

QUT Digital Repository:
http://eprints.qut.edu.au/

Simpson, Leonie R. and Henricksen, Matthew and Yap, Wun-She (2009)
Improved cryptanalysis of the Common Scambling Algorithm Stream Cipher.
In: Proceedings of the 14th Australasian Conference on Information Security and
Privacy, 1-3 July 2009, Brisbane, Australia.

 © Copyright 2009 Springer- Verlag

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10893845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improved Cryptanalysis of the Common
Scrambling Algorithm Stream Cipher

Leonie Simpson1, Matt Henricksen2, and Wun-She Yap2

1 Information Security Institute,
Queensland University of Technology,

GPO Box 2434, Brisbane Qld 4001, Australia
lr.simpson@qut.edu.au

2 Institute for Infocomm Research,
A*STAR, Singapore

{mhenricksen,wsyap}@i2r.a-star.edu.sg

Abstract. This paper provides a fresh analysis of the widely-used Com-
mon Scrambling Algorithm stream cipher (CSA-SC). Firstly, a new rep-
resentation of CSA-SC with a state size of only 89 bits is given, a signif-
icant reduction from the 103 bit state of a previous CSA-SC representa-
tion. Analysis of this 89-bit representation demonstrates that the basis
of a previous guess-and-determine attack is flawed. Correcting this flaw
increases the complexity of that attack so that it is worse than exhaus-
tive key search. Although that attack is not feasible, the reduced state
size of our representation makes it obvious that CSA-SC is vulnerable to
several generic attacks, for which feasible parameters are given.

Key words: Digital Video Broadcasting, Common Scrambling Algorithm,
Stream Cipher, Cryptanalysis

1 Introduction

The Digital Video Broadcasting Common Scrambling Algorithm (CSA) has been
used to encrypt European cable digital television signals since 1994. It was spec-
ified by the European Telecommunication Standards Institute (ETSI), and the
proprietary algorithm was distributed to cable TV subscribers in the form of
a hardware chip. Although some high-level details appear in patents [3], the
algorithm has never officially been revealed. In 2002, a software program that
implemented the algorithm was released in binary form. This was reverse engi-
neered by hackers who released the details of the CSA algorithm.

The CSA algorithm can be considered as the application of two cipher layers:
a stream cipher layer and a block cipher layer. For encryption, the block cipher
is applied first, followed by the stream cipher layer. For decryption, the stream
cipher layer is applied first, followed by the block cipher layer. Both the block
and stream ciphers are initialized using the same 64-bit key. We do not consider
the block cipher component within this paper. The stream cipher component

is a binary additive stream cipher. We refer to the keystream generator for the
stream cipher component of the CSA algorithm as CSA-SC.

The CSA-SC structure comprises two nonlinear Feedback Shift Registers
(FSRs), a combiner with memory and an output function. In the patent appli-
cation [3], the total internal state size of CSA-SC is described as 107 bits. In
previous analysis of CSA-SC, Weinmann and Wirt [8] showed that it can be
modelled using 103 bits, and note that the period of the keystream produced by
CSA-SC is upper bounded by 2103. In this paper, we provide a new representa-
tion of CSA-SC that uses only 89 state bits. Consequently the maximum CSA-SC
keystream period must be much less than the 2103 bits asserted by Weinmann
and Wirt [8], with an upper bound of 289 bits. This significant reduction in state
size also has implications for the security of CSA-SC.

Weinmann and Wirt [8] presented an analysis of CSA-SC and proposed a
guess-and-determine attack with complexity less than 245, based on their 103
bit CSA-SC representation and predicated on the state cycle structure of one
of the FSRs during keystream generation. They claimed that the state cycle
structure for this FSR consists of many leading paths and short cycles, with
experimental simulation to support this conjecture. However, in examining the
cycle structure of the FSR when developing our 89-bit model, we identified that
there are no leading paths to cycles, and short cycles were not readily located,
implying that the Weinmann-Wirt attack can not work as claimed.

We present our model of the CSA-SC in Section 2. In Section 3, we pro-
vide theoretical observations about the state update functions used in CSA-SC.
These observations contradict the results presented by Weinmann and Wirt [8],
but show that there are security vulnerabilities that can be exploited in cryptana-
lytic attacks. Section 4 describes an exploration of the FSR state cycle structure.
This is motivated by the discrepancy between our observations and the results
presented in [8]. Section 5 discusses several possible attacks on CSA-SC. In Sec-
tion 5.1, the analysis of CSA-SC in [8] is summarized, and the problem with their
attack is discussed. In Section 5.2, the vulnerability of CSA-SC to time-memory
tradeoff attacks is demonstrated. Section 6 presents some closing remarks on the
security of CSA-SC.

2 Specification of the CSA-SC

CSA-SC comprises two FSRs and a combiner with memory. These are denoted
FSR-A, FSR-B and FSM-C, respectively. For our representation of CSA-SC,
FSR-A and FSR-B each have ten stages, with each stage containing one four-bit
word (a nibble). The combiner FSM-C consists of two stages, each containing a
nibble, and a single-bit carry. The total state size is 89 bits. Figure 1 shows a
high-level view of the relationships between components of the CSA-SC during
keystream generation.

During keystream generation, FSR-A is autonomous. The state update func-
tion for FSR-A is nonlinear, with the output of the s-box SA used in calculating
the next state value. Nonlinear outputs from FSR-A are also used as input to

Fig. 1. High-level view of the relationship between components during CSA-SC
keystream generation

the update functions of both FSR-B and FSM-C, by providing all of the input
to s-boxes SB , SD, SP , and SQ. The outputs of SB and SP are used to modify
FSR-B, and the outputs of SD and SQ are used to modify FSM-C. The specific
state update functions for each component and the keystream output function
are described in greater detail in Section 2.1.

The notation used in this paper is as follows. Let At represent the contents
of FSR-A at time t. Then At

i,j represents bit j of the ith stage of FSR-A at time
t, where i ∈ {0, 1, . . . , 9} and j ∈ {0, 1, 2, 3}. Similarly, Bt

i,j represents bit j of
the ith stage of FSR-B at time t. At time t, the contents of the two four-bit
stages of FSM-C are denoted Dt

i,j , where i ∈ {0, 1} and j ∈ {0, 1, 2, 3}, and the
contents of the one-bit carry are denoted ct. According to ETSI conventions, the
most significant bit of a stage is denoted by index 0. Binary addition and mod-
ular addition in Z24 are represented by ⊕ and ¢ operators, respectively. ROLx

represents word rotation to the left by x bits. c||D represents the concatenation
of bit c and word D. For example, 0||1001 = 01001.

2.1 Generating keystream

When the keystream generator is clocked at time t, FSR-A, FSR-B and FSM-C
are simultaneously clocked. FSR-A is autonomous, and contributes to the state
update functions of FSR-B and FSM-C. Nonlinear combinations of values stored
in FSR-A stages, obtained through the use of various s-boxes, are used in the
state update functions of all components. S-boxes SA, SB and SD each take
twenty-bit inputs from FSR-A and provide 4-bit outputs. S-boxes SP and SQ

take 5 bits of input from FSR-A, and each produce a 1-bit output. Specific details

regarding the s-boxes are contained in Appendix A. The state update functions
for the CSA-SC components are as follows:

At
i = At−1

i−1 1 ≤ i ≤ 9
At

0 = At−1
9 ⊕ SA(At−1)

Bt
i = Bt−1

i−1 1 ≤ i ≤ 9
Bt

0 = ROLSP (At−1)(B
t−1
6 ⊕Bt−1

9 ⊕ SB(At−1))

Dt
1 = Dt−1

0

ct||Dt
0 =

{
ct−1||Dt−1

1 if SQ(At−1) = 0
SD(At−1) ¢ Dt−1

1 ¢ ct−1 if SQ(At−1) = 1

The keystream is produced as a series of 2-bit words. The contents of FSR-A,
FSR-B and FSM-C all contribute to the keystream output word zt. To facilitate
effective cryptanalysis, we consider the formation of zt based on an intermediate
word, denoted wt. The 4-bit intermediate word wt and the 2-bit keystream
output zt are obtained as follows:

wt = SD(At−1)⊕ FC(Bt−1)⊕Dt−1
1

zt = f(wt À 2)||f(wt mod 22)

where

f(x) =
{

0 if x = 0 or x = 3
1 if x = 1 or x = 2

The function FC produces four bits of output, with each output bit formed
from a linear combination of four bits from FSR-B. Specifically, FC(Bt) = (Bt

2,0⊕
Bt

5,1⊕Bt
6,2⊕Bt

8,3)||(Bt
5,0⊕Bt

7,1⊕Bt
2,3⊕Bt

3,2)||(Bt
4,3⊕Bt

7,2⊕Bt
3,0⊕Bt

4,1)||(Bt
8,2⊕

Bt
5,3 ⊕Bt

2,1 ⊕Bt
7,0).

2.2 A Note on Previous Representations

In the DVB patent [3], the CSA-SC algorithm is defined as having a state of 107
bits. This representation facilitates an efficient hardware implementation. The
CSA-SC representation of Weinmann and Wirt [8] reduced the state size from
107 to 103 bits.

Our representation obtains a further reduction in the state size to 89 bits, by
removing the 4-bit memories X, Y , and Z and one-bit memories p and q from the
representation used by Weinmann and Wirt. These memories hold the outputs of
s-boxes at time t, and are used in the state update function at time t+1 to form
feedback. In this representation, none of the s-boxes use the final stage of FSR-A,
A9. When the state update function is applied to FSR-A, the contents of At

0..8

are shifted to become At+1
1..9 . All of the values required to calculate the feedback

at time t remain in the FSR at time t + 1, so the memories, while useful in
constructing efficient hardware, are not required in an equivalent representation

of the shift register. In the equivalent representation, the indices of the stages
used as inputs to the s-boxes must be incremented by one.

Note that in the original representation, the initial value of all memories is
zero. For our representation, this necessitates a special case for the first clock of
the key initialization process where the output of the s-boxes must be treated
as zero irrespective of their inputs. Although this may not be the most efficient
hardware implementation, it permits a cryptographically equivalent representa-
tion of CSA-SC using only 89 bits.

Neither our work nor that of Weinmann and Wirt considers the key initial-
ization during cryptanalysis, so we omit the details of the initialisation process
in this paper. There are several errors in the specification given in the work of
Weinmann and Wirt [8], which we correct in Appendix A of this paper.

3 Some observations on CSA-SC

In this section, we make some observations regarding CSA-SC. Firstly, in Section
3.1, we show that during keystream generation the state update functions of both
FSR-A and FSR-B are invertible. That is, given the state of the two FSRs at
time t + 1, the corresponding FSR states at time t can be uniquely determined.
This contradicts the claims of leading paths to short cycles made by Weinmann
and Wirt [8], motivating our exploration of the FSR-A state cycles presented
in Section 4. Secondly, in Section 3.2 we make observations regarding the ratio
of the CSA-SC state size to the key size, which indicates a vulnerability to a
generic style of attack.

3.1 State update functions during keystream generation

The state update functions for FSR-A and FSR-B are invertible. As FSR-A is
autonomous during keystream generation, but FSR-B is dependant on FSR-A,
it is necessary to establish that the state update function for FSR-A is invert-
ible before examining the state update function for FSR-B. Following this, the
conditions under which the FSM-C may be inverted are also presented.

The state update function for FSR-A makes use of SA, a 20 × 4 s-box. Al-
though SA itself is not bijective, the FSR-A state update function is nevertheless
invertible because (rearranging the state update function in Section 2.1):

At−1
i = At

i+1 0 ≤ i ≤ 8
At−1

9 = At
0 ⊕ SA(At−1)

That is, for the inversion, the register contents are shifted back one stage,
rather than forward, and the contents of the last stage, A9, are computed from
the contents of At

0 and the output of SA at time t−1. Now given that SA(At−1)
takes as input 20 bits from At−1, including the two bits At−1

9,0 and At−1
9,1 , this

initially appears to cause a circular dependancy. However, if SA is considered
as the concatenation of four 5-input Boolean functions, then the ouput of each

of these functions can be computed individually and the dependency avoided.
Table 3 in Appendix A shows the stages of FSR-A which provide the inputs
to each of the four Boolean functions. At−1

9,0 and At−1
9,1 depend upon the input

sets s3 and s2, respectively. Only bits in stages 1-6 and 8 of At−1 (equivalent
to stages 2-7 and 9 of At), are required, and these are already known. At−1

9,2

and At−1
9,3 depend upon the input sets s1 and s0, respectively. These input sets

include At−1
9,0 and At−1

9,1 . Therefore, if At−1
9,0 and At−1

9,1 have been calculated, then
At−1

9,2 and At−1
9,3 can also be calculated, obtaining the state At−1 in its entirety.

As the state update function for FSR-A is invertible, if the state of FSR-A is
known at time t, then all future and previous states of FSR-A during keystream
generation can be easily calculated.

It follows from the invertibility of FSR-A and the use of only a linear combi-
nation of the stages of FSR-B in the state update function for FSR-B that the
state update function of FSR-B can also be inverted, once At−1 is obtained, as
follows:

Bt−1
i = Bt

i+1 0 ≤ i ≤ 8
Bt−1

9 = ROL3−SP (At−1)(Bt
0)⊕Bt−1

6 ⊕ SB(At−1)
= ROL3−SP (At−1)(Bt

0)⊕Bt
7 ⊕ SB(At−1)

That is, given the internal state of FSR-A and FSR-B at time t during keystream
generation, all previous and future state values for these two feedback shift reg-
isters can be calculated.

The final component to consider is FSM-C. From the FSM-C state update
function, Dt−1

0 = Dt
1. However, the value of ct−1||Dt−1

1 is dependent on the
values of ct, Dt

0 and At−1. When SQ(At−1) = 0, then given Dt and ct, it is
obvious that ct−1||Dt−1

1 = ct||Dt
0. However, when SQ(At−1) = 1, the calculation

of ct−1||Dt−1
1 is more complex, due to the use of integer addition rather than

XOR.
Consider the case where SQ(At−1) = 1. As ct||Dt

0 = SD(At−1)¢Dt−1
1 ¢ct−1,

clearly Dt−1
1 ¢ct−1 = ct||Dt

0−SD(At−1), where the addition and subtraction are
integer rather than bitwise operations. There are two possible values for ct−1, so
this provides two possible values for ct−1||Dt−1

1 .
The intermediate keystream word wt is given by wt = SD(At−1)⊕FC(Bt−1)⊕

Dt−1
1 , and wt, SD(At−1) and FC(Bt−1) are all known, but Dt−1

1 is unknown.
However, the sum Dt−1

1 ¢ct−1 is known. The contribution of ct−1 to Dt−1
1 ¢ct−1

is in the least significant bit, but as the addition is integer addition, this raises
the possibility of carry to the next bit position, and so on. That is, if ct−1 = 1
and the least significant bit of Dt−1

1 = 1, then the least significant bit of the
integer sum will be 0, and the influence of ct−1 is carried to the next position.
However, where the least significant bit of the integer sum is 1 (that is, the sum
is an odd value), clearly the value of ct−1 and the value of the least significant
bit of Dt−1

1 are not the same, so there is no possibility that the influence of ct−1

extends beyond that least significant bit position. The 2-bit keystream output
zt is useful in discovering whether the two least significant bits in Dt−1

1 are the

same (00 or 11) or different (01 or 10). Combining this knowledge with a known
odd value of Dt−1

1 ¢ ct−1 enables a unique value of ct−1||Dt−1
1 to be determined.

Note that FSM-C is the only section of the CSA-SC internal state where the
state cycle mapping may involve branching. If SQ(At−1) = 0 there is a unique
previous state. However, if SQ(At−1) = 1 then a unique previous state exists
only if Dt−1

1 ¢ ct−1 = ct||Dt
0 − SD(At−1) is odd, and known keystream bits can

be used to determine this unique state. Otherwise, there are two possible prior
states for the combiner.

3.2 The ratio of state size to key size

The CSA-SC key initialization uses the combination of a 64-bit key and 64-bit
IV to populate the 89-bit state in preparation for keystream generation. That is,
the initialisation function takes 128 bits of input and produces an 89-bit output:
the CSA-SC initial state at the start of keystream generation. Although this
paper does not consider the specific details of the initialisation function, clearly
there exist multiple key-IV pairs that produce the same internal state at the
start of keystream generation, and hence the same keystream. That is, the use
of different keys does not guarantee the production of different keystreams. Even
for a single 64-bit key, clearly there are multiple IVs for which the initial 40-
bit state of FSR-A will be the same. As the nonlinearity of the functions used
in CSA-SC is largely determined by the contents of FSR-A, CSA-SC may be
vulnerable to divide and conquer attacks which target FSR-A.

The small CSA-SC state size also indicates a potential vulnerability to time-
memory-data (TMD) tradeoff attacks. These known-plaintext attacks can be
used to identify either the internal state of CSA-SC, or the key. These attacks
are discussed in greater detail in Section 5.

4 Exploring the state cycles of FSR-A

In Section 3.1, the state update function of FSR-A is shown to be invertible.
Therefore every state of FSR-A has exactly one previous state and exactly one
successor state. Consequently, there is either one cycle of length 240 in the FSR-
A state space or there are multiple disjoint cycles. It is possible that some of
these may be short cycles. There can be no overlapping cycles, and there are no
cycles with leading paths.

Floyd’s algorithm [6] can be used to detect cycles. This simple algorithm,
when applied to FSR-A of CSA-SC, detects a single cycle using the following
steps:
Algorithm FA

1. Initialize two instances A0 and A1 of FSR-A with the same initial state s
2. Set counter l to 0.
3. Do

(a) Clock A0 once. Increment counter l.

(b) Clock A1 twice.
while state(A0) is not equal to state(A1).

4. Output l as the length of the cycle.

Applying Floyd’s algorithm to comprehensively map all of the cycles pro-
duced by FSR-A using the following algorithm raises a problem in detemining
which values of s to select.
Algorithm A

1. Set t to 240.
2. Do

(a) Choose unique value of s.
(b) Invoke Floyd’s algorithm (Algorithm FA) for s, which outputs cycle

length l for state s.
(c) Decrement t by the value of l.
while t > 0.

A naive memoryless approach is to begin with s = 0 and increment s until
s = 240−1. This which ensures that all cycles are mapped, but the running time
of the process, at O(280), makes this infeasible.

A modification to the algorithm, using a time-memory tradeoff, tracks the
state values visited (using a one-bit flag per state). During each invocation of
Floyd’s algorithm, the value s is chosen from the complement of the set of visited
states. The running time of this algorithm is 240 · c, but the storage requirement
is 240 × log2240 bits = 2.3 terabytes. In practice, this version of the algorithm
must be implemented using hard disks, which have high latency, so that the
constant c becomes quite large. The storage requirements can be improved by
tracking and storing only “distinguished points”. For example, states with an
8-bit prefix consisting of 0 bits may be considered “distinguished”. This reduces
disk usage by a factor of 28. However, the algorithm will not detect any cycles
that traverse only non-distinguished points. Since Weinmann and Wirt [8] claim
the existence of small cycles, we do not want to take this approach.

A possible compromise is to use the first approach, in which at iteration i,
si = i, but with a slight modification to include early stopping criteria. If Floyd’s
algorithm traverses over state j < i at iteration i, then the cycle has been visited
previously and the algorithm aborts early. Similarly, if the cycle length l is larger
than the state space not so far searched, then the algorithm has rediscovered a
cycle and aborts.

Given that we know there are no leading paths, the algorithm can be op-
timized by using a single instance of FSR-A, with a stopping condition that a
cycle has been found when the starting point is traversed for the second time.
Algorithm FA-M

1. Initialize an instance A of FSR-A with the initial state s.
2. Set counter lc to 0, lmax to t.
3. Do

(a) Clock A once.

(b) Increment counter lc.
(c) If lc > lmax then abort.
while state(A) is not equal to initial state s.

4. Output lc as the length of the cycle

The running time of the FA-M algorithm varies depending on the length of
the cycles that it finds. The results of our search are shown in Table 1. They
were generated using several Intel Core Duo machines. Each core is capable of
iterating through 238 states per day.

Table 1. Cycles identified in FSR-A State Space

Cycle number Cycle length Cycle length (log 2)

1 307,080,986 28.19

2 783,472,466 29.52

3 10,152,192,874 33.24

4 14,199,085,442 33.72

5 36,257,653,742 35.08

6 78,922,935,703 36.20

7 225,691,600,544 37.72

8 308,063,543,688 38.16

9 424,911,536,585 38.63

Total 1,099,289,102,030 39.9997

The identification of nine large cycles in conjunction with the observation
that the update function is invertible provides strongly contradictory evidence
to the claims of Weinmann and Wirt [8] that 98% of the state space of FSR-A
can be partitioned into very short cycles.

5 Cryptanalysis of CSA-SC

Observations made in Section 3.2 indicate CSA-SC may be vulnerable to two
common styles of attack. The dependence of other components on the autonomous
40-bit FSR-A for nonlinearity indicates the potential for divide and conquer style
attacks which target FSR-A. The ratio of the state size to the key size indicates
a vulnerability to a generic style of attack known as Time-Memory Tradeoff
(TMTO) attack. The attack in by Weinmann and Wirt [8] targets FSR-A, and
is reviewed in Section 5.1. The application of TMTO attacks to CSA-SC is dis-
cussed in Section 5.2.

5.1 The Weinmann and Wirt Attack

A guess-and-determine attack on CSA-SC which targets FSR-A is presented by
Weinmann and Wirt [8]. The aim of the attack is to recover the internal state of

the cipher during keystream generation, when FSR-A is autonomous. The attack
complexity is claimed to be less than 245. We explain the flaw in this attack and
show that, when the flaw is corrected, the attack performance is actually worse
than exhaustive key search.

The attack is performed in three phases. In the first phase, the attacker
guesses 53 bits of state comprising FSR-A, FSM-C and the 4-bit memory X
used by Weinmann and Wirt [8] for their 103-bit CSA-SC representation. Be-
cause each output bit of FC is a linear combination of bits within FSR-B, and
these output bits are linearly combined to form the keystream, a system of
equations can be formed relating the keystream bits to the unknown contents
of FSR-B. The second phase of the attack solves this system of equations us-
ing Gaussian elimination. The third phase of the attack comprises consistency
checking to establish the veracity of guesses made in the first phase. If the con-
sistency checking fails, the guess in the first phase is considered incorrect and
a new guess is made. Otherwise, the attack terminates and the combination of
the 53-bit guess and the solution to the equation system is used to recover the
initial internal state.

The cost of the first phase is 253 operations. In the second phase, a system
of equations containing 60 equations in 40 unknowns is developed, which can be
solved using Strassen’s algorithin in 217.7 operations. The cost of the third phase
is negligible. The total complexity of the state recovery attack is therefore around
270.7 operations, which is about one hundred times worse than a brute-force key
search on the 64-bit key.

Weinmann and Wirt [8] claimed to have identified numerous short cycles
produced by the FSR-A feedback function. They performed 10,000 random ini-
tializations of the cipher, and found that for 98.4% of cases, those key-IV pairs
led to FSR-A state cycles with lengths of between 108 and 121,992. This lead
to the assumption that for any key-IV pair, the effective state space for FSR-A
is equal to the sum of the lengths of those short cycles, with 98.4% probability.
An attacker does not know the key, so must guess FSR-A states from all of
the points on all of the short cycles. Ignoring leading paths, this gives a total
of 313,169 possibilities. Therefore, Weinmann and Wirt[8] claim that the cost
of the first phase is reduced to 219 × 29, where the second term is the cost of
guessing the memories and registers in FSM-C.

The optimisation of the guessing phase of the divide and conquer attack is
necessary in order for the attack to be faster than exhaustive search. However,
both the theoretical observation in Section 3.1 that no leading paths exist be-
cause the FSR-A feedback function is invertible, and the empirical results in
Section 4 that demonstrate the FSR-A state cycles form a small number of dis-
joint large cycles show that the basis for the optimisation is unfounded. Thus
the performance of Weinmann and Wirt’s attack is worse than exhaustive key
search, unless further optimizations are identified.

5.2 Time-Memory tradeoff attacks

As the TMTO approach is well known, it is not described here. Instead, we refer
the reader to the work of Hong and Sarkar [7] for a description of the phases of
TMTO attacks. Our analysis aims to determine the feasibility of applying TMTO
attacks to CSA-SC given the constraints on the amount of keystream available
to an attacker. The specification for Digital Video Broadcasting indicates that
keystream is propagated at a maximum rate of 64 Mb/s, and that rekeying
occurs at least every 120 seconds. Therefore, for a single key-IV pair, assume
that an attacker has access to about D = 233 bits of data. We consider possible
tradeoffs for two styles of TMTO.

The first style of TMTO attack is one in which the attacker attempts to invert
the CSA-SC keystream to recover the internal state. For this style of attack, the
attacker must satisfy the time-memory-data tradeoff curve N2 = TM2D2 for
T ≥ D2 and T < 2K , where N = 289 is the total number of states, T is the time
taken to execute the attack, and M is the amount of memory required to store
precomputed tables. The value 2K = 264 represents the computational effort
required to launch a brute force attack. The attacker is unable to make use of
all available data since T ≥ D2 implies that T > 2K . Reasonable parameters are
therefore D = 225, T = 250 and M = 239, for which the attacker requires around
6 terabytes of disk space. This is feasible by today’s standards.

If the key initialization function was invertible, then the recovered internal
state could be used to derive the key. However, this does not seem to be the
case. Therefore this attack is of limited use, since frequent key-IV rekeying is
mandatory within the DVB specification, and this attack must be performed on
the keystream segment obtained after each rekeying.

The second style of TMTO attack attempts to invert the CSA-SC keystream
to recover the key. For this style of attack, the state size is immaterial. The
same time-memory-data tradeoff curve holds, but N now refers to the number
of possible key+IV values, rather than the number of possible internal states.
Here, N = 264+64. Taking the Dunklemann-Keller approach [4], the attacker
prepares different tables for many IVs in the precomputation phase. This removes
the restriction that T ≥ D2, at the expense of reducing the success rate of the
attack if the right IVs are not used. Due to the larger size of N , the computational
complexity of this attack is inferior to the first, with one possible parameter set
being D = 248.5, T = 253,M = 253. However, as this is key recovery rather
than state recovery, the stipulation for frequent rekeying does not present a
limitation. Therefore, any proposed key recovery attack on CSA-SC with time
complexity greater than T=253 should be regarded as unnecessary unless the
data and memory requirements are much less than those given for this TMD
attack.

6 Discussion and Conclusion

In this paper we provide a new representation of CSA-SC that uses only 89 state
bits, a significant reduction over the 107 bits and 103 bits used for previous

representations. Theoretical observations about the state update functions of
components of CSA-SC contradict the empirical results presented in previous
research [8], motivating an exploration of the state cycles for FSR-A.

Our FSR-A state-cycle findings raise doubts about the validity of the opti-
misation required in order for the divide and conquer attack presented by Wein-
mann and Wirt [8] to be successful. It appears that the complexity of that state
recovery attack is not around 245, as claimed, but in fact worse than exhaus-
tive key search. Even applying their approach to our representation of CSA-SC,
where the state size is reduced because the memory X is redundant, results
in an overall attack complexity of about 266.7 operations. This is about thir-
teen times worse than brute force attack and several orders of magnitude worse
than TMTO attacks, although with the memory requirement is less than for the
TMTO attacks.

The reduction in the state space obtained in our model indicates that CSA-
SC is vulnerable to TMTO attacks. Given a keystream segment produced from a
single key-IV pair, a state recovery attack is possible with data, time and memory
parameters of D = 225, T = 250 and M = 239, respectively. Additionally, for
an increased data value obtained by taking keystream segments formed from a
single key, but possibly multiple known IVs, a key recovery attack is possible,
with data, time and memory requirements of D = 248.5, T = 253,M = 253,
respectively. This application of a generic attack style to CSA-SC shows that
CSA-SC is vulnerable to cryptanalytic attack.

The attacks discussed in this paper made no use of the CSA-SC initialisation
process. Exploring the initialisation process may reveal weaknesses that will
lead to improved attacks on this cipher. Additionally, it may be possible to
improve the performance of divide and conquer attacks targeting FSR-A by
reducing the complexity of determining whether guessed FSR-A and FSM-C
states are correct. This could be accomplished, by using a distinguisher, and
only proceeding to solving the system of equations to recover the contents of
FSR-B for a correct guess.

We examined the cipher with respect to differential and linear attacks, and to
guess-and-determine attacks. Even though the s-boxes are far from optimal with
respect to differential and linear attacks, the fact that in each clock cycle, half
of the bits in FSR-A are passed through s-boxes makes it difficult to utilize the
s-box biases; ie. the diffusion in the register is good. Likewise, this means that
a large number of bits must be guessed in order to determine a single nibble in
the register, and a straightforward guess-and-determine approach is ineffective
in reducing the complexity of an attack below 253 operations, even considering
the effective reduced state size.

Although there are generic attacks that apply to CSA-SC, it appears that
the attack strategy of Weinmann and Wirt [8] does not succeed in key recovery
with better complexity than brute force.

Acknowledgements Thanks to anonymous referees for their valuable com-
ments. Thanks also to Yian Chee Hoo for his spare computer cycles.

References

1. Anonymous. CSA - known facts and speculations, http://csa.irde.to, 2003.
2. Daniel J. Bernstein. Costs of cryptanalytic hardware, Posting to

ECRYPT eSTREAM forum, August 21, 2005. Available at :
http://www.ecrypt.eu.org/stream/phorum/read.php?1,95,95#msg-95

3. Simon Bewick. Descrambling DVB data according to ETSI common scrambling
specificiation. UK Patent Application GB2322995A, 1998.

4. Orr Dunkelman and Nathan Keller. Treatment of the Initial Value in TMTO At-
tacks. SASC 2008: The State of the Art of Stream Ciphers, Lausanne, Switzerland,
2008. pages 249-258.

5. FFDeCSA 1.0.0 implementation.
Available at http://www.dvbsupport.net/download/index.php? act=view&id=129

6. Robert Floyd. Non-deterministic Algorithms, Journal of the Association for Com-
puting, Volume 4, Number 14, March 1967, pages 636-644.

7. Jin Hong and Palash Sarkar. New Applications of Time Memory Data Tradeoffs,
Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the
Theory and Application of Cryptology and Information Security, Lecture Notes in
Computer Science vol 3788, Springer, 2005, pages 353–372.

8. Ralf-Phillip Weinmann and Kai Wirt. Analysis of the DVB Common Scrambling
Algorithm. Communications and Multimedia Security, Proceedings of the 8th IFIP
TC-6 TC-11 Conference on Communications and Multimedia Security (CMS 2004),
Springer-Verlag.

A CSA-SC S-boxes

CSA-SC has not been published by ETSI. Information has been revealed in
patents [3] and by reverse engineering of implementations; see, for example, [5].
The specification by Weinmann and Wirt [8] is the best academic description of
CSA-SC in the public literature to date but contains multiple errors; including
a misprint in the table that specifies inputs from FSR-A into the s-boxes, and
incorrect ANFs for the component boolean functions of the s-boxes. We give the
(hopefully) correct versions below.

Table 2 describes the s-boxes referred to in Section 2. Each s-box is built from
5-input boolean functions. S-boxes SA, SB and SD are each constructed from
four boolean functions, while s-boxes SP and SQ are each built from a single
boolean function. These boolean functions are denoted Fi(sj) in the following
tables, where i denotes the function index and sj denotes the jth set of FSR-A
positions which provide the five inputs to Fi. The FSR-A positions for the 5
inputs xi, 0 ≤ i ≤ 4 are given in Table 3. The boolean functions are given in
Algebraic Normal Form in Table 4. For example, the most significant output bit
of s-box SA is F6(s3), where F6 is 1+x0 +x1 +x5 +x0 ·x4...+x0x1x2x3x4x5, and
from the definition of s3 in Table 3, x0 = A3,3, x1 = A1,1, x2 = A2,3, x3 = A4,2

and x4 = A8,0.

Table 2. S-boxes used in our model of CSA-SC

S-box Input Size (bits) Output Size (bits) Output

SA 20 4 F6(s3)||F4(s2)||F3(s1)||F1(s0)

SB 20 4 F10(s5)||F8(s4)||F7(s3)||F5(s2)

SD 20 4 F2(s1)||F0(s0)||F11(s5)||F9(s4)

SP 5 1 F13(s6)

SQ 5 1 F12(s6)

Table 3. Inputs from FSR-A into the S-box boolean functions

Function input x0 x1 x2 x3 x4

s0 A4,0 A1,2 A6,1 A7,3 A9,0

s1 A2,1 A3,2 A6,3 A7,0 A9,1

s2 A1,3 A2,0 A5,1 A5,3 A6,2

s3 A3,3 A1,1 A2,3 A4,2 A8,0

s4 A5,2 A4,3 A6,0 A8,1 A9,2

s5 A3,1 A4,1 A5,0 A7,2 A9,3

s6 A2,2 A3,0 A7,1 A8,2 A8,3

Table 4. Algebraic Normal Forms of 5-input Boolean functions Fi, 0 ≤ i < 14

i Algebraic Normal Form of Fi

0 1 + x4 + x3 + x3x4 + x2x4 + x2x3 + x1x4 + x1x3 + x1x2 + x1x2x4 + x1x2x3 +
x0 +x0x3x4 +x0x2 +x0x2x3 +x0x1 +x0x1x3 +x0x1x3x4 +x0x1x2 +x0x1x2x3

1 x3 + x2x4 + x1 + x1x4 + x1x3x4 + x0x4 + x0x1 + x0x1x3 + x0x1x2 + x0x1x2x4

2 1+x4+x3+x2x4+x2x3+x2x3x4+x1+x0x2x3+x0x1x4+x0x1x3+x0x1x3x4+
x0x1x2

3 1 + x3 + x2 + x2x4 + x1x3x4 + x1x2x4 + x0x3x4 + x0x2 + x0x1 + x0x1x3x4 +
x0x1x2x4

4 1 + x4 + x3 + x2x4 + x2x3 + x2x3x4 + x1 + x1x4 + x1x3 + x1x3x4 + x1x2 +
x1x2x3 +x0 +x0x3 +x0x3x4 +x0x2 +x0x2x4 +x0x2x3 +x0x2x3x4 +x0x1x4 +
x0x1x2 + x0x1x2x3

5 x3 + x3x4 + x2x4 + x1 + x0

6 1 + x4 + x3x4 + x2 + x2x3x4 + x1 + x1x2x3 + x0 + x0x4 + x0x3 + x0x2x3x4 +
x0x1 + x0x1x4 + x0x1x3x4 + x0x1x2 + x0x1x2x3

7 1+x3 +x3x4 +x2 +x1x4 +x1x3x4 +x1x2 +x0x4 +x0x3 +x0x2x3x4 +x0x1 +
x0x1x4 + x0x1x3x4 + x0x1x2 + x0x1x2x3

8 1+x4+x3+x3x4+x2x4+x2x3+x2x3x4+x1+x1x4+x1x3x4+x1x2x4+x1x2x3+
x0x4 + x0x3 + x0x2 + x0x2x3 + x0x2x3x4 + x0x1x4 + x0x1x3 + x0x1x2x4 +
x0x1x2x3

9 x3x4 + x2 + x2x4 + x2x3x4 + x1x4 + x1x3 + x1x2x4 + x0x4 + x0x2 + x0x2x4 +
x0x2x3 + x0x2x3x4 + x0x1 + x0x1x4 + x0x1x3 + x0x1x3x4

10 x3 + x2x4 + x1x3x4 + x1x2 + x1x2x4 + x0 + x0x3x4 + x0x1x4

11 x4+x2+x2x3+x2x3x4+x1x3+x1x2+x1x2x3+x0x3x4+x0x2x3+x0x2x3x4+
x0x1x3x4 + x0x1x2x3

12 x4+x3+x3x4+x2+x1+x1x3x4+x0x4+x0x3x4+x0x2+x0x2x3+x0x2x3x4+
x0x1x3x4 + x0x1x2x3

13 x4 + x3x4 + x2 + x2x3 + x2x3x4 + x1 + x1x2 + x0 + x0x1x3 + x0x1x3x4

