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Abstract. Process Control Systems (PCSs) or Supervisory Control and
Data Acquisition (SCADA) systems have recently been added to the al-
ready wide collection of wireless sensor networks applications. The PCS/
SCADA environment is somewhat more amenable to the use of heavy
cryptographic mechanisms such as public key cryptography than other
sensor application environments. The sensor nodes in the environment,
however, are still open to devastating attacks such as node capture, which
makes designing a secure key management challenging. In this paper, a
key management scheme is proposed to defeat node capture attack by
o�ering both forward and backward secrecies. Our scheme overcomes the
pitfalls which Nilsson et al.'s scheme su�ers from, and is not more ex-
pensive than their scheme.
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1 Introduction

Process Control Systems (PCSs) or Supervisory Control and Data Acquisition
(SCADA) systems are used to monitor and control a plant or equipment in in-
dustries such as energy, oil and gas re�ning and transportation. These systems
encompass the transfer of data between the network manager and a number
of Remote Terminal Units (RTUs), sensor nodes, etc. A SCADA system gathers
critical information (such as where a leak in a pipeline has occurred) and then
transfers this information back to the network manager. The network manager
is responsible for alerting the home station about the leak and carrying out
necessary analysis such as determining whether the leak is critical or not.

The owners and operators of SCADA systems aim to increase the monitoring
sensitivity of their systems and reduce the day to day running cost wherever it
is possible. Due to the intelligent monitoring capabilities of the Wireless Sen-
sor Networks (WSNs), integration between SCADA and WSNs can be one way to



achieve these aims.WSNs facilitate the monitoring process by performing speci�c
tasks such as sensing physical phenomena at a remote �eld and then reporting
them back to the network manager. They can form the "eyes and ears" of SCADA
systems. Nodes, which are capable of performing functions such as gas detec-
tion and temperature sensing, provide information that can tell an experienced
operator how well oil/gas pipelines are performing.

Roman et al. highlighted the role thatWSNs can play in SCADA [14]. They ar-
gued that WSNs can aid SCADA's functionalities by providing monitoring, alerts,
and information on demand. However, vulnerabilities related to WSNs can be
introduced to SCADA. One of those potential vulnerabilities is the security com-
promise of sensor nodes given the lack of tamper resistance packaging [4]. An
adversary can gain control of one or more sensor nodes and readily access sen-
sitive information such as keys or passwords. The adversary therefore can easily
get access to the plain text of the encrypted messages that are routed through
the controlled nodes � this compromises the data con�dentiality. The adversary
may also inject their own commodity nodes into the network by fooling nodes
so that they believe that these commodity nodes are legitimate members of the
network. Another adversary activity is launching a selective forwarding attack
where the node, that is under the control of the adversary, selectively drops
legitimate packets in order to a�ect the overall performance of the system [5].

In this paper, we focus on strengthening the security level at the weakest
component of the SCADA system which exists in remote �elds [1]. The remote
�eld has the weakest physical security requirements and consists of substations
and intelligent electronic devices such as sensors (will be discussed in a later
section). We propose a new key management protocol that updates the shared
symmetric key between the network manager and a sensor node or between the
network manager and a group of sensor nodes.

The rest of this paper is organized as follows. Section 2 provides an overview
of SCADA systems. Section 3 explains the di�erent types of the adversarial model.
Section 4 discusses some of the related work. Section 5 explains the proposed
key management protocol. Finally, the paper is concluded in Section 6.

2 SCADA

To best understand the added value of the proposed scheme, some understand-
ing of SCADA is in order. Today's SCADA systems (the third generation) are a
combination of legacy and modern technology [9]. It has become an open sys-
tem architecture rather than a vendor controlled architecture as in the second
generation of SCADA. It uses open standards and protocols which facilitate dis-
tribution of the functionalities of SCADA. We refer the readers interested in the
di�erences between these generations to the paper by McClanahan [9]. Figure 1
shows a simpli�ed SCADA system architecture which is composed of the following
components:



Historian

Master Center

Remote FieldCommunication Systems

Remote FieldCommunication Systems

Fig. 1. The simpli�ed version of PCS/SCADA

Master Center The master center component contains the network manager,
human machine interaction, database storage, processing server, etc. It has the
highest physical security level compared to other components. Generally speak-
ing, it receives monitoring information from remote �elds (through the commu-
nication system component), processes it, and then makes decisions.

Historian The historian is a backup for the SCADA system data which is often
located in a separate subnet di�erent to the one where the master center com-
ponent exists. The master center component is able to access the historian in
order to backup the data of the SCADA system.

Remote Fields The remote �elds are composed of substations (gateways) and
intelligent electronic devices (IEDs) [1] which can be physically distant from the
SCADA master center and in many cases are not physically secured due to the
largeness or remoteness of the coverage area. The substation connects IEDs with
the master center component through the communication component. It has a
high degree of complexity and might have better physical security than IEDs.
The IEDs can be sensor nodes, remote terminal units, or relays to name a few.

Communication System The communication systems are responsible for
transferring monitored data (control data) from remote �eld components (master
center) to master center component (remote �eld components). This communi-
cation can be done via �ber optics, radio, satellite, etc.



3 Adversary Model and Security Concerns

When designing a key management protocol for WSNs, the most challenging and
unique security threat would be node capture. With limited resources in sensor
nodes, defeating this type of threat is very hard. Node capture will translate
into compromise of all the credentials stored in the sensor node. Furthermore,
the adversary can compromise all the software codes installed within the sensor
node, especially random number generation functions. For example, he can mod-
ify the codes or replace them with his own codes to mislead functions related to
SCADA/PCS, use a �xed number for random numbers for input to security pro-
tocols, or launch a selective forwarding attack. However, the computation power
of the adversary falls short of compromising the network manager and gate-
ways which have reasonable physical security. Their physical security increases
in proportion to the importance of the domain where a SCADA/PCS is deployed.

Our purpose in this paper is to design a key management scheme which is
resilient to node capture: i.e., a scheme that enables sensor nodes to recover
its secure status even after they have been captured and then released back.
Consequently, we are interested in what the adversary can do both when a node
is captured, and after it is released back. Key disclosure is technically simple
[4]; what else should be done by the adversary to keep control of the node after
he put it back to the �eld? He will hope that the node uses values of his choice
for all cryptographic keys or keying materials. For this purpose, he may try to
modify software components (especially the random number generation part),
and monitor all or part of the subsequent key update messages. In this regard,
we use the following criteria to classify the adversaries.

� The adversary can read and modify all the software codes and con�gurations,
including secret keys, installed in the sensor node.

� The adversary can carry out seamless monitoring of all the subsequent key
update protocol exchanges.

According to the above two criteria, we divide the adversaries into four distinct
types as shown in Figure 2. Type I is the weakest adversary: neither seamless
monitoring nor software compromise; Type IV is the strongest: seamless monitor-
ing and software compromise. Type IV is so much powerful that it is unlikely to
devise any practical cryptographic countermeasure forWSNs. The use of tamper-
proof technology will be needed to cope with this type of adversary, but it is
outside the scope of this paper. Our goal in the paper is to have a new key
management scheme which is resilient to all the other three types of attackers
only with cryptographic countermeasures.

One interesting point here is that the assumption of software modi�cation is
equivalent to that of software-based random number generation, in terms of their
consequence in the context of cryptographic protocols. Software algorithm-based
random number generation does not give true random numbers, which can only
be obtained from a strong physical source of randomness. One consequence of this
equivalence is that it makes no sense to use expensive tamper-proof technologies
while true random number generation not used. Put a di�erent way, we do not



Fig. 2. Classification of Adversaries. �Seamless monitoring� means the adversary
keeps monitoring every subsequent key update message after compromising a sensor
node; �software modi�cation� includes alteration of any software installed in the node,
especially the random number generator.

have to bother with true random number generation when software modi�cation
is assumed to be an easy work for the adversary.

Having identi�ed di�erent types of adversaries, we have the following con-
cerns with regard to node capture and the consequent disclosure of all the inter-
nal data of the captured node:

� Past key secrecy: The past keys should not be compromised.
� Future key secrecy: The future keys should not be compromised.

The requirement of resilience to node capture rules out the use of any long-term
keys; the keys must change or evolve continuously over time, with old prior keys
deleted securely. In other words, we require a key evolution scheme in order to
achieve past/future key secrecy against the threat of node capture.

Terminology. To the best of our knowledge, the terms �past/future key
secrecy� have never been used in previous literature. Similar terminology include
�(perfect) forward secrecy� and �backward secrecy�, which has always been quite
confusing. The term �(perfect) forward secrecy� goes back to Günther [3]. The
original term assumes a long-term key and session keys established by the key,
and means that the current session key is not compromised by the �future�
(thus, the expression �forward�) exposure of the long-term key. This terminology,
somehow, seems to have got a slightly di�erent usage in the context of group
key communication; it concerns about the contamination of a group key at a
particular time by the compromise of an older/newer group key. The inherent
ambiguity has brought a twin terminology: �backward secrecy�. Some authors
choose the term �backward secrecy� to mean �forward secrecy� called by other
authors, and vice versa. To avoid all this confusion, we will use a new more
concrete expression: �past/future key secrecy�.

The notation to be used in the rest of the paper can be found in Table 1.

4 Related Work

There are several papers dealing with key management designs for SCADA sys-
tems such as [2,12]. However, these designs either use heavy cryptographic mech-



Table 1. Notations for the proposed scheme

Name Description

M Network manager.
N Sensor node.
KMN Shared pairwise key between M and N .
s0, t0 Pre-installed global secret data in every N .
Ki

G The i-th group key (i ≥ 0).
rX Random nonce chosen by entity X.
(K−1

M , KM ) Asymmetric key pair of network manager.
{m}K Encryption of message m under the key K.
h(·) A cryptographic hash function.
MACK(m) A message authentication code function on m

using the key K.

anisms, which do not suit resource constrained devices, or do not consider the
integration of WSNs within SCADA.

To the best of our knowledge, the only existing key management in the wire-
less control environment, that considers the integration between SCADA/PCS and
WSNs, has been proposed by Nilsson et al. [10]. They designed two key update
protocols: the �rst one updates the pairwise symmetric key between the network
manager M and a sensor node N (as described in Protocol 2) while the other
scheme updates the global or group key among M and the whole group G of
sensor nodes (as described in Protocol 1). They claimed that the protocols pro-
vide both forward and backward secrecy (or in our newly de�ned terminology,
they provide both past and future key secrecy). It is unfortunately not the case.

Protocol 1 Group key update protocol from [10]

M : generates a new group key K
′
G and a random number rM

1. M → N : {K
′
G, rM}KMN

2. M ← N : MAC
K
′
G

(N, rM )

Protocol 2 Pairwise key update protocol from [10]

N : generates a random number rN

1. M ← N : {rN}KM , MACKMN ({rN}KM )

M, N : compute the new pairwise key K
′
MN = h(KMN , rN )

To initiate the group key update protocol, M generates a new group key, K
′

G,
randomly. It then encrypts it with another random number, rM , and sends it



over the network to the target group. No node in the group has any clue whether
the received key is fresh or not. In other words, the freshness property, from the
viewpoint of N does not hold since the two values (the new group key K

′

G and
the random number rM ) are random values chosen by M . It is both impractical
and insecure for each sensor node to maintain a list of keys that have been used.
Thus, an external adversary will be able to record a rekeying message and then
re-inject it into the network, which leads to updating the group key with an old
key. Consequently, the group enters a key mismatch phase where the key version
that the group of sensors uses and what M has are di�erent.

One good security practice is to minimize the damage caused by a compro-
mised node. However, the authors did not consider common attacks in WSNs

that an adversary is capable of launching attacks such as selective forwarding
[5] or node compromise [4]. If a single sensor node has the ability to a�ect the
operation of a good number of sensor nodes, then the adversary will try to com-
promise that node. For example, if an adversary compromised a sensor node (say,
node Nb) in a multi-hop path, then it would be able to enforce all other nodes
downstream to enter the key mismatch phase. The adversary simply drops the
rekeying message from M for the group key, and then use the new group key
to calculate MACs on their identities and the received nonce, which results in a
successful impersonation attack. We can easily �x the problem by replacing the
MAC data with another one: e.g., MACKMN

(K
′

G, rM ).
Moreover, to initiate the pairwise key update protocol, N generates a random

number, rN , and encrypts it with KM . It subsequently computes the MAC on
the encryption result and sends this MAC and the encryption result over the
network to M . The new pairwise key can be calculated, at the sender N and at
the receiver M , by hashing rN with the previous pairwise key. This means that
the new pairwise key is always determined by N . The adversary consequently is
able to know all the future keys once he compromised N . A closer look at the
protocols, Protocol 1 and Protocol 2, reveals more serious defects of them.

� Defect I. The whole value of the new group key are directly carried by the
protocol messages, encrypted under the pairwise key KMN . The consequence
is that compromise of the pairwise key for just one node leads to compromise
of the group key for the whole group. This is a more serious problem than
it might appear, because the pairwise key compromise does not necessarily
require node capture.

� Defect II. The value of the new pairwise key K
′

MN is only determined by
the sensor node. When the adversary of Type II or IV (he can compromise
the key generation codes stored in the node) captures the node, all the future
pairwise keys for the node can be pre-determined by the adversaries. Namely,
physical compromise of the node immediately leads to compromise of all the
future pairwise keys if the adversary can modify the codes installed in the
node. This, in turn, leads to compromise of all the future group keys as well
because, as mentioned in Defect I, the group key is delivered encrypted under
the pairwise key. Hence, contrary to their claim, the scheme does not provide



�future key secrecy�, against node compromise, for either the pairwise key or
the group key.

� Defect III. Although not explicitly shown in the protocol descriptions
above, the key input rN for the new pairwise key K

′

MN is not really random
in their scheme; it is in fact a function of a pre-installed secret key and a
counter value stored in the node. This means that, when the node is captured
and all the installed data including keys exposed to the adversary, all the
past pairwise keys as well as the future keys can immediately be computed
even without recording a single key update message! In fact, this disaster is
not just because of Defect III, but also due to Defect II. Note that, due to
Defect III combined with Defect II, the adversary does not have to modify
the node's software at all in order to extract all the past and future pairwise
keys. Hence no minimum level of past or future key secrecy against node
compromise in their scheme. Moreover, the adversary can extract any group
key in the past or future if he has got the records of the corresponding group
key update message. Note also that, for this, �seamless� monitoring is not
needed by the adversary. What does this mean? The scheme is, in terms of
either kind of key, neither forward nor backward secure against node com-
promise for all the types of adversary I, II, III and IV (see Figure 2).

As for past key secrecy, we note two proposed schemes in the WSN context:
Klonowski et al. [6] and Mauw et al. [8]. Both schemes use hash functions in
order to achieve key evolution. Both schemes, however, are intended to be used
not for group key update but for updating pairwise keys for node-to-node [6,13]
or node-to-base station communication [8].

On the other hand, as for future key secrecy, Mauw et al.'s protocol does not
provide this property. The protocol is based on a hash chain scheme originally
proposed for RFID security [11]. In RFID environments, protecting secret tag
information from tampering in the future is a big concern while it does not seem
to be such a prime concern inWSNs. This is because it is more authentication and
integrity than privacy that really matters inWSNs, especially SCADA/PCS. Hence,
future key secrecy is more valued than past key secrecy. On the other hand, the
protocol proposed by Klonowski provides future key secrecy in a �weak� sense;
namely, it will be computationally hard for the adversary to compute a future
key from the current compromised key if he fails to record, say ten, subsequent
evolution steps [13].

5 The Proposed Scheme

Devising a key management for WSNs is not trivial and in particular may not be
successfully accomplished by simple adaptation of security solutions designed for
wired networks. This is because of the limited resources such as limited energy
lifetime, slow computation, small memory, and limited communication capabili-
ties which exist in WSNs [16,17]. In this section, we describe a key management
scheme which secures communication between remote �elds (where the WSN re-



sides) and the master center (where the network manager resides) by considering
vulnerabilities that are associated with WSNs .

5.1 Key Management Protocols

This paper focuses on updating two types of keys, which are the group key and
the pairwise key, in the wireless process control environments. A pairwise key
is shared between the network manager M and each sensor node N , while the
group key is shared among M and the whole group of sensor nodes.

Group Key Update Protocol Our solution for group key rekeying also ex-
ploits the idea of key evolution using a hash chain in order to achieve past key
secrecy. The protocol uses a hash chain, hi(s0), where s0 is a pre-installed key
component at the pre-deployment phase and i ≥ 0 denotes the index for key
update phases.

As for future key secrecy, we use the reverse hash chain technique, which
was �rst introduced by Lamport [7]. The network manager prepares in advance
a hash chain of length n, starting from a random seed tn−1 and ending with the
�nal value t0:

tn−1, tn−2 := h(tn−1), tn−3 := h(tn−2), . . . , t1 := h(t2), t0 := h(t1) .

For reasons of convenience which will become clearer shortly, we write h−i(t0)
instead of ti although h is not an invertible function and h−1(x) can only mean
the set of all preimages of x in a strict sense. Roughly speaking, h−i(t0) is the i-th
preimage of t0 in the reverse hash chain. The secret data, t0, will be pre-installed
into sensor nodes together with another key component s0.

Now, with two secret key components s0 and t0 pre-installed within all sensor
nodes, using Protocol 3, the group key Ki

G evolves as follows:

Ki
G = hi(s0) ⊕ h−i(t0) , i ≥ 0 ,

where we de�ne h0(s0) = s0 and h0(t0) = t0. Figure 3 explains the key evolution
in the protocol.

Protocol 3 The protocol for group key update

1. M → N : i, {h−i(t0)}KMN

2. M ← N : hKMN (Ki
G)

M, N : update the value of the group key (i.e., Ki
G = hi(s0) ⊕ h−i(t0) ).

Any sensor node can easily compute the i-th hash image hi(s0) from hi−1(s0)
while only the network manager knows the value of the i-th preimage h−i(t0).
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Fig. 3. Key evolution in the proposed protocol

Thus, it is only the network manager who can release the preimage into the sensor
�eld. As a consequence, the �rst message in the protocol provides the sensor node
with a weak form of signature from the network manager: the message could have
been generated only by the network manager, not by any sensor nodes including
the node itself. The check of the preimage (i.e., h(h−i(t0)) = h−(i−1)(t0) ) also
makes sure that the key update message is fresh.

After the i-th key update, the sensor node stores the index i and the secret
data: hi(s0), h−i(t0) and Ki

G. Considering the highly lossy communication en-
vironment of sensor networks, the sensor node may sometimes fall behind the
group key update schedule. The sensor node, however, will soon be able to catch
up at the next rekeying: it can compute the correct value of the new group key
simply by checking the di�erence of two index values � the received and the
stored � and applying the corresponding number of hash operations.

Now let's assume that the adversary has somehow extracted the current value
of the group key, Ki

G. However, he cannot extract from this the previous key
Ki−1

G because he cannot compute the value of hi−1(s0). Note that this holds
even when the adversary has recorded all the previous key update messages,
and compromised all the previous manager-to-node pairwise keys. In fact, the
node capturing and extracting all the stored secret data does not surrender
the past group key to the adversary. This is because the previous values for
hi(s0) were never exchanged over the air, and were deleted after group key
computation. Hence we can say that the protocol provides past key secrecy for
any kind of compromise: group key compromise, pairwise key compromise, and
the compromise of the node itself.

The protocol also provides future key secrecy in the sense that the adversary,
just with knowledge of the current group key Ki

G, cannot predict the next group
key Ki+1

G . The computation of Ki+1
G requires knowledge of h−(i+1)(t0), which

has not yet been exchanged. In the next step of the key update, the adversary,
without knowledge of the pairwise key KMN , will not be able to obtain the value
of h−(i+1)(t0) from the protocol message. In fact, the pairwise key compromise
alone does not lead to the future group key compromise; it will only happen when
the adversary captures a sensor node, thereby extracting the hidden component



hi(s0). Hence, the protocol satis�es future key secrecy in the face of group key
and/or pairwise key compromise; simple delivery of the encrypted value of the
new group key, as in [10], cannot provide this kind of resilience. The protocol will
fail to provide future key secrecy only when the node is physically captured. Even
in the case of capture, the adversary should listen to the key update message to
extract the future group key. Furthermore, when the pairwise key is updated,
any adversary of type I, II, or III will not be able to have any knowledge of
the new pairwise key. This, in turn, leads to the adversary's failure to have any
knowledge of the new group key established using the new pairwise key. Hence,
we achieve the future group key secrecy even after node capture, as far as the
adversary has no ability to modify the software codes stored in the node.

The protocol uses the pairwise key KMN to encrypt the i-th preimage h−i(t0)
in the �rst message, and also to provide key con�rmation by computing keyed
hash of the new group key. This is in order to rule out any compromised or
suspicious sensor nodes from group key update.

Our protocol, however, has one limitation: it is vulnerable to a kind of collu-
sion attack. Assume that a sensor node was captured at a key update phase i,
and another node was subsequently captured again at the phase i + 10. Then,
the adversary can extract all the group keys for the phases i to i+10. Of course,
this compromise is limited to the past keys, not the future keys. We call this
attack �sandwich attack � which will be considered in our future work.

Protocol 4 The protocol for pairwise key update

1. M → N : i, {h−i(t0), grM }
Ki−1

G
# broadcast message

2. M ← N : {grN }KMN , hKMN (grM , grN )

N : keeps the hashed value of the current pairwise key: K1
MN = h(KMN ).

M, N : increment the group key index from i − 1 to i, and update the values of the
pairwise key (i.e., KMN := grM rN ) and the group key (i.e., to Ki

G).

Pairwise Key Update Protocol Protocol 4 shows the rekeying protocol for
the pairwise key shared between the network manager and the sensor node. This
protocol is based on Di�e-Hellman protocol which has recently become not only
feasible on resource constrained nodes, but attractive forWSNs [15]. The network
manager M �rst generates a secret random number rM , and computes the Di�e-
Hellman component grM . It then broadcasts Message 1, which includes the index
i of the next group key, and ciphertexts of the next group key component h−i(t0)
and a Di�e-Hellman component grM , encrypted under the current group key,
Ki−1

G .
The inclusion of the group key index i in the �rst message enables each sensor

node to check if it keeps the current value of the group key; if not, the node can
request the network manager to send the latest key component h−i(t0). Thus,



the group key rekeying protocol exchange as described in Protocol 3 can be
inserted between Messages 1 and 2 of the protocol in the case of group key index
mismatch.

After retrieving the plaintext of Message 1 using the group key, the node
checks the preimage if h(h−i(t0)) = h−(i−1)(t0). This check provides evidence for
the node that M has really started the pairwise key update session. Considering
that Message 1 is a broadcast message encrypted using the �group� key, it would
be simply impossible to achieve this evidence without using the preimage as used
here. Of course, using digital signature/veri�cation is a di�erent story.

Now the node constructs the second message of the protocol: it generates
its own Di�e-Hellman component grN , encrypts it, and generates the keyed
hash of both Di�e-Hellman components under the current pairwise key KMN .
After sending the message to M , the node computes the new group key, Ki

G =
hi(s0) ⊕ h−i(t0), increments the group key index from i− 1 to i, and computes
the Di�e-Hellman key grM rN to be used as the new pairwise key, while keeping
the hash h(KMN ) of the old pairwise key and safely deleting the old key.

On receiving Message 2, M decrypts grN , and veri�es the keyed hash from
N . The inclusion of grM and grN in the hash provides M with con�dence about
the freshness and authenticity, respectively, of the message.

Use of Di�e-Hellman key agreement for the pairwise key update provides the
past and future pairwise key secrecy; the key inputs are temporary randoms, and
thus no relation to the previous or next key inputs. Even after node compromise,
if the attacker is not able to modify the software codes in the node (i.e., the
adversary of type I or III), or if he fails to record the key update messages
(i.e., the adversary of type I or II), the node will escape from the control of the
adversary to recover the secure status. Thus, our scheme satis�es past pairwise
key secrecy for all the adversary types, and future pairwise key secrecy for any
adversary type except type IV, even against node capture and its compromise.

Impersonation attack. If the adversary is in full control of a compromised
node, in which he installed his own malicious attacking software, then the ad-
versary's node can still impersonate M to some other victim node, succeeding
in causing the victim to receive a fake Di�e-Hellman component, say gx. But
the attack is limited to that. The attacking node has only two options when
receiving Message 2 of the victim node: (1) forward the message verbatim to M ,
or (2) cut out the message. In the former case, M will get not the expected hash
hKMN

(grM , grN ) but a strange one hKMN
(gx, grN ). In the latter case, M will see

no response from N . In both cases, M will issue Message 1 again through the
unicast channel to N , which will �nally lead to key agreement between M and
N .

Delivery failure management. The delivery failure in theWSNs will lead
to key mismatches of group keys and/or pairwise keys. With no long term key
available in our key update protocols, key mismatch is a big concern and should
be handled carefully. Simple retransmission of the protocol messages is not a
solution; it may open the door to replay attacks. Moreover, it may require the
sensor node to go back to the old key even after it has successfully updated the



pairwise key. Consequentially, the node must keep two keys at the same time:
the old key and the new updated key.

Our solution is to use key evolution here again. With no response from the
node N , the manager M initiates Protocol 5 over the unicast channel to N .

Protocol 5 The protocol to handle delivery failure

1. M → N : i, j, {h−i(t0), grM }
K

j
MN

# unicast message

2. M ← N : {grN }
K

j
MN

, h
K

j
MN

(grM , grN )

M, N : update the values of the pairwise key (i.e., KMN := grM rN )
N : increments the indice i and j, and updates the values of the pairwise key (i.e.,

KMN := grM rN ) and the group key (i.e., to Ki
G), and then keeps the hashed value

of old key: Kj+1
MN := h(Kj

MN )

Here, Kj
MN = hj(KMN ) is a hashed copy of the current key from M 's view-

point. For the time of the �rst protocol run, the index j is set to 1; it will be
incremented by one whenever the protocol is retried. On receipt of Message 1
over the unicast channel, the sensor node N compares the received group key
indice i, j with the stored indice i′, j′, and executes the required action as fol-
lows:

� Case 1: i = i′ and j ≥ j′. For simplicity, consider the case j = j′ = 1.
The pairwise key update protocol (Protocol 4) has just been run, but the
reply message of the protocol failed to arrive at M . The node N has been
keeping the hashed copy K1

MN = h(KMN ) of the old pairwise key, which is
applied to the ciphertext for Message 1 of Protocol 5. The retrieved value
of h−i(t0) ensures the authenticity of the message; the entity other than N ,
in possession of h−i(t0) and K1

MN , should be M . The node decrypts the
encrypted part of Message 1 using K1

MN . Then, N follows exactly the same
step as in 4 except that it uses the hash of the old pairwise key instead of the
current pairwise key. At the end of the protocol run, N will end up with a
new pairwise key, and the hash of K1

MN , i.e., K2
MN ; now j = 2. The current

pairwise key is simply deleted. One or more failure again will be followed by
reinitiation of the protocol by M with j incremented. It could also happen
that Message 1 itself fails to arrive at N , and subsequently M retries the
protocol. This will lead to the case j > j′.

� Case 2: i = i′ and j < j′. This cannot happen; otherwise it is simply a
bogus message from another sensor node. N should ignore Message 1.

� Case 3: i > i′. This happens when the node N has never been involved
in the pairwise key update protocol due to delivery failure of Message 1 of
Protocol 4. In this case, N applies the hash to the current pairwise key j
times, and uses the resulting value as the description key for Message 1.

� Case 4: i < i′. This is another case of replay attack. N should ignore
Message 1.



Now, the old key does not need to be kept just for handling key mismatch;
Protocol 5 does not come with any breach of security.

Fig. 4. Relations between keys and keying materials and the signi�cance of node com-
promise

5.2 Putting it all together

In our scheme, the pairwise key is used for secure delivery of the group key update
information in Protocol 3; the group key, in turn, encrypts the Di�e-Hellman
components to establish a new pairwise key in Protocol 4. This combination
helps the sensor networks to recover its security quickly after some sensor nodes
are captured and their keys are compromised.

Figure 4 illustrates how all the keys and keying data are related to each other
as they evolve over time. Note that no keys are delivered over the air; only their
keying materials, such as h−i(t0), are exchanged or even never exchanged over
the air (e.g., hi(s0) ). Thus, unlike the scheme of Nilsson et al. (see Defect I in
Section 4), the pairwise key compromise alone does not lead to the group key
compromise, and vice versa.

Using the inverse hash chain as well as the hash chain, we achieve both
past/future group key secrecy at the same time; furthermore the group key
update message provides an inherent message authenticity.

Both M and N contribute their Di�e-Hellman inputs to the computation
of the new pairwise key, and thus the adversary can not determine the future
values of the pairwise key even after node capture and the resulting compromise
of the built-in software, which was not the case in the scheme of Nilsson et al.
(see Defect II in Section 4).



Carefully designed with node capture in mind, our scheme does not surrender
all the key components required to retrieve the past/future group/pairwise keys.
Only the adversary equipped with seamless monitoring and software compromise
(i.e., the type IV adversary) can keep the control of the once-captured node.
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Fig. 5. State diagram of key disclosure

Figure 5 shows how the node recovers its secure state with the help of the
key update protocols, after it has been captured and all the keys in it are com-
promised. Without seamless monitoring (i.e., adversary types I and II), the ad-
versary will soon lose all the control of the keys. Even with adversary type III
(i.e., seamless monitoring but no software compromise), the node will eventually
recover the secrecy of both keys. Only for adversary type IV (i.e., both seamless
monitoring and software compromise), there is no path available back to the
original secure state. We argue that a non cryptographic countermeasure such
as tamper-proof technology is additionally required to �ght against the strongest
adversary of type IV.

6 Conclusion

Wireless sensor networks (WSNs) has brought a devastating security threat:
node capture. The threat is so powerful that almost all existing key management
protocols are just helpless because it overthrows the fundamental assumption for
cryptographic system design: long term secret keys are securely stored. This is
why so called forward secrecy and backward secrecy are required in cryptographic
key management protocols for WSNs. Both terminologies are rather misleading
and confusing, and so we propose more proper ones: future key secrecy and past
key secrecy.



Nilsson et al. [10] have recently proposed a key management scheme for WSN
applications in PCS/SCADA environments, which was incorrectly claimed to
provide future and past key secrecies. Some proposals (only for pairwise key
update) provide past key secrecy, but not future key secrecy [8,6].

We noticed that any cryptographic countermeasure alone cannot prevent the
most powerful adversary in the WSN context; he can capture a node to extract
all con�dential data, modify any built-in codes, and seamlessly monitor to keep
control of the node. This kind of attackers can only be fought by using tamper-
proof technologies as well as cryptographic ones. The assumption regarding this
type of adversaries, however, is by no means the most usual or reasonable as-
sumption. Seamless monitoring requires the adversary not to lose every single
session for group key or pairwise key update. The task of modi�cation of random
number generation codes will add another burden to that.

In order to measure the resilience of key management protocols, we derived
four di�erent types of adversaries varying in their capability with regard to
seamless monitoring and software manipulation. As shown in Section 3, Nilsson
et al.'s scheme, contrary to their claims, turned out to provide neither past
key secrecy nor future key secrecy against node compromise by any type of
adversaries.

We applied Lamport's reverse hash chain as well as usual hash chain to
provide both past and future key secrecies. Our scheme avoids the delivery of
the whole value of new group key for group key update; instead only the half
of the value is transmitted from the network manager to the sensor nodes. This
way, the compromise of a pairwise key alone does not lead to the compromise of
the group key, which was not the case in the scheme by Nilsson et al. The new
pairwise key in our scheme is determined by Di�e-Hellman based key agreement.
As for the scheme of Nilsson's et al., it uses key transport, not key agreement,
where the new pairwise key is determined by the sensor node and then delivered
to the network manager by using public key encryption. This has brought a vital
�aw to their scheme.

In short, our scheme provides a very strong resilience; both past and future
key secrecies against node capture by all the adversary types except the strongest
one, Type IV. A sensor node attacked by the adversary of Type IV, in theory,
cannot be quarantined by a cryptographic method alone; a non-cryptographic
countermeasure such as tamper-proof protection is needed together.
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