2007b) 3M+4S

This work 2M+5S+1D

2.3 Edwards form

The uses of these curves in cryptology are explained
by Bernstein & Lange (2007c), Bernstein et al. (2007),
and Bernstein & Lange (2007d). An Edwards form
elliptic curve over K is defined by x2 + y2 = c2(1 +
dx2y2) where c, d ∈ K with cd(1 − c4d) 6= 0. Bira-
tional maps between Weierstrass and Edwards curves
are given by (Bernstein & Lange 2007c). The affine
unified addition formulae are given by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1y2 + y1x2

c(1 + dx1y1x2y2)
,

y3 =
y1y2 − x1x2

c(1− dx1y1x2y2)
.

(14)

The identity element is the point (0, c). The neg-
ative of a point (x, y) is (−x, y). We first describe
how new addition formulae for Edwards curves can
be derived from the original addition formulae in
(Bernstein & Lange 2007c). Consider the relations
x2

1+y2
1−c2(1+dx2

1y
2
1) = 0, x2

2+y2
2−c2(1+dx2

2y
2
2) = 0

obtained from the curve equation. From this, we can
express c and d in terms of x1, x2, y1, y2 as follows.

c2 =
x2

1
x2

2
y2

1
− x2

1
x2

2
y2

2
+ x2

1
y2

1
y2

2
− x2

2
y2

1
y2

2

x2

1
y2

1
− x2

2
y2

2

,

d =
x2

1
− x2

2
+ y2

1
− y2

2

x2

1
x2

2
y2

1
− x2

1
x2

2
y2

2
+ x2

1
y2

1
y2

2
− x2

2
y2

1
y2

2

.

Substitutions can be made in the original addition
formulae to obtain

x3 = (x1y2 + y1x2)/((1/c)(x2

1x2

2y2

1 − x2

1x2

2y2

2 + x2

1y2

1y2

2 −

x2

2
y2

1
y2

2
)/(x2

1
y2

1
− x2

2
y2

2
)(1 + (x2

1
− x2

2
+ y2

1
− y2

2
)/

(x2

1
x2

2
y2

1
− x2

1
x2

2
y2

2
+ x2

1
y2

1
y2

2
− x2

2
y2

1
y2

2
)x1y1x2y2)),

y3 = (y1y2 − x1x2)/((1/c)(x2

1
x2

2
y2

1
− x2

1
x2

2
y2

2
+ x2

1
y2

1
y2

2
−

x2

2
y2

1
y2

2
)/(x2

1
y2

1
− x2

2
y2

2
)(1 − (x2

1
− x2

2
+ y2

1
− y2

2
)/

(x2

1
x2

2
y2

1
− x2

1
x2

2
y2

2
+ x2

1
y2

1
y2

2
− x2

2
y2

1
y2

2
)x1y1x2y2)).

After straightforward simplifications, the new ad-
dition formulae are given by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
c(x1y1 + x2y2)

x1x2 + y1y2

,

y3 =
c(x1y1 − x2y2)

x1y2 − y1x2

.

(15)

Note, the formula for computing y3 is not defined
for (x1, y1) = (x2, y2) and hence this addition is not
unified. For this reason, we call the new formulae
dedicated addition for Edwards curves. These new
formulae show an interesting fact that dedicated ad-
dition on the Edwards curves does not depend on the
curve parameter d. Therefore, arbitrary selections of
d do not cause any efficiency loss.

Bernstein & Lange (2007c) use homogenous pro-
jective coordinates to prevent field inversions that ap-
pear in the affine formulae. We also represent each
point in projective homogenous coordinates for the
new formulae (15). Each point is represented by the
triplet (X : Y : Z) which satisfies the projective curve
(X2 + Y 2)Z2 = c2(Z4 + dX2Y 2) and corresponds to
the affine point (X/Z, Y/Z) with Z 6= 0. The identity
element is represented by (0 : c : 1). The negative of
(X : Y : Z) is (−X : Y : Z). The new addition formulae
in projective homogenous coordinates are given by

(X3: Y3:Z3) = (X1: Y1: Z1) + (X2:Y2:Z2)

where

X3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z2

2
+ Z2

1
X2Y2),

Y3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z2

2
− Z2

1
X2Y2),

Z3 = kZ2

1
Z2

2
(X1X2 + Y1Y2)(X1Y2 − Y1X2)

(16)

with k = 1/c. Now, (X1: Y1: Z1) and (X2: Y2: Z2) can
be added with the algorithm

A← X1Z2, B ← Y1Z2, C ← Z1X2, D ← Z1Y2,

E ← AB, F ← CD, G← E + F, H ← E − F,

J ← (A− C)(B + D)−H, K ← (A + D)(B + C)−G,

X3 ← GJ, Y3 ← HK, Z3 ← k JK.



We also investigate the case for inverted Ed-
wards coordinates introduced by Bernstein & Lange
(2007d). In this system, each triplet (X : Y : Z) sat-
isfies the curve (X2 + Y 2)Z2 = c2(dZ4 + X2Y 2)
and corresponds to the affine point (Z/X, Z/Y ) with
XY Z 6= 0. The identity element is represented by
the vector (c, 0, 0). The negative of (X : Y : Z) is
(−X : Y : Z). The new addition formulae (15) in in-
verted Edwards coordinates are given by

(X3:Y3:Z3) = (X1: Y1:Z1) + (X2:Y2: Z2)

where

X3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z2

2 − Z2

1X2Y2),

Y3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z2

2
+ Z2

1
X2Y2),

Z3 = c(X1Y1Z2

2
+ Z2

1
X2Y2)(X1Y1Z2

2
− Z2

1
X2Y2).

(17)

(X1: Y1: Z1) and (X2: Y2: Z2) can be added with
the algorithm

A← X1Z2, B ← Y1Z2, C ← Z1X2, D ← Z1Y2,

E ← AB, F ← CD, G← E + F, H ← E − F,

X3 ← ((A + D)(B + C)−G)H,

Y3 ← ((A − C)(B + D)−H)G, Z3 ← c GH.

A detail to mention is the readdition in projective
homogenous coordinates. At this stage, it is more
convenient to divide each coordinate of the new for-
mulae (16) by Z1Z2. The readdition of (X2: Y2: Z2)
can then be performed with the cached values R1 =
X2Y2 and R2 = Z2

2 using the algorithm

A← X1Y1, B ← Z2

1
, C ← R2A, D← R1B,

E ← (X1 −X2)(Y1 + Y2) −A + R1,

F ← (X1 + Y2)(Y1 + X2)− A− R1,

G← ((Z1 + Z2)2 − B − R2)/2, X3 ← E(C + D),

Y3 ← F (C −D), Z3 ← k EFG.

In the rest of this section, we assume c = 1. See
(Bernstein & Lange 2007c, Section 4). The dedi-
cated addition then costs 11M for both coordinate
systems. A 9M mixed addition can be derived by
setting Z2 = 1 again for both coordinate systems.
The readdition costs 9M + 2S in projective homoge-
nous coordinates. A comparison of our results with
the literature is given as follows.

Edwards (projective) Addition

(Bernstein & Lange 2007c) 10M+1S+1D
This work 11M

Edwards (projective) Readdition

(Bernstein & Lange 2007c) 10M+1S+1D
This work 9M+2S

Edwards (projective) Mixed addition

(Bernstein & Lange 2007c) 9M+1S+1D
This work 9M

See “Edwards v.2” in Table 1 and Table 2 in the
appendix for further comparison.

In fact, the readdition algorithm shows that a
modified version of the homogenous projective Ed-
wards coordinates in which the points are repre-
sented by the quintuplet (X : Y : Z: Z2: XY ) permits
an inversion-free addition in 9M+ 2S using the same
algorithm. For S < M, this is faster than the 11M
algorithm that we have just described. However, the
3M + 4S doubling algorithm in (Bernstein & Lange
2007c) seems to cost 5M + 2S in this coordinate sys-
tem and also the mixed addition costs 8M+2S which

is slower than the 9M mixed addition given above.
Therefore, we do not further consider this system.

The new addition and its associated readdition
in inverted Edwards coordinates are not as advan-
tageous as they are for the homogenous projective
Edwards coordinates. On the other hand, the mixed
addition can be used in some cases. A comparison
of the proposed mixed addition with the literature is
given as follows.

Edwards (inverted) Mixed addition

(Bernstein & Lange 2007d) 8M+1S+1D
This work 9M

See “Inverted Edwards v.2” in Table 1 and Table 2
in the appendix.

We also refer the reader to (Bernstein et al. 2008).
We should note here that our more recent work (Hisil
et al. 2008) which was published before this work,
further improves these operation counts on twisted
Edwards curves.

2.4 Hessian form

The uses of these curves in cryptology are ex-
plained by Chudnovsky & Chudnovsky (1986), Joye
& Quisquater (2001), and Smart (2001). An el-
liptic curve over K in Hessian form is defined by
x3 + y3 + 1 = 3dxy where d ∈ K with d3 6= 1. Bira-
tional maps between Weierstrass and Hessian curves
can be found in (Smart 2001), (Joye & Quisquater
2001), (Bernstein & Lange 2007b), and (Bernstein
& Lange 2007a). The addition formulae attributed
to Sylvester in (Chudnovsky & Chudnovsky 1986,
pp.424-425) are given in (Bernstein & Lange 2007b)
by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
y2

1
x2 − y2

2
x1

x2y2 − x1y1

,

y3 =
x2

1
y2 − x2

2
y1

x2y2 − x1y1

.

(18)

The identity element is the point at infinity. The
negative of a point (x, y) is (y, x). On projective ho-
mogenous coordinates, each point is represented by
the triplet (X : Y : Z) which satisfies the projective
curve X3 + Y 3 + Z3 = 3dXY Z and corresponds to
the affine point (X/Z, Y/Z) with Z 6= 0. The identity
element is represented by (−1: 1: 0). The negative of
(X : Y : Z) is (Y : X : Z). The point addition (22) for-
mulae (with each coordinate multiplied by 2) in pro-
jective homogenous coordinates are given by,

(X3: Y3:Z3) = (X1: Y1: Z1) + (X2:Y2:Z2)

where

X3 = 2Y 2

1
X2Z2 − 2X1Z1Y 2

2
,

Y3 = 2X2

1
Y2Z2 − 2Y1Z1X2

2
,

Z3 = 2Z2

1
X2Y2 − 2X1Y1Z2

2
.

(19)

The point addition algorithms in (Chudnovsky
& Chudnovsky 1986) and (Joye & Quisquater 2001)
require 12M. To gain speedup in the case S < M,
we modify projective homogenous coordinates with
a more redundant representation of points using the
nonuplet, (X : Y : Z: X2: Y 2: Z2: 2XY : 2XZ: 2Y Z).
Two distinct points represented by

(X1: Y1: Z1: R1: S1: T1: U1: V1: W1)



and
(X2: Y2: Z2: R2: S2: T2: U2: V2: W2)

with R1 = X2
1 , S1 = Y 2

1 , T1 = Z2
1 , U1 = 2X1Y1,

V1 = 2X1Z1, W1 = 2Y1Z1, R2 = X2
2 , S2 = Y 2

2 ,
T2 = Z2

2 , U2 = 2X2Y2, V2 = 2X2Z2, W2 = 2Y2Z2 can
be added with the algorithm

X3 ← S1V2 − V1S2, Y3 ← R1W2 −W1R2,

Z3 ← T1U2 − U1T2, R3 ← X2

3
, S3 ← Y 2

3
, T3 ← Z2

3
,

U3 ← (X3 + Y3)2 − R3 − S3, V3 ← (X3 + Z3)2 − R3 − T3,

W3 ← (Y3 + Z3)2 − S3 − T3.

The addition3 costs 6M+6S in the modified Hes-
sian coordinates. Assuming that

(X2: Y2: Z2: R2: S2: T2: U2: V2: W2)

is cached, the readdition costs 6M + 6S. A 5M + 6S
mixed addition can then be derived by setting Z2 = 1.
We use the name “modified Hessian” to refer to these
results in Section 5. A comparison of our results with
the literature is given as follows.

Hessian Addition

(Chudnovsky & Chudnovsky 1986) 12M
(Joye & Quisquater 2001) 12M

This work 6M+6S

A similar algorithm can be used for the homoge-
nous projective coordinates for the readdition and
the mixed addition. Assuming that (X2: Y2: Z2) is
cached, the readdition costs 6M + 6S with the extra
caching of R2, S2, T2, U2, V2, W2. A 5M + 6S mixed
addition can be derived by setting Z2 = 1. We use
the name “Hessian v.2” to refer to these results in
Section 5. Also see (Hisil et al. 2007, pp.146–147).

For speed oriented implementations, Sylvester’s
doubling formulae are given by

(x3, y3) = [2](x1, y1)

where

x3 =
y1(1 − x3

1
)

x3

1
− y3

1

,

y3 = −
x1(1 − y3

1
)

x3

1
− y3

1

.

(20)

When working with the modified coordinates,
there exists a doubling strategy which requires no
additional effort for generating the new coordinates.
The doubling formulae (20) (with each coordinate
multiplied by 4) in projective homogenous coordi-
nates are given by

X3 = (2X1Y1 − 2Y1Z1)(2X1Z1 + 2(X2

1
+ Z2

1
)),

Y3 = (2X1Z1 − 2X1Y1)(2Y1Z1 + 2(Y 2

1
+ Z2

1
)),

Z3 = (2Y1Z1 − 2X1Z1)(2X1Y1 + 2(X2

1 + Y 2

1 )).

(21)

Now, (X1: Y1: Z1: R1: S1: T1: U1: V1: W1) can be
doubled with the algorithm

X3 ← (U1 −W1)(V1 + 2(R1 + T1)),

Y3 ← (V1 − U1)(W1 + 2(S1 + T1)),

Z3 ← (W1 − V1)(U1 + 2(R1 + S1)), R3 ← X2

3
, S3 ← Y 2

3
,

T3 ← Z2

3
, U3 ← (X3 + Y3)2 − R3 − S3,

V3 ← (X3 + Z3)2 − R3 − T3, W3 ← (Y3 + Z3)2 − S3 − T3.

3Point doubling can be performed after a suitable permuta-
tion of coordinates as follows (Z1: X1: Y1: T1: R1: S1: V1: W1: U1)+
(Y1: Z1: X1: S1: T1: R1: W1: U1: V1) using the addition formulae in
the modified Hessian coordinates. This strategy which provides
unification of the addition formulae, originates from (Joye &
Quisquater 2001, p.6).

Point doubling costs 3M + 6S in both homoge-
nous projective and modified projective homogenous
coordinates. A comparison of our results with the
literature is given as follows.

Hessian Doubling

(Chudnovsky & Chudnovsky 1986) 6M+3S
(Hisil et al. 2007) 7M+1S
(Hisil et al. 2007) 3M+6S

This work 3M+6S

We comment that it is possible to derive unified
addition formulae which do not require any permuta-
tions of the coordinates to perform doubling. Assum-
ing4 x1x2 6= y1y2, we multiply the numerator and the
denominator of Sylvester’s addition formulae for x3

by (x3
1x

3
2 − y3

1y
3
2) and obtain

x3 =
(x3

1
x3

2
− y3

1
y3

2
)(y2

1
x2 − y2

2
x1)

(x3

1
x3

2
− y3

1
y3

2
)(x2y2 − x1y1)

.

This yields

x3 = (x1y2

1
(y3

2
+ x3

2
)(y2

2
y1 + x2

1
x2)−

x2y2

2
(y3

1
+ x3

1
)(y2

1
y2 + x2

2
x1))/

((x3

1
x3

2
− y3

1
y3

2
)(x2y2 − x1y1)).

Using the curve equation x2 + y2 + 1 = 3dxy, the
above expression can be rewritten as

x3 = (x1y2

1
(3dx2y2 − 1)(y2

2
y1 + x2

1
x2) −

x2y2

2
(3dx1y1 − 1)(y2

1
y2 + x2

2
x1))/

((x3

1x3

2 − y3

1y3

2)(x2y2 − x1y1)).

The numerator can be factorized and cancels with
(x2y2 − x1y1) in the denominator, giving the new ad-
dition formulae. The corresponding formula for y3
can be similarly derived from symmetry. We then
have

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1x2(x1y1 + x2y2 − 3dx1x2y1y2) + y2

1
y2

2

x3

1
x3

2
− y3

1
y3

2

,

y3 = −
y1y2(x1y1 + x2y2 − 3dx1x2y1y2) + x2

1
x2

2

x3

1
x3

2
− y3

1
y3

2

.

(22)

The new addition formulae on the projective co-
ordinates are given by

X3 = X1X2(X1Y1Z2

2
+ X2Y2Z2

1
− 3dX1Y1X2Y2) +

Y 2

1
Z1Y 2

2
Z2,

Y3 = −Y1Y2(X1Y1Z2

2
+ X2Y2Z2

1
− 3dX1Y1X2Y2)−

X2

1Z1X2

2Z2,

Z3 = X3

1
X3

2
− Y 3

1
Y 3

2
.

We again use a modified version of the standard
coordinates. Two points (X1: Y1: Z1: V1: W1) and
(X2: Y2: Z2: V2: W2) with V1 = X1Y1, W1 = Z2

1 , V2 =
X2Y2, W2 = Z2

2 can be added with the algorithm

A← X1X2, B ← Y1Y2, C ← ((Z1 + Z2)2 −W1 −W2)/2,

D ← A2, E ← B2, F ← D + E,

G← ((A + B)2 − F )/2,

H ← (V1 + W1)(V2 + W2)− (3d + 1)G − C2,

X3 ← AH + EC, Y3 ← −BH −DC,

Z3 ← (A−B)(G + F ), V3 ← X3Y3, W3 ← Z2

3
,

This strategy costs 9M + 6S + 1D which is faster
than the unified addition in Weierstrass form in (Brier

4This is equivalent to saying (x1, y1) 6= −(x2, y2). The contrary
case should be handled separately as explained in Section 4.



& Joye 2002). However, it is slower than all other
unified additions considered in this paper. In addi-
tion, doubling, readdition and mixed addition formu-
lae that can be derived from these formulae are not
attractive. Therefore, we omit these formulae from
further comparison with other systems. We are con-
tinuing our search to find other unified addition for-
mulae which can be faster than the proposed formu-
lae.

3 Naming of different systems

The descriptions of systems which are not defined so
far (e.g. Jacobi quartic v.1a), can be found in the
appendix with the references.

4 Handling exceptional cases

An elliptic curve which can be written in one of these
forms always has points of small order (other than the
identity). The arithmetic of these points can cause
division by zero exceptions when affine formulae are
used. These exceptional cases should be handled sep-
arately. These cases sometimes require logical checks
in the projective representations as well.

Cryptographic applications typically use a large
prime order subgroup in which these points (except
the identity element, O) do not exist. If this is the
case, an implementer only needs to be careful about
the identity element. When the points P and Q are to
be added, a general strategy to handle the exceptional
cases as follows. Let R be the sum of P and Q with
P 6= Q. Then, R = Q if P = O; R = P if Q = O;
R = O if P = −Q. For all other inputs, the sum
can be computed with the relevant formulae given in
Section 2. Restricting attention to a large prime or-
der subgroup, there are some formulae and coordinate
system combinations which do not cause any excep-
tion. These are Edwards v.1a, v.1b, Jacobi quartic
v.1a, v.1b, Jacobi intersection v.1, v.2, modified Ja-
cobi quartic v.1, v.2a, v.2b, v.3a, v.3b and modified
Jacobi intersection. Note, for Edwards v.1a and v.1b,
the algorithms work for the whole group of points
(i.e. complete) if d is a nonsquare in K. This result
is from (Bernstein & Lange 2007c). Again restricting
attention to a large prime order subgroup, the sys-
tems which need logical checks are inverted Edwards
(as explained in (Bernstein & Lange 2007d)) v.1, v.2,
Edwards v.2, Hessian v.1, v.2, and modified Hessian.

5 Comparison and conclusion

There are several scalar multiplication algorithms
which can benefit from the optimizations in this pa-
per. We only make comparisons for the popular scalar
multiplication strategies using popular elliptic curve
parameterizations. We exclude the cost of the final
conversion to affine coordinates from our estimations.

Resource limited environments. In memory
limited environments (such as smartcards), there is
not enough space for storing precomputation tables.
For these environments, scalar multiplication with the
“Non-adjacent form without precomputation” method
can be a convenient selection. This algorithm requires
1 doubling, 1/3 mixed addition per scalar bit. The
cost estimates are depicted in Table 1.

For example, the best timings for 256-bit scalar
multiplication (S/M = 0.8,D/M ≈ 0) are obtained
by modified Jacobi quartic v.3a and v.3b which costs
approximately 2253M. The same operation requires
approximately 2662M for Weierstrass form (a = −3)
using projective weighted (Jacobian) coordinates.

Some points representations such as the modified
Hessian coordinates require extra storage for repre-
senting each point. This is certainly a disadvantage
for space limited applications. However, the primary
focus is on the performance in some cases where the
processor bandwidth is low.

Speed implementations. This is the most dif-
ficult case in which to state a fair comparison be-
cause the optimum speeds are somewhat dependent
on the choice of the scalar multiplication algorithm.
For instance, Doche/Icart/Kohel-3 curves in (Doche
et al. 2006) have very fast tripling formulae which can
highly benefit from double base number system scalar
multiplication. For double-and-add type scalar mul-
tiplication algorithms, one might expect to gain the
best timing with the system which has the fastest dou-
bling operation since point doubling is the dominant
operation. However, the readdition and the mixed
addition costs also play important roles in the overall
timings. We can roughly state that the fast systems
for S/M = 0.8,D/M ≈ 0 are modified Jacobi quar-
tics v.1, v.2a, v.2b, v.3a, v.3b, inverted Edwards v.1a,
v.1b, Edwards v.2, and modified Jacobi intersection.
At least, these systems can be very competitive with
the Montgomery ladder which has the fixed cost of
5M + 4S + 1D per scalar bit in (Montgomery 1987)
and 4M+5S+3D in (Castryck et al. 2008) for Mont-
gomery curves and 3M+6S+3D in (Gaudry & Lubicz
2008) for Kummer surfaces (the genus 1 case).

To make the comparison easier, we fix the “signed
4-bit sliding windows” scalar multiplication algorithm
analyzed in (Bernstein & Lange 2007c). The algo-
rithm requires 0.98 doublings, 0.17 readditions, 0.025
mixed additions and 0.0035 additions per scalar bit
for 256-bit scalars. We use this analysis to report cur-
rent rankings between different systems in Table 2.

With our improvements, either modified Jacobi
quartic v.2b or v.3b provides the fastest timings for
almost all S/M and D/M values. For example, 256-
bit scalar multiplication (S/M = 0.8, D/M ≈ 0)
costs approximately 1970M for modified Jacobi quar-
tic v.3a, v.3b. The same operation requires approx-
imately 2399M for Weierstrass form (a = −3) using
projective weighted (Jacobian) coordinates.

Side channel attacks. Targeting the embedded
implementations, we fix the “Non-adjacent form with-
out precomputation with SPA protection” scalar mul-
tiplication algorithm. This is almost the same as us-
ing the “Non-adjacent form without precomputation”
method with the difference that unified addition is
used for both point doubling and point addition. This
strategy hides the side channel information from the
attacker who needs more samplings and statistical
tools for a successful attack. See Cohen et al. (2005,
Section 29.1.2) as a general reference. This algorithm
invokes 4/3 unified additions per scalar bit. The mod-
ified coordinates for Hessian and Jacobi intersection
forms are only useful here. The 7M+3S+1D unified
addition of modified Jacobi quartic v.2b, v.3b is the
fastest among all other unified additions. The cost
estimates for various systems are depicted in Table 3.

For example, 256-bit scalar multiplication
(S/M = 0.8,D/M ≈ 0) costs approximately 3208M
for modified Jacobi quartic v.2b, v.3b. The same
operation requires approximately 5257M for Weier-
strass form (a = −3) using homogenous projective
coordinates.
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A Appendix

The appendix is composed of three tables. The un-
derlined values are the fastest timings in that col-
umn. The rows are sorted with respect to the column
(D = 0,S = 0.8M) in descending order. “REG”
stands for the number of coordinates in each system.
“DBL”, “mADD”, “reADD”, “ADD”, and “uADD”
stand for the costs of doubling, mixed addition, read-
dition, addition and unified addition, respectively.
Some forms have alternative versions due to alter-
native operation counts for different S/M and D/M
values. It is possible to include more versions due to
the richness of current formulae and algorithms. On
the other hand, this will decrease readability of the
tables. Therefore, we only provide the most signifi-
cant cases. The references for the comparisons are;

- Doche/Icart/Kohel-2; all operations from
(Doche et al. 2006) and (Bernstein & Lange
2007b). The appearance of (Bernstein & Lange
2007b) is to emphasize that faster algorithms are
available and are obtained from this database.
This is the same for other items in the list.

- Edwards; all operations for v.1a, v.1b, and dou-
bling for v.2 from (Bernstein & Lange 2007c).

- Hessian; doubling for v.1, v.2 from (Hisil et al.
2007), readdition, mixed addition, and addition
for v.1, addition for v.2 from (Chudnovsky &
Chudnovsky 1986).

- Inverted Edwards; all operations for v.1 and dou-
bling, readdition and addition for v.2 from (Bern-
stein & Lange 2007d).



- Jacobian (a = −3) and Jacobian; all operations
from (Chudnovsky & Chudnovsky 1986), (Cohen
et al. 1998), and (Bernstein & Lange 2007b).

- Jacobi intersection; doubling, addition, readdi-
tion, from (Liardet & Smart 2001) and (Bern-
stein & Lange 2007b), mixed addition from (Hisil
et al. 2007).

- Jacobi quartic; doubling and addition for v.1a,
v.1b from (Billet & Joye 2003), (Duquesne 2007),
and (Bernstein & Lange 2007b). We note that
the 2M + 6S + 2D doubling formulae/algorithm
by Hisil, Dawson and Carter reported in (Bern-
stein & Lange 2007b) cost 1M + 7S + 2D if the
coordinate X3 is computed as (X1Z1 + Y1)

2 −
(X1Z1)

2−Y 2
1 . Jacobi quartic; readdition, mixed

addition from (Billet & Joye 2003), (Duquesne
2007), and (Bernstein & Lange 2007b).

- Modified Jacobi quartic; doubling for v.1, v.2a,
v.2b (Hisil et al. 2007) and (Bernstein & Lange
2007b), readdition, mixed-addition, and addition
for v.1 from (Duquesne 2007) and (Bernstein &
Lange 2007b).

- Projective (a = −3) and Projective; doubling,
readdition, mixed addition and addition for
(Chudnovsky & Chudnovsky 1986) and (Bern-
stein & Lange 2007b), unified addition from
(Brier & Joye 2002) and (Bernstein & Lange
2007b).

The rest of the operation counts are from this pa-
per and they are given in bold type in Table 1, Ta-
ble 2, and Table 3.



Table 1: Point multiplication cost estimates (in M) per scalar bit of the scalar for “Non-adjacent form without precomputation” method. The underlined values are the
fastest timing estimates in that column. The rows are sorted with respect to the column (D = 0,S = 0.8M) in descending order. The new operation counts are given in
bold.

M S D M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 5 6 1 9 2 0 15.667 14.333 13.467 15.167 13.833 12.967 14.667 13.333 12.467

Projective (a=-3) 3 7 3 0 9 2 0 13.667 12.933 12.457 13.667 12.933 12.457 13.667 12.933 12.457

Jacobi-quartic v.1a 3 1 9 0 7 3 1 13.667 11.667 10.367 13.500 11.500 10.200 13.333 11.333 10.033

Hessian v.1 3 7 1 0 10 0 0 11.333 11.133 11.003 11.333 11.133 11.003 11.333 11.133 11.003

Hessian v.2 3 3 6 0 5 6 0 12.667 11.067 10.027 12.667 11.067 10.027 12.667 11.067 10.027

Modified Hessian 9 3 6 0 5 6 0 12.667 11.067 10.027 12.667 11.067 10.027 12.667 11.067 10.027

Jacobian 3 1 8 1 7 4 0 13.667 11.800 10.587 13.167 11.300 10.087 12.667 10.800 9.587

Jacobian (a=-3) 3 3 5 0 7 4 0 11.667 10.400 9.577 11.667 10.400 9.577 11.667 10.400 9.577

Jacobi-intersection v.1 4 3 4 0 10 2 1 11.333 10.400 9.793 11.167 10.233 9.627 11.000 10.067 9.460

Jacobi-quartic v.1b 3 1 7 2 7 3 1 13.667 12.067 11.027 12.500 10.900 9.860 11.333 9.733 8.693

Doche/Icart/Kohel-2 4 2 5 2 8 4 1 13.333 12.067 11.243 12.167 10.900 10.077 11.000 9.733 8.910

Jacobi-intersection v.2 4 2 5 1 10 1 2 12.333 11.267 10.573 11.500 10.433 9.740 10.667 9.600 8.907

Modified Jacobi-intersection 6 2 5 1 10 1 2 12.333 11.267 10.573 11.500 10.433 9.740 10.667 9.600 8.907

Edwards v.1b 3 3 4 0 6 5 1 11.000 9.867 9.130 10.833 9.700 8.963 10.667 9.533 8.797

Edwards v.1a 3 3 4 0 9 1 1 10.667 9.800 9.237 10.500 9.633 9.070 10.333 9.467 8.903

Modified Jacobi-quartic v.1 6 3 4 0 7 3 1 10.667 9.667 9.017 10.500 9.500 8.850 10.333 9.333 8.683

Inverted Edwards v.2 3 3 4 1 9 0 0 11.000 10.200 9.680 10.500 9.700 9.180 10.000 9.200 8.680

Edwards v.2 3 3 4 0 9 0 0 10.000 9.200 8.680 10.000 9.200 8.680 10.000 9.200 8.680

Inverted Edwards v.1 3 3 4 1 8 1 1 11.333 10.467 9.903 10.667 9.800 9.237 10.000 9.133 8.570

Modified Jacobi-quartic v.2a 5 3 4 0 6 3 1 10.333 9.333 8.683 10.167 9.167 8.517 10.000 9.000 8.350

Modified Jacobi-quartic v.2b 6 3 4 0 6 3 1 10.333 9.333 8.683 10.167 9.167 8.517 10.000 9.000 8.350

Modified Jacobi-quartic v.3a 5 2 5 1 6 3 1 11.333 10.133 9.353 10.667 9.467 8.687 10.000 8.800 8.020
Modified Jacobi-quartic v.3b 6 2 5 1 6 3 1 11.333 10.133 9.353 10.667 9.467 8.687 10.000 8.800 8.020

1 DBL, 1 / 3 mADD per bit

System

DBL mADD

R
E

G



Table 2: Point multiplication cost estimates (in M) per scalar bit of the scalar for “Signed 4-bit Sliding Windows” method with 256 bit scalars. The underlined values are
the fastest timing estimates in that column. The rows are sorted with respect to the column (D = 0,S = 0.8M) in descending order. The new operation counts are given
in bold.

M S D M S D M S D M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 5 6 1 12 2 0 9 2 0 12 2 0 14.433 13.177 12.360 13.942 12.685 11.869 13.451 12.194 11.377

Projective (a=-3) 3 7 3 0 12 2 0 9 2 0 12 2 0 12.468 11.801 11.368 12.468 11.801 11.368 12.468 11.801 11.368

Jacobi-quartic v.1a 3 1 9 0 8 3 1 7 3 1 10 3 1 12.136 10.251 9.026 12.039 10.154 8.929 11.942 10.057 8.832

Hessian v.1 3 7 1 0 12 0 0 10 0 0 12 0 0 10.140 9.943 9.816 10.140 9.943 9.816 10.140 9.943 9.816

Jacobian 3 1 8 1 10 4 0 7 4 0 11 5 0 12.475 10.748 9.624 11.984 10.256 9.133 11.493 9.765 8.642

Hessian v.2 3 3 6 0 6 6 0 5 6 0 12 0 0 11.147 9.739 8.824 11.147 9.739 8.824 11.147 9.739 8.824

Modified Hessian 9 3 6 0 6 6 0 5 6 0 6 6 0 11.147 9.735 8.817 11.147 9.735 8.817 11.147 9.735 8.817

Jacobian (a=-3) 3 3 5 0 10 4 0 7 4 0 11 5 0 10.511 9.372 8.632 10.511 9.372 8.632 10.511 9.372 8.632

Doche/Icart/Kohel-2 4 2 5 2 12 5 1 8 4 1 12 5 1 12.213 11.042 10.280 11.134 9.962 9.201 10.054 8.883 8.121

Jacobi-intersection v.1 4 3 4 0 11 2 1 10 2 1 13 2 1 9.577 8.714 8.152 9.480 8.617 8.055 9.383 8.520 7.958

Jacobi-quartic v.1b 3 1 7 2 8 3 1 7 3 1 10 3 1 12.136 10.644 9.675 11.057 9.565 8.595 9.977 8.485 7.516

Edwards v.1b 3 3 4 0 7 5 1 6 5 1 7 5 1 9.376 8.396 7.759 9.279 8.299 7.662 9.182 8.202 7.565

Jacobi-intersection v.2 4 2 5 1 11 1 2 10 1 2 13 1 2 10.560 9.539 8.875 9.874 8.853 8.189 9.189 8.168 7.504

Edwards v.1a 3 3 4 0 10 1 1 9 1 1 10 1 1 9.182 8.357 7.821 9.085 8.260 7.724 8.988 8.163 7.627

Modified Jacobi-intersection 6 2 5 1 11 1 2 10 1 2 11 1 2 10.553 9.531 8.868 9.867 8.846 8.182 9.182 8.161 7.497

Edwards v.2 3 3 4 0 9 2 0 9 0 0 11 0 0 8.963 8.111 7.557 8.963 8.111 7.557 8.963 8.111 7.557

Modified Jacobi-quartic v.1 6 3 4 0 8 3 1 7 3 1 8 3 1 9.182 8.280 7.693 9.085 8.183 7.596 8.988 8.085 7.499

Inverted Edwards v.2 3 3 4 1 9 1 1 9 0 0 9 1 1 9.946 9.126 8.593 9.370 8.550 8.017 8.794 7.974 7.441

Inverted Edwards v.1 3 3 4 1 9 1 1 8 1 1 9 1 1 9.970 9.146 8.609 9.382 8.557 8.021 8.794 7.969 7.433

Modified Jacobi-quartic v.2a 5 3 4 0 7 3 1 6 3 1 7 4 1 8.991 8.088 7.501 8.894 7.991 7.404 8.797 7.894 7.307

Modified Jacobi-quartic v.2b 6 3 4 0 7 3 1 6 3 1 7 3 1 8.988 8.085 7.499 8.891 7.988 7.402 8.794 7.891 7.305

Modified Jacobi-quartic v.3a 5 2 5 1 7 3 1 6 3 1 7 4 1 9.974 8.874 8.159 9.386 8.286 7.571 8.797 7.698 6.983

Modified Jacobi-quartic v.3b 6 2 5 1 7 3 1 6 3 1 7 3 1 9.970 8.871 8.157 9.382 8.283 7.569 8.794 7.695 6.981

0.98 DBL, 0.17 reADD, 0.025 mADD, 0.0035 ADD per bit

System

DBL reADD mADD ADD

R
E

G



Table 3: Point multiplication cost estimates (in M) per scalar bit of the scalar for “Non-adjacent form without precomputation with SPA protection” method. The underlined
values are the fastest timing estimates in that column. The rows are sorted with respect to the column (D = 0,S = 0.8M) in descending order. The new operation counts
are given in bold.

M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 11 6 1 24.000 22.400 21.360 23.333 21.733 20.693 22.667 21.067 20.027

Projective (a=-1) 3 13 3 0 21.333 20.533 20.013 21.333 20.533 20.013 21.333 20.533 20.013

Jacobi-intersection v.1 4 13 2 1 21.333 20.800 20.453 20.667 20.133 19.787 20.000 19.467 19.120

Jacobi-intersection v.2 4 13 1 2 21.333 21.067 20.893 20.000 19.733 19.560 18.667 18.400 18.227

Jacobi-quartic v.1a, v.1b 3 10 3 1 18.667 17.867 17.347 18.000 17.200 16.680 17.333 16.533 16.013

Hessian v.1, v.2 3 12 0 0 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

Modified Jacobi-intersection 6 11 1 2 18.667 18.400 18.227 17.333 17.067 16.893 16.000 15.733 15.560

Edwards v.1b 3 7 5 1 17.333 16.000 15.133 16.667 15.333 14.467 16.000 14.667 13.800

Edwards v.1a 3 10 1 1 16.000 15.733 15.560 15.333 15.067 14.893 14.667 14.400 14.227

Modified Hessian 9 6 6 0 16.000 14.400 13.360 16.000 14.400 13.360 16.000 14.400 13.360

Modified Jacobi-quartic v.1 6 8 3 1 16.000 15.200 14.680 15.333 14.533 14.013 14.667 13.867 13.347

Modified Jacobi-quartic v.2a, v.3a 5 7 4 1 16.000 14.933 14.240 15.333 14.267 13.573 14.667 13.600 12.907

Inverted Edwards v.1 3 9 1 1 14.667 14.400 14.227 14.000 13.733 13.560 13.333 13.067 12.893

Modified Jacobi-quartic v.2b, v.3b 6 7 3 1 14.667 13.867 13.347 14.000 13.200 12.680 13.333 12.533 12.013

4 / 3 uADD per bit

System

uADD

R
E

G




