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ABSTRACT 
 

Searching for humans lost in vast stretches of ocean has 

always been a difficult task.  This paper investigates a 

machine vision system that addresses this problem by 

exploiting the useful properties of alternate colour spaces.  

In particular, the paper investigates the fusion of colour 

information from the HSV, RGB, YCbCr and YIQ colour 

spaces within the emission matrix of a Hidden Markov 

Model tracker to enhance video based maritime target 

detection. The system has shown promising results. The 

paper also identifies challenges still needing to be met. 
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1. INTRODUCTION 
 

Human maritime search and rescue missions have always 

been a challenging task, and an element of chance is 

involved in the detection of survivors [1].  Humans 

become fatigued and complacent after long hours of 

searching, reducing the chance of finding survivors.  We 

propose the use of machine vision to automate the 

location of human survivors lost at sea, and present an 

evaluation of colour space fusion within a Hidden Markov 

Model tracker framework to improve the performance of 

such a system. 

 

Many countries have vast search and rescue regions. 

Australia’s covers approximately 53 million square 

kilometres, which is equivalent to nearly one tenth of the 

Earth’s surface.  This is an enormous area to search and if 

robots, such as Unmanned Aerial Vehicles (UAVs) were 

employed, the probability of locating survivors would 

increase.  Given this search capability, robots would be 

able to assist and aid present manned search endeavours 

by utilising UAVs as a task force-multiplier.  This would 

allow the current search efforts to be more flexible and to 

respond with appropriate force in a timelier manner. 

 

A small number of studies into the automation of maritime 

searches have previously been conducted, but all of these 

studies have restricted the search to small vessels (such as 

life rafts) and high visibility targets.  Most notably, 

Sumimoto, et al [2, 3] have investigated the search for 

small bright orange life rafts in the ocean.  Also, Toet [4] 

investigated the maritime search problem by choosing to 

fuse the morphological top-hat information from two 

different IR spectral frequency bands to reduce the effects 

of ambient noise in the image, while searching for 

approaching kayaks.  Both of these investigations used 

images taken from static platforms looking out across the 

ocean, as from the bridge of a ship, searching for targets 

that are highly visible and largely above the surface of the 

water. 

 

The investigation in this paper builds on previous work by 

the authors in [5]. That work used a morphological 

filtering operation followed by a Hidden Markov Model 

(HMM) based tracker to detect human heads in the ocean. 

The advancement presented in this paper is the 

incorporation of a data fusion technique to enhance the 

detection process. This fusion is accomplished by 

sourcing multiple data sets from different video colour 

spaces, similar to a technique used in biometric 

authentication [6], and combining them within the 

emissions matrix of the HMM. 

 

This paper is organised in the following way: Section 2 

contains a brief description of the problem and the 

constraints involved.  Section 3 presents an overview of 

the proposed system, and Sections 4 and 5 detail the target 

detection and tracking phases of the system, respectively.  

The experiments performed are described in Section 6 and 

the results reported in Section 7. 
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2. PROBLEM DEFINITION 
 

This paper specifically addresses the detection of a single 

person in the water during a daytime aerial search, in a 

scenario where the survivor is without a high contrast 

floatation or location device.  The images are taken from a 

downward looking camera and the ocean surface currents 

are no faster than 2m/s [7]. 

 

To maximise the effective search corridor of a single 

camera the proposed algorithm searches for persistent 

point-like targets within the surveillance video.  This 

feature of the search approach also has a bearing on the 

flight altitude that the system can be flown at, given the 

resolution and field of view (FOV) of the camera. 

 

Searching for a person in the water is difficult because the 

target may only occupy 1-3 pixels in a dynamic and 

constantly changing environment, and the person is 

therefore not easily distinguished from the background.  

Furthermore, the target has limited time within the FOV of 

the camera – depending on the speed of the aircraft, the 

target maybe in view for as little as 3-5 seconds.  Hence, a 

decision on the target’s status must be made quickly to 

allow the operator to respond to the alarm. 

 

3. SYSTEM OVERVIEW 
 

In point detection applications it is common to use a pre-

processing operation (such as spatial masking [8]) to 

reduce the ambient noise.  Subsequently, various temporal 

tracking techniques can then be used to discriminate the 

true target from noise by exploiting properties of the 

target such as size, shape, colour and temporal dynamics. 

 

Therefore, the proposed detection system comprises two 

main components: a point target detection phase (front-

end) to reduce noise and identify candidate pixels, 

followed by a temporal tracking phase that uses a priori 

knowledge and historical data to discern true target 

behaviour among the various candidates (see Figure 1). 

This tracking incorporates the fusion of the data from the 

various different colour spaces. 

 

 
 

Figure 1. System Block Diagram 

 

4. POINT TARGET DETECTION PHASE 
 

Small targets are difficult to detect because they are not 

easily distinguishable from noise and/or clutter.  In the 

proposed system, the automated search would be 

conducted at an altitude that would result in an average 

human head occupying only 1-3 pixels of the search 

camera’s FOV, eliminating any shape information [9].  

For these reasons we have employed a point detection 

technique from the area of Mathematical Morphology. 

 

Morphology is based on using a structuring element B  to 

perform two fundamental operations, dilation and erosion, 

on the target image A .  Combinations of these operations 

create the open and close functions, described as follows: 
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Morphological filtering of images (either Electro-Optic 

(EO) or Infra-Red (IR)) has proven effective for 

identifying candidate targets in the areas of aircraft 

collision avoidance [10] and multi-spectral IR target 

detection [4]. 

 

The particular morphological filtering implementation of 

the close-minus-open (CMO) technique presented in this 

paper is a consolidation of the filtering method employed 

by Casasent [11] and the filter application technique of 

Deshpande [12].  Four 1D slit-shaped structuring elements 

(one vertical, one horizontal, one on the leading diagonal 
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and one on the trailing diagonal) are applied at both the 

close and open steps.  This quad-filter approach allows 

only targets which are compact in all directions (i.e. point-

like) to be enhanced.  Non-compact clutter, such as white 

caps and large floating debris, tend to be attenuated.  It 

has been found that the basic CMO operation gave rise to 

images that do not correctly represent the zero mean 

nature of the image noise. This misrepresentation in turn 

degrades the effectiveness of the tracking phase of the 

target identification.  The following “preserved sign” 

CMO method was introduced to overcome this problem 

[10]: 

 
( )( ) ( )( )

( ) ( )( )

Element  gStructurin 

ImageInput   

ImageOutput    Signed where

)5(2

=

=

=

+•−=

−+•−=

SE

F

CMO

SEFSEFFCMO

SEFFSEFFCMO

in

signed

inininsigned

ininininsigned

o

o

 

 

Using the above modification to the usual CMO technique 

reduces false alarms by an average of 20% [10]. 

 

5. TEMPORAL TRACKING PHASE 
 

To enhance the identification of potential targets one can 

make use of all measurement information over a 

substantial time period. This approach is typically referred 

to as track-before-detect (TBD), and is a commonly used 

concept in radar technology. The approach allows for the 

identification of targets in high noise and high clutter. A 

threshold is imposed as a final stage to the system to grant 

target status to those candidates that have been 

successfully tracked over a significant number of frames. 

 

For the data considered in this study the search for targets 

between consecutive frames is restricted to within a 5x5 

pixel kernel (because of the target’s dynamics within the 

maritime application). These limitations are described 

more fully in the next paragraph. 

 

Assume the use of a 1024x768 pixel camera operating at 

15 frames per second (fps), at a nominal search height of 

150m above sea-level, and travelling at 150km/h [1].  The 

highest documented ocean surface current speeds (barring 

extreme environmental anomalies) are in the vicinity of 

2m/s [7] which is approximately 7km/h.  In addition to 

this surface current, the maximum swimming speed of a 

human is roughly 8km/h [13].  Aggregating these two 

velocities still does not exceed the maximum velocity 

allowed by our target dynamics model. 

 

To see this, suppose the FOV of the camera in the 

direction of the aircraft x-axis is 60°. This makes each 

pixel equivalent to 0.226m (average human head diameter 

[9]).  Thus, for a target to move at least two pixels, 

relative to the ground, between consecutive frames it 

would have to be travelling at a minimum speed of 

approximately 25km/h – a speed that is highly improbable 

for the type of targets of interest.  As a result, for the 

problem of airborne maritime searches, the slow-moving 

nature of the target allows the discrete velocity space to be 

limited to ±1 pixel in both the x- and y- directions.  An 

additional transitional buffer of one pixel is given in all 

directions to allow for any error in image correction due 

to the moving platform. This justifies the use of a 5x5 

kernel to examine changes from frame to frame. 

 

5.1. Hidden Markov Modelling 
 

Hidden Markov Modelling is a powerful statistical tool 

involving stochastic processes that can be represented as 

underlying discrete-value Markov chain state processes 

that are partially observed through a sequence of 

measurements [14].  HMMs have found use in many areas, 

such as signal processing, speech recognition and 

document character recognition applications. 

 

A HMM is characterised through the following: 

• The set of Markov chain states { }NsssS ,,, 11 K= , 

where N is the total number of valid states for the model; 

and 

• The HMM parameter set ( )BA,,πλ = , where: 

π  is the initial state distribution vector (also known as 

prior probabilities), e.g. π  is the probability of state i at 

the arbitrary time t=0. 

A is the state transition matrix (also known as the 

transition probabilities matrix), where ][ ijaA = , with 

ija  being the probability of transition to state j given 

current state i. 

B is the output distribution matrix (also known as the 

emission probabilities matrix), where ][ ikbB = , with 

ikb  being the probability or likelihood of observing 

feature k given current state i. 

 

In our approach the number of states, N, used in the HMM 

is equal to the number of pixels of the input image 

(representing each of the possible locations of the target). 

 

After being initialised as per (6), the HMM filter 

essentially acts as a recursive algorithm which evaluates 

the probability of a target being at each location, given all 

previous observations.  The output of this recursion 

algorithm is thresholded to determine if a target is present. 

The algorithm to yield the decision statistic, δ , is 

presented below [14]. 
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The likelihood of a transition from one state, or pixel, to 

any of the surrounding states within the 5x5 kernel is 

defined by a discretised Gaussian surface with its peak 

located on the current state. 

 

5.2. Colour Fusion 
 

As the most likely part of the survivor’s body to be seen 

above the water is their head, a provisional database of 

hair colours was compiled that were then modelled and 

combined to form target probability density functions 

(PDFs) to be used in the HMM.  The target PDFs were 

generated by sampling a variety of naturally coloured hair 

specimens (i.e. black, honey blonde, brown, red and white 

hair) while the background PDF was assembled by 

sampling image frames of the test data that did not contain 

valid targets and approximating this data using a Gaussian 

curve. 

 

For the detection process the raw RGB image is 

transformed into the required colour space, either Hue–

Saturation–Value (HSV), Luma–Blue-Chrominance–Red-

Chrominance (YCC) and Luma–In-Phase–Quadrature 

(YIQ) images, and then the desired layer is extracted.  The 

extracted layer is then mapped to its corresponding 

target/background PDF curve, which is fabricated from 

the provisional database. 

 

Also incorporated into the emissions matrix is an 

augmented version of the information produced by the 

image processing front-end, defined in (8).  The greyscale 

readings given by the front-end are mapped to an 

empirically defined normal cumulative distribution curve 

to enhance the point-like interpretation of the front-end 

filter as valid dim point-like targets can be somewhat 

disadvantaged in the typical filtering process. 
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where x  denotes the pixel greyscale level. 

In order to populate the emission probabilities matrix, B , 

the colour space likelihoods (derived from their 

corresponding PDF curves) are fused along with the 

remapped version of the front-end output image within the 

multi-dimensional feature space of the HMM, as shown in 

(9). 
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Where 
kv  denotes the observed feature space 

( )Mk ffv ,,1 L= , and js represents an element in the 

state space ( )NssS ,,1 L= , with M and N  being the total 

number of elements within the respective spaces. 

 

By assuming independence between feature spaces fusion 

of the difference information sources can be achieved in 

the manner stated above.  It is expected that the resultant 

image will give a better representation of the observed 

environment, therefore reducing clutter and other sources 

of false alarms, and enhancing the ability to effectively 

identify plausible point-like targets. 

 

6. EXPERIMENTS 
 

Below we describe trials that were conducted on both 

simulation and real flight data to gauge the performance of 

various system configurations, and to determine the most 

effective approach.  All sequences consist of 30 frames 

with a single target appearing throughout. 

 

6.1. Simulated Data Compilation 
 

A simulated ocean scene was created using Blender, an 

open-source 3D animation application.  The scene was 

animated to generate image sequences similar to those that 

would be produced during an aerial search operation, and 

these were used to test the detection algorithms. 

 

      
 

Figure 2. Blender Image Samples 

 

Blender allowed us to vary wave height and speed, the 

colour of the ocean, the amount of white water as well as 

the reflections created by the sun.  Two scenarios were 

233



used – calm water and wavy white water (left and right 

images in Figure 2, respectively). 

 

The scene was made to appropriate scale and the images 

shown in Figure 2 were created from a simulated camera 

height of 1000ft.  A single human figure was also inserted 

into the scene with hair colour matching the modelled data 

used in populating the emissions matrix in the HMM. 

 

Ten data sequences were generated from the two different 

sea states and five hair colours. 

 

6.2. Real Data Acquired via a Flight Test 
 

A flight test was conducted in a Cessna 172 over the 

beaches of the Gold Coast, Australia during June 2007.  

Images were captured from an altitude of approximately 

500ft at 80 knots by a downwards-pointing camera 

mounted to the wing strut.  A Point Grey Flea
®
 camera 

fitted with a 185º FOV Fujinon YV2.2X1.4A-2 fisheye 

lens produced 1024x768 images at 15Hz.  Camera pose 

(based on GPS and IMU) were also logged for each frame. 

 

Although data was captured with a fish-eye lens, the 

region in the centre of the image has high spatial 

resolution without much distortion compared to the areas 

towards the periphery of the image.  The centre portion of 

the original 1024x768 image was cropped to produce a 

267x200 image.  No further image rectification was 

performed. 

 

A sample image frame from the collected data is shown in 

Figure 3.  A single target is visible near the top-left corner 

(a surfer in a red rash shirt/wetsuit).  This target remains 

within the cropped 267x200 image sequence for 

approximately 2 seconds, providing a suitable data set. 

 

    
 

Figure 3. Flight Data Image Sample With Target 

 
Note that for both the simulated and real data sequences, 

the images were post-processed to compensate for camera 

motion before being used by the detection algorithm. 

 

 

 

 

 

6.3. Performance Metrics 
 

A set of metrics were used to compare the performance 

levels of the system.  The performance of the system was 

quantified using the following metrics: 

 

FAR – False Alarm Rate is the average number of false 

alarms per image frame. 

 

MDR – Missed Detection Rate is the average percentage 

(expressed as a fraction) of missed detections of true 

targets per image sequence. 

 

FFTT – First Frame of True Target Detection. 

 

FA length – False Alarm track length is the average 

number of consecutive frames that false alarms are 

considered targets. 

 

Signal-to-Noise ratio of the image is calculated according 

to the following: 
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7. RESULTS 
 

Building on previous work we have selected the top 

performing colour space layers as identified within [5], 

namely: HSV1, HSV2, RGB1, YCC3 and YIQ2 (the 

trailing number denotes the specific layer of the triplet).  

All these layers will be used in the fusion segment. 

 

Tests were performed with 5 different system 

configurations, each different system using one of the 

identified layers for use with the front-end, and all systems 

using the same fusion architecture.  Representative subsets 

of the results are shown below. 

 

7.1. Simulated Data Results 
 

Key performance feature values of the tracking phase are 

defined in Table 1, below.  These values have been 

averaged across all system configurations and input 

simulation data sets. 

 

Table 1. Tracking Phase Performance 

 

 FA Length FFTT 

No Fusion 0.6793 2.9578 

Fusion 0.2077 2.1401 
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As shown, systems using fusion are capable of identifying 

the true target approximately 0.8 frames (0.05 seconds) 

earlier than systems that do no utilise fusion.  Furthermore, 

as false alarms appear the systems with fusion are able to 

discern them three times quicker that those without. 

 

Table 2. System Performance 

 

No Fusion Fusion  

MDR FAR MDR FAR 

HSV1 0.3623 0.2235 0.2481 0.1601 

HSV2 0.3525 0.0882 0.0569 0.0000 

RGB1 0.4864 0.2734 0.0822 0.0298 

YCC3 0.0820 0.0000 0.0694 0.0000 

YIQ2 0.0872 0.0000 0.0692 0.0000 

 

A summary of the detection performance is given in the 

above table.  The mean MDR and FAR, across all 

simulated sequences according to system type, are 

presented to illustrate the relative performance increase 

that fusion systems offer. 

 

As shown in Table 2, the inclusion of fusion improves the 

overall performance of the detection system by reducing 

false alarms, while at the same time reducing missed 

detections.  The colour space most greatly affected by the 

fusion method is HSV2.  This layer experienced an 84% 

reduction in missed detections, as well as the total 

elimination of false alarms across all simulated sequences. 

 

7.2. Real Data Results 
 

Using the same system configurations, the detection 

algorithm was applied to real data sequences, producing 

the following plots. 
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Figure 4. HSV2 Comparison 
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Figure 5. RGB1 Comparison 

 

The effect of the incorporation of the fusion element into 

the system can be seen from the direct comparisons made 

in Figures 4 and 5.  The cases shown here are depictive of 

the results obtained from the remaining colour space 

layers – albeit with varied results. 

 

In the simulation data tests all the fusion systems achieved 

superior results, with many achieving zero false alarms. 

However, this consistent performance increase did not 

translate through to the results produced when applied to 

real data.  We note that fusion adds significant 

improvement to the FAR and MDR of HSV2 and RGB1, 

marginal improvement to HSV1, but has a negative effect 

on the YCC3 and YIQ2 colour space performances. 

 

Note however, that the background PDF used for the real 

data was different to that of the simulated data, as the 

colour distribution of the ocean between the sequences are 

not identical. 

 

Results have given an encouraging indication to colour 

fusion’s potential in improving visual tracking system 

performance.  However, outcomes derived from the real 

data suggest that the output given by the system front-end 

has a strong bearing on the overall system performance.  

This will be the basis of further research. 

 

8. CONCLUSIONS 
 

These tests have shown that the fusion of colour 

information within the emission matrix of a HMM tracker, 

has the potential to significantly increase overall detection 

performance of the proposed system.  While the outcomes 

of the simulated data have given strong evidence to the 

inherent advantage of colour fusion, the real data 

sequences have produced varying results. 
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Further investigation into the quality of the front-end 

output may be required in order to draw definitive 

conclusions as to the genuine effectiveness of colour 

fusion in this current application environment. 
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