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Mini Abstract 

Generalized Procrustes Analysis and Thin Plate Splines were employed to create an 

average 3D shape template of the proximal femur that was warped to the size and shape of 

an individual 2D radiographic image. Mean absolute depth errors are comparable with 

previous approaches utilising multiple 2D input projections.  
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Abstract 

Introduction: Several approaches have been adopted to derive volumetric density (g cm-3) 

from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such 

approaches have generally aimed at deriving an average depth across the areal projection 

rather than creating a formal 3D shape of the bone.  

Methods: Generalized Procrustes Analysis and Thin Plate Splines were employed to create 

an average 3D shape template of the proximal femur that was subsequently warped to suit 

the size and shape of a single 2D radiographic image of an individual subject. CT scans of 

excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm 

respectively, were equally split into training (created 3D shape template) and test cohorts. 

Results: The mean absolute depth errors of 3.4 mm and 1.73 mm respectively for the two CT 

pixel sizes are comparable with previous approaches based upon multiple 2D input 

projections.  

Conclusions: This technique has the potential to derive volumetric density from BMD and to 

facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal 

femur. It may further be applied to other anatomical bone sites such as the distal radius and 

lumbar spine. 
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Introduction 

Dual energy X-ray absorptiometry (DXA) is routinely performed at the osteoporotic fracture 

sites of wrist, hip and spine, and provides an areal measurement describing the bone mass 

within a projected area, with units of g cm-2. Quantitative computed tomography (QCT) 

utilises a calibration phantom to convert Hounsfield number into a measure of volumetric 

bone density (g cm-3) of the hip and spine. The subject radiation dose associated with QCT is 

approximately 10 times higher than for DXA, making use of DXA over QCT desirable [1].  

 

Several approaches have been previously adopted to derive volumetric density (g cm-3) from 

a conventional 2D DXA representation of areal bone mineral density (g cm-2). Such 

approaches have generally aimed at deriving an average depth across the areal projection 

rather than creating a formal 3D shape of the bone. More consideration has been given to 

the lumbar vertebrae than the proximal femur. Few studies have quantified the accuracy of 

their approach. The lumbar vertebra has been considered to be of cuboid nature, where the 

depth is calculated simply as the square root of the cross-sectional area [2-4] or the mean 

vertebral width in the orthogonal direction [5]. Both scientific [6] and clinical [7] evaluation of 

the vertebra considered to be an elliptical cylinder have been performed, although both 

studies did not report a significant benefit in their volumetric approach. For assessment of the 

distal radius and ulna, an assumption of cylindrical geometry has been assumed [8]. For the 

proximal femur, the square root of projected area has also been clinically applied to the 

femoral neck [9, 10]”.   

 

The creation of a 3D Bone Shape from 2D images 

Caponetti and Fanelli [11] developed a 3D reconstruction algorithm from two mutually 

orthogonal X-ray views of the femur, which was later improved upon by Nikkhade-Dehkordi 

et al. [12]. In both these cases, the femur was considered in sub-parts, each having a 

smooth, round surface. The 3D shape was estimated by median filtering and contour finding 

on different parts of the X-ray images and generating each sub-part using Hermite surface 

patches. Hermite surfaces are cubic parametric surface patches defined by four corner 
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points and the tangent vectors to the surface at the corner points [13]. The reconstructed 

femurs were compared to CT-scan models and 80% of the femur shafts were found to have 

less than 2mm error and 93% less than 4mm. Laporte et al. [14] introduced the concept of 

non-stereo corresponding contours (NSCC) based on contour identification from biplanar 

radiographs for 3D reconstruction of the distal femur. These were used by Kolta et al. [15] for 

reconstruction of the proximal femur from orthogonal biplanar DXA scans. The reconstructed 

models showed good accuracy as compared with high-resolution personalized CT-scan 

models for 25 cadaveric femurs with a reported mean absolute error of 0.8mm (95% of errors 

were less than 2.1mm with maximum errors of up to 7.8mm obtained on the greater and 

lesser trochanters). 

 

The primary limitation of all of these techniques to create a 3D shape is that they inherently 

require a minimum of two 2D images to be available. With conventional DXA, only a single 

2D image is obtained. The aim of this paper is to describe the application of geometric 

morphometric techniques to generate a 3D bone shape derived from a single projection 2D 

radiographic image.  

 

A shape may be described by a set of landmark points that correspond to some identifiable 

features of the object. These landmark points are homogenous between and within 

populations for that object. Geometric Morphometric studies focus on the properties of 

landmarks for quantifying and analysing shape, combining the use of multivariate statistics 

with visualization techniques [16]. 

 

Zheng et al. [17] described a technique of 2D/3D reconstruction using a combination of 

statistical extrapolation and regularized shape deformation with an iterative non-rigid 2D 

point-matching algorithm applied to fluoroscopic images. The point-matching algorithm 

involved symmetric nearest-neighbour mapping and 2D thin plate splines-based deformation 

to find best-matched pairs between the images and the model. 11 cadaveric femurs were 
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used in the study and average reconstruction errors of 1.2mm and 1mm were obtained using 

2- and 3-input fluoroscopic images respectively.  

 

The methodology behind the approach in this paper has two phases, viz., creation of a 

generic 3D shape template from a ‘training’ cohort, and then adaptation of this template to 

suit the size and shape of a single 2D radiographic projection of an individual proximal femur 

within a ‘test’ cohort.  

 

Methods 

Proximal Femur CT scan data  

Three sets of excised femora, each scanned by computed tomography (CT) on different 

machines (because of a change in location and equipment upgrade), were used to create the 

3D Shape Template. They consisted of a) 18 femora from 8 males and 10 females; age, 52–

92 years), b) 12 femora from 8 males and 4 females; age, 53–88 years, and c) 12 femora 

from 12 female donors; age, 45–94 years) [18]. Preparation of femora for CT scanning was 

identical, regardless of data set. Each femur was immersed in water and placed atop a 

calibration phantom for CT scanning. Each set of femora was scanned on a different CT 

scanner and used slightly different scanning parameters. Femora set (a) were scanned on a 

GE 9800 Research Scanner (GE Healthcare Technologies, Waukesha, WI) with a K2HPO4 

(KHP) calibration phantom,[19] 320 × 320 matrix, and 1.08 mm pixels. Femora sets (b) and 

(c) were scanned on GE HiSpeed Advantage and GE CTI CT scanners, respectively (GE 

Healthcare Technologies, Waukesha, WI), with a calcium hydroxyapatite (CHA) phantom 

(Image Analysis, Inc., Columbia, KY), 512 × 512 matrix, and 0.674-mm pixels. All scans were 

obtained using 80 kVp, 280 mAs, with a 3 mm slice thickness and the standard 

reconstruction technique adopted. 

 

2D Mappings 
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A ray casting technique was applied to the CT scan data for each proximal femur thereby 

creating 2D mappings of ’offset’, ’depth’, and BMD. The mappings express the data as 256 

level grey-scale bitmaps, shown in Figure 1.  

 

Figure 1: 2D ray casting mappings of offset (left), depth (centre), and BMD (right), expressed 

as 256 level greyscale images. Note that the femoral head and greater trochanter 

correspond to minimum offset but maximum depth and BMD.  

 

For a column in a slice of the CT scan, ‘offset’ was defined as the number of voxels from the 

edge of the slice to the first bone voxel in that column (see Figure 2). ‘Depth’ was defined as 

the number of voxels from the first to the last bone voxel along the particular column. The 

depth map provided information about bone thickness at each pixel of a projected 2D 

radiograph image and the offset map provided the relative position of each part of the bone 

in the 3rd dimension, hence accounting for the protruding trochanteric section as well as the 

head anteversion. The BMD of each pixel within the BMD mapping (Figure 1c) was 

calculated with reference to the calibrated volumetric density data, following an integrated 

bone mineral content divided by area calculation as performed for DXA.  
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Figure 2: Description of Offset and Depth Maps 

 

Landmark Registration  

The first step in geometric morphometrics is the acquisition of landmarks for the shapes 

being analysed. Landmarks have been defined as “discrete homologous anatomical loci that 

do not alter their topological positions relative to other landmarks, provide adequate 

coverage of the morphology, can be found repeatedly and reliably, and lie within the same 

plane” [20]. Landmarks are typically chosen to quantify at least all the visible shape features 

required for analysis. 

 

Figure 3 shows landmarks digitized along the outline of a 2D radiograph image of the human 

proximal femur. The landmarks in this case were chosen to provide an optimal number of 

visually recognizable points to describe the overall shape of the femur. Homology had to be 

ensured while selecting these landmarks for the various specimens and hence the landmarks 
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had to be clearly distinguishable along the image outline. Each radiographic projection in the 

input dataset was described by this ‘landmark configuration’.  

 

Figure 3: Landmarks on a 2D radiographic image of the proximal femur 

 

 

Creating the Shape Template using Generalized Procrustes Analysis and Thin Plate 

Splines 

Generalised Procrustes Analysis (GPA) [21] and Thin Plate Splines (TPS) [22] were 

employed to create the 3D shape template for the proximal femur. GPA was utilised to create 

an average 3D ‘Proximal Femur Training Template’ that could be expanded or contracted to 

suit the size and shape of an individual 2D ‘Test’ radiographic image. TPS deformation was 

applied to warp the 2D contour to match the radiographic projection of each input bone. This 

approach assumes that there is a proportional change in bone depth corresponding to a 

change in the overall bone size. 

 

The average size and shape of the ‘Training’ 3D shape template was derived utilising 

Generalized Procrustes Analysis, that filtered out the Euclidean variations among the 2D 

projections of the samples. Each projection was described by a ‘landmark configuration’. The 

positional variation was removed by translating the centroid of each projection (calculated as 
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the mean of its co-ordinates) to the origin. Each of the projections was then scaled to its 

respective unit centroid size (calculated as the square root of the sum of the squared 

distances of the landmarks from the centroid) to filter out the scaling factor. They were 

iteratively rotated to the mean configuration computed at each pass to align their 

orientations. This procedure was applied to the offset and depth maps. Thin Plate Splines 

were then employed to visualize shape changes over the entire form instead of just the 

relative changes at landmark positions as obtained from the Generalised Procrustes 

Analysis. 3D grids describing the shape of the bone were built by merging the offset and 

depth maps. The TPS deformation was then carried out in two stages. In the first stage, they 

were used to compute the deformation from the landmark configuration for each individual 

bone to the mean configuration, the TPS therefore approximating the deformation between 

shapes using a smooth interpolating function of a linear combination of components that 

describe the patterns of relative landmark displacement. In the second stage, the resultant 

transformation matrix was applied to the offset and depth map for each femur, thus warping it 

to the mean shape. The resulting images were then averaged to create the average offset 

and depth maps from which the average 3D shape template was generated. This process of 

creating the average 3D shape template of the proximal femur from the Training cohort is 

shown in Figure 4. 

 

The three CT datasets were randomly split into ‘Training’ and ‘Test’ cohorts. Two average 3D 

shape templates were created, one from 9 femurs within CT set (a), with 1.08-mm pixels and 

one from 13 femurs within CT sets (b) and (c), with 0.674-mm pixels.   
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Figure 4: Overview of average 3D shape template creation. Two templates were created, 

one from 9 femurs within CT set (a), 1.08-mm pixels and one from 13 femurs within sets (b) 

and (c), 0.674-mm pixels.  

 

Applying the Shape Template to an Individual ‘Test’ Image 

The Test cohort consisted of the remaining 9 femoral CT scans from set (a) and 11 from sets 

(b) and (c), from which 2D projection images were derived and landmarked. For each Test 

femur, the landmark configuration of the average 3D shape template was first aligned to the 

landmark configuration of the Test 2D radiographic image using GPA. The average 3D 
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shape template was then warped using TPS, resulting in the creation of a 3D shape for each 

Test proximal femur. This process is illustrated in Figure 5. 

 

Figure 5: Transformation of the average 3D shape template to an Individual 2D radiographic 

Projection to create an individual 3D shape.  

 

The measure of similarity between 2D landmark configurations was computed as an 

expression of the Euclidean distance, dik, [23] between the compared shapes i & k (in this 

case, the original and predicted shape respectively) computed as: 

∑ −+=−= ikkkiikjijik sssxxd 2)( 22   Equ. 1 

where j = 1 : p, p was the number of variables and sik was the measure of the similarity 

between shapes i and k computed from the similarity matrix S = XX. 

 

Results  
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Utilising the 2D similarity measure described above, the shape template technique had an 

accuracy of 99.75% to determine the Euclidean distance between corresponding landmarks. 

Thus, the created 2D shape profile was found to be a near-perfect match to the original 2D 

radiographic image for each individual proximal femur.  

 

2D maps of absolute error for depth and offset, computed as the modulus of the per-vertex 

distance in 3D space between the predicted and original maps, are shown in Figure 6, with a 

comparison of original and generated 3D shapes shown in Figure 7. Hence, the depth and 

offset derived for each proximal femur from the shape template technique were compared 

with those correspondingly obtained from the original 3D CT data.   

         

Figure 6: Offset and depth error maps. Pixels of darker shade of grey indicate higher 

absolute errors. The dimensional scale for the 256 grey levels within a single error map was 

described by separately reported minimum (0 grey) and maximum (255 grey) error values.   
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Figure 7: Visual representation in three orthogonal planes of the shape and size of an original 

proximal femur (shown as light pixels) along with deviations observed within the proximal femur that 

was created from a single ‘BMD’ image utilising the Shape Template (shown as dark pixels). 

 

The mean and standard deviation values for absolute depth and offset error (E) were derived 

using the following expression: 
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where p describes the number of vertices considered.  

The absolute depth and offset error data is summarised in Table 1. 

 

Table 1: Mean and standard deviation values for depth and offset absolute errors within Test 

cohorts 

 CT Matrix 

Size 

CT Pixel 

Size (mm) 

Depth (mm) 

Mean + SD 

Depth Error (mm) 

Mean + SD 

Offset (mm) 

Mean + SD 

Offset Error (mm) 

Mean + SD 

n = 9 320 x 320 1.08 22.35 + 1.74 3.40 + 1.45 19.64 ± 1.47 2.97 + 1.30 

n = 11 512 x 512 0.674 33.84 + 6.37 1.73 + 0.51 26.29 ± 3.30 1.33 + 0.53 
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Discussion 

This paper describes what is believed to be the first report of the generation of 3D proximal 

femur shapes from single projection 2D radiographic images.  

 

The 2D projected contour of each generated shape was nearly identical to the contour of the 

respective original shape. The mean absolute depth errors of 3.4 mm and 1.73 mm for the 

1.08 mm and 0.674 mm CT pixel sizes respectively are comparable to the mean absolute 

depth error of 0.8 mm reported by Kolta [15] using biplanar DXA reconstruction, noting that 

their pixel size was only 0.25 mm. Similarly, we utilised a CT slice thickness of 3 mm 

whereas Kolta et al utilised a 1.25 mm slice thickness. Hence, there is an inherent spatial 

resolution limitation of the original 3D CT that will have a direct influence on the accuracy of 

the shape template technique data. This is evidenced by the mean depth and offset errors 

being approximately a factor of two higher when the source CT data had a reduced spatial 

resolution by a factor of 1.6.  Further, comparing the current 0.674 mm resolution CT data, 

Kolta reported a depth error factor of 2.2 for CT data with an improved spatial resolution by a 

factor of 2.7. Maximum depth and offset errors were observed (Figures 6 and 7) at the edges 

of the bone where there was minimum bone depth; again potentially dependent upon the 

spatial resolution of the source 3D CT data. 

 

When generating a 3D shape from a 2D radiographic image using the technique described 

here, there is an assumption that the change in bone depth corresponds to a proportional 

change in the 2D parameters of bone length and width. We accept that this may not be so for 

all proximal femur shapes, particularly those at the ends of the shape spectrum, namely short 

stocky bones and long slender bones. However, for the majority of subjects, the hypothesis 

that bone depth could be predicted from its length and width proved reasonable.  

 

A limitation of this study is that it was based upon a relatively small dataset of 23 proximal 

femurs for the training cohort and 20 proximal femurs for the test cohort, noting that each of 

these were further divided into two categories based upon CT pixel resolution. It is 
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considered reasonable to assume that a more representational and hence more accurate 

average 3D shape template would be derived if larger cohorts of training and test proximal 

femurs were considered in the future.  

 

Both the training and test cohorts were derived from subjects of mixed sex but similar ethnic 

background, namely Caucasian. It is considered quite feasible that specific average 3D 

shape templates may have to be derived to accommodate age, sex and ethnic differences. 

Several studies have looked at variation of bone shape between ethnic and gender groups 

as well as with age. Ward et al. found that there were differences in bone geometry, BMC 

and volumetric BMD at the radial diaphysis between South Asian and European women of 

UK origin which were not explained by differences in body size [23]. Ethnic differences were 

also found to contribute to bone mass and fracture risk in a study of 197,848 community-

dwelling postmenopausal women by Barrett-Connor et al [25]. African-American and Asian 

women were found to have 50% and 70% lower fracture risk respectively compared to 

Caucasian, Hispanic and Native American women. Meta et al. showed age-related 

differences in bone geometry among healthy women in two distinct age groups [26]. Bone 

mineral content and bone mineral density values were seen to differ significantly between the 

28 young and 124 elderly healthy Caucasian women, with cross-sectional area and volumes 

at skeletal sites such as the trochanter and femoral neck found to be larger in the elderly 

than younger subjects Mayhew et al. [27] found substantial thinning of the cortical shell at the 

femoral neck area with aging, that declined less among men than women.  

 

This study has demonstrated the potential for the application of a 3D shape template of the 

proximal femur to a single projection 2D radiographic image, such as that obtained by a DXA 

scan, in order to generate a 3D shape of the scanned proximal femur. It should be noted that 

the 2D radiographic images were derived from 3D QCT data and that unfortunately, DXA 

scan data for the excised femora was not available. DXA images may however be readily 

utilised within the described technique and future work could consider a clinical comparison 

using DXA and QCT images from patients.  
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Since the technique utilises a single 2D radiographic image such as a DXA scan, it is 

inherently sensitive to variability in anatomical positioning of the proximal femur. This 

sensitivity should be investigated in the future, ideally considering positional variation 

observed within the routine clinical environment. 

 

Potential future applications of the 3D shape generation technique include derivation of 

volumetric density from areal bone mineral density and 3D finite element analysis for 

prediction of the mechanical integrity of the proximal femur. There is also the potential to 

apply this technique to other anatomical bone sites such as the distal radius and lumbar 

spine, again providing the potential to derive volumetric density from a single 2D DXA 

measure of areal bone mineral density. 
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