QUT Digital Repository: http://eprints.qut.edu.au/26885 CRC for Construction Innovation (2001) *Australian national survey: preliminary findings.* CRC for Construction Innovation, Brisbane. The Participants of the CRC for Construction Innovation have delegated authority to the CEO of the CRC to give Participants permission to publish material created by the CRC for Construction Innovation. This delegation is contained in Clause 30 of the Agreement for the Establishment and Operation of the Cooperative Research Centre for Construction Innovation. The CEO of the CRC for Construction Innovation gives permission to the Queensland University of Technology to publish the papers/publications provided in the collection in QUT ePrints provided that the publications are published in full. Icon.Net Pty Ltd retains copyright to the publications. Any other usage is prohibited without the express permission of the CEO of the CRC. The CRC warrants that Icon.Net Pty Ltd holds copyright to all papers/reports/publications produced by the CRC for Construction Innovation. # Australian National Survey: Preliminary Findings Report 2001-016-A-05 The research described in this report was carried out by Project Leader Graham Brewer Team Members Thayaparan Gajendran, Professor Swee Eng Chen Researcher Kathryn McCabe Research Program A Business And Industry Development Project 2001-016-A Critical Success Factors For Organisations In Information And Communication Technology-Mediated Supply Chains Date Submitted: www.construction-innovation.info Leaders in Construction and Property Research ## **CONTENTS** Page - 1.0. Executive Summary - 2.0. Delphi Study Findings - 3.0. Survey Research - 4.0. Rationale for Survey Methodology - 4.1. Participants - 5.0. National Survey - 5.1. Question Development and Selection - 6.0. Results - 7.0. Discussion - 8.0. Appendices - 9.0. Author Biographies # **TABLES** Table 1: Distribution of Participants Table 2: Technology usage by participants Table 3: Level of technology engagement by different groups Table 4: Itemised technology use Page ### Appendices | | Page | |---------------------------------------------------------|------| | Appendix A: National Questionnaire | | | Appendix B Factor Analysis with relevant cases | | | Appendix C Scree plot and component matrix | | | Appendix D Factor loadings by survey question | | | Appendix E Principal components analysis | | | Appendix F Rotated component matrix | | | Appendix G Factor loading by survey question (Barriers) | | #### Stage III – National Survey The National survey was the third phase in an ongoing initiative to identify critical success factors in ICT mediated supply chains. This study has been designed to harness the tacit and explicit knowledge to be found on the subject from the widest range of appropriate sources. At its core is the assumption that, provided with the fullest list of candidate success factors, a representative sample of experienced industry-based practitioners will (with the aid of statistical analysis) reveal a set of critical success factors. A postal survey has been judged to be the most appropriate mechanism for achieving this outcome. #### Delphi Study Findings The Delphi study applied a methodologically rigorous variant of an established technique to a complex problem. In doing so, it harnessed the intellect and experience of a diverse group of experts, to achieve a high degree of unanimity that has ultimately generated a strong set of statements. Although these statements could not be used alone to drive an organizations ICT strategy, further analysis of the findings was considered better judgement. The primary purpose of the Delphi was therefore to identify the cutting edge of current thought in regards to success factors for ICT mediated supply chains. This served two purposes: firstly to check for completeness of the list of candidate success factors - derived from the literature - and to guide content of the national survey of the Australian Construction Industry. Resulting from the Delphi study was the confirmation of several candidate success factors. These were part of a group retrieved from supply chain and ICT literature in construction. During the course of the Delphi study several key areas that would be addressed in the National survey were identified. These were broadly identified as: - 1. Technology - 2. Project Structure and Processes/ Industry Structure and Processes - 3. Business Process - 4. Human Factors Although Delphi output did fall into these broad groups, the content, once analysed, revealed that these areas were comprised of a network of sub-dimensions. The following broad categories (see Appendix A for a complete version of the survey) were identified and used as the template for the National Survey: - 1. ICT mediated supply chain context - 2. Project organization structure and culture - 3. Business environment - 4. Supply chain management technology and support environment - 5. Contractual and procurement environment - 6. Barriers to adopting ICT mediated supply chain - a. Organisational culture - b. Organisational resource commitment - 7. ICT value perception - 8. Risk attitude - 9. Legal aspects - 10. Technological aspects #### SURVEY RESEARCH METHODS Survey research is considered the most efficient means to sample large populations. Ideally, structured interviews are preferred for yielding reliable data, but given the diversity (both geographically and vocationally) of the sample group a survey method was considered to meet sampling validity and reliability criteria. The survey was also the second part in a planned triangulation method. The preliminery phase, was a literature review of areas relating to construction supply chain success and ICT. The Delphi study was the official first phase followed by the national survey and finally a series of case studies of various organisations is to be completed to test the findings of the first two phases. However, the national survey had two primary aims: - 1). to find support or otherwise for the findings of the Delphi study and - 2). to further develop material for the case studies. #### Rationale for Methodology A National survey was undertaken with the aim of gathering data that would be representative of the current construction industry in Australia. In so doing, population sizes of representative parties in the industry were estimated and allocated a corresponding percentage of the 2500 surveys being distributed. #### **Participants** The participants consisted broadly of the following groups: - Clients - Main Contractors - Sub Contractors - Architects - Engineers - Quantity Surveyors - Other Inclusion criteria consisted of the organization being listed in a publicly available medium. Population sizes were estimated based on National databases and where applicable, the governing bodies of these different groups (eg RAIA, AIQS). A database of participants was created and a pilot sample of 500 surveys sent out. Participant response rates were calculated and the further 2000 survey group numbers were adjusted accordingly. #### **National Survey** The survey was divided into several components. The first section established the basic demographic data of the participant. As anonymity was maintained at all times, groups were established using the self report questions of Section A (see Appendix A). The second section of the survey addressed the level of technology that each organization utilised. From this, participants were identified as low, medium or high end users. #### Question Development and Selection Based on the findings of the Delphi study several key areas were identified for further investigation. During the initial phase of the Delphi study several content domains were identified from the literature. A content domain refer to the constituent parts that require investigation for a topic to be better understood. Following the conclusion of the Delphi exercise, a new set of content domains were named. The process of drafting questions for the survey involved the definition of each new content domain or where appropriate a list of its defining features. From this list questions were drafted reflecting different aspects of each domain. The original drafting process yielded a group of 200 possible questions addressing all of the content domains. A panel was established to accept or reject the sample item. Forty seven scaled questions were derived. Section C determined the type of technologies used in different facets of the construction processes, and whether the organization participated in these types of processes. Low end users (determined in section B) did not complete this section, but were forwarded to Section E addressing Barriers to New Technology in Project Teams. Section D addressed issues related to New Technology and Project Success. Participants were asked to indicate their level of agreement / disagreement relating to a series of statements. Section E addressed Barriers to New Technology for low - level users. In sections D, E and F all 1-100 response format was adopted. This choice was thought to limit social acquiescence, floor and ceiling effects and provided participants with a broad spectrum of response choices. The survey was sent out in two waves. The first was intended to run as a pilot test to gauge response rate and identify and flaws that may have been missed in the editing process. However after the initial 500 surveys were sent, no issues relevant were identified and a further 2000 were distributed. The expected response rate was 10% or 250 surveys. However the response rate at this time has reached 13% and surveys continue to arrive though with decreasing frequency. #### **RESULTS** #### Distribution of participants | Title | Percentage (%) | |----------------------|----------------| | Client | 5.9 % | | Principal Contractor | 6.3 % | | Sub-contractor | 45.5 % | | Architect | 22.8 % | | Engineer | 6.9 % | | Quantity Surveyor | 12.5 % | Table 1 indicates that a large percentage of respondents were sub-contractors. The method adopted for the sampling of respondents was intended to over sample this group, as they make up a large proportion of the construction industry, creating a more representative sample. Table 2: Technology usage by participants | Level of Technology | Percentage (%) | |---------------------|----------------| | Low level | 23.3 % | | Medium level | 48.5 % | | High level | 28.2 % | Table 2 reflects the level of technological engagement adopted by participants. It can be seen that most respondents engage with technology at a medium level. This level of engagement is typified by the use of email communications, WAP enabled mobile devices, Internet and web based project collaborations. Table 3: Level of technology engagement by different groups | Title | Low N (%) | Medium N (%) | High N (%) | |----------------------|------------|--------------|------------| | Client | 1 (5.6%) | 8 (44.7%) | 9 (50%) | | Principal Contractor | 0 (0.0%) | 12 (63.2%) | 7 (36.8%) | | Sub-contractor | 48 (35.3%) | 57 (41.9%) | 31 (22.8%) | | Architect | 10 (14.7%) | 31 (45.6%) | 27 (39.7%) | | Engineer | 2 (9.5%) | 17 (81%) | 2 (9.5%) | | Quantity Surveyor | 9 (23.7%) | 20 (52.6%) | 9 (23.7%) | Within the different groups the use of technology differed. Clients were reported as medium to high end users as were Principal contractors. Alternatively Sub-contractors tended to engage with technology at a lower level compared to industry counterparts with far more respondents reporting low levels of new technology use. The results indicate that most participants engage in technology at a medium levels. Table 4: Itemised technology use | Technology | Usage (% of respondents) | |-----------------------------------|--------------------------| | Land phone | 97 % | | Fax | 96.7 % | | Mobile | 96.4 % | | Stand alone PC | 74 % | | Networked PC | 70.1 % | | Email | 89.1 % | | WAP enabled mobile device | 11.2 % | | Internet | 60.5 % | | Web based project collaboration | 28.9 % | | Integrated design software system | 13.8 % | | ERP | 4.9 % | Table 4 examined the different types of technologies that differentiate low, medium and high end users. Almost all participants reported the use of low-end technologies (land phone, fax, mobile, stand alone PC and networked and shared databases). However with the exception of the internet, the general trend was that technology use declined as the technologies became more sophisticated. A factor analysis was run on Section D (see Appendix C for data). The factors appear to load into a seven-factor solution that explained 59% of the variance (see Appendix C). The factors have been given the preliminary labels (see Appendix B for questions): Factor 1: Organisational commitment Factor 2: Organisational attitude Factor 3: Industry regulation Factor 4: Investment drive Factor 5: Rights and duties Factor 6: Guarantee/ Protection/ Assurance Factor 7: Communication structure These factors will be the basis of the case studies. A factor analysis was run on Section D which addressed barriers to ICT uptake (see Appendix E for data). The factors appear to load into a four-factor solution that explained 64% of the variance (see Appendix F). The factors have been given the preliminary labels (see Appendix G for questions): Factor 1: Financial Dimension Factor 2: Confusion of Technology Factor 3: Culture of the Industry Factor 4: Drive for New Technology #### 4.0. DISCUSSION Preliminary findings suggest that most of the construction industry in Australia engage with technology at a medium level of usage. Further analysis will elucidate the reasons for technology adoption or otherwise. However thus far it is clear that construction industry participants do use technology in the day-to-day operation of their businesses and organizations. Sub-contractors reported the lowest level of technological engagement. Given the oftensmall business size in comparison to other groups and the nature of their employment that this group have not engaged in often expensive and risky technologies was predicted. Further analysis will determine if there is a relationship between the number of employees and the level of technological engagement reported by participants. Or whether occupation or project type is a better predictor of technological engagement. An important aspect is the type of work that the respondents typically engage in. For example, Architects were more likely to use 3D modelling tools compared to a Sub-Contractor or Quantity Surveyors because the nature of work requires the frequent use of this type of technology. Therefore the specialisation of different occupations is an important criterion for assessing technology use. Response rate for the survey was satisfactory; the sample met size and group criteria for statistical robustness. However further research will concentrate on developing a larger database for Clients and Principal Contractors, within Australia the number of Clients was limited, therefore it is vital to obtain an accurate and thorough database of all major Clients in the construction industry. It is further suggested that a definitive list of organisations who consider themselves Principal Contractors be collected with demographic details of the organisation, to determine more accurately the size and make-up of principal contractors in the construction industry. The factors that have been identified represent the issues considered relevant to industry participants responding to the survey. The names given to the factors represent the combination of questions that loaded onto that factor. See Appendix B and D for a list of the questions in groups of factors. Factor 1: Organisational commitment appeared to reflect questions addressing the relationships that organisations maintain with other project participants when considering the use of ICT. Factor 2: Organisational attitude included issues of the provision of technology specifications in projects and whether there was an industry push to have technology specifications enforced or included in contracts. Factor 3: Industry regulation was the external regulation or guidelines for issues of technology use. Factor 4: Investment drive captured issues for the push for engaging in new technologies and the financial benefits/liabilities of doing so. Factor 5: Rights and duties: captured issues related to the usage of project information and the level of access participants in a project have to project information. Factor 6: Guarantee/ Protection/ Assurance captured the issues related to the guarantee that the information within a project is used for the purposes that were stipulated within contractual agreements. Factor 7: Communication structure referred to the types of communication networks organisations use within and between project partners. This preliminary analysis has satisfied the suggestion that different groups within the construction industry use technology differently and with varying levels of engagement. Further research will determine the attitude of participant groups toward the use of these technologies and the impact they have on organisational functioning. Further analysis will also elucidate the areas that different groups within the construction industry consider the critical success factors for ICT mediated supply chains. #### Appendix A - 1. Please indicate the type of activity your organisation performs (please tick appropriate box. You may tick more than one box). - Project management - Contracting (principal) - Trade sub-contracting - Specialist sub-contracting - Architectural - Engineering - Financial services (QS) - Other - 2. Please indicate your position/primary role in your organisation (please tick appropriate box. You may tick more than one box). - Project/construction manager - IT manager - Operation/SC manager - Senior/Strategic manager - Other - 3. Please indicate in which sector(s) your organisation is active (please tick appropriate box. You may tick more than one box). - Residential - Commercial - Industrial - Retail - Civil (transport) - Civil (power and water) - Social infrastructure - Other - 4. Please indicate what types of procurement your organisation has experienced (please tick appropriate box. You may tick more than one box). - Lump sum tender - Design and build - Management contracting - Partnering - Joint ventures - Public/private partnerships - Others - 5. Within Australia, in how many states are you active? (please tick appropriate box. You may tick more than one box). - NSW - QLD - VIC - SA - WA - NT - ACT - TAS - 6. Do you operate overseas? - Yes - No - 7. Please indicate how many years your organisation has been in business? - 8. Please indicate the approximate number of employees in your organisation? - 9. Please indicate the average annual turnover of your organisation in the last three years. - 10. Please indicate the number of different clients that your organisation has done work for in the past five years. - Approximate number of one-off clients? - Approximate number of repeat clients? #### Section B Please tick any of the technology that you currently use. - Land phone - Fax - Mobile phone - Stand alone PC - Networked PC/Shared database - Email - Use of WAP enabled mobile device - Internet - Web based project collaboration - Integrated design and construction management software system - ERP system across organisation and projects - Own web-server/project collaboration/logistics tools - 3D/4D modelling and virtual reality communication #### Section C | Rating | Description | |--------|----------------------------------------------------------------------------------------------------------------------------------| | NA | We do not engage in this type of work | | 0 | New Technologies are not used | | 1 | Stand alone applications – e.g. word processors, spread sheets, BQ,CAD applications, Telephones (teleconferencing) etc | | 2 | Shared applications - e.g. Documents or designs shared on a network,
Video conferencing applications | | 3 | Virtual applications - 3D/ 4D models (virtual reality) and Web based/Online software applications and communication tools | | Functions | Rating | Functions | Rating | |--|-------------------------------|--|--------| | Business planning (organization and project) | Financial/Resource Management | | | | Meetings with partners and collaborators | | Financial forecasting (cash-flows etc) | | | Managing corporate/business knowledge base | | Company accounts & payroll | | | Strategic planning (making decisions on long term plans) | | Project cost planning | | | Customer support (customer information and marketing) | Sub contractor payment | | | | Designing Stage | Construction | | | | Briefing process (client and other stake holders) | | Project communication | | | Drawings documentation and communication | | Purchasing/logistics (inventory) | | | Design collaboration with other consultants/contractors | | Project planning (time) | | | Tendering stage | <u> </u> | Plant and machinery management | | | Preparing tender documentation (BQ and estimating) | Facilities management | | | | Tender contractual documentation and communication | | Maintenance planning and operations | | | Obtaining supplier quotations | | Building performance monitoring | | | Accessing/managing pricing information | | Leasing and contractual activities | | #### Section D - 12. Organisational objectives are more efficiently achieved with the use of new technology - 13. New technology use in our organisation is considered successful - 14. The use of new technology gives competitive advantage - 15. The use of new technology for communication between project participants encourages effective collaboration - 16. Using new technology improves our purchasing and logistics control - 17. Using new technology does not help us align our business processes with our trading partners - 18. Using new technology assists us with the formation of strategic relationships with our trading partners. - 19. The successful management of relationships with trading partners is reliant upon the commitment of senior management. - 20. The adoption of new technology for project communication/management is usually imposed on participants by a powerful organization within the project - 21. The adoption of new technology for project team management must be supported by a "champion" within the project - 22. Customer demand is the primary driver for the adoption of new technology. - 23. External pressures exerted by competitors trigger an organization's adoption of new technology. - 24. The fragmented nature of some construction projects hinders the effective operation of new technology - 25. The guarentee of information security is crucial for the success of new technology usage - 26. An open-minded attitude to sharing project information using new technology is uncommon within a project team. - 27. New technology in a project team tends to work best for organizations who engage in long term collaborative relationships (e.g. partnering) - 28. The commitment of the employees is essential for the success of new technology initiatives - 29. Use of new technology requires continuous investment in human resource development through training and development - 30. Provision for usage of emerging technologies in the present standard conditions of contracts is inadequate - 31. Introducing government regulations which stipulate a minimum technology requirement in project teams will improve the adoption and use of new technology - 32. Stipulation of one industry wide technology standard (like Australian Standard) is essential for the success of using new technology in project team communication - 33. For new technology led project communications, transparency/trust in information transactions is essential - 34. Organisations commit to new technology investment as a project based tactical decision- in large projects only when Return on Investment (ROI) can be recovered at the end of the project - 35. Organisations commit to investment in new technology, based on strategic decision-considering ROI recovery with long term engagement with project team partners. - 36. Acknowledging that not all information (especially commercially sensitive information of an organisation) will be available to project team participants is important for usage of new communication technologies among project teams. - 37. Identifying the ownership of the intellectual property of project information is an important aspect in the success of engaging new technology in a project team. - 38. Multiple online systems led by different participants (architects, project managers, contractors) tend to work negatively in the project team. - 39. The powerful new technology promoter (e.g. main contractor) in the project team should support the weak or small organizations (e.g. Sub contractor) to successfully use new technology in that project #### Section E - 40. Engaging with new technology is made difficult due to the need to align your organisational processes with others in the project team - 41. There is no drive from project team members (contractors/consultants/partners) to use new technology - 42. Drive to adopt new technology within your organization is lacking - 43. The rate of change of technology is unattractive in terms of time commitment required to engage in new developments - 44. Low profit margins in the construction sector do not allow for the active use of new technology - 45. The high cost of new technology investment tends to discourage such ventures - 46. The cost of training staff on new technologies discourages these developments - 47. Our organisational culture does not believe in engaging with hi-tech new technologies for doing business - 48. Lack of trust in the information security of new technology tends to discourage involvement - 49. Ownership of the intellectual property of project information threatens new technology use. - 50. Adoption of new technology is considered risky as the contractual forms available are not tried and tested - 51. The sharing culture and transparency required to use new technology is uncomfortable for our organization - 52. New technology investments do not give a decent direct financial return - 53. Lack of technology standards (eg Australian Standards) can make using new technology confusing - 54. Advice in new technology engagement in the construction industry is hard to obtain (due to lack of consultants or cost involved) #### Section F - 55.My organisation's financial situation for the past two years has been positive - 56. My organisation's competitive position/market share for the past two years has been good. - 57. My organization hands over jobs to clients within the agreed project duration - 58. My organization has avoided doing large rectification work in our projects by doing things reasonably well in the first instance - 59. Project cost overruns are not common in our organization - 60. Comments # Appendix B Factor analysis with relevant cases Total Variance Explained | | I, | nitial Eigenvalues | | Extraction St | Extraction Sums of Squared Loadings | | | ms of Squared Loa | dings | |-----------|-------|--------------------|-----------------|---------------|-------------------------------------|-----------------|-------|-------------------|-----------------| | Component | Total | % of
Variance | Cumulative
% | Total | % of
Variance | Cumulative
% | Total | % of
Variance | Cumulative
% | | 1 | 3.716 | 17.695 | 17.695 | 3.716 | 17.695 | 17.695 | 2.305 | 10.977 | 10.977 | | 2 | 2.222 | 10.579 | 28.274 | 2.222 | 10.579 | 28.274 | 1.976 | 9.412 | 20.389 | | 3 | 1.553 | 7.393 | 35.667 | 1.553 | 7.393 | 35.667 | 1.888 | 8.991 | 29.380 | | 4 | 1.431 | 6.814 | 42.480 | 1.431 | 6.814 | 42.480 | 1.860 | 8.859 | 38.240 | | 5 | 1.378 | 6.562 | 49.043 | 1.378 | 6.562 | 49.043 | 1.827 | 8.698 | 46.93 | | 6 | 1.165 | 5.549 | 54.592 | 1.165 | 5.549 | 54.592 | 1.376 | 6.551 | 53.48 | | 7 | 1.003 | 4.778 | 59.370 | 1.003 | 4.778 | 59.370 | 1.235 | 5.882 | 59.37 | | 8 | .927 | 4.416 | 63.787 | | | | | | | | 9 | .859 | 4.092 | 67.879 | | | | | | | | 10 | .795 | 3.785 | 71.664 | | | | | | | | 11 | .755 | 3.596 | 75.260 | | | | | | | | 12 | .719 | 3.426 | 78.686 | | | | | | | | 13 | .671 | 3.193 | 81.879 | | | | | | | | 14 | .638 | 3.040 | 84.919 | | | | | | | | 15 | .568 | 2.706 | 87.625 | | | | | | | | 16 | .532 | 2.534 | 90.159 | | | | | | | | 17 | .502 | 2.390 | 92.549 | | | | | | | | 18 | .446 | 2.122 | 94.671 | | | | | | | | 19 | .400 | 1.906 | 96.577 | | | | | | | | 20 | .376 | 1.789 | 98.366 | | | | | | | | 21 | .343 | 1.634 | 100.000 | | | | | | | Extraction Method: Principal Component Analysis. # Appendix C Com p on ent Matrixa | | Comp on ent | | | | | | | | |------------|-------------|-------|-------|-------|-------|-------|-------|--| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | SMEAN(Q27) | .5 68 | - | 3 7 1 | | | | | | | SMEAN(Q24) | .5 58 | | | | | | .3 17 | | | SMEAN(Q33) | .5 35 | 3 2 5 | | | | | | | | SMEAN(Q28) | .5 30 | 3 1 7 | | .320 | | | | | | SMEAN(Q36) | .5 25 | | | | 3 5 2 | .3 33 | | | | SMEAN(Q29) | .5 21 | | | | .412 | | | | | SMEAN(Q35) | .5 18 | | | | 3 3 1 | | | | | SMEAN(Q25) | .5 10 | | | 3 0 4 | | 3 64 | | | | SMEAN(Q37) | .5 06 | | | | | .3 26 | 3 64 | | | SMEAN(Q30) | .4 63 | | | 3 7 6 | | | 4 1 1 | | | SMEAN(Q19) | | 5 5 4 | | | .308 | | | | | SMEAN(Q32) | | .5 38 | .5 24 | | | | | | | SMEAN(Q26) | | .5 00 | 3 8 6 | | | | | | | SMEAN(Q23) | .331 | .495 | | | | | .3 38 | | | SMEAN(Q22) | | .477 | | .329 | | | 3 19 | | | SMEAN(Q31) | | .4 12 | .606 | 3 4 8 | | | | | | SMEAN(Q20) | .3 47 | .3 14 | 4 0 8 | | .379 | | | | | SMEAN(Q21) | | | | .469 | .442 | .430 | | | | SMEAN(Q34) | .4 18 | | | | 478 | | | | | SMEAN(Q39) | .3 84 | | .330 | | | .475 | | | | SMEAN(Q38) | | | | 3 7 4 | | .3 84 | .4 85 | | Extraction M etho d: Principa l Comp on ent a. 7 components extracted. #### Appendix D #### Factor – 1 – Organisational Commitment - 19. The successful management of relationships with trading partners is reliant upon the commitment of senior management. - 28. The commitment of the employees is essential for the success of new technology initiatives - 29. Use of new technology requires continuous investment in human resource development through training and development - 33. For new technology led project communications, transparency/trust in information transactions is essential #### Factor – 2 Organisational attitude - 26. An open minded attitude to sharing project information using new technology is uncommon within a project team. - 27. New technology in a project team tends to work best for organizations who engage in long term collaborative relationships (e.g. partnering) - 30. Provision for usage of emerging technologies in the present standard conditions of contracts is inadequate - 20. The adoption of new technology for project communication/management is usually imposed on participants by a powerful organisation within the project #### Factor 3 –Industry Regulation 31. Introducing government regulations which stipulate a minimum technology requirement in project teams will improve the adoption and use of new technology 32. Stipulation of one industry wide technology standard (like Australian Standard) is essential for the success of using new technology in project team communication #### Factor 4- Investment drive - 23. External pressures exerted by competitors trigger an organisation's adoption of new technology. - 34. Organisations commit to new technology investment as a project based tactical decision- in large projects only when Return on Investment (ROI) can be recovered at the end of the project - 35. Organisations commit to investment in new technology, based on strategic decision-considering ROI recovery with long term engagement with project team partners. - *22. Customer demand is the primary driver for the adoption of new technology. #### Factor 5- Rights and duties - 36. Acknowledging that not all information (especially commercially sensitive information of an organisation) will be available to project team participants is important for usage of new communication technologies among project teams. - 37. Identifying the ownership of the intellectual property of project information is an important aspect in the success of engaging new technology in a project team. - 39. The powerful new technology promoter (e.g. main contractor) in the project team should support the weak or small organizations (e.g. Sub contractor) to successfully use new technology in that project #### Factor 6 -Gurantee/Protection/Assurance - 21. The adoption of new technology for project team management must be supported by a "champion" within the project - 25. The guarantee of information security is crucial for the success of new technology usage #### Factor 7 -Communication structure - 24. The fragmented nature of some construction projects hinders the effective operation of new technology. - 38. Multiple online systems led by different participants (architects, project managers, contractors) tend to work negatively in the project team # Appendix E **Total Variance Explained** | | Initial Eigenvalues | | Initial Eigenvalues Extraction Sums of Squared Loadings | | | adings | Rotation Sums of Squared Loadings | | | |-----------|---------------------|------------------|---|-------|------------------|-----------------|-----------------------------------|------------------|-----------------| | Component | Total | % of
Variance | Cumulative
% | Total | % of
Variance | Cumulative
% | Total | % of
Variance | Cumulative
% | | 1 | 5.598 | 39.989 | 39.989 | 5.598 | 39.989 | 39.989 | 3.736 | 26.688 | 26.688 | | 2 | 1.687 | 12.047 | 52.035 | 1.687 | 12.047 | 52.035 | 2.640 | 18.859 | 45.547 | | 3 | 1.367 | 9.763 | 61.798 | 1.367 | 9.763 | 61.798 | 2.023 | 14.449 | 59.996 | | 4 | 1.038 | 7.414 | 69.212 | 1.038 | 7.414 | 69.212 | 1.290 | 9.216 | 69.212 | | 5 | .933 | 6.662 | 75.874 | | | | | | | | 6 | .735 | 5.250 | 81.123 | | | | | | | | 7 | .607 | 4.337 | 85.460 | | | | | | | | 8 | .428 | 3.058 | 88.518 | | | | | | | | 9 | .369 | 2.634 | 91.152 | | | | | | | | 10 | .332 | 2.374 | 93.526 | | | | | | | | 11 | .309 | 2.208 | 95.734 | | | | | | | | 12 | .262 | 1.875 | 97.609 | | | | | | | | 13 | .209 | 1.493 | 99.102 | | | | | | | | 14 | .126 | .898 | 100.000 | | | | | | | Extraction Method: Principal Component Analysis. ## Appendix F #### **Rotated Component Matrix** | | Component | | | | | | | | |------------|-----------|------|------|------|--|--|--|--| | | 1 | 2 | 3 | 4 | | | | | | SMEAN(Q45) | .829 | | | | | | | | | SMEAN(Q46) | .809 | | | | | | | | | SMEAN(Q52) | .790 | | | | | | | | | SMEAN(Q44) | .770 | | .335 | | | | | | | SMEAN(Q54) | .671 | .459 | | | | | | | | SMEAN(Q48) | | .833 | | | | | | | | SMEAN(Q49) | | .695 | | | | | | | | SMEAN(Q51) | | .677 | | .402 | | | | | | SMEAN(Q50) | .399 | .579 | | | | | | | | SMEAN(Q53) | .514 | .531 | | | | | | | | SMEAN(Q43) | | | .854 | | | | | | | SMEAN(Q42) | | | .785 | .352 | | | | | | SMEAN(Q47) | .462 | | .516 | | | | | | | SMEAN(Q41) | | | | .950 | | | | | Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 6 iterations. #### Appendix G #### Factor 1 – Financial Dimension - 44. Low profit margins in the construction sector do not allow for the active use of new technology - 45. The high cost of new technology investment tends to discourage such ventures - 46. The cost of training staff on new technologies discourages these developments - 52. New technology investments do not give a decent direct financial return - 54. Advice in new technology engagement in the construction industry is hard to obtain (due to lack of consultants or cost involved) #### Factor 2 – Confusion of Technology - 48. Lack of trust in the information security of new technology tends to discourage involvement - 49. Ownership of the intellectual property of project information threatens new technology use. - 50. Adoption of new technology is considered risky as the contractual forms available are not tried and tested - 51. The sharing culture and transparency required to use new technology is uncomfortable for our organization #### Factor 3 - Culture of the Industry - 42. Drive to adopt new technology within your organization is lacking - 43. The rate of change of technology is unattractive in terms of time commitment required to engage in new developments - 47. Our organisational culture does not believe in engaging with hi-tech new technologies for doing business #### Factor 4 – Drive for new Technology - 41. There is no drive from project team members (contractors/consultants/partners) to use new technology - 53. Lack of technology standards (e.g Australian Standards) can make using new technology confusing # AUTHOR BIOGRAPHIES Graham Brewer Project Leader for CRC CI Projects 2001-9-4 Benchmarking Information and Communication Technology Uptake and Integration in the Australian Construction Industry and 2001-016-4 Critical Success Factors for ICT Mediated Supply Chains. Other research interests include the alignment of business management objectives with supply chain partners; ICT integration; project team dynamics and knowledge management within temporary project organisations; Public-Private Partnerships, Public infrastructure funding. **Contact Details:** Phone: +61 (2) 49221 5794 Fax: +61 (2) 4921 6913 Email: gbrewer@mail.newcastle.edu.au #### Professor Swee Eng Chen Research interests involve the understanding of project performance from a complexity perspective; the application of systems theory to the management and economics of the building procurement process, with particular reference to buildability, quality and environmental issues; project team dynamics and knowledge management within temporary project organisations. **Contact Details:** Phone: +61 (2) 4921 5780 Fax: +61 (2) 4921 6913 Email: Swee.Chen@newcastle.edu.au #### Professor Dennis Lenard Professor Lenard is the Director of the Business and Industry Development Research Programme in the Australian National Cooperative Research Centre for Construction Innovation. He has held many senior positions in the Profession and Industry and was the founding director of the Centre for Construction Innovation United Kingdom in 2000-2001. Professor Lenard is the immediate Past Chairman of the International Cost Engineering Council. Professor Lenard has in worked mainly in Australia but has gained experience in Mainland China. He continues to work in the UK and Australia specialising in International Property Investment and Construction with a particular focus on Public Private Partnerships as a Funding Mechanism for Infrastructure Development. Contact Details: Phone: + 61 (2) 49 15771 Fax: + 61 (2) 49216913 Email: Dennis.Lenard@uts.edu.au #### Kathryn McCabe Research interests include the application of human factors principles to the construction industry, information and communications technology integration and uptake. Currently engaged in the completion of a Master of Applied Psychology. Contact Details: Phone: +61 (2) 4921 5779 Fax: +61 (2) 4921 6913 Email: <u>kathryn.mccabe@studentmail.newcastle.edu.au</u>